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ABSTRACT 

This paper documents fund flow externalities across mutual funds associ­
ated by similar asset holdings. With a network specification of embedded 
instrumental variables to control for correlated shocks to associated funds, 
I find that mutual fund managers who ignore these spillover effects may 
underestimate fund flows by approximately 20%. Peer Flows, (flows to and 
from other mutual funds funds with similar holdings) account for 2% of mu­
tual fund quarterly return after controlling for various factor models, which 
is subsequently and completely reversed in the following year. I provide ev­
idence that this overshoot is the result of spillover among connected mutual 
funds. This effect seems to be the result of crowded trades since similarity 
is transient, concentrated holdings drive the mutual fund similarity mea­
sure, and the initial overshoot lasts only one quarter. Fund similarity may 
be measurable ahead of time and thus be of interest to fund managers and 
regulators alike. 
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In his presidential address, Stein (2009) develops a theoretical model of “crowd­

ing” among sophisticated investors, and shows how externalities generated by 

crowded trades may adversely affect market efficiency. This paper provides empir­

ical evidence of the externality created by fund flows among mutual fund managers 

who hold similar securities in their portfolios, that is, “crowded trades.” 

Crowded trade externalities can be illustrated through a real estate example. 

Suppose some investors buy homes in a well-located, but dilapidated neighbor­

hood. Suppose further that more investors do the same, and soon commercial real 

estate developers follow, buying old lots and replacing them with new restaurants 

and retail stores. Each subsequent investor generates positive externalities for 

previous investors due to similar location. As a result, real estate prices quickly 

appreciate. Furthermore, once this reinforcing investment cycle has begun, there 

is no natural ceiling apart from potential buyer’s beliefs that the neighborhood 

has become too expensive. 

From this real estate example, we can see how an externality transmits across 

parcels of land that are close geographically. In financial markets, the externality 

transmits across mutual funds that are close in security space (i.e., funds that 

hold similar securities in their portfolios). Suppose investors deposit cash into a 

mutual fund, and the mutual fund uses that cash primarily to purchase more of the 

securities already held in its portfolio (Lou, 2012). These purchases induce price 

pressure on those securities (Coval and Stafford, 2007, Jotikasthira, Lundblad, and 

Ramadorai, 2012), benefiting other mutual funds holding the same securities. As 

a result of positive returns, the other funds are likely to receive inflows (Chevalier 

and Ellison, 1997, Sirri and Tufano, 1998), and purchase those securities again, 

repeating the cycle. 

Stein (2009) notes that this crowded trade externality can only exist when a 
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trading strategy has no natural limit which is the case for most long-only invest­

ment strategies. As a contrast, in pairs trading or spread trading prices converge 

and thus the arbitrage naturally disappears as more investors exploit it. But when 

a stock experiences post-earnings-announcement-drift, for example, investors rec­

ognize the price may drift upward after an earnings surprise, but by how much?1 

If more traders attempt to exploit the drift, the price will simply rise with the 

increased demand as long as enough traders continue to purchase the stock. The 

only countervailing force to this price appreciation is short sellers subject to limits 

to arbitrage (Shleifer and Vishny, 1997). Given the short selling and portfolio 

constraints of mutual funds, as well as the likelihood that mutual funds engage in 

herding behavior (e.g. Nofsinger and Sias, 1999, Sias, 2004, Choi and Sias, 2009), 

mutual funds are a natural first place to investigate externalities among crowded 

trades.2 , 3 

Compared to the analysis of disconnected portfolio managers common in the 

literature, I find that coefficient estimates of common predictors of fund flows 

increase by approximately 90% due to fund flow externalities when estimated 

within my network specification.4 The economic impact of this spillover externality 

is 20% of average fund flow for a one standard deviation move in Peer Flow (flows 

1Many strategies have this same property. Examples include buying the stocks of firms with 
low values of accruals (Sloan, 1996), equity issues (Daniel and Titman, 2006), or asset growth 
(Cooper, Gulen, and Schill, 2008) as well as buying stocks that are expected to be added to a 
widely tracked index (Petajisto, 2011). Stein (2009) describes these strategies as having demand 
functions which are non-decreasing in price.

2Herding and crowded trades are related but not the same. Herding is when agents follow 
each other’s behavior. A crowded trade is the result of herding in financial markets where 
participants end up with similar positions. Rationally, managers may herd on correlated private 
information (Froot, Scharfstein, and Stein, 1992). Other explanations include reputation-based 
herding (Scharfstein and Stein, 1990) and information cascades (Bikhchandani, Hirshleifer, and 
Welch, 1992). I only investigate the impact of the choices without taking a stand on how or why 
they get into these positions.

3Hedge funds have been singled out in the popular press for crowded trades but Reca, Sias, 
and Turtle (2011) find that hedge funds herd much less than mutual funds.

4By not accounting for interconnections, existing literature predicting fund flows implicitly 
assumes each fund to be independent (e.g. Sirri and Tufano, 1998). 
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to and from neighboring mutual funds with similar holdings). Peer Flows are 

additionally associated with 2% quarterly fund return on average after controlling 

for either a Carhart four-factor model (Carhart, 1997) or a DGTW return (Daniel, 

Grinblatt, Titman, and Wermers, 1997). This gain is completely reversed over the 

subsequent four quarters, indicating that Peer Flows are uninformative and only 

temporarily influence fund returns. 

Measuring the magnitude of externalities among market participants has re­

mained elusive thus far due to difficulties in identification. There are two main 

identification issues. First, a specification should isolate a spillover process dis­

tinct from a correlated shock to mutual funds already established as similar and 

thus susceptible to correlated shocks. Second, one must identify the channel of 

spillover; that is, what is the network that connects market participants? To ad­

dress the first issue, I analyze the entire network of mutual funds in an econometric 

framework employing a mutual fund’s two-step neighbor (his neighbor’s neighbor) 

as an instrument for the neighbor’s effect on that fund (Bramoullé, Djebbari, and 

Fortin, 2009). 

I address the second identification problem by investigating the effect of Peer 

Flows on the holdings that I propose create the network linkages. When I isolate 

the top 10 holdings (by dollar value) of fund with high Peer Outflows, the excess 

DGTW returns of the portfolio of stocks is -1.42% per quarter compared to a 

baseline group with zero net Peer Flows. Similarly, a portfolio of the top 10 

holdings of funds with high Peer Inflows returns 0.86% more per quarter than the 

baseline group. Both differences are statistically significant at the 1% level, as is 

their difference. This intermediate finding validates the first part of the reinforcing 

loop described above, that inflows leading to purchases of existing holdings induce 

upward price pressure on those holdings which increases the returns of ‘peer’ funds 
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holding the same securities. 

To determine these ‘peer’ or ‘neighbor’ funds, I employ a similarity measure 

almost identical to that used in Cohen, Coval, and Pastor (2005) and frequently 

employed in ecology and social network analysis (Legendre and Legendre, 2012, 

Wasserman and Faust, 1994) whereby two mutual funds are more similar to the 

extent that they have similar portfolio weightings, emphasizing concentrated hold­

ings. A panel auto-regression shows that this similarity measure features a one 

quarter lag coefficient of just 0.4 with no relation after two years, which is con­

sistent with my result finding a one quarter return effect which is subsequently 

reversed. This low autocorrelation also indicates that the connectivity among mu­

tual funds is not related to style investing, common benchmarks, or index funds, 

as those factors should show more persistence.5 The transience indicated by a low 

autocorrelation coefficient instead indicates short-term connectivity (i.e., crowded 

trades) is of primary importance. 

My results emphasize an important aspect of managing mutual funds: what 

does a portfolio manager do with inflows in light of potentially diminishing in­

vestment opportunities due to constraints?6 Mutual fund managers obtain inflows 

which they invest, at least partly, in their existing portfolio even if they no longer 

believe those stocks to be undervalued. If other managers do the same, all of 

those holding similar securities benefit from this behavior and appear to be savvy 

investors – as others buy the same stocks, prices rise and returns are positive, re­

inforcing the behavior even though it may not be supported by fundamentals. But 

with no clear indicator of fundamental value, there is no natural ceiling or floor to 

5I also separately control for mutual fund style explicitly, this is just indirect evidence that 
style investing is not driving my result.

6Almazan, Brown, Carlson, and Chapman (2004) examine mutual fund manager constraints 
in light of optimal contract theory and performance, but do not address this question. Mutual 
funds are prohibited from short selling and also constrained to choose only equity securities in a 
certain category or strategy (large cap, technology, etc.) as defined in the fund’s prospectus. 
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price movements. This mechanism of rational behavior inducing price overshoot 

is a similar but distinct mechanism from the rational herding modeled in Froot, 

Scharfstein, and Stein (1992), who show that rational investors will coordinate 

on sometimes unrelated market information. My paper can be seen as measuring 

the externalities which allow herding of any type to produce a potentially positive 

payoff in the short term. 

Since the fund flow externality described may induce mutual fund managers 

to continue buying their portfolio even after they think the stocks are correctly 

priced, it may contribute to price overshoot and reversal as measured in Dasgupta, 

Prat, and Verardo (2011a) and Pareek (2009) as well as the “smart” and “dumb” 

money effect (Zheng (1999) and Frazzini and Lamont (2008), respectively).7 All 

of these studies focus on the effect of a mutual fund’s own flows predicting its 

own future returns, whereas my contribution is to consider a mutual fund’s peers 

in the prediction of returns and fund flows through the channel of common stock 

holdings. 

This paper proceeds as follows. Section I establishes my hypotheses in the 

context of the existing literature. Section II describes my empirical approach 

to measuring capital flow externalities, detailing network similarity measures, 

methodology and identification strategy. Section III discusses results, including 

the interpretation of network coefficients and their economic significance as well 

as cross-sectional implications. Section IV concludes. 
7Dasgupta, Prat, and Verardo (2011b) model price overshoot and reversal due to herding 

with reputational concerns. In their model, managers receive enough reputational payoff to 
purchase negative expected return securities, thus inducing them to overshoot fundamentals. 
My innovation is to show that the return may be positive due to flow externalities and thus does 
not rely on a potentially non-pecuniary reputation effect. 
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I. Hypotheses and Background
 

I am proposing that the flows into and out of a mutual fund’s peers create 

spillover effects which artificially amplify a fund’s return, illustrated in the three 

panels of Table I. These three tables sort portfolios by a mutual fund’s own flow 

and its Peer Flow. Since I am claiming that there are reinforcing fund flow loops 

among connected peer funds, returns should be highest among positive flow loops 

(high peer inflow combined with high own inflow – the lower right corner) and 

lowest among negative flow loops (high peer outflow combined with high own 

outflow – upper left corner). Using three different return measures, DGTW return 

(Daniel, Grinblatt, Titman, and Wermers, 1997), Carhart alpha (Carhart, 1997), 

and a simple market excess return, we see this pattern quite strongly. All portfolio 

1 minus portfolio 5 differences are statistically significant and the return effects are 

economically significant as well, ranging from -4.4% to positive 4.2% per quarter. 

If spillover induces overshoot, then there should be a reversal. This is depicted 

in Figure 1 with the DGTW excess return. At time 0, we see the initial starting 

point tabulated in the upper and lower row of Table I (this figure only accounts 

for Peer Flow dimension). In quarters 1-4, the subsequent year, we see the effect 

completely reverses. 

While these results are suggestive, they are not rigorous. The remainder of 

this section establishes the paper’s main empirical hypotheses related to the pre­

diction of both mutual fund returns and mutual fund flows. First, to establish the 

hypotheses, I discuss the motivation for the similarity measure – how mutual fund 

managers are connected in security space. Second, I detail my hypothesis related 

to the prediction of portfolio returns which helps establish portfolio overlaps as 

the mechanism for spillover. Third, I develop two subsequent hypotheses related 
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to the spillover effects of managers’ fund flows. 

A. Mutual Fund Similarity Measure 

The mutual fund similarity measure, rigorously derived in Section II.B, uses 

the commonality of raw holdings in the form of a vector of portfolio weights to 

determine portfolio similarity. There are, however, other potential choices to de­

termine similarity with manager’s portfolios. First, I could use holdings in excess 

of a fund’s benchmark (e.g. the Active Share measure of Cremers and Petajisto, 

2009), or second, changes in holdings (shares at t minus shares at t − 1) could be 

appropriate. 

