The Mathematical Representation of the CME CF BRR Methodology is represented below:

Symbol	Name	Description
T	Effective Time	Time at which the BRR is calculated
T	TWAP Period Length	Length of the Time Weighted Average Price
		(TWAP) period for which trade data is observed
		(60 minutes)
Î	Partition Length	Length of each partition (5 minutes)
Xi	Partition Trade	i th price/size trade pair in partition
Pi	Partition Trade Price	i th trade price in partition
Si	Partition Trade Size	i th trade size in partition
K	Number of Partitions	number of partitions – given by T/\widehat{T}
k	Partition Number	k th partition
WM_k	Weighted Median	Size-weighted median for the k th partition
BRR_T	Bitcoin Reference Rate	BRR at time T

Figure 1: Calculation used to determine the CME CF BRR

$$WM_{k} = p_{j} \text{ where } x_{j} \text{ satisfies } \sum_{i=1}^{j-1} s_{i} < \frac{\sum_{i=1}^{I_{k}} s_{i}}{2} \text{ and } \sum_{i=j+1}^{I_{k}} s_{i} \leq \frac{\sum_{i=1}^{I_{k}} s_{i}}{2}$$

$$\text{If } \sum_{i=j+1}^{I_{k}} s_{i} = \frac{\sum_{i=1}^{I_{k}} s_{i}}{2} \text{ then } WM_{k} = \frac{p_{j} + p_{j+1}}{2}$$

$$BRR_{T} = \frac{\sum_{k=1}^{K} WM_{k}}{K}$$

$$(1)$$

 WM_k is thus calculated as the price (P_j) of the j^{th} trade where the j^{th} trade is the trade that lies at 50% of the cumulative size for the partition k. WM_k is calculated for each partition in T and the BRR is found to be the mean WM_k of all the K partitions.

Figure 2¹

Analysis performed by the Sponsor using data provided by Kaiko//Challenger Deep.