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I Introduction

Over the last two decades, technological innovations have dramatically increased

the speed of trading in global financial markets. The time it takes for messages to

travel within and between financial markets is now measured in micro- and millisec-

onds and is limited, for the most part, only by the speed of light. Although most

would agree that extremely long delays in markets are undesirable, it is unclear if

millisecond or microsecond speeds are really necessary – perhaps they are even harm-

ful.

How does market speed affect investors? Are faster speeds always more desirable,

or are there limits to the benefits of speed? Is there an optimal speed of trading, and

if so, what determines this speed?

To help answer these questions, we model the trading of a security via periodic

batch auctions and study how market quality is affected as the clearing frequency is

changed. In the model, the optimal clearing frequency depends on three factors: (1)

the volatility of the security, (2) the intensity of trading in the security, and (3) the

correlation of the security’s value with the market security. All else equal, a security

should be traded faster if its volatility is higher, slower if its intensity of trade is lower,

and faster if its correlation with the market is higher. Using rough estimates of these

values, we determine that the optimal time interval of trade for a typical U.S. stock

is currently 0.2 to 0.9 seconds.

Our model is based on the batch auction model of Garbade and Silber (1979). Al-

though their paper is primarily focused on studying liquidity, the model they develop

lends itself nicely to an analysis of speed in markets. In their model, the liquidity of

the market is maximized at intermediate auction intervals, when markets are neither

too fast or too slow. The reason behind this intermediate result is rather intuitive.

If markets are too fast, then very few orders are mixed in each market clearing and

transaction prices will not coincide with equilibrium values. If markets are too slow,

then orders will sit for long periods of time and prices will have shifted by the time
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the orders clear. In either case, because speeds are not set appropriately, market

quality is harmed.

We modify the model in Garbade and Silber (1979) in two ways. First, we assume

that investors’ reservation prices are normally distributed around current equilibrium

prices (instead of a future equilibrium price as in the original model). We therefore

can derive market quality as a function of the arrival time of an investor. Second, we

add a market security. The addition of the market security is especially important.

Liquidity providers can use information about the market to push the price of the

original security closer to its equilibrium value, which allows the security to trade

faster. For example, a security that has correlation ρ = 0.5 with the market will have

an optimal speed that is 11% faster than if the market security were not present.

The effect becomes even more pronounced for higher correlations: a security with

ρ = 0.85 will have an optimal speed 729% faster compared to the case without a

market security.

To present analytic results, we assume that the market security is infinitely liquid

and therefore trades at infinitely short intervals. Interestingly, we find that this

continuous trading property can be transmitted to other securities. Specifically, we

find that it is optimal for a security to also trade at infinitely short intervals if its

correlation with the market is above or below a critical threshold of ρc = ±
√

3/4.

This continuous trading result holds regardless of the other properties of the security.

The theoretical literature on the optimal clearing frequency of markets is relatively

sparse. To the best of our knowledge, Garbade and Silber (1979) were the first to show

that market quality for an average investor is maximized for intermediate clearing

frequencies, i.e., most markets should neither operate continuously nor be cleared

very infrequently. Later on, studies were less concerned with determining the optimal

speed of markets, but rather compared continuous and periodic market clearings in

general (e.g., Madhavan (1992) and Budish et al. (2013)).

More recently, Farmer and Skouras (2012), Budish et al. (2013), and Cochrane

(2013) have proposed periodic market clearings as a method to mitigate an “arms
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race” for speed among liquidity providers and the eventual over-investment in tech-

nology that results.1 Notably, these papers do not include an analysis of the optimal

time between clearings, nor do they allow welfare improvements due to higher speed.