I choose to use raw holdings over excess holdings because Del Guercio and Tkac 

(2002) find that mutual fund investors seem to care more about raw returns than 

returns above a benchmark, and therefore raw holdings seem more appropriate. 

Changes in holdings are intuitively appealing and frequently specified in the herd­

ing literature (e.g. Sias, 2004). However, since Lou (2012) finds that managers sell 

dollar for dollar, changes in holdings and raw holdings should yield identical re­

sults for outflows. Using changes in portfolio holdings as the basis for a similarity 

measure requires action on the part of both parties, since two portfolio managers 

would only be similar to the extent that they are buying and selling the same 

stocks in the same quarter. I am trying primarily to capture passive effects – i.e. 

when a peer manager buys stocks in another’s portfolio, the other manager ben­

efits even having done nothing. Capturing passive effects requires raw holdings, 

not changes in holdings.8 

8Wahal and Wang (2011) use a measure of holdings overlap as a measure of competition 
among similar mutual funds. Their study primarily looks at funds within the same category 
whereas I attempt to control for category effects while looking across categories. Ultimately, 
this is an empirical question: the relation should be negative if funds are primarily competing 
for funds (flows into one fund correlate with flows out of a similar fund). It may be that this 
relation is negative if I restrict my analysis to funds within the same Morningstar category, but 
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Others have studied the effect of common owners on financial securities. Kyle 

and Xiong (2001) model convergence traders spanning disparate markets inducing 

co-movement in the securities they hold, and more recently Antón and Polk (2010) 

measure stock co-movement related to the number of common owners. Greenwood 

and Thesmar (2011) measure the effect of correlated flows on stock price volatility. 

My innovation is to additionally consider the spillover effects on to other managers 

holding the same securities. 

Cohen, Coval, and Pastor (2005) use a closely related similarity measure as 

a benchmark for portfolio manager performance. Their argument is that fund 

managers should be judged based on their relative performance compared to others 

holding similar portfolios. While the research question is very different, their 

similarity measure is almost identical. Their motivation is that this similarity 

measure captures the real ‘competition’ in a sense and thus reinforces it as a good 

choice for my investigation of peer effects among mutual fund managers.9 

B. The Effect of Peer Flows on Portfolio Returns 

It is known that a portfolio manager’s fund flows affect asset prices. Coval and 

Stafford (2007) show that stocks with significant buying or selling pressure (due 

to fund flows) experience subsequent positive and negative returns, respectively. 

Jotikasthira, Lundblad, and Ramadorai (2012) confirm this internationally. Lou 

(2012) addresses fund flow driven price pressure including all fund flows, not just 

extreme positive and negative flows, and shows that this effect is still significant but 

that is beyond the scope of this paper.
9Technically, Cohen, Coval, and Pastor use a doubly-stochastic weighting matrix (both rows 

and columns sum to one) while mine is only row-stochastic (rows sum to one) but the underlying 
data prior to these transformations is the same. See the appendix for more details on how 
I compute the weighting matrix, noting that Cohen, Coval, and Pastor additionally require 
columns to sum to one. In unreported results, I can show that the two measures are correlated 
0.98. 
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asymmetric – he estimates that one dollar of inflows correlates with purchasing 

0.6 dollars of the existing portfolio, while one dollar of outflows corresponds to 

selling one dollar of the existing portfolio. 

Chen, Goldstein, and Jiang (2010) show that mutual fund investors behave like 

demand depositors and are susceptible to bank-run-like behavior, where outflows 

coincide with poor returns in a reinforcing cycle. While their analysis focuses on 

multiple investors in a single mutual fund, I consider the entire network of mutual 

funds, connected to the extent that they hold common securities. If investors in 

a single fund can experience strategic complementarities, then investors in other 

funds holding similar securities should be included in the analysis since the flows 

from peer funds may reinforce the effect. 

To validate that my Peer Flow measure does, indeed, operate through the 

channel of common holdings, I investigate the return effect that peer flows have on 

the holdings of mutual funds experiencing large inflows and outflows, respectively. 

Because my similarity measure emphasizes concentrated holdings, discussed later 

in Section II.C, I focus on the top ten holdings of each mutual fund. If the flows 

into peer mutual funds affect a mutual fund through similar holdings, we should 

expect to see an effect on its most important holdings. Specifically, 

Hypothesis 1: Stocks present in the top ten holdings of mutual funds with high 

peer inflows should experience positive returns, and those with high peer outflows 

negative returns. 

To test this hypothesis, I identify a portfolio of stocks who are exclusively held as 

one of the top 10 holdings of funds in one of three Peer Flow terciles (Outflow, No 

Flow, Inflow) and investigate the corresponding return effect.10 

10Note that stocks not in the top 10 holdings of any fund are excluded, as well as top 10 
stocks held simultaneously by mutual funds in differing terciles. 

10
 

http:effect.10


Intuitively, sophisticated arbitrageurs should attempt to exploit price anoma­

lies, making any fund-flow driven mispricing small or short term. There are many 

reasons why this may not be so, however. Given that the source of price pressure 

may be hidden (e.g. Kyle, 1985), arbitrageurs may not identify price movement as 

a deviation from fundamentals, and thus not act to correct it. Arbitrageurs also 

face synchronization risk (Abreu and Brunnermeier, 2002, 2003), since multiple 

arbitrageurs may be necessary to absorb the price pressure, as well as other lim­

its to arbitrage (e.g. Shleifer and Vishny, 1997). Indeed, rather than immediately 

arbitraging an over- or under-pricing, these sophisticated investors may even exac­

erbate the problem to increase the mispricing in a predatory manner and thus the 

profitability of a subsequent reversal trade (Brunnermeier and Pedersen, 2005). 

To identify common portfolio holdings as a channel of contagion, I hypothesize 

that the fund flows of a manager’s connected neighbors predict portfolio returns 

through the buying and selling of commonly held securities. Formally, 

Hypothesis 2: The fund flows of neighbors connected by common asset holdings 

positively predict a mutual fund manager’s portfolio return. 

To test this hypothesis, I compute my Peer Flow measure of connected-neighbor 

fund flows weighted by portfolio similarity, then estimate its impact on portfolio 

returns. To determine baseline and control variables, I draw known predictor 

variables of mutual fund returns from the existing literature. These include the 

two main factor models employed in the literature, DGTW (Daniel, Grinblatt, 

Titman, and Wermers, 1997) and the Carhart (1997) four factor model, in addition 

to the market return. I also include past flows to account for the flow-performance 

relation established in Chevalier and Ellison (1997). Since contemporaneous fund 

flows and portfolio returns may suffer from endogeneity, I instrument peer flows 
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in a GMM framework, discussed in detail in Section II.D. 

Another important factor is style investing (Barberis and Shleifer, 2003). To 

explicitly control for style flows, I take the average flow to a given mutual fund 

style as defined by the assigned Morningstar Category for a fund. This includes 

such styles as Large Cap, Small Cap, Technology, Health Care, Growth, and Value. 

There is evidence that a ‘flow’ factor exists in the prediction of mutual fund returns 

(Sirri and Tufano, 1998, Lou, 2012), so I show that, of the various candidate 

variables for flow factors, Peer Flow and Style Flow are the two that matter the 

most (see Appendix A). Thus, I include Style Flow in all specifications moving 

forward as a control for a style investing effect.11 

Finally, if this flow effect is indeed an abnormality which induces overshoot, 

there should be a measurable reversal as observed in Figure 1. Thus, I propose to 

test the following hypothesis: 

Hypothesis 3: The fund flows of neighbors connected by common asset holdings 

predict a return reversal in the subsequent year. 

The time frame of the following four quarters is obtained from visual inspection 

of Figure 1 which seems to indicate reversing returns in the following year. 

C. The Effect of Peer Flows on Fund Flows 

Having identified common portfolios as the channel of influence and shown 

that peer flows affect fund performance, the next step is to investigate the effect 

of peer fund flows on a manager’s own fund flows – the fund-flow externality result 

which generates the spillover effect. Chevalier and Ellison (1997) identify a flow-

performance relation such that positive past returns predict future inflows and 

11This is not surprising since Lou (2012) notes that his flow factor accounts for market-wide 
flows whereas my measure focuses on closely related funds, thus providing more precision. 
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poor past returns predict future outflows. While Chevalier and Ellison measure 

these effects through lagged returns, the outflows could be contemporaneous, since 

a sophisticated manager, seeing his poor returns, may sell in anticipation of future 

outflows. Until now, investigation of this relation has been challenging due to 

the endogeneity problem between contemporaneous flows and returns, a problem 

I solve with an instrumental variables specification. 

This connection between the fund flows of neighboring managers suggests two 

related hypotheses: 

Hypothesis 4: The fund flows of neighbors connected by common asset holdings 

positively predict a manager’s own fund flows. 

Hypothesis 5: Fund flow externalities from each manager on to each other man­

ager are greater than zero. 

To test both hypotheses, I employ a network specification which allows a con­

temporaneous estimation of spillover effects across a network of connected agents. 

In this network specification, I include my measure of connected-neighbor fund 

flows as a predictor variable (Peer Flow), instrumented by the two-step neighbor 

fund flows along with other common predictor variables. A positive and significant 

coefficient on Peer Flow confirms Hypothesis 4: fund flows generate externalities 

through interconnected portfolios. 

A positive and significant relation establishes the existence of an externality, 

but obtaining evidence for Hypothesis 5 requires interpretation of the coefficient 

estimate. Indeed, the richness of information available from this network specifi­

cation constitutes a primary advantage over a standard linear regression model. 

My specification behaves like an auto-regression, but in the cross-section: fund 

flows at time t show up both as dependent and independent variables, and as 
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such the estimated coefficient on connected-neighbor flows affects all other coeffi­

cient estimates in steady-state, similar to a temporal auto-regression framework.12 

When the model is rearranged such that flows are isolated on the left-hand side, 

the coefficient on each right-hand side variable becomes a matrix specifying the 

effect each portfolio manager has on each other manager in equilibrium.13 This 

matrix coefficient compares to the scalar coefficient estimating the average effect in 

most other specifications. The average of the matrix coefficient off-diagonal values 

measures the spillover effects, while the average of the diagonal in excess of the 

non-networked linear coefficient measures feedback effects. Positive off diagonals 

in this matrix coefficient provides evidence of Hypothesis 5. 

II. Network Methodology 

Having motivated my research design in the context of the existing literature, 

I next turn to the description of the exact implementation of my network methods 

and variables. I first describe my Data in Section A, then develop my mutual fund 

similarity measure in detail in Section B. I next discuss how this measure relates 

to crowded trades in Section C before proceeding to descriptions of the GMM 

estimation approach, network instrument, and full specification in Section D. 

A. Data 

My primary dataset is from Morningstar and contains the flows, returns, and 

full portfolio holdings of U.S. Open Ended funds from 1998 to 2009.14 Flows of 
12Specifically, this model is a Spatial Auto-Regression (SAR), popular in spatial econometrics, 

and developed fully in LeSage and Pace (2009). It is typically used to measure geographic 
externalities like traffic congestion or environmental spillovers.

13I develop this more rigorously in Section III.C. 
14Elton, Gruber, Blake, Krasny, and Ozelge (2010) perform a thorough comparison of the 

Morningstar holdings data with the more commonly used data from Thomson Reuters and find 
it to be very similar. 
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funds are a simple dollar value per fund, per month or quarter and are net flows 

summarizing all subscriptions and redemptions across the relevant time period. 

Note that the data includes reported values for both fund flows and portfolio re­

turns, whereas other studies typically compute fund flows from returns and changes 

in total net assets. To focus on equity funds as is common in the literature, I only 

keep funds with at least 75% of their holdings in equities, but my results are ro­

bust to this choice.15 I combine this data with CRSP by CUSIP when necessary 

to obtain stock characteristics. DGTW returns are computed as in Daniel, Grin­

blatt, Titman, and Wermers (1997) and Wermers (2003), downloaded from Russ 

Wermers’ website. 

I include quarterly observations of each fund’s cash holdings rather than the 

annual measures reported in the CRSP Mutual Fund database typically used be­

cause the Morningstar data contains the entire portfolio holdings of each open-

ended fund. Going forward, Flow is defined as fund flow divided by total net 

assets as in Coval and Stafford (2007) and Size is the log of total net assets. Cash 

is defined as currency, treasuries, and other cash-like holdings, also divided by 

total net assets. Summary statistics for these and other variables of interest are 

available in Table II. 

