
The Unit-Weighted Mean - Because Size

Matters∗

March 30, 2020

Eugene Canjels†

Abstract

The unit-weighted mean is of frequent interest to applied researchers in a wide range
of fields. Despite this interest, there is a lack of easily accessible theoretical statistical
literature that shows its statistical properties. This paper provides the asymptotic
distribution of the unit-weighted mean and a formula to calculate asymptotically valid
standard errors. I show that numerically identical results can be obtained using a
novel regression approach.

1 Introduction

Applied researchers are frequently interested in an outcome per unit. Some
examples are crop yield (production per acre), concentration of a chemical in
a solution (moles per liter), or investment returns (profit per dollar invested).
When the observations collected by the researcher vary by the number of units
in each observation, the statistical measure of interest is often the unit-weighted
mean. For instance, if the observation unit is a farm, the researcher observes
total output and total acres per farm - and thus crop yield - for each farm.
The researcher can then calculate total output over all farms divided by total
∗The Securities and Exchange Commission disclaims responsibility for any private publica-

tion or statement of any SEC employee or Commissioner. This article expresses the author’s
views and does not necessarily reflect those of the Commission, the Commissioners, or other
members of the staff. This paper is part of the Division of Economic and Risk Analysis’
Working Paper Series. Papers in this series are the work of the authors and not the work
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acres over all farms, or equivalently calculate the acre-weighted average yield.
Introducing notation, the unit-weighted mean r̃ is calculated as:

r̃ =

∑
yi∑
ui

=

∑
uiri∑
ui

=
∑ ui∑

ui
ri =

∑
wiri (1.1)

where ri = yi/ui and wi = ui/
∑
ui.1 In general, the unit-weighted mean and

the unweighted mean are measuring different variables of interest. For example,
when measuring crop yield, the unit-weighted mean measures the productivity
of a region while the unweighted mean measures the productivity of an average
farm in that region. These measures will differ when farm size and productivity
are correlated.

Statistical comparisons are the natural extension to the calculation of the
unit-weighted mean. Is the crop yield in region A different from the crop yield in
region B, and is this difference statistically significant? The existing statistical
literature on weighted means focusses on three types of weights: frequency
weights, probability weights, and precision weights. The unit-weighted mean
requires a different analysis which is discussed in this paper.

Much of the analysis in this paper is not novel, and statisticians familiar
with sampling literature may recognize some of the central results. First, some
results in this paper are discussed in the sampling literature under the term
“ratio estimation,” e.g. Cochran (1977). In that literature, the focus tends to
be on sampling approaches to estimate

∑
yi in a finite population using ui as

an auxiliary variate. Second, the problem analyzed here can be interpreted as a
cluster sampling problem. In that interpretation the “acre” is the fundamental
element of the analysis, and the “farm” is a cluster of acres. The analysis here is
thus similar to single-stage cluster sampling, meaning that clusters are randomly
drawn from a super-population and all elements in the cluster are sampled. The
applicability of the sampling literature to the analysis of the unit-weighted mean
appears to be underappreciated by empirical researchers. And by abstracting
from the issues of estimating means in a finite population, the statistical theory
here is easier to follow and more accessible to applied researchers.

I extend the existing literature in a couple of ways. First, I show that the
estimation error results from two components, with the total variance approxi-
mately the sum of the variance of the two components. The first error results
from drawing a set of observations ui that may not be representive of the dis-

1 Summations in this paper always run from 1 to n.



2 Asymptotic distribution of the unit-weighted mean 3

tribution of sizes in the population. The second error results from drawing
observations yi that may not be representative of the expected value of yi given
the observed values of ui.

I also introduce a regression approach that provides numerically identical
results. The ratio estimation literature shows that the weighted mean is an
optimal approach to estimate

∑
yi when yi and ui have a linear relation going

through the origin and a variance that is proportional to ui. These assump-
tions are likely to be overly restrictive for most applied work. But I show that
the weighted mean can be calculated using this regression approach and that
the Huber-White approach for heteroscedasticity provides the correct standard
errors.