Finally, our paper is related to the literature on the relationship between the liq-

uidity of an asset and its correlation with the overall market. In a recent empirical

study, Chan et al. (2013) show that the liquidity of a security increases with the

fraction of volatility due to systematic risk, exactly as predicted in our model. Fur-

thermore, they find that improvement in liquidity following the addition of a stock

to the S&P 500 Index is directly related to the stocks increase in correlation with

the market. Baruch and Saar (2009) and Gerig and Michayluk (2014) both model

the relationship between the liquidity of a security and its correlation with other

securities. In their models, as in our model, liquidity providers can form a better

estimate of prices when observing order flow from correlated assets which improves

overall market quality.

II Baseline Model

As in Garbade and Silber (1979), we consider a single security that is traded by

public investors in a market with periodic clearings. (In later sections, we consider the

addition of liquidity providers and also a second security.) The time interval between

clearings is τ , and ultimately, we will be interested in determining the optimal τ from

an average investor’s perspective.2

Between clearings, investors (indexed in each interval by i) arrive at a constant

rate ω and submit excess demand schedules to the market. These demand schedules

are unobservable to other investors and remain in the market until the next market

clearing. At each clearing, the transaction price is set to the value that clears the

market, i.e., to the value that produces zero aggregate excess demand. The excess

1The core idea behind socially wasteful investment in speed was originally discussed in Hirshleifer
(1971) and Stiglitz (1989).

2Note that we attempt to keep our notation as consistent as possible with Garbade and Silber’s
original paper.
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demand schedule of the ith investor is a linearly increasing function of the reservation

price of the investor, ri, and a linear decreasing function of the clearing price, p,

D(p) = a(ri − p), (1)

where a is a positive constant assumed the same for all investors.3 Note that the ith

investor will be a net seller of the security if ri < p and will be a net buyer if ri > p.

Between any two clearings, a total number K = ωτ investors will submit excess

demand schedules to the market. The market clearing price is the unique price that

sets aggregate excess demand to zero,

0 =
K∑
i=1

a(ri − p). (2)

Rearranging the equation reveals that the clearing price is the average reservation

price of the arriving investors,

p =
K∑
i=1

ri/K. (3)

We assume there exists an unobservable equilibrium price for the security, mt, at

all times and that the reservation price of investor i is normally distributed around the

prevailing equilibrium price, mt−1+i/τ (which we denote mi for short), at the instant

the investor decides to trade,4

ri = mi + gi, (4)

gi ∼ N(0, σ2), (5)

3A linear demand function arises when agents optimize a quadratic utility function subject to
their budget constraint.

4In Garbade and Silber (1979), the investor decides to trade at time t−1/2 but has a reservation
price that is normally distributed around the future equilibrium price at time t. We have chosen
a different setup (which we believe is more natural) where the reservation price of an investor
is normally distributed around the instantaneous equilibrium price at the time he/she decides to
trade. This departure means that our equations will use the average equilibrium price over the
interval τ rather than the instantaneous equilibrium price as in Garbade and Silber (1979).
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where gi is assumed to be uncorrelated across investors. We denote by r̄t the average

reservation price of the investors at market clearing t (which is the market clearing

price when the market does not contain liquidity providers),

r̄t =
K∑
i=1

(mi + gi)/K. (6)

We denote by m̄t the average equilibrium price over the interval, m̄t =
∑

imi/K, and

we denote by ft the average of gi, i.e., ft =
∑

i gi/K. Note that,

r̄t = m̄t + ft, (7)

ft ∼ N(0, σ2/(ωτ)). (8)

We assume that the instantaneous equilibrium price mt evolves as a driftless Brow-

nian motion with variance (3/2)ψ2, i.e., mt =
√

3/2ψBt (the prefactor
√

3/2 is used

for convenience and its purpose will become apparent in the following equation).