B. Portfolio Similarity Measure – The Network 

I construct the similarity between two portfolios i and j, denoted sij , as the 

dot product between the security holding weight vectors of each portfolio manager 

i and j, divided by the product of the Euclidean norm of each vector.16 Figure 

15In previous drafts of the paper, I keep any fund with nonzero equities and get similar results. 
16Note that this similarity measure is the same as the cosine of the angle between the two 

vectors in security space, and for centered data is identical to the computed correlation between 
the two vectors. See more discussion of cosine similarity vs correlation computations in Reca, 
Sias, and Turtle (2011). Detailed definitions of the norm and a full derivation is available in 
Appendix B. This notion of portfolio distance is intuitively and mathematically similar to that 
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2 plots percentiles of the distribution of this portfolio distance measure through 

time and shows time variation in the measure but no real time trend. 

This similarity measure is a primary component of the key variable Peer Flow, 

which quantifies the impact of related neighbor’s fund flows. To construct Peer 

Flow for each manager i, I compute a weight vector which is the similarity measure 

sij for each other manager j divided by the sum over all similarities, setting self-

similarity sii to 0. For example, consider a portfolio manager with three neighbors 

with similarities of 0.1, 0.2, and 0.1, such that the weights are .25, .50, and .25, 

respectively. If those neighbor’s flows (divided by total net assets) are 0.01, 0.05, 

and 0.10, respectively, then Peer Flow is (.25∗.01) +(.50∗.05)+(.25∗.10) = 0.0525. 

Note that I also compute other peer variables such as peer size (total net 

assets) and peer cash (divided by total net assets) in the same way.17 The primary 

advantage of using this peer weighting procedure is that peer statistics are very 

similarly distributed to the corresponding ‘own’ statistics, as seen in Table II. 

C. Measuring Crowded Trades 

The nature of portfolio connections is important for academics to understand 

the dynamics of the externalities involved but also market participants or regula­

tors who may want to prevent spillover among connected mutual funds. We can 

think about the nature of these connections in two dimensions. First, consider the 

driver of the similarity: does it primarily rely on a few concentrated holdings or 

require a broad, dispersed similarity? Second, consider the temporal aspect of the 

connection, is it transient or persistent? 

of social distance as in Conley and Topa (2002).
17All of the Peer variables are the same as structural equivalence variables in sociology origi­

nally defined by Burt (1987) and used more recently by Bothner (2003). The primary difference 
is that in sociology, these variables are typically lagged to provide identification, whereas herein 
I use an IV/GMM specification for better identification with my data. 
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The driver of the similarity, dispersed or concentrated, can be determined by 

choice of similarity measure. An absolute difference measure would treat each 

holding equally such that $100 difference in a small position is the same as $100 

difference in a large position. This gets problematic when you consider that a $100 

difference each in 25 small positions would equate with a $2,500 difference in a 

single large position. It is not clear that those should be treated equally. 

Motivated by this (and other) problems with equal weighted measures as well 

as literature indicating that concentrated positions are most important, I choose to 

emphasize concentrated positions.18 Kacperczyk, Sialm, and Zheng (2005) show 

that mutual fund managers are able to make abnormal returns primarily due to 

their concentrated bets, which indicates that outperformance lies in those holdings. 

This is corroborated by (Cohen, Polk, and Silli, 2010) and (Pomorski, 2009) who 

also find that the large holdings are the ones that matter to mutual fund managers 

and fund performance. 

Figure 3 shows how my normalized dot product similarity measure increases 

in two dimensions, emphasizing concentrated positions. First, it is increasing in 

portfolio overlap, its primary purpose. As the percentage of portfolio overlap in­

creases, the similarity between them increases (the distance between two managers 

in security space decreases). The mutual fund similarity measure is also increasing 

in the concentration of those holdings due to the fact that portfolio weight vectors 

are multiplied together, creating a quadratic relation. Holding total portfolio over­

lap constant, a single concentrated position gives twice as much similarity as two 

overlapping holdings of equal proportion. This property of my portfolio distance 

measure indicates that concentrated positions give rise to more interconnected­
18Another problem using the absolute difference is that it equates -$100 with $100, yet with­

out the absolute value, summing a sequence of signed differences creates canceling problems. 
Counting number of overlaps is another method of equal weighting, used for overlapping analyst 
coverage in Israelsen (2010) but it is less precise. 
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ness. Accordingly, crowding or overweighting in a specific set of securities may 

induce more connectedness among those managers than they may realize. 

Next, consider the temporal dimension of portfolio similarity, which is an em­

pirical question, not a modeling choice. In terms of identification, if portfolio 

similarity is persistent, then the underlying driver of similarity itself must be per­

sistent. This would indicate a role for common mutual fund benchmarks or index 

investing as driver of similarity. However, if portfolio similarity is transient, then 

the period-by-period choices of mutual fund managers must play a substantial role 

as they dynamically allocate funds to their portfolio. 

Between the two, transient, or hard-to-observe portfolio interconnections pose 

the greater risk to portfolio managers and regulators alike since a hidden exter­

nality is more likely to generate unexpected negative shocks. Transient portfolio 

interconnections may arise due to crowded trades, which occur when portfolio 

managers take temporary concentrated or overweighted positions in a small set of 

stocks. Due to lags in mandatory disclosures, these portfolio positions may not 

be detectable to market participants until many months after the trades are es­

tablished. Thus, with no knowledge of network connections, negative flow shocks 

across portfolio connections will be unanticipated and likely produce greater neg­

ative consequences than shocks which are at least partially anticipated. 

Table III presents the results of a panel auto-regression on the mutual fund 

similarity measure, a design similar to the main specification in Antón and Polk 

(2010). This specification takes the symmetric N ×N network of relations between 

all of the portfolio managers at time t and puts them in a N(N − 1)/2 × 1 vector 

as the dependent variable. The same network of relations at times t − 1, t − 2, 

. . . , t − p enter as independent variables, vectorized. I then run this regression for 

each time t and summarize the p coefficients (for p = 8 quarters) across time in a 
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Fama-MacBeth framework. 

The marginal effects of the lags diminish to statistical insignificance after three 

lags, but still show some auto-regressive properties. The mutual fund similarity 

measure correlation lagged one quarter is 0.41, which indicates some short-term 

persistence. To estimate the auto-correlation two quarters previous, I compute 

0.412 + 0.25 = 0.42, showing that the persistence extends to six months. But 

the correlation between the network distance measure and that of three quarters 

past is 0.413 + 0.252 + 0.765 = 0.21, a significant drop off, and then one year 

past is 0.414 + 0.253 + 0.082 + 0.0 = 0.05 if I treat the insignificant fourth lag as 

zero, or 0.13 if I retain it. After two years, retaining the first four coefficients, the 

correlation is 0.418 +0.257 +0.086 +0.085 = 0.0009, or almost zero.19 Since portfolio 

objectives likely persist longer than two years, these results suggests that there is 

some transience to my measure of interconnectedness and thus that crowded trades 

or herding among institutional managers plays a role in fund flow externalities. 

D. Network Structure as Instrument 

I employ an instrument to identify influence rather than just correlation, since 

cross-sectional fund flows and returns of each portfolio manager are endogenous.20 

Without instrumentation, a correlation between two portfolio manager’s fund flows 

is not sufficient evidence of one’s influence on the other. 

Following Bramoullé, Djebbari, and Fortin (2009), I employ a network-structure 

based instrument to address this endogeneity based on “intransitive triads” which 

are often present in a network. An intransitive triad is present if A connects to B 

and B to C, but A is not connected to C. Thus, A can instrument for B’s influence 

19This analysis of time series coefficients comes from Hamilton (1994), Chapter 1. 
20Since the diagonal of weighting matrix W is set to zero, F lowi is never on both sides of the 

same specification, so there is no mechanical collinearity, only endogeneity. 
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on C since any influence A has on C must be through the common relation with 

B. In network terminology, A and C are Two-Step neighbors, so my instrument 

is Two Step Peer Flow, computed the same as Peer Flow but with the two-step 

neighbor.21 

For instance, a U.S. technology fund may be connected to a mid-cap fund 

through common mid-cap technology holdings, and that mid-cap fund may also 

be connected to a Latin American fund through mid-cap Latin American holdings. 

Thus, the flows of the Latin American fund can instrument for the mid-cap fund’s 

influence on the U.S. technology fund since they are only connected through their 

common mid-cap neighbor. However, while two portfolio managers may not be 

directly connected, they both likely maintain some set relation to market-wide 

movements – i.e. they have a ‘beta’ in some sense. I address this by including 

time and fund fixed effects as well as market returns as control variables (or simply 

using excess returns or alphas as the dependent variable).22 

Not all two-step neighbors form intransitive triads, however. Two-step neigh­

bors can only serve as an instrument if they satisfy the exclusion restriction – that 

the instrument is only correlated with the dependent variable through the en­

dogenous regressor. To address these concerns, Bramoullé, Djebbari, and Fortin 

(2009) specify a rank test which establishes that peer influence effects are identified 

through two-step neighbors, which my network satisfies.23 To ensure overidenti­
21Details are in the Appendix. 
22One may argue that there may be a time-varying connection between otherwise unconnected 

funds as just described. For this to be a problem, three things must be true. First, the time 
varying connection must vary significantly over time, otherwise my fund fixed effects control 
for it. Second, the time varying connection must be consistently in one direction - i.e. always 
positively correlated or always negatively correlated. If the time-varying nature of the connection 
varies between positive and negative correlation, then this just adds noise to the process and 
works against me finding a result. Finally, the time-varying connection must not be correlated 
with market-wide events, otherwise the time fixed effects will control for it. 

23This is Proposition 5 and is simply a rank test of the matrix of network connections. I 
take the identity matrix, my Peer Weight matrix, and my Two-Step Peer Weight matrix (see the 
appendix for details), reorder them to be in column vectors, and show that the resulting matrix 
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fication, I include not just T woS tepP eerF low but also T woStepP eerF low2 as 

excluded instruments, which is common practice in an IV specification. 

To test my first hypothesis, I instrument for peer fund flows as described above, 

but place mutual fund returns as my dependent variable. Specifically, I estimate: 

P eerF lowit = T woS tepP eerF lowit + T woStepP eerF lowit 
2 (1) 

-Returnit = P eerF lowit + F lowt−p + Returnt−p 
(2) 

+ F undS izeit + C ashP ctit + Amihudit + S tyleF lowj t 

where Return is either the excess DGTW return or raw return with the mutual 

fund DGTW return included as an independent variable. Excess DGTW return 

is defined as the mutual fund gross return less mutual fund DGTW return, which 

is the portfolio weighted individual equity DGTW returns.24 If P eerF low is a 

positive predictor of portfolio returns, then it seems highly likely that commonly 

held securities are the channel of influence and thus Peer Flows may induce mutual 

fund return overshoot. 

A good GMM/IV specification uses instruments which are correlated with en­

dogenous regressors but orthogonal to the error term. As a first test that my 

instruments are correlated with the endogenous regressors, I present the results of 

the first stage regression in Table IV. The R2 is 0.87 which indicates a high degree 

of correlation. In addition, for each subsequent GMM specification, I include four 

key statistics which validate the instrument specification. The KP LM Stat is the 

Kleinbergen-Paap Wald Statistic which tests for weak instruments. Weak instru­

ments are not correlated ‘enough’ with the endogenous regressors and can lead to 

has at least rank 3. More details of this computation available on request. Bramoullé, Djebbari, 
and Fortin (2009) also require that the network variable be ‘centered’ which I satisfy since fund 
flows are already mean zero.