2 Asymptotic distribution of the unit-weighted mean

Let the n pairs (u1, y1), (u2, y2), ..., (un, yn) be drawn independently and with
equal probability from a super-population of pairs, i.e. the pairs (ui, yi) are i.i.d.
with probability distribution g (ui, yi). We require that the number of units ui is
strictly positive. We already defined ri = yi/ui earlier. The parameters µu, µy,
and µr indicate the population means for ui, yi, and ri, respectively. Similarly,
the population variances are given by σ2

u, σ2
y, and σ2

r , and population covari-
ances given by σuy, σur, and σyr. We assume that the probability distribution
g (ui, yi) satisfies the necessary conditions for the Lindeberg-Levy Central Limit
Theorem (i.e. finite variances and covariances). Sample analog estimators for
the population parameters are given the usual notation, e.g. ū = n−1

∑
ui,

s2u = n−1
∑

(ui − ū)
2, and suy = n−1

∑
(ui − ū) (yi − ȳ).2

The following straightforward result provides the probability limit of the
unit-weighted mean.

Theorem 1. Let µr̃ = µy/µu. The weighted mean r̃ is a consistent estimator
of µr̃.

Proof.

plim r̃ = plim
1
n

∑
yi

1
n

∑
ui

=
µy
µu

= µr̃

Note however that, in general, r̃ is not an unbiased estimator because
2 All results below are easily adjusted if one prefers to use unbiased sample variances and

covariances that use n− 1 instead of n in the denominator.
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E
(∑

yi/
∑

ui

)
6= E

(∑
yi

)
/E
(∑

ui

)
.

The unit-weighted mean and the unweighted mean measure different pop-
ulation parameters with the difference between the two parameters given by
covariance between ui and ri divided by the expectation of ui as shown in the
following derivation:

µr̃ − µr =
µy − µuµr

µu

=
E (u· r)− µuµr

µu

=
E ((u− µu) (r − µr))

µu

=
σur
µu

(2.1)

Thus the unit-weighted and the unweighted mean only coincide when the co-
variance between ui and ri is equal to zero. Similarly, focusing on the sample
analogs, the difference between r̃ and r̄ is the sample covariance between the
scaled up weights (n·wi) and ri:

cov (n·wi, ri) =
1

n

∑
(nwi − nw̄) (ri − r̄)

=
1

n

∑
nwiri − nw̄r̄

= r̃ − r̄ (2.2)

Given that the unit-weighted mean is a type of averaging, one may expect
that its asymptotic distribution is normal. This is correct as shown in the
following theorem:

Theorem 2. The asymptotic distribution of r̃ is given by:3

r̃
a∼ N

(
µr̃, φ

2/n
)

3 To make notation easier to read we use a∼ as short-hand for “is approximately distributed
as” instead of the more formal notation where the difference between the random variable and
its limiting value, scaled by the standard error, converges to the standard normal.
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where

φ2 =

(
1

µu

)2 (
σ2
y + µ2

r̃σ
2
u − 2µr̃σuy

)
Proof. The multivariate version of the Lindeberg-Levy CLT shows that the joint
distribution of ū and ȳ is asymptotically normal. Following the delta-method,
the Taylor series expansion of the non-linear function r̃ = ȳ/ū is given by

r̃
a
= µr̃ +

1

µu
(ȳ − µy)− µy

µ2
u

(ū− µu) = µr̃ +
1

µu
{(ȳ − µy)− µr̃ (ū− µu)}

Asymptotic normality and the formula for the variance follow directly.

3 Estimation of the standard error of the unit-weighted
mean.

Because φ depends on unknown population parameters, it will need to be esti-
mated to make Theorem 2 useful in practice. This leads to the following result:

Theorem 3. Under the assumptions above

r̃
a∼ N

(
µr̃, s

2
r̃

)
where

s2r̃ =
∑

w2
i (ri − r̃)2

Proof. Let the estimatorf2 be the sample analog of φ2, i.e.

f2 =

(
1

ū

)2 (
s2y + r̃2s2u − 2r̃suy

)
then

plim f2 = φ2
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The second term in parentheses of the estimatorf2 simplifies:

s2y + r̃2s2u − 2r̃suy

=
1

n

∑
(yi − ȳ)

2
+

1

n
r̃2
∑

(ui − ū)
2 − 2

n
r̃
∑

(yi − ȳ) (ui − ū)

=
1

n

∑
y2i − ȳ2 +

1

n

∑
r̃2u2i − r̃2ū2 −

2

n

∑
r̃yiui + 2r̃ȳū

=
1

n

∑
u2i r

2
i +

1

n

∑
u2i r̃

2 − 2

n

∑
u2i rir̃ − ȳ2 −

( ȳ
ū

)2
ū2 + 2

( ȳ
ū

)
ȳū

=
1

n

∑
u2i (ri − r̃)2

such that

f2 =

(
1

ū

)2
1

n

∑
u2i (ri − r̃)2 = n

∑
w2
i (ri − r̃)2

Using the Slutsky Theorem, we can replace φ in Theorem 2, with its (consistent)
estimator f , finishing the proof.