Therefore, the average equilibrium price for investors at clearing t evolves according

to the following equation,

m̄t = m̄t−1 + et, (9)

et ∼ N(0, τψ2), (10)

where we have used the result that the variance of the difference between two con-

secutive averaged points (each over an interval τ) of a standard Brownian motion

is,

Var

[
(1/τ)

∫ 2τ

τ

Bt dt− (1/τ)

∫ τ

0

Bt dt

]
= (2/3)τ. (11)

We assume that et is serially uncorrelated and also uncorrelated with gi and therefore

ft.
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A Liquidity

As in Garbade and Silber (1979), we measure market quality with an inverse

liquidity metric called liquidity risk. Liquidity risk is defined as the variance of the

difference between the equilibrium value of the security when an investor arrives at

the market, mi, and the transaction price ultimately realized for the investor’s trade,

in this case r̄t.
5 The liquidity risk for investor i in a market without liquidity providers

is therefore,

VP = Var[r̄t −mi], (12)

= Var[(r̄t − m̄t) + (m̄t −mi)], (13)

= Var[r̄t − m̄t] + Var[m̄t −mi], (14)

where the two expressions in parentheses separate because there is no covariance

between them. The variance of the first term, Var[r̄t − m̄t], is just the variance of ft.

For the second term, the variance depends on the arrival time of the investor. If the

investor arrives at a point in time that is a fraction φ of the total interval τ from the

previous clearing, then the variance of the second term will be,

Var [m̄t −mi] = Var

[(∫ φτ

0

√
3/2ψBt dt+

∫ τ−φτ

0

√
3/2ψBt dt

)/
τ

]
, (15)

= (1/2)
[
φ3 + (1− φ)3

]
τψ2. (16)

If the investor arrives at the beginning or end of the interval (φ = 0 or φ = 1), then

the variance is at its maximum value, (1/2)τψ2, and if the investor arrives in the

middle of the interval (φ = 1/2), the variance is at its minimum value, (1/8)τψ2. The

final equation for liquidity risk in a market of public investors is therefore,

VP = σ2/(ωτ) + (1/2)
[
φ3 + (1− φ)3

]
τψ2. (17)

5Grossman and Miller (1988) use a very similar definition of liquidity risk.
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If we assume that the timing of an investor’s trading decision is uncorrelated with

the timing of market clearings, we can average over all φ in the interval [0, 1], which

gives
∫ 1

0
(φ3 + (1− φ)3) = 1/2. Liquidity risk for the average investor is therefore,6

VP = σ2/(ωτ) + τψ2/4. (18)

Notice that liquidity risk is increasing in the volatility of the security, increasing in

the variance of investor reservation prices, and decreasing in the frequency of investor

arrival. The effect of the clearing frequency (1/τ) on liquidity risk is nonlinear. When

market clearings are frequent, this decreases the difference between the clearing price

and the average equilibrium price of the security, but it also increases the difference

between the average equilibrium price of the security and the specific equilibrium

price used as a reference by the investor. There is a “Goldilocks” value for τ that

optimizes the tradeoff between these two effects, and we determine this value below.

The optimal trading interval τ ∗P from an investor’s perspective is just the value of

τ that minimizes liquidity risk. This value can be found by taking the derivative of

liquidity risk with respect to τ and setting to zero,

τ ∗P = 2
σ/ω1/2

ψ
. (19)

The minimum value of liquidity risk, V ∗
P = VP (τ ∗P ), is,

V ∗
P =

(
σ/ω1/2

)
ψ. (20)

In Fig. 1, we plot liquidity risk as a function of the time between market clearings,

τ , when ψ = 1, σ = 1, and ω = 10. We also show the optimal point (V ∗
P , τ

∗
P ).

6Our equation for liquidity risk is slightly different from that of Garbade and Silber (1979)
because of the modifications we have made to their setup.
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Figure 1: Liquidity risk, VP , as a function of the time between market clearings, τ , in
a public market without a liquidity provider. Parameters used in the plot are ψ = 1,
σ = 1, and ω = 10. The optimal point (V ∗

P , τ
∗
P ) is shown with an asterisk. Also shown

are the components of liquidity risk σ2/(ωτ) and τψ2/4.