24In unreported results, I also use Carhart four-factor alpha as the dependent variable with 
similar results. 
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biased results. This test should reject the null hypothesis so strong instruments 

should show a large test statistic and low p-value (less than 0.05). The Hansen 

J statistic, also known as the test of overidentifying restrictions, tests the validity 

of the overidentification of the model, which is correctly specified when we cannot 

reject the null hypothesis. This is a test of whether the instruments are correlated 

with the error term of the second stage regression, which should not be so. Thus, 

a very small J statistics and correspondingly large p-value which fail to reject the 

null indicate a properly overidentified GMM specification.25 

To test my second hypothesis that fund flows spillover across similar mutual 

funds, I incorporate my network measure in addition to common predictor vari­

ables in a specification with fund flows as the dependent variable. Coval and 

Stafford (2007) employ both lagged flows and lagged returns as predictors, but I 

instead follow (Lou, 2012) who uses lagged Carhart four-factor alpha.26 Alpha is 

computed using a 12 month rolling average regression and so accounts for alpha 

over the past 12 months, so only a single lag is necessary. Sirri and Tufano (1998) 

shows that Style Flow (Barberis and Shleifer, 2003) and fund size (measured as 

log of total net assets) are important determinants of flows given investors’ non­

zero search costs.27 Since temporary asset price movements may be stronger for 

illiquid securities, I include a portfolio-wide Amihud measure, which is simply the 

weighted average of the Amihud liquidity measure computed for each individual 

equity holding (Amihud, 2002).28 

25For more information on the derivations of these test statistics, see Hayashi (2000) or some 
other comparable statistics text.

26Lagged raw returns show little significance in predicting flows in my specification, but do 
not change any of the primary results.

27Style Flows are the average flows to reported Morningstar categories. In unreported results, 
I control for common flows to mutual fund families instead of fund category average flows with 
no material difference in outcome (Elton, Gruber, and Green, 2007). I do the same with average 
market-wide flows as well to account for market share effects (Spiegel and Zhang, 2013), with 
no difference. I cannot include them simultaneously due to collinearity problems.

28I also computed a full portfolio Amihud measure including cash and non-equity, non-cash 
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I also include Peer Size as a control variable since fund size is an important 

predictor of flows. The peer size control is important in a network specification 

because if flows primarily go to larger funds (Sirri and Tufano, 1998), then funds 

that are both large and connected may simply experience correlated flows without 

any mutual influence. 

A portfolio manager’s cash holdings provide a vital cushion against unexpected 

redemptions, and as such likely influence the prediction of inflows and outflows. 

Most studies exclude cash holdings because data is unavailable, not because cash 

holdings are unimportant.29 I do have cash holdings data, and therefore include 

it for both the manager and connected neighbors (PeerCash), since a manager 

connected to cash-poor neighbors may be more susceptible to flow externalities. 

In sum, I estimate the following set of equations in a GMM specification: 

P eerF lowit = T woS tepP eerF lowit + T woStepP eerF lowit 
2 (3) 

-F lowit = P eerF lowit + F lowt−p + Alphat−1 

+ S izeit + C ashit + Amihudit + P eerS izeit (4) 

+ P eerC ashit + S tyleF lowj t 

in which F undi ∈ S tylej , 4 time lags are included (p = 4), Alpha is computed 

-as the 12 month rolling average Carhart four-factor alpha and P eerF lowit is the 

holdings at the minimum and maximum Amihud measure, respectively, with similar results. 
Other liquidity measures such as spreads (bid minus ask over midpoint) and turnover (average 
daily volume divided by shares outstanding) also gave similar results, available on request.

29A notable exception is Simutin (2009) who measures mutual fund cash holdings and finds 
a positive relation between cash holdings and fund performance. My findings corroborate his 
results. 
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fitted values from equation (3).30 , 31 

III. Results 

In this section, I provide evidence confirming the hypotheses proposed. First, 

I establish that common holdings is a primary channel of spillover, after which 

I report the primary regression results. Next, I interpret those regression results 

in the context of my network specification and finally provide some robustness 

checks. 

A. Overlapping Holdings as Spil lover Channel 

To show that overlapping holdings are the correct network specification, I show 

that neighbor’s fund flows – Peer Flows – are positively correlated with a mutual 

fund’s top holdings. The focus on top holdings is because the portfolio similarity 

measure emphasizes these top, concentrated holdings such that peer effects should 

be most dominant among the largest holdings of a mutual fund. 

Results are presented in Table V. Stocks are sorted into portfolios based on 

their Peer Flow tercile, where portfolio 1 is Peer Outflows, portfolio 3 is Peer 

Inflows and portfolio 2 has Peer Flow very close to zero. Stocks in each portfolio 

must be in the top ten holdings of a mutual fund, and exclusively be held (in the 

top 10) by mutual funds with Peer Flows in the given tercile. Stocks that would 

otherwise have been assigned multiple portfolios are dropped. 
30Here I use Carhart Alpha for parsimony since a single lag can account for the past year’s 

performance. Including four lags of DGTW excess return yields similar results but sometimes 
give singularity problems in the variance-covariance matrix with so many explanatory variables. 
All results go through with either DGTW returns or Carhart Alpha.

31Note that the exact specification of equation (3) includes all control variables in equation 
(4). To use strict GMM terminology, Peer Flow is the endogenous regressor, T woStepP eerF low 
and T woS tepP eerF low2 are excluded instruments, and the rest of equation (4) are included 
instruments. 
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The results confirm Hypothesis 1, both with DGTW returns as well as raw re­

turns. Those stocks held by the outflow portfolio have a DGTW return of -0.457% 

and raw return of -0.267%, with differences of -1.42% and -3.20%, respectively, 

when compared to either the middle (net zero flow) tercile. Both differences are 

also statistically significant. Stocks held by the inflow portfolio have DGTW re­

turns of 1.82% and raw returns of 6.91%, and are also significantly different from 

the middle tercile portfolio with no Peer Flow effect. That Peer Flow is positively 

correlated with a return effect on the top holdings of the mutual funds affected in­

dicates that the trade channel through common holdings is an important channel 

of spillover among mutual funds. 

B. Regression Results 

The baseline fund flow specification follows Sirri and Tufano (1998) and Coval 

and Stafford (2007), and is included as Model 1 in Table VIII. I find it necessary 

to include both time and fund fixed effects and further cluster my standard errors 

in both time and mutual fund dimensions, though most of the literature thus far 

has used Fama-MacBeth or an OLS specification with fewer corrections.32 

I regress mutual fund portfolio returns on my networked and instrumented Peer 

Flow variable as evidence that portfolio overlaps are driving a spillover effect. As 

shown in Table VI, there is a positive and significant coefficient on Peer Flow across 

all specifications, wether excess returns or raw returns controlling for the fund’s 

32A Breusch-Pagan test and an F test on RSS of regressions with and without time and fund 
fixed effects show that it is necessary to include some type of fixed or random effects. A Hausman 
test verifies that fixed effects are necessary over random effects (Kennedy, 2003). Clustering 
standard errors in both time and manager dimensions produces large changes in standard errors 
indicating that this is a necessary step (Petersen, 2009). With the same pooled OLS and Fama-
MacBeth framework as Coval and Stafford (2007), I get results qualitatively similar to them and 
others who have investigated this relation such as Lou (2012) and Ferreira, Keswani, Miguel, 
and Ramos (2011). Results from these tests as well as a table comparing the varying differences 
in specification are available upon request. Recall that my dataset is different from the other 
studies cited and as such these test results may or may not extend to their specifications. 
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DGTW return. A Carhart four-factor alpha specification gives the same result, 

untabulated. Peer Flow is also economically significant: a one standard deviation 

move in Peer Flow corresponds to a 2% move in mutual fund return per quarter, 

which is quite large. The fact that fund flows from neighboring portfolio managers 

positively predict returns is solid evidence that portfolio interconnections are the 

channel for this influence, and are consistent with Hypothesis 2. 

Next, we turn to reversals. If this is indeed a spillover effect which induces 

overshoot, we should see this effect reverse. Indeed, in Table VII we see exactly 

that. With the same specification, the only thing that changes is the dependent 

variable, this time the leading annual holding period return. Here, the sign on Peer 

Flow reverses and is statistically significant. Again, the economic significance is 

2% return, this time annually, indicating a full reversal of the effect over the 

subsequent year. This confirms Hypothesis 3.33 

I propose that these effects are due to spillover effects among connected mu­

tual funds. To address that, I move to unique a specification which allows the 

measurement of spillovers taking into account adjacent peers. It is called a Spatial 

Auto-Regression (SAR) and is typically used in a geographic setting to measure 

spillovers from traffic flow or environmental emissions. The main SAR flow speci­

fication is in Table VIII. Here, Flow is the dependent variable with Peer Flow as 

independent variable alongside other control variables. Again, Peer Flow enters 

in positively and significantly with slight decreases in other predictor variables, 

indicating a flow externality consistent with Hypothesis 4. However, since Flow 

enters into the specification both as a dependent and independent variable, I must 

transform the equation similar to a temporal auto-regression specification to fully 

33Note that the specifications include lags of flow and returns are not included in Table VII. 
They give a similar result (coefficient on Peer Flow is negative and significant), but require the 
lagged coefficients to be partialled out for variance-covariance matrix to be full rank (Baum, 
Schaffer, and Stillman, 2007) and so are not included here. 
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interpret this coefficient.
 

C. Network Coefficient Interpretation 

The coefficients in Model 5 of Table VIII require further analysis since this 

is a Spatial Auto-Regression, similar to a time series autoregression specification 

(Hamilton, 1994). Ultimately, the coefficient on each explanatory variable is a 

matrix, not a scalar. Thus, there is not an ‘average’ effect per se, but rather a 

separate coefficient for the effect of each mutual fund on each other mutual fund. It 

is these matrix coefficients which allow the direct measurement of spillover effects. 

To interpret these matrix coefficients, I begin by rewriting my specification in 

Equation 4 in matrix form, without the instrumentation:34 

Ft = ρsWtFt + ρtFt−1 + Xtβ + f (5) 

in which Ft is the N ×1 vector of fund flows at time t. Wt is a row-stochastic trans­

formation of N ×N portfolio similarity matrix S at time t, such that P eerF lowt = 

Wt · Ft. Xt represents all other control and explanatory variables for simplicity. 

The result is 

(IN − ρsW ) F = X β + f (6) 

F = X1β̃1 + X2β̃2 + . . . + XLβ̃L + f (7) 
34For this analysis, I simply use the endogenous Peer Flow rather than the predicted value 

from the first stage regression, which simplifies the exposition and likely is a good approximation 
since the R2 of the first stage regression is 0.87. I still use the coefficient estimates from the 
instrumented specification, however. Matrix algebra showing how this relation is the same as 
my empirical specification can be found in the Appendix. 
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for each l = 1 . . . L explanatory variables. Each actual estimated coefficient is 

β̃l,N ×N = (IN − ρsW )−1 βl (8) 

which is an N × N matrix. Without my network specification, the comparable 

coefficient would be the scalar coefficient estimate times an N ×N identity matrix. 

To interpret the network coefficients, I divide each matrix coefficient into feed­

back effects, represented by the diagonal, and spillover effects which reside on the 

off-diagonal. The results in Table IX, noting that the peer effects from size and 

cash are included in those coefficients. The first column is the scalar coefficient 

estimate, β, without the network transformation. Next are the direct effects, com­

puted as the average of the diagonal of the matrix coefficient. Intuitively, these are 

the cumulative effects that each mutual fund has on itself (the traditional analysis) 

except additionally including any feedback effects from spillover to others which 

is then propagated back to the originator. Next, spillover effects are computed as 

the average of all off-diagonal entries in the matrix coefficient. This captures the 

average effect that a shock to a mutual fund has on other mutual funds.35 

Table IX shows how the network specification measures feedback and spillover 

effects, significantly increasing the estimates of each variable. Specifically, for most 

variables in Panel IXa, the spillover effects are about 90% of the direct effects, 

providing solid evidence for Hypothesis 5. Panels IXb and IXc additionally show 

results for Models 4 and 3, respectively, giving a range for spillover coefficients of 

48% of direct effects in Panel IXb up to 137% of direct effects in Panel IXc. This 

is quite important because the primary driver of spillover effects is the coefficient 

on Peer Flow, yet for small movements (0.33 and 0.58), we see very large swings in 

estimates of spillover effects, which remain statistically significant in most cases. 
35This entire exposition follows LeSage and Pace (2009) and is standard for an SAR model. 
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Of note in Table IX is the size effect, which is negative. This means that larger 

sized funds experience lower spillover effects, and larger peer funds produce larger 

spillover effects. To see this, we return to Table VIII to investigate the original 

coefficients. The coefficient on Fund Size is positive and significant, indicating 

that larger funds see more inflows and fewer outflows. Peer Fund Size, however, is 

negative, indicating a ‘competitive’ effect which means that larger peer funds are 

associated with more outflows, and smaller peer funds with more inflows. This is 

consistent with the above interpretation of size effects. 