4 Conditioning on the weights

It is tempting to analyze the statistical properties of r̃ taking u as fixed and
writing the following equation for the variance of r̃:

E
(

[r̃ − E (r̃|ui)]2 |ui
)

= E

([∑
wiri − wiE (ri|ui)

]2
|ui
)

=
∑

w2
iE
(

[ri − E (ri|ui)]2 |ui
)

(4.1)

It would then be tempting to estimate E
(

[ri − E (ri|ui)]2
)
using (ri − r̃)2. Un-

fortunately, this approach does not work because E (ri|ui) can not be simply
replaced by r̃.

To analyze the conditional distribution of r̃, we define E (ri|ui) = µr|ui
= µi

and V (ri|ui) = σ2
r|ui

= σ2
i . We replace the tedious subscripts r|ui with just the

subscript i since in this section ri is the only source of uncertainty. We allow
for the most general case where both the conditional mean and variance of ri
may vary by i.

Theorem 4. Conditional on the values of ui, and assuming that µi and σ2
i

satisfy the Lindeberg-Feller conditions, the asymptotic distribution of r̃ is given
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by

r̃|u a∼ N
(
µr̃|u, φw

)
where µr̃|u =

∑
wiµi and φw =

∑
w2
i σ

2
i

Proof. The expectation is

E (r̃|u) = E
(∑

wiri|u
)

=
∑

wiE (ri|u) =
∑

wiµi = µr̃|u

The variance is

V (r̃|u) = E
((
r̃ − µr̃|u

)2 |u) = E

([∑
wi (ri − µi)

]2
|u
)

=
∑

w2
iE
(

(ri − µi)2 |u
)

=
∑

w2
i σ

2
i = φw

The Lindeberg-Feller Central Limit Theorem finishes the proof.

We take the estimator of the variance as before:

s2r̃ =
∑

w2
i (ri − r̃)2

The expectation of this estimator conditional on u is given by the following
theorem.

Theorem 5. Conditional on u, the expectation of s2r̃ is given by

E
(
s2r̃|u

)
= φw − 2

∑
w3
i σ

2
i +

∑
w2
i

∑
w2
i σ

2
i +

∑
w2
i

(
µi − µr̃|u

)2
Proof. See Appendix

In this formula, the first and the last terms are O
(
n−1

)
, while the two middle

terms are O
(
n−2

)
. Therefore:

E
(
s2r̃|u

) a
= V (r̃|u) +

∑
w2
i

(
µi − µr̃|u

)2 (4.2)

The term
∑
w2
i

(
µi − µr̃|u

)2 is an estimate of the variance of r̃ resulting
from uncertainty in the drawing a set of observations with a distribution of
units that is different from that of the population, and V (r̃|u) is the variance of
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r̃ resulting from the uncertainty in drawing values of ri that are different from
the expectation of ri given ui.

Thus we can decompose the estimation error r̃ − µr̃ into two components:

r̃ − µr̃ =
(
r̃ − µr̃|u

)
+
(
µr̃|u − µr̃

)
(4.3)

and the total variance of the estimation error is approximately the sum of the
variance of these two components.

In conclusion, when we think of r̃ as an estimator of µr̃ we can think of the
estimation error resulting from two sources. First, there is the error resulting
from the values of ui that were drawn that may not be representive of the
population. Second, given the observed values of ui, there is the error resulting
from the values of yi given the observed values of ui. Those values of yi may
not be representative of the expected value of yi given ui. Without additional
constraints on the problem, the decomposition is only of theoretical interest.
The values µi are not known and it is not possible to construct an unbiased
estimate of the variance conditional on the observed units. The data simply
can’t fully distinguish between observed returns coming from µi or uncertainty
of the ri given ui.