III Model with a Liquidity Provider

As discussed in Garbade and Silber (1979), enterprising individuals can devise

a better estimate for the equilibrium price than is contained in the market clearing

price rt and can profit by buying and selling according to this estimate. In effect,

these speculators act as liquidity providers in the market.

Here, we assume that a single competitive and risk neutral liquidity provider

exists, that she observes the aggregate excess demand of the market directly before

the market is cleared, and that she submits an excess demand schedule at each market

clearing such that the clearing price always equals her estimate of the equilibrium

price. Many of the seminal market microstructure papers published after Garbade

and Silber (1979) (such as Kyle (1985) and Glosten and Milgrom (1985)) assume the
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same type of competitive, risk neutral liquidity provider. However, in these other

models, the benefit of the liquidity provider cannot be analyzed, whereas it can in

Garbade and Silber’s framework. Below we show that the liquidity provider reduces

the minimum liquidity risk of public investors by a factor of 1.5. In the next section,

we show that when the liquidity provider is further enabled so that she observes the

price of the market security, liquidity risk is reduced even further.

A Liquidity

The liquidity provider observes the order flow of the public investors and therefore

r̄t. This information allows her to form an estimate of the average equilibrium price

over the interval, which we denote by m̂t. Because she is competitive and risk neutral,

she submits a demand schedule that forces the clearing price to this value. Therefore,

in the equation for liquidity risk, the clearing price is m̂t instead of r̄t.

The model with a liquidity provider is a special case of the model presented in the

next section. Here, we just present results for liquidity risk and leave details of the

derivation to the next section and the Appendix.

VL = Var[(m̂t − m̄t) + (m̄t −mi)], (21)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi], (22)

=
2 (φ1 + 2φ2) τψ2 + 2(φ1 − 2φ2)τψ2

√
1 + 4σ2/ω

τ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
τ2ψ2

) , (23)

where,

φ1 ≡ (1/2)
[
φ3 + (1− φ)3

]
, (24)

φ2 ≡ (1/4)
[
φ3 + 2(1− φ)3 + 3(1− φ)φ2

]
. (25)

As before, assuming that the investor’s arrival time is not correlated with the timing
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of market clearings, then liquidity risk is the expectation over φ,

VL =
(1/2)τψ2

(
1−

√
1 + 4σ2/ω

τ2ψ2

)
+ 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
τ2ψ2

) . (26)

A plot of VL(τ) is shown later in Fig. 4. The optimal trading interval τ ∗L is,

τ ∗L =

(
2√
3

)
σ/ω1/2

ψ
, (27)

=

(
1√
3

)
τ ∗P , (28)

and the minimum value of liquidity risk is,

V ∗
L =

(
7

6
√

3

) (
σ/ω1/2

)
ψ. (29)

Notice that with the liquidity provider, the optimal clearing frequency (1/τ ∗L) in-

creases by a factor of
√

3 ≈ 1.7 from the public market case (regardless of the other

parameters). In addition, the liquidity provider reduces liquidity risk by a factor of

6
√

3/7 ≈ 1.5, again regardless of the values of other parameters in the model.

IV Model with a Liquidity Provider and Market

Information

In general, for a market of N securities, the average reservation price of the dif-

ferent securities at market clearing t can be written,

r̄t = m̄t + ft, (30)

ft ∼ N(0,Σ), (31)
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and the average equilibrium price over the market clearing interval can be written,

m̄t = m̄t−1 + et, (32)

et ∼ N(0,Ψ), (33)

where r̄, m̄, f̄ , and ē are N × 1 vectors and Σ and Ψ are N ×N matrices.

For a market of relatively few securities, it is not too difficult to calculate estimates

of m̄t (denoted m̂t) and to determine liquidity risk when Σ and Ψ are fully speci-

fied. The process involves numerically solving the appropriate discrete time algebraic

Riccati equation (see the Appendix) and then using this solution in straightforward

equations. Analytic results, however, are often extremely messy – even for just two

securities.