I further explore this by re-running the specification in Table VIII with a new 

variable, Relative Fund Size which is Peer Fund Size divided by Fund Size (and 

removing Fund Size and Peer Fund Size due to collinearity). A larger Relative 

Fund Size means either larger Peer Fund Size or smaller Fund Size, and vice versa. 

The results are in Table X show a negative coefficient on Relative Fund Size. Thus, 

as Relative Size gets bigger, which means that Peer Fund Size is bigger and/or 

a fund’s own size is smaller, we see more outflows. Inversely, as Relative Fund 

Size gets smaller, which means Peer Fund Size is smaller and/or a fund’s own 

size is bigger, we see more inflows. This further confirms the effect of size in this 

regression as well as past results that larger mutual funds see more inflows (Sirri 

and Tufano, 1998). 

To further investigate the economic effects spillover, I simulate a shock to a 

random subset of fund managers in the sample and measure the impact to the 

others. Each variable listed gets a negative one standard deviation shock, and 

Table XI records the spillover effects on predicted fund flows. For most variables, 

the ratio of spillover to direct effects is about 20%. The economic effects of spillover 

are not trivial, raging from 12% of mean predicted flow for a shock to lagged fund 

Alpha to 18% of mean flow for lagged fund flows (the mean and standard deviation 
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for fund flows is available in Table II). A shock to Fund Size gives a very large 

result, but a one standard deviation shock to fund size is unlikely in a short amount 

of time, so I discount that result. While these effects may seem modest, recall that 

these effects are assumed to be zero in non-networked specifications, the whole-

sample coefficient estimate of 0.47 in Model 5 of Table VIII seems to be lower than 

most subsets, and localized effects may be much larger. 

D. Robustness Checks 

To more fully identify crowded trade externalities as a unique phenomenon, 

I perform several robustness checks. I re-run my main specification removing 

all sector funds from the dataset.36 Results with and without sector funds are 

presented in Table XII. Model 1 is reproduced from Model 5 of Table VIII for 

reference, Model 2 omits sector funds and Model 3 has only sector funds. Sector 

funds are funds restricted to holding stocks based on industry classifications like 

Technology or Health Care. The results show consistent parameter estimates for 

all three models, none statistically different from any of the others, indicating no 

special role for sector funds, again reinforcing that sector rotation, a form of style 

investing, is not driving the result. 

Since financial crises induce correlations across disparate asset groups, it is 

possible that the results are simply arising from the recent financial crisis. Ac­

cordingly, I re-run my specification omitting the financial crisis, ending the analysis 

in the second quarters of 2007 and 2008, respectively, as well as beginning in 2001 

to omit the tech bubble of the late 1990’s with results presented in Table XIII. 

Again, we see consistently similar parameter estimates indicating that these large, 

market-wide events are not driving the result. 
36Sector funds are those labeled Technology, Utilities, Financials, etc. corresponding to equi­

ties held in a specific industry. 
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IV. Conclusion
 

In the wake of the recent financial crisis, the interconnection of market par­

ticipants has become an important new area of research. Employing a network-

based specification, I show that interconnected mutual funds exhibit externalities 

in fund flows, exposing them to feedback and spillover effects resulting in estimates 

20% greater than non-networked coefficients. To incorporate these network con­

nections, I contemporaneously estimate the influence of each portfolio manager’s 

fund flows on each other manager by exploiting the network structure as an in­

strument. The fund-flow spillover effect result in mutual fund return overshoot of 

2% per quarter, completely reversed in the subsequent year, indicating that they 

are clearly non-fundamental in nature. 

I also show evidence that this externality is the result of crowded trades – short-

term, popular market positions – since portfolio connections exhibit only a small 

amount of short-term persistence and the effect quickly reverses. Furthermore, 

I have illustrated how distances between portfolios in security space emphasize 

concentrated positions, such that active managers overweighting portions of their 

portfolio may unintentionally increase their dependence on similar neighbors. 

While my analysis focuses on the equity holdings of open ended funds, it also 

has implications for collateralized financing. Financial intermediaries who rely 

on collateralized financing to fund their investments are growing in market share 

(Adrian and Shin, 2010). It may be that my results imply a broader collateral 

externality similar to the geographic model of Kiyotaki and Moore (1997), which 

may have played a role in recent runs on repo financing (Gorton and Metrick, 

2011).37 Since even interbank lending is becoming more collateralized, the canon­
37Kiyotaki and Moore (1997) develop a model in which the collateral for a loan is also the 

productive asset, in their case farmland. This metaphor quickly extends to financial markets 
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ical model of interbank financial contagion from Allen and Gale (2000) may be 

further amplified by collateral connections.38 

This work also provides motivation for the collection of more detailed holdings 

data from market participants, as the results described herein can be character­

ized as a negative network externality which could merit government regulation. 

Indeed, Brunnermeier, Hansen, Kashyap, Krishnamurthy, and Lo (2011) recently 

responded to an AEA/NSF call for proposals on “grand challenge questions” for 

research in the next ten years by advocating the collection of additional data and 

development of network models in the pursuit of quantifying systemic financial 

risk. While immediate public disclosure may have unintended predatory trad­

ing effects (Brunnermeier and Pedersen, 2005), this problem seems surmountable 

(Abbe, Khandani, and Lo, 2012). Confidential disclosure to regulatory bodies 

and/or delayed public disclosure are likely to be beneficial and could be the purview 

of the newly formed Office of Financial Research established by the Dodd-Frank 

Act. 

Network methods are becoming more popular in corporate finance (e.g. Hochberg, 

Ljungqvist, and Lu, 2007, Cohen, Frazzini, and Malloy, 2008, Ahern and Harford, 

2010, Lewellen, 2012) and market microstructure (e.g. Cohen-Cole, Kirilenko, and 

Patacchini, 2010), although little has been done to apply network methods to 

securities markets. My network approach allows a steady-state analysis of this 

peer influence process in the cross-section, bringing structure to cross-sectional 

analysis previously only available in the time-series. While I have applied it to 

portfolio interconnections, it may also have broad applicability to other areas 

where the productive securities of an intermediary’s portfolio are collateral for repo financing.
38In November 2009, the ECB (Heider and Hoerova, 2009) reported that interest rates for 

collateralized lending in the interbank market since 2007 were significantly lower than unsecured 
rates - a historical divergence - and a more recent report from the Financial Times indicates that 
interbank unsecured lending in Europe has essentially disappeared. (http://ftalphaville.ft.com/ 
blog/2010/08/16/315556/euribor-has-been-vaporised/) 
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such as interbank lending (Cohen-Cole, Patacchini, and Zenou, 2011) and stock 

market volatility (Greenwood and Thesmar, 2011). In a time when bailouts are 

motivated not because of too-big-to-fail but because of too-interconnected-to-fail, 

understanding and quantifying the interconnections among market participants is 

a vital pursuit. 
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V. Appendix
 

A. Exploratory Factor Analysis Results
 

As stated in the main paper, there is evidence of a ‘flow’ type factor which is 
predictive of mutual fund returns. Sirri and Tufano (1998) first proposed using 
average flows of a fund’s category as predictive; more recently, Lou (2012) has 
developed a measure of flow-induced trading to account for price pressure on un­
derlying securities based on mutual fund flows, though he neglects to account for 
Style Flows as I do here and Sirri and Tufano suggest. 

I am proposing a new flow-based measure which should predict mutual fund 
returns, so in addition I provide some additional analysis showing A. Flow-based 
factors provide new information above and beyond existing factor models such as 
the Carhart four-factor model or DGTW model and B. Peer Flow, my flow factor, 
is the best proxy for a flow factor in predicting mutual fund returns. 

First, a description of the candidate flow factors. Style Flow is simply the 
average flow of all mutual funds in a given style as stated in the text. Peer Flow 
is also as described in the text and later in this appendix. 

Lou (2012) computes a flow-induced trading (FIT) measure for mutual funds. 
This measure accumulates the total effect of “flow-induced trading” across all 
mutual funds on their holdings to compute a stock-level measure which he then 
applies to mutual funds using portfolio weights. Because contemporaneous fund 
flows are mechanically related to fund returns in his study (though not in my data), 
he computes an expected flow-induced trading (E[FIT]) measure where expected 
flows predicted solely using lagged Carhart four-factor alpha because this captures 
the flow-performance relationship without capturing too much of the time series 
dynamics of fund flows. Indeed, Lou even says, “An intuitive way to interpret this 
measure is that if we think of the entire mutual fund industry as one giant fund, 
FIT then captures the magnitude of flow-induced trading by this aggregate fund.” 
My goal is to be more precise by focusing on the fund flows of a funds close peers 
rather than aggregating across all mutual funds, and so I expect my Peer Flow 
measure to more cleanly predict mutual fund performance. 

Thus, I analyze four flow factors: Peer Flow, Style Flow, Lagged FIT, and 
E[FIT]. To investigate the commonality among these flow measures, I turn to 
Exploratory Factor Analysis (EFA). EFA attempts to reduce multiple observed 
factors in to a reduced set of unobservable latent factors by investigating common 
variation. I use EFA to choose the correct number of factors and then assign 
the multiple observed factors to each ’core’ factor, thus assisting in identifying 
the underlying latent variable of interest. EFA then provides for each variable 
a score of "commonality" which is the variable’s overlap with the common factor 
and "uniqueness" which is a score of remaining variability not explained by the 
common factor. 39 

39A full discussion of factor analysis is beyond the scope of this article, for more information 
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Initial results are in Table A1, which show that using the Carhart four-factor 
model only, we need two factors, but when we include the set of mutual fund flow 
variables (Peer Flow, Style Flow, Expected Flow-Induced Trading and Lagged 
Flow-Induced Trading) we need an additional factor as indicated by the additional 
eigenvector above 1, with the breakpoint moving downward. 

Table A1: Eigen­
vectors from Factor Analysis of Mutual Fund Return predictor variables 

With Flow Variables Carhart Four Factors Only 

Factor1 1.604983 1.458651 

Factor2 1.490384 1.138413 

Factor3 1.226093 .0002345 

Factor4 .0728658 -.000289 

Factor5 .040284 

Factor6 .0045403 

Factor7 -.0466907 

Factor8 -.0710479 

Next, we investigate the loadings of each predictor variable on the factors, 
starting with just the Carhart four-factor model in Table A2. Note that factors 
less than 0.3 not displayed to aid in identifying meaningful factor loadings. Factor 
loadings in this table are similar to a correlation or Beta between the variable 
and the latent factor. Uniqueness is the amount of unique variation remaining 
not explained by the factors. Here, the first factor is dominated by the book to 
market factor, the second by the market return. The size and momentum factors 
both load significantly on factor 1 and the momentum factor also loads on factor 
2 but both have large unexplained uniqueness. 

see Bartholomew, Knott, and Moustaki (2011). It is similar to what Korajczyk and Sadka (2008) 
do to explore commonality in liquidity, though less rigorous. EFA is also distinct from Principal 
Component Analysis which seeks to explain variance but does not take into account variance due 
to fundamentals vs measurement error. It also gives greater weight to high variance processes, 
thus potentially emphasizing variables with higher variance due to higher measurement error. 
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Table A2: Factor
 
Loadings from factor analysis on Carhart four factor model variables only.
 

Factor1 Factor2 Uniqueness 

Excess Mkt Return -.8098018 .2572426 

SMB Factor .5016491 .7415112 

HML Factor -.996438 .0030609 

UMD Factor .355363 .6874562 .4011212 

Finally, in Table A3 we have the factor analysis including flow factors. We see 
clearly that there is a distinct ‘Flow’ factor for which my Peer Flow measure has 
the highest loading (and lowest uniqueness) indicating a high degree of overlap. 
Style Flow also has a large loading as does the measured, lagged FIT measure. 
The Expected FIT measure (predicted with lagged Carhart Alpha) does not load 
significantly on the flow factor (or any factor). This does not indicate that it is not 
useful, only that it is less correlated with a broad measure of fund flows. In total, 
this analysis indicates the need for a ‘Flow’ factor in the prediction of mutual fund 
performance and that my Peer Flow measure is an excellent candidate. 

Table A3: Factor Loadings from factor analysis 
on Carhart four factor model variables including mutual fund flow variables. 