5 Regression Equivalence

Consider running the following regression

√
uiri = β

√
ui + εi (5.1)

The OLS estimate of β is then given by

β̂ =

∑√
ui
√
uiri∑(√

ui
)2 =

∑
uiri∑
ui

= r̃ (5.2)

Thus the unit-weighted mean can be calculated using the regression above, in an
analogous way to calculating the simple mean by running a regression of ri on
a constant. One way to think about this is as a methods of moments estimator.
The coefficient β is that number that solves the following equation:

E (
√
ui· εi) = E (

√
ui· [
√
uiri − β

√
ui]) = E (ui· ri − βui) = 0
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such that
E (yi)− βE (ui) = 0

or
β =

E (yi)

E (ui)

That is, β̂ estimates the ratio of the expectations of yi and ui as before.
The regression above clearly should not be interpreted as a causal relation,

nor as a conditional expectation of
√
uiri given

√
ui, but simply as a best linear

predictor. That is, β̂ minimizes the squared prediction errors summed up over
all the units:

min
β

∑
ε2i = min

β

∑
(
√
uiri − β

√
ui)

2
= min

β

∑
ui (ri − β)

2 (5.3)

Given our assumption that all observations are equal-probability draws from
a super-population, the error term εi is independent across observations, but it is
not necessarily homoscedastic. This suggests estimating the standard error on β̂
using Huber-White heteroscedasticity robust standard errors. Those standand
errors simplify in this situation exactly to those in Theorem 3:

vHCE

(
β̂OLS

)
= (X ′X)

(
X ′diag

(
ε̂21, ..., ε̂

2
n

)
X
)

(X ′X)
−1

=
(∑

ui

)−1 (∑
(
√
ui)

2
ε̂2i

)(∑
ui

)−1
=
(∑

ui

)−2(∑
ui

(√
uiri − β̂

√
ui

)2)

=

∑
u2i

(
ri − β̂

)2
(
∑
ui)

2 =
∑

w2
i (ri − r̃)2 (5.4)

Thus, the analysis of the unit-weighted mean can be done in standard statistical
software as a simple regression with the standand errors estimated using the
Huber-White technique.

This idea can be extended to test for equivalence of the weighted mean across
two populations. That is, let

r̃g
a∼ N

(
µ̃g, s

2
g

)
for groups g = A and g = B, and the observations in groups A and B are
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independent. The hypothesis µ̃A = µ̃B can be tested using the statistic

r̃A − r̃B√
s2A + s2B

Using the regression approach, it is straightforward to show that the same result
is obtained as the t-statistic on γ in the regression

√
uiri = β

√
ui + γ

√
uiDi + εi (5.5)

where Di is a dummy variable indicating membership in group A or B.

6 Two Examples in Finance

6.1 IPO underpricing

When companies go public, shares are sold to the public in an Initial Public
Offering or IPO. It is well known that the offering price is on average well below
the closing price at the end of the first day of trading, a phenomenon referred
to as IPO underpricing.4 We will not discuss here the various reasons proposed
in the literature for this empirical result, but show how the techniques shown
above apply in this setting. We take data from Bloomberg Finance L.P. on
IPOs from 1995 to 2019, including effective date, offer size, offer price, first-day
returns (that is, return to first close). The results are shown Table 1. By year,
we calculate the unweighted first-day returns and their standard errors using
standard formulas, and the weighted first-day returns and their standard errors
using Equation 1.1 and Theorem 3.

Investors who are considering investing in an IPO may be more interested
in unweighted returns as they are more likely to provide information on what
they may expect for the the next IPO. Researchers and regulators are more
likely interested in economy wide effects and thus more likely to care about the
proceeds weighted returns. The differences are not large for most years.5 Over
the entire 25 year period, the proceeds-weighted average return is 20.2% versus
23.7% for the unweighted average return showing that underpricing tends to be
slightly smaller for larger IPOs.

4 For instance, Ljungqvist, 2007.
5 The difference in 2008 results from the IPO of Visa, Inc. Visa, Inc. was the single largest

IPO in the 20 year period, and accounted for 78% of the entire offering proceeds in 2008. The
Visa Inc. IPO was underpriced by 28.4%.
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The results show large underpricing in all years, but especially around the
dot-com boom of 1999-2000, with weighted average first-day returns of 63.1%
and 44.8%. The standard errors for these years show that the IPOs in those
years were fundamentally different from other years, and the returns did not just
arise from normal randomness in IPO returns. The period from 2009 to 2012
following the great recession shows slightly lower first-day returns than the most
recent period from 2013 to 2019. The differences, however, are small compared
to the standard errors and its not clear whether this reflects a fundamental
change or is just normal random variation.

6.2 Earnings-to-Price Ratios

The price-to-earnings ratio (“P/E Ratio”) is a common metric used by financial
analysts to evaluate the price of a stock. We pulled from Bloomberg Finance
L.P. for all S&P 500 companies information as of December 31, 2019. This
information includes the following variables: price per share, earnings per share,
shares outstanding and primary exchange name. We deleted companies with no
earnings information, and used A Class shares prices for companies with multiple
share classes. This leaves us with 497 firms - 131 listed on Nasdaq, 365 listed
on NYSE, and 1 listed on CBOE.

As an initial matter, the commonly used P/E ratio is a poor definition to use
in a statistical analysis. The P/E ratio is not defined for zero earnings, behaves
poorly for small earnings, and the meaning of the slope for negative earnings
is different than for positive earnings (i.e. more negative P/E ratios are better
than less negative P/E ratio for a constant value of P). We will therefore flip
the ratio and investigate the earnings-to-price ratio (E/P ratio) which is better
suited for a statistical analysis. Of course, in aggregate, the ratio of total market
value to total earnings is the inverse of the ratio of total earnings to total market
value. For this set of companies, with these variable definitions, the P/E ratio
on December 31, 2019, was 21.5, equivalent to an E/P ratio of 4.7%. That is,
a dollar of market value for S&P 500 companies was supported by 4.7 cents of
earnings.

Table 2 shows the results of the analysis. Panel A uses the usual formulas
for the unweighted average E/P ratios. In Panel B the top three lines calculate
market cap weighted average P/E ratios and their standard errors using Equa-
tion 1.1 and Theorem 3. The last line of Panel A was generate using a regression
with an intercept and a dummy for NYSE listed companies. The last line of
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Panel B was generated using the same dummy variable and Equation 5.5.
In general, larger companies (in terms of market cap) are supported by fewer

earnings. The unweighted mean across the 497 companies is 5.2% of earnings
per dollar of market value, whereas the market cap weighted mean is 4.7%. The
share price of companies on Nasdaq is generally supported by fewer earnings
than those on New York, with a difference of 1.0% unweighted and 1.3% market
cap weighted. These differences are statistically significant with t-statistics of
3.24 and 3.53 respectively.
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Appendix

Proof Theorem 5.

Proof. Using the definitions and rules of expectations we get:

E
(
s2r̃
)

= E
(∑

w2
i (ri − r̃)2 |u

)
= E

(∑
w2
i

(
ri −

∑
wjrj

)2
|u
)

= E

(∑
w2
i

(
[ri − µi]−

[∑
wjrj − µi

])2
|u
)

= E

(∑
w2
i

(
[ri − µi]2 − 2 [ri − µi]

[∑
wjrj − µi

]
+
[∑

wjrj − µi
]2)
|u
)

=
∑

w2
iE
(

[ri − µi]2 |u
)
− 2

∑
w2
iE
(

[ri − µi]
[∑

wjrj − µi
]
|u
)

+
∑

w2
iE

([∑
wjrj − µi

]2
|u
)

Evaluating the three expectations in this formula:

E
(

[ri − µi]2 |u
)

= σ2
i
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E
(

[ri − µi]
[∑

wjrj − µi
]
|u
)

= E
(

[ri − µi]
[∑

wj (rj − µi)
]
|u
)

= E ([ri − µi] [wi (ri − µi)] |u)

= E
(
wi [ri − µi]2 |u

)
= wiσ

2
i

and

E

([∑
wjrj − µi

]2
|u
)

= E

([(∑
wjrj −

∑
wjµj

)
−
(
µi −

∑
wjµj

)]2
|u
)

= E

((∑
wjrj −

∑
wjµj

)2
|u
)

− 2E
[(∑

wjrj −
∑

wjµj

)(
µi −

∑
wjµj

)
|u
]

+ E

[(
µi −

∑
wjµj

)2
|u
]

= E

{(∑
wj [rj − µj ]