Factor1 Factor2 Factor3 Uniqueness 

Excess Mkt Return -.3522781 -.6641007 .4187848 

SMB Factor -.4532773 .7785095 

HML Factor 1.044188 -.0948019 

UMD Factor .8761278 .1746024 

Peer Flow .9846845 .027369 

Lagged FIT Measure .4558635 .780215 

E[FIT*] Measure .9477101 

Style Flow .5942485 .6461514 

Since EFA is not a standard from of analysis in financial economics, I present 
Table A4 as well. 
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I only present results here for Excess DGTW return, but the results for raw 
return controlling for Excess DGTW return are similar. These confirm the above 
factor analysis showing that Peer Flow and Style Flow are the two important 
flow factors, and the FIT measure, whether measured or expected does not enter 
significantly into the regression. 

B. Details on how to compute Similarity Measure 

As noted in the text, similarity between two portfolios i and j, denoted sij , 
as the dot product between the security holding weight vectors of each portfolio 
manager i and j, divided by the product of the Euclidean norm of each vector. sij 

is computed at each time t, but I suppress the time subscript for expositional ease. 
Specifically, where hi is a vector of portfolio weights for manager i, the similarity 
between managers i and j is defined as 

hi · hj
sij = (9)

|hi| |hj | 

For each manager i, the Euclidean norm is defined across M securities as 

|hi| = 
 M
m=1 

h2 
im (10) 

Deriving this same measure in matrix form, let H be the M × N holdings 
matrix, with portfolio managers as each column, and each row consisting of the 
weight between 0 and 1 each manager places on that security. My portfolio simi­
larity matrix is then 

HT H 
S = (11)

|H| · |H|
in which each sij already defined above is an element of symmetric similarity matrix 
SN×N and hi are the columns of H. The norm of the matrix H is a Euclidean 
column norm, such that for each column j, the norm of Hj is defined as 

|Hj | = 
 M
m=1 

h2 (12)jm 

I then compute Peer Flow as the dot product of the weight vector and the 
corresponding vector of fund flows for each manager. Formally, peer weights are 
computed as 

P eerW eightij =
_ 
sij

sik 
k 

, k
  (13)= i 
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and Peer Flow is thus 

P eerF lowi = P eerW eightikF lowk (14) 
k 

In matrix form, if W is a row-stochastic transformation of S, such that each 
row sums to 1, then P eerF low = W · F low in which both PeerFlow and Flow are 
N × 1 vectors and W is an N × N matrix at time t. 

Two-step neighbors are computed as B = S2, with matrix multiplication (as 
opposed to element-by-element) where the diagonal of S has already been set to 
0 to avoid duplicating one-step and two-step neighbors.40 In summation notation, 
the equivalent product is 

N 

bij = siqsqj , q = i, j (15) 
q=1 

with the diagonal of B also set to zero such that a manager cannot be his own 
two-step neighbor.41 If WW is the row-stochastic, N ×N , two-step weighting matrix 
derived from B, then T woStepP eerF low = WW · F low or as a summation: 

wwji = _ 
bji (16)
bjk 

k 

T woStepP eerF lowj = wwjkF lowk (17) 
k 

C. Identification and Estimation of a Network Influence Process 

This discussion addresses identification of peer effects using the language com­
mon to the peer effects literature. Because this language is not intuitive to a 
general finance audience, I discussed it in terms more broadly understood in the 
main text, but this more technical discussion is available for those more steeped 
in the complications involved in identifying peer effects. 

Inference on networks is complicated by some unique identification problems, 
notably discussed in Manski (1993).42 According to Manski, identifying an en­
dogenous social influence process requires controlling for two other potential con­
founding effects: correlated effects and contextual effects.43 

40A nonzero diagonal indicates a ‘self-loop.’ If S has a nonzero diagonal, a ‘two-step’ neighbor 
could be i connecting to i (a self loop) and then i connecting to j, which therefore duplicates a 
one-step neighbor. This is a common adjustment in network analysis.

41The diagonal of B must now be set to 0 because for every one-step neighbor, a manager 
is his own two-step neighbor. For instance, i connects to j, but then j also connects back to i, 
such that for every connection like this i is his own two-step neighbor. 

42Thanks to Ethan Cohen-Cole for explaining the nuances of these different effects to me. 
43Bramoullé, Djebbari, and Fortin (2009) also note that these controls are a necessary pre­

requisite for their instrumentation approach. 
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Correlated effects can be conceived as a co-integrated relation when a relatively 
fixed relation among two neighbors induces a proportional response to exogenous 
events. Correlated effects simultaneously affect two connected managers due to 
common, but time-invariant, characteristics. For example, two mutual funds, one 
half the size of the other, may find that on average the smaller fund receives half 
the fund flows of the large one. Since there may be a similar relation due to 
cash holdings, I include Peer Size and Peer Cash to control for these potentially 
common fund characteristics which may drive correlated flows.44 

Contextual effects can be viewed as a network version of industry effects, in 
which market-wide trends affect all members of the group equally, but may change 
through time. For instance, a sector rotation strategy which suggests buying 
utilities and health care stocks in a declining market represents a wider shift in 
investor behavior, possibly inducing a spurious correlation among related mutual 
funds. I control for Manski’s contextual effects by including StyleFlows, which 
represents the average flow for the Morningstar category to which each open-ended 
fund belongs. 

A further identification problem may arise due to network density, as noted by 
Kelejian, Prucha, and Yuzefovich (2006). If a network is very dense or “complete” 
such that each agent is equally connected, then each agent would have exactly 
the same Peer Flow measure. For example, assume that each portfolio manager 
is connected to each other manager with a weight of exactly 1. This would make 
Peer Flow equal to the average market-wide flow, since the weight on each flow 
variable would be 

N 
1 for every manager, and therefore no longer display cross-

sectional variation. Given that my weighted density is less than 5%, this is unlikely 
to be a problem, but as a further robustness check, I have run my specification 
thresholding my network at the 80th percentile, thus obtaining an unweighted 
density of 10% with no material change in results.45 

Finally, I produce estimates using Generalized Method of Moments, whereas 
most specifications of this type in the spatial econometrics literature estimate 
models via Maximum Likelihood. Conley (1999) notes that maximum likelihood 
specifications in which spatial dependence is measured with error are misspecified. 
While measurement error is unlikely to be a problem with geographical measures 
of distance typical of the spatial econometrics literature, my measure of distance 
in security space may be much less precise. Fortunately, Kelejian and Prucha 
(2002) show that with panel data, both OLS and GMM estimators are consistent, 
and thus represent the appropriate estimation approach. Elhorst (2010) includes 

44Peer Size and Peer Cash are obviously not time-invariant, but are quite persistent. Typical 
traits used to control for correlated effects are things like gender and race, which are time-
invariant but do not have a clear equivalent among mutual funds.

45Weighted density is the sum of all network connections in the network divided by the sum 
of all possible network connections set to 1, or N2. Unweighted density is the same, but sets 
any weighted network link to 1 first. On average, the unweighted density of one of my un­
thresholded networks is approximately 80%, which is quite high and would be a problem if my 
analysis ignored the weights. 
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a short discussion on MLE vs IV/GMM estimators, noting that while the use of 
IV/GMM is promising, it is still new to the spatial econometrics literature and 
needs further research.46 

46Spatial Econometrics primarily uses MLE because they have only one network – geography 
– and thus no panel data. In these cases, only MLE is appropriate (Elhorst, 2010). 
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Figure 1: Performance of Peer Flow portfolios through time. Portfolios based 
on Peer Flow are formed at time 0. Outflow is defined as the lower two quintiles, Inflow 
the upper two quintiles. Portfolios held for the subsequent 12 quarters. Return is Excess 
DGTW return in basis points. Data is quarterly from 1998 to 2009, each panel variable 
is any open ended fund holding a nonzero equity position. 
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Figure 3: Two dimensions of the portfolio distance measure. This plot of sim­
ulated data demonstrates how interconnectedness as measured by the normalized dot 
product between two portfolios of two securities increases in two different dimensions. 
Plotted is the distance between two managers who each hold the same two asset in com­
mon and a third asset not in common. The axis on the right is increasing in portfolio 
overlap, i.e. the percentage of the portfolio that overlaps. The axis on the left is increas­
ing in the concentration of that position, holding the percentage of overlap constant. So 
a ‘concentrated’ position is where the entire portfolio overlap is in one security, and an 
‘equal’ position is 50% each of the two securities. More concentrated positions are thus 
closer in security space, holding overlap constant. 



Table I:
 
Porfolio sorts of Mutual Fund Return across Peer Flow and Flow quintiles. 
Each quarter, mutual funds are independently sorted into quintiles by Flow (dollar 
flow divided by total net assets) and Peer Flow. The average mutual fund return is 
summarized below for each Flow/Peer Flow quintile portfolio, as well as the average 
across portfolios. Each 1-5 quintile difference is statistically significant at the 1% level. 
Returns are quarterly in basis points. Excess DGTW return is computed as the mutual 
fund return less the portfolio weighted stock-level DGTW return. Carhart alpha is the 
intercept of a rolling 12 month regression of mutual fund returns on a four factor model. 
Excess market return is computed as the mutual fund return less the market return. 

(a) Excess DGTW Return 

Fund Flow Portfolios 
Outflow Inflow 

Peer Flow Portfolios 1 2 3 4 5 All 

Outflow 1 -438.6 -284.6 -221.0 -229.8 -278.1 -314.5 
2 -155.9 -71.6 -39.6 -39.4 -44.1 -75.7 
3 -2.0 80.4 115.7 110.2 143.0 91.7 
4 -12.1 70.9 124.9 133.5 175.4 108.6 

Inflow 5 36.6 130.5 169.5 221.9 418.2 241.6 

All -179.2 -37.5 35.5 66.4 141.0 

(b) Carhart Alpha 

Outflow Inflow 

Peer Flow Portfolios 1 2 3 4 5 All 

Outflow 1 -43.6 -24.3 -23.3 -16.4 -5.9 -27.4 
2 -28.8 -12.3 -4.6 -1.4 6.5 -10.5 
3 -35.6 -18.6 -10.8 -5.9 2.7 -13.8 
4 -30.1 -19.0 -11.2 -2.2 13.4 -8.3 

Inflow 5 -0.6 0.4 16.3 32.5 61.9 30.1 

All -31.9 -16.1 -6.8 4.2 23.4 

(c) Excess Market Return 

Outflow Inflow 

Peer Flow Portfolios 1 2 3 4 5 All 

Outflow 1 -272.2 -115.2 -96.8 -101.8 -105.8 -160.9 
2 -161.5 -86.4 -47.9 -44.8 -29.0 -81.1 
3 -84.5 -30.5 -3.3 13.2 42.8 -11.7 
4 -22.4 39.8 66.3 81.7 148.4 70.1 

Inflow 5 112.2 178.4 216.8 257.0 441.4 282.2 

All -133.5 -24.5 27.6 66.9 162.5 



Table II: Summary statistics
 
Data is quarterly from 1998 to 2009, each panel variable is any open ended fund holding 
a nonzero equity position. Funds with Total Net Assets less than $1M are discarded. 
Flow is the fund flow divided by total net assets. Return is the mutual fund return 
(gross). Carhart alpha is the intercept of a rolling 12 month regression of mutual fund 
returns on a four factor model. DGTW return is the quarterly return of the portfolio 
weighted stock-level DGTW returns, weighted by mutual fund stock holdings. Cash Pct 
is cash holdings divided by total net assets. Amihud Illiq is the portfolio weighted sum 
of equity holdings’ Amihud measures computed over the previous quarter, logged. Style 
Flow is the average of all reported fund flows by Morningstar category. E[FIT*] (Alpha) 
is the E[FIT*] measure computed as in (Lou, 2012) (flows predicted using lagged Carhart 
four-factor alpha). E[FIT*] (Peer Flow) is the E[FIT*] measure from (Lou, 2012) except 
with flows predicted using Peer Flow. FIT Measure is as computed as in (Lou, 2012) 
with realized fund flows. Peer Flow is the weighted average flow of mutaul fund peers 
defined by a common holdings network. Network relation for peers is the normalized 
dot product, and peer effects are the weighted average of peer characteristics. Pr Fund 
Size is the peer weighted total net assets, logged. Pr Cash Pct is the peer weighted cash 
holdings divided by total net assets. 