)2
|u
}

− 2E
{(∑

wj [rj − µj ]
)(

µi −
∑

wjµj

)
|u
}

+
(
µj − µr̃|u

)2
=
∑

w2
jσ

2
j +

(
µj − µr̃|u

)2
Thus

E
(
s2r̃|u

)
=
∑

w2
i σ

2
i − 2

∑
w3
i σ

2
i +

∑
w2
i

[∑
w2
jσ

2
j +

(
µj − µr̃|u

)2]
=
∑

w2
i σ

2
i − 2

∑
w3
i σ

2
i +

∑
w2
i

∑
w2
i σ

2
i +

∑
w2
i

(
µj − µr̃|u

)2



Year Number of IPOs

Aggregate 
Proceeds ($ 

Billions) Mean Std Error Mean Std Error
1995 521 $27.07 20.4% 1.2% 17.8% 1.5%
1996 743 $40.56 16.3% 1.0% 16.5% 0.9%
1997 497 $30.19 15.4% 0.9% 17.5% 1.3%
1998 350 $34.97 20.9% 2.2% 16.9% 2.3%
1999 484 $52.98 68.4% 4.4% 63.1% 7.0%
2000 349 $56.12 53.5% 4.1% 44.8% 8.8%
2001 77 $35.46 14.1% 1.9% 8.9% 2.8%
2002 71 $19.48 9.7% 1.9% 6.0% 2.9%
2003 75 $10.94 15.8% 2.2% 15.8% 3.1%
2004 185 $35.93 12.3% 1.2% 13.9% 2.3%
2005 167 $30.85 10.2% 1.3% 10.2% 1.7%
2006 148 $28.69 13.3% 1.8% 20.6% 5.6%
2007 145 $31.17 13.6% 1.8% 13.2% 3.4%
2008 24 $25.05 8.1% 5.0% 24.9% 3.6%
2009 40 $13.62 11.3% 2.7% 11.8% 2.7%
2010 98 $33.50 7.3% 1.4% 6.0% 1.5%
2011 83 $26.34 12.6% 2.4% 10.0% 2.6%
2012 100 $33.39 17.1% 2.4% 9.8% 4.8%
2013 156 $43.73 20.2% 2.4% 19.8% 3.5%
2014 199 $42.71 15.4% 2.0% 12.9% 2.0%
2015 126 $24.89 19.3% 3.3% 17.1% 3.5%
2016 81 $12.37 14.6% 2.8% 14.9% 3.6%
2017 124 $25.79 12.3% 2.0% 16.5% 4.6%
2018 141 $32.21 16.7% 2.3% 18.3% 3.6%
2019 116 $40.78 23.3% 3.4% 18.2% 6.2%

1995-2019 5100 $788.79 23.7% 0.7% 20.2% 1.1%

Table 1. IPO Underpricing, 1995 -2019

First-day Return
Unweighted Proceeds Weighted

Data from Bloomberg Finance L.P.  using function "IPO." IPO effective date between January 1, 1995, and 
December 31, 2019. Shares listed as either Common Stock or Class A Shares, and "US" as the country code 
on the Bloomberg symbol. Offering price of $5 or more. IPOs with missing or invalid first day returns are 
removed.



 

Primary Exchange Count Mean Std Error t-stat Lower Bound Upper Bound
Nasdaq 131 4.5% 0.3% 17.90   4.0% 5.0%
New York 365 5.5% 0.2% 33.26   5.2% 5.8%
Total 497 5.2% 0.1% 37.47   5.0% 5.5%
Difference Nasdaq - New York 1.0% 0.3% 3.24    0.4% 1.6%

Primary Exchange Count Mean Std Error t-stat Lower Bound Upper Bound
Nasdaq 131 3.9% 0.3% 12.79   3.3% 4.4%
New York 365 5.1% 0.2% 26.02   4.7% 5.5%
Total 497 4.7% 0.2% 24.05   4.3% 5.0%
Difference Nasdaq - New York 1.3% 0.4% 3.53    0.6% 2.0%

Table 2. Earning-to-Price Ratios S&P 500 Companies, December 2019

Panel A. Unweighted Average E/P Ratio

Panel B. Market Cap Weighted Average E/P Ratio

95% Confidence Interval

95% Confidence Interval

Data from Bloomberg Finance L.P. S&P 500 companies excluding those with missing earnings, and dedupped for 
companies with multiple share classes. Price "PX_LAST", Trailing 12M Diluted EPS From Continuing Operations 
“RR844”, Shares Outstanding “BS081”, and Primary Exchange Name “DS197”.
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