Variable Mean Std. Dev. Min. Max. N 

Flow 0.009 0.166 -1 0.735 124,640 

Return 0.017 0.118 -0.99 1.648 135,687 

Carhart Alpha -0.001 0.011 -0.14 0.137 129,551 

DGTW Return 0.015 0.079 -2.974 9.912 123,397 

Total Net Assets ($M) 1,043 4,470 1.008 193,453 138,073 

Cash Pct 0.035 0.041 -0.003 0.535 138,073 

Amihud Illiq -13.458 2.035 -30.567 -4.675 130,540 

Style Flow 0.01 0.043 -1 0.735 128,418 

E[FIT*] (PeerFlow) 0.001 0.013 -0.466 0.772 126,990 

E[FIT*] (Alpha) -0.001 0.004 -0.395 0.109 126,990 

FIT Measure -0.005 0.012 -0.506 0.49 126,995 

Peer Flow 0.007 0.021 -0.488 0.484 128,440 

Pr Fund Size 20.86 0.487 12.435 22.814 138,073 

Pr Cash Pct 0.042 0.009 0 0.351 138,073 
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Table III: Persistence of Network Distance Relation 
Network relation is the normalized dot product, and is the dependent variable. Results 
shown from Fama-MacBeth regression of eight lags of network connectivity. Data is 
quarterly from 1998 to 2009. Significance is denoted at the 1, 5, and 10% level. 

Coeff Estimate Std Dev T statistic 

Lag 1 0.4138∗∗∗ 0.1255 3.2972 

Lag 2 0.2500∗∗∗ 0.0830 3.0112 

Lag 3 0.0765∗ 0.0454 1.6835 

Lag 4 0.0851 0.0535 1.5918 

Lag 5 0.0189 0.0395 0.4785 

Lag 6 0.0407 0.0495 0.8222 

Lag 7 0.0110 0.0392 0.2802 

Lag 8 0.0460 0.0488 0.9418 
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Table IV: First Stage Regression of GMM/IV Specification 
First stage regressions with endogenous regressors as dependent variables. Peer Flow is 
the weighted average of peer connected flow, and Two Step Peer Flow is the weighted 
average of their neighbor’s neighbors flow, used as instruments. Flow is dollar flows 
divided by total net assets and Cash Pct is cash holdings divided by total net assets. 
Size is log of total net assets. Amihud is a portfolio weighted measure of the Amihud 
values of equity holdings, logged. Style Flow is the average flow within each Morningstar 
category. Data is quarterly from 1995 to 2009. Time and Fund Fixed Effects included. 
T statistics are in parentheses and significance is denoted at the 1, 5, and 10% level. 

(1) (2) 
Peer Flow Peer Flow 

Two Step Peer Flow 1.4053∗∗∗ 

(60.30) 
1.3791∗∗∗ 

(50.79) 

Two Step Peer Flow2 1.3262 
(1.31) 

1.0457 
(1.03) 

Lag1 Alpha 0.0319∗∗∗ 

(4.13) 
0.0326∗∗∗ 

(4.30) 

Lag1 Flow 0.0018∗∗∗ 

(6.49) 
0.0017∗∗∗ 

(6.52) 

Lag2 Flow 0.0009∗∗∗ 

(3.36) 
0.0008∗∗∗ 

(3.14) 

Lag3 Flow 0.0003 
(1.23) 

0.0002 
(0.91) 

Lag4 Flow 0.0003∗ 

(1.75) 
0.0002 
(0.97) 

Fund Size 0.0002∗ 

(1.65) 
0.0002∗ 

(1.81) 

Cash Pct 0.0069∗∗∗ 

(4.64) 
0.0037∗∗∗ 

(3.08) 

Amihud Illiq 0.0002∗∗∗ 

(4.31) 
0.0002∗∗∗ 

(4.13) 

Style Flow 0.0465∗∗∗ 

(9.26) 
0.0457∗∗∗ 

(9.35) 

Pr Fund Size 0.0009 
(0.83) 

Pr Cash Pct 0.2678∗∗∗ 

(6.13) 

Observations 
R Squared 
Fund clusters 
Time clusters 

73319 
0.87 
4,428 

44 

73319 
0.87 
4,428 

44 
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Table V: Perfor­
mance of the top 10 holdings of mutual funds in different Peer Flow Terciles. 
Each tercile contains the top 10 stocks, by weight, held exclusively by mutual funds in 
that tercile. Thus, stocks not in the top 10 holdings of any fund are excluded, as well 
as top 10 stocks held by mutual funds in differing terciles so not all stocks are included. 
Peer Flow Tercile 1 is the bottom tercile of peer flow, meaning the fund experienced 
significant outflow. Peer Flow Tercile 3 is the top tercile of peer flow, meaning the 
fund experienced significant inflow. Peer Flow Tercile 2 is the middle tercile of peer 
flow, meaning the fund experienced average net flow of zero. Returns are in percent, 
quarterly. T statistics are in parentheses and significance is denoted at the 1, 5, and 
10% level 

Peer Flow Tercile Excess DGTW Return Raw Return 

1 (Outflow) -0.457% -0.267% 
2 0.958% 2.93% 
3 (Inflow) 1.82% 6.91% 

1 minus 2 -1.42%∗∗∗ -3.20%∗∗∗ 

(-4.45) (-9.14) 

1 minus 3 -2.28%∗∗∗ -7.18%∗∗∗ 

(-6.63) (-19.14) 

2 minus 3 -0.862%∗∗∗ -3.99%∗∗∗ 

(-2.73) (-11.47) 
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Table VIII: Flow regression to measure spillover externalities. 
Flow is the dependent variable and is the fund flow divided by total net assets. Data 
is quarterly from 1998 to 2009, each panel variable is any open ended fund holding a 
nonzero equity position. Funds with Total Net Assets less than $1M are discarded. Peer 
Flow is the weighted average flow of mutaul fund peers defined by a common holdings 
network. Network relation for peers is the normalized dot product, and peer effects are 
the weighted average of peer characteristics. Fund Size is the log of total net assets. 
Cash Pct is cash holdings divided by total net assets. Amihud is the portfolio weighted 
sum of equity holdings’ Amihud measures computed over the previous quarter, logged. 
Style Flow is the average of all reported fund flows by Morningstar category. Time and 
Fund Fixed Effects included. Hansen J stat is a test of overidentification for which the 
null hypothesis is that instruments are uncorrelated with stage 2 regression, KP LM 
stat tests the null of weak instruments. T statistics are in parentheses and significance 
is denoted at the 1, 5, and 10% level. 

(1) 
Flow 

(2) 
Flow 

(3) 
Flow 

(4) 
Flow 

(5) 
Flow 

Peer Flow 0.5785∗∗∗ 

(4.10) 
0.3268∗∗ 

(2.43) 
0.4740∗∗∗ 

(3.28) 

Lag1 Flow 0.0856∗∗∗ 

(4.83) 
0.0594∗∗∗ 

(3.43) 
0.0641∗∗∗ 

(3.75) 
0.0580∗∗∗ 

(3.40) 
0.0580∗∗∗ 

(3.39) 

Lag2 Flow 0.0919∗∗∗ 

(5.47) 
0.0771∗∗∗ 

(5.10) 
0.0814∗∗∗ 

(5.76) 
0.0765∗∗∗ 

(5.24) 
0.0769∗∗∗ 

(5.31) 

Lag3 Flow 0.0370∗∗∗ 

(3.47) 
0.0272∗∗∗ 

(2.63) 
0.0303∗∗∗ 

(3.08) 
0.0270∗∗∗ 

(2.71) 
0.0274∗∗∗ 

(2.75) 

Lag4 Flow 0.0114 
(1.06) 

0.0040 
(0.36) 

0.0039 
(0.35) 

0.0038 
(0.34) 

0.0040 
(0.36) 

Lag1 Alpha 1.1627∗∗∗ 

(7.25) 
0.9102∗∗∗ 

(7.34) 
0.8572∗∗∗ 

(7.13) 
0.8623∗∗∗ 

(7.24) 

Fund Size 0.0154∗∗∗ 

(5.85) 
0.0148∗∗∗ 

(5.50) 
0.0150∗∗∗ 

(5.64) 
0.0156∗∗∗ 

(5.85) 

Cash Pct 0.5843∗∗∗ 

(17.44) 
0.5822∗∗∗ 

(17.38) 
0.5796∗∗∗ 

(17.36) 
0.5821∗∗∗ 

(17.44) 

Amihud Illiq 0.0024∗∗∗ 

(3.71) 
0.0016∗∗ 

(2.58) 
0.0027∗∗∗ 

(4.18) 
0.0019∗∗∗ 

(3.00) 

Style Flow 0.7990∗∗∗ 

(9.98) 
0.7406∗∗∗ 

(7.34) 
0.7417∗∗∗ 

(7.23) 
0.7344∗∗∗ 

(7.13) 

Pr Fund Size -0.0290∗∗∗ 

(-4.45) 
-0.0300∗∗∗ 

(-4.53) 

Pr Cash Pct -0.2855 
(-0.96) 

-0.2152 
(-0.68) 

Observations 76600 73252 73487 73252 73252 
R Squared 0.03 0.08 0.08 0.08 0.09 

Continued on next page... 
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(1) (2) (3) (4) (5) 
Flow Flow Flow Flow Flow 

Fund clusters 4,526 4,423 4,442 4,423 4,423 
Time clusters 44 44 44 44 44 
Est Method OLS OLS GMM GMM GMM 
Hansen J stat 0.29 0.00 0.00 
J p value 0.5880 0.9665 0.9930 
KP LM Stat 30.63 30.89 30.66 
KP LM p value 0.0000 0.0000 0.0000 
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Table IX: Spillover effects from measured coefficient estimates. 
Coefficients are transformed from Models 3,4, and 5, Table VIII by moving all contem­
poraneous flow variables to the LHS and dividing all estimated coefficients by one minus 
weighting matrix and spatial lag parameter. Coefficients taken directly from Table VIII 
for comparison, and variables are defined the same as in Table VIII. Direct Effect is 
the average of the diagonal of the matrix coefficient and measures the average direct 
effect. Spillover Effect is the average of the off-diagonal of the matrix coefficient and 
measures the average spillover effect the each fund has on its peers. Std Err of Coeff 
is the standard error of each coefficient estimate from Model 5. T Stat of Spillover is 
the T statistic computed by testing the Spillover Effect against the null of 0 using the 
coefficient standard error estimate. Significance is denoted at the 1, 5, and 10% level 

(a) Model 5 (Main Result) 

Coeff Direct Spillover Std Err Spillover 
Estimate Effect Effect of Coeff T Stat 

Lag1 Flow 0.0580 0.0580 0.0522∗∗∗ 0.0171 3.0543 
Lag2 Flow 0.0769 0.0770 0.0692∗∗∗ 0.0145 4.7763 
Lag3 Flow 0.0274 0.0274 0.0247∗∗ 0.0100 2.4735 
Lag4 Flow 0.0040 0.0040 0.0036 0.0111 0.3242 
Lag Alpha 0.8623 0.8629 0.7762∗∗∗ 0.1190 6.5210 
Fund Size 0.0156 0.0156 -0.0429∗∗∗ 0.0027 -16.0791 
Cash Pct 0.5821 0.5822 0.1152∗∗∗ 0.0334 3.4523 
Style Flow 0.7344 0.7349 0.6611∗∗∗ 0.1030 6.4211 
Amihud Illiq 0.0019 0.0019 0.0017∗∗∗ 0.0006 2.7018 

(b) Model 4 (No Peer Controls) 

Coeff Direct Spillover Std Err Spillover 
Estimate Effect Effect of Coeff T Stat 

Lag1 Flow 0.0580 0.0580 0.0281 0.0171 1.6487 
Lag2 Flow 0.0765 0.0769 0.0373∗∗ 0.0146 2.5543 
Lag3 Flow 0.0270 0.0274 0.0133 0.0100 1.3303 
Lag4 Flow 0.0038 0.0040 0.0019 0.0111 0.1743 
Lag Alpha 0.8572 0.8625 0.4183∗∗∗ 0.1202 3.4803 
Fund Size 0.0150 0.0156 0.0076∗∗∗ 0.0027 2.8440 
Cash Pct 0.5796 0.5822 0.2823∗∗∗ 0.0334 8.4567 
Style Flow 0.7417 0.7346 0.3562∗∗∗ 0.1026 3.4735 
Amihud Illiq 0.0027 0.0019 0.0009 0.0006 1.4282 

(c) Model 3 (No Lag Alpha) 

Coeff Direct Spillover Std Err Spillover 
Estimate Effect Effect of Coeff T Stat 

Lag1 Flow 0.0641 0.0641 0.0878∗∗∗ 0.0171 5.1390 
Lag2 Flow 0.0814 0.0815 0.1117∗∗∗ 0.0141 7.8995 
Lag3 Flow 0.0303 0.0304 0.0416∗∗∗ 0.0098 4.2250 
Lag4 Flow 0.0039 0.0039 0.0053 0.0111 0.4819 
Fund Size 0.0148 0.0148 -0.0483∗∗∗ 0.0027 -17.9173 
Cash Pct 0.5822 0.5823 0.1215∗∗∗ 0.0335 3.6262 
Style Flow 0.7406 0.7415 1.0155∗∗∗ 0.1009 10.0601 
Amihud Illiq 0.0016 0.0016 0.0022∗∗∗ 0.0006 3.5313 



Table X: Flow regression with relative size. 
Relative Fund Size is the weighted average of peer total net assets divided by total net 
assets, logged. All other variables are as defined in Table VIII 

(1) 
Flow 

(2) 
Flow 

(3) 
Flow 

Peer Flow 0.5125∗∗∗ 

(3.78) 
0.3938∗∗∗ 

(2.98) 
0.4087∗∗∗ 

(2.96) 

Lag1 Flow 0.0640∗∗∗ 

(3.75) 
0.0579∗∗∗ 

(3.39) 
0.0578∗∗∗ 

(3.39) 

Lag2 Flow 0.0809∗∗∗ 

(5.74) 
0.0766∗∗∗ 

(5.28) 
0.0764∗∗∗ 

(5.28) 

Lag3 Flow 0.0299∗∗∗ 

(3.04) 
0.0271∗∗∗ 

(2.70) 
0.0270∗∗∗ 

(2.70) 

Lag4 Flow 0.0037 
(0.33) 

0.0037 
(0.33) 

0.0038 
(0.34) 

Lag1 Alpha 0.8614∗∗∗ 

(7.19) 
0.8607∗∗∗ 

(7.20) 

Relative Fund Size -0.0150∗∗∗ 

(-5.58) 
-0.0158∗∗∗ 

(-5.93) 
-0.0158∗∗∗ 

(-5.94) 

Cash Pct 0.5820∗∗∗ 

(17.40) 
0.5795∗∗∗ 

(17.33) 
0.5819∗∗∗ 

(17.46) 

Amihud Illiq 0.0020∗∗∗ 

(3.25) 
0.0023∗∗∗ 

(3.61) 
0.0023∗∗∗ 

(3.64) 

Style Flow 0.7437∗∗∗ 

(7.39) 
0.7378∗∗∗ 

(7.19) 
0.7375∗∗∗ 

(7.18) 

Pr Cash Pct -0.2687 
(-0.90) 

-0.2022 
(-0.64) 

Observations 
R Squared 
Fund clusters 
Time clusters 
Est Method 
Hansen J stat 
J p value 
KP LM Stat 
KP LM p value 

73487 
0.08 
4,442 

44 
GMM 
0.23 

0.6295 
30.84 
0.0000 

73252 
0.09 
4,423 

44 
GMM 
0.00 

0.9926 
30.86 
0.0000 

73252 
0.09 
4,423 

44 
GMM 
0.00 

0.9592 
30.91 
0.0000 
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Table XI: Economic significance - shock to random nodes.
 
Economic significance of coefficients in Table IXa. A random third of mutual funds are 
shocked by one negative standard deviation event to each variable. The effect listed is 
the change in Flow, the dependent variable in Model 5, Table VIII, which is fund flow 
divided by total net assets. Mean flow is 0.013, Standard deviation of flow is 0.13. Mean 
spillover is the average effect on mutual funds who received no shock. Mean direct effect 
is the average effect on mutual funds who were shocked. The third column is the ratio of 
the two. The fourth and fifth columns display the mean spillover effect divided by mean 
flow and standard deviation of flow, respectively. Flow is the fund flow divided by total 
net assets. Fund Size is the log of total net assets. Cash Pct is cash holdings divided by 
total net assets. Amihud Illiq is the portfolio weighted sum of equity holdings’ Amihud 
measures computed over the previous quarter, logged. Style Flow is the average of all 
reported fund flows by Morningstar category. 

Mean 
Spillover 

Mean 
Direct Effect 

Spillover/ 
Direct 

Spillover/ 
Mean Flow 

Spillover/ 
Std Flow 

Lag1 Flow -0.0018 -0.0097 0.1870 -0.1333 -0.0134 

Lag2 Flow L2 -0.0024 -0.0128 0.1870 -0.1769 -0.0178 

Lag3 Flow L3 -0.0009 -0.0046 0.1870 -0.0630 -0.0063 

Lag4 Flow L4 -0.0001 -0.0007 0.1870 -0.0092 -0.0009 

Lag1 Alpha L1 -0.0016 -0.0085 0.1892 -0.1184 -0.0119 

Fund Size 0.0089 -0.0015 -5.7844 0.6557 0.0660 

Cash Pct -0.0010 -0.0178 0.0534 -0.0703 -0.0071 

Style Flow -0.0055 -0.0281 0.1972 -0.4091 -0.0412 

Amihud Illiq -0.0005 -0.0025 0.2211 -0.0406 -0.0041 
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Table XII: Flow regression isolating Sector Funds. 
Flow is the dependent variable and is the fund flow divided by total net assets. Model 1 
is the baseline, taken from Model 5 of Table VIII. Model 2 is the same, but with sector 
funds omitted from the analysis. Model 3 includes only sector funds. Sector funds are 
mutual funds with an industry-specific category, such as Technology or Health Care. All 
other variables are as defined in Table VIII 

(1) 
Flow 

(2) 
Flow 

(3) 
Flow 

Peer Flow 0.4740∗∗∗ 

(3.28) 
0.5857∗∗∗ 

(3.40) 
0.5910∗∗ 

(2.05) 

Lag1 Alpha 0.8623∗∗∗ 

(7.24) 
1.4310∗∗∗ 

(9.47) 
0.0273 
(0.24) 

Lag1 Flow 0.0580∗∗∗ 

(3.39) 
0.0949∗∗∗ 

(5.30) 
-0.1763∗∗∗ 

(-4.22) 

Lag2 Flow 0.0769∗∗∗ 

(5.31) 
0.0761∗∗∗ 

(5.12) 
-0.0060 
(-0.20) 

Lag3 Flow 0.0274∗∗∗ 

(2.75) 
0.0266∗∗ 

(2.56) 
-0.0106 
(-0.51) 

Lag4 Flow 0.0040 
(0.36) 

0.0082 
(0.84) 

-0.0314 
(-1.10) 

Fund Size 0.0156∗∗∗ 

(5.85) 
0.0139∗∗∗ 

(5.55) 
0.0443∗∗∗ 

(4.10) 

Cash Pct 0.5821∗∗∗ 

(17.44) 
0.5838∗∗∗ 

(17.13) 
0.4701∗∗∗ 

(5.61) 

Amihud Illiq 0.0019∗∗∗ 

(3.00) 
0.0019∗∗∗ 

(3.09) 
0.0014 
(0.55) 

Style Flow 0.7344∗∗∗ 

(7.13) 
0.6637∗∗∗ 

(4.85) 
0.7598∗∗∗ 

(5.14) 

Pr Fund Size -0.0300∗∗∗ 

(-4.53) 
-0.0339∗∗∗ 

(-4.76) 
-0.0507∗∗ 

(-2.26) 

Pr Cash Pct -0.2152 
(-0.68) 

-0.1674 
(-0.48) 

-0.4577 
(-0.92) 

Observations 
R Squared 
Fund clusters 
Time clusters 
Hansen J stat 
J p value 
KP LM Stat 
KP LM p value 

73252 
0.09 
4,423 

44 
0.00 

0.9930 
30.66 
0.0000 

65716 
0.08 
4,005 

44 
0.02 

0.8777 
27.35 
0.0000 

7536 
0.17 
418 
44 

0.76 
0.3836 
23.61 
0.0000 
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Table XIII: Flow regression isolating the Financial Crisis and Tech Bubble. 
Flow is the dependent variable and is the fund flow divided by total net assets. Model 1 
is the baseline, taken from Model 5 of Table VIII from 1998 to 2009. Model 2 includes 
quarters from 2001 through 2009, thus excluding the tech bubble of the late 1990’s. 
Model 3 includes quarters from 1998 through the second quarter of 2007. Model 4 
extends Model 3 through the second quarter of 2008. Model 5 includes only 2001 through 
the second quarter of 2007, excluding both the tech bubble and the financial crisis. All 
other variables are as defined in Table VIII 

(1) 
Flow 

(2) 
Flow 

(3) 
Flow 

(4) 
Flow 

(5) 
Flow 

Peer Flow 0.4740∗∗∗ 

(3.28) 
0.4305∗∗ 

(2.50) 
0.5348∗∗∗ 

(3.28) 
0.4958∗∗∗ 

(3.27) 
0.4869∗∗ 

(2.32) 

Lag1 Alpha 0.8623∗∗∗ 

(7.24) 
1.0210∗∗∗ 

(6.81) 
0.8517∗∗∗ 

(6.62) 
0.9001∗∗∗ 

(6.75) 
1.0778∗∗∗ 

(6.69) 

Lag1 Flow 0.0580∗∗∗ 

(3.39) 
0.0349∗∗ 

(1.98) 
0.0220 
(1.03) 

0.0469∗∗ 

(2.39) 
-0.0191 
(-0.84) 

Lag2 Flow 0.0769∗∗∗ 

(5.31) 
0.0623∗∗∗ 

(4.27) 
0.0648∗∗∗ 

(4.01) 
0.0777∗∗∗ 

(4.61) 
0.0384∗∗∗ 

(2.62) 

Lag3 Flow 0.0274∗∗∗ 

(2.75) 
0.0277∗∗∗ 

(2.59) 
0.0107 
(0.80) 

0.0183∗ 

(1.68) 
0.0052 
(0.33) 

Lag4 Flow 0.0040 
(0.36) 

-0.0046 
(-0.40) 

-0.0152 
(-1.04) 

-0.0055 
(-0.41) 

-0.0326∗∗ 

(-2.04) 

Fund Size 0.0156∗∗∗ 

(5.85) 
0.0205∗∗∗ 

(5.54) 
0.0221∗∗∗ 

(4.72) 
0.0176∗∗∗ 

(5.03) 
0.0321∗∗∗ 

(4.32) 

Cash Pct 0.5821∗∗∗ 

(17.44) 
0.6078∗∗∗ 

(16.08) 
0.5848∗∗∗ 

(16.06) 
0.5788∗∗∗ 

(17.29) 
0.6026∗∗∗ 

(13.50) 

Amihud Illiq 0.0019∗∗∗ 

(3.00) 
0.0020∗∗∗ 

(2.98) 
0.0018∗∗ 

(2.36) 
0.0015∗∗ 

(2.21) 
0.0021∗∗ 

(2.37) 

Style Flow 0.7344∗∗∗ 

(7.13) 
0.8021∗∗∗ 

(6.77) 
0.7138∗∗∗ 

(6.56) 
0.7239∗∗∗ 

(6.99) 
0.7904∗∗∗ 

(6.04) 

Pr Fund Size -0.0300∗∗∗ 

(-4.53) 
-0.0204∗∗∗ 

(-2.67) 
-0.0337∗∗∗ 

(-4.31) 
-0.0333∗∗∗ 

(-4.74) 
-0.0231∗∗ 

(-2.46) 

Pr Cash Pct -0.2152 
(-0.68) 

0.2992 
(0.80) 

-0.4138 
(-1.23) 

-0.0159 
(-0.05) 

0.2668 
(0.67) 

Observations 
R Squared 
Fund clusters 
Time clusters 
Hansen J stat 
J p value 
KP LM Stat 
KP LM p value 

73252 
0.09 
4,423 

44 
0.00 

0.9930 
30.66 
0.0000 

64438 
0.08 
4,263 

32 
3.22 

0.0727 
23.20 
0.0000 

51012 
0.09 
3,831 

35 
0.81 

0.3679 
25.27 
0.0000 

60816 
0.09 
4,161 

39 
0.10 

0.7577 
27.59 
0.0000 

42202 
0.07 
3,663 

23 
1.44 

0.2295 
17.20 
0.0002 
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