In order to present analytic results, we treat the model with a liquidity provider

in a market with many assets as a special case of a two security market where the

second security is the “market security”,

r̄t =

 r̄t

r̄M,t

 m̄t =

 m̄t

m̄M,t

 (34)

ft =

 ft

fM,t

 Σ =

 σ2/(ωτ) %σσM/(
√
ωωMτ)

%σσM/(
√
ωωMτ) σ2

M/(ωMτ)

 (35)

et =

 et

eM,t

 Ψ =

 τψ2 ρτψψM

ρτψψM τψ2
M

 , (36)

where % is the correlation of the difference between reservation prices and equilibrium

prices across the two assets, and ρ is the correlation of equilibrium price changes

across the two assets. We make an idealized assumption that order flow for the

market security is so frequent that ωM � 1 and,

Σ ≈

σ2/(ωτ) 0

0 0

 (37)
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The liquidity provider, therefore, has noiseless information about the average equi-

librium price of the market security at each clearing.

A Liquidity

Liquidity risk is,

VM = Var[(m̂t − m̄t) + (m̄t −mi)], (38)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi], (39)

= S(1,1) + φ1τψ
2 + 2(G(1,1) − 1)φ2τψ

2 + 2G(1,2)φ2ρτψψM , (40)

where S(1,1), G(1,1), and G(1,2) are the respective elements of the matrices used in

the Kalman filter when solving for m̂t. A derivation of this equation is given in the

Appendix.

Solving the Riccati equation and plugging into Eq.40 (see the Appendix),

VM =
2 (φ1 + 2φ2Θ) τψ2 + 2(φ1 − 2φ2Θ)τψ2

√
1 + 4σ2/ω

Θτ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
Θτ2ψ2

) , (41)

where Θ ≡ 1− ρ2. Again, assuming that the investor’s arrival time is not correlated

with the timing of market clearings, then liquidity risk is the expectation over φ,

VM =
(1/2 + Θ) τψ2 + (1/2−Θ)τψ2

√
1 + 4σ2/ω

Θτ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
Θτ2ψ2

) (42)

In Fig. 2, we show liquidity risk, VM , as a function of the time between market

clearings, τ , when ψ = 1, σ = 1, ω = 10, and with Θ = 0 to Θ = 1 in increments of

0.1. Liquidity risk decreases as the correlation of the asset with the market increases

(i.e., as Θ decreases). When the asset is perfectly correlated with the market, Θ =

0, liquidity risk is simply the line τψ2/4 and there is no risk when markets clear

continuously, τ = 0. When the asset is uncorrelated with the market, Θ = 1, liquidity
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Figure 2: Liquidity risk, VM , as a function of the time between market clearings, τ ,
in a market with a liquidity provider and market information. Curves are shown for
parameters ψ = 1, σ = 1, ω = 10, and with ρ = 0 to ρ = 1 (Θ = 1 to Θ = 0 in
increments of 0.1).

risk is the same as if the market security was absent, VM = VL.

The optimal trading interval τ ∗M is,

τ ∗M =

(
2h1(Θ)√

3

)
σ/ω1/2

ψ
, (43)

=

(
h1(Θ)√

3

)
τ ∗P , (44)

where,

h1(Θ) =

√
1− 32Θ + 12Θ2 + (1 + 6Θ)

√
1 + 20Θ + 4Θ2

4Θ
. (45)

This equation goes to zero at the critical value Θc = 1/4, i.e., when ρ =
√

3/4 ≈ 0.87.

From then on, it is optimal for markets to clear continuously. In Fig. 3, we plot the

optimal interval, τ ∗, as a function of correlation with the market, ρ, for the three
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Figure 3: Speed vs. correlation for the three models studied in the text. Parameters
used in the plot are ψ = 1, σ = 1, and ω = 10.

models. Notice how τ ∗M = 0 at the critical value ρ =
√

3/4.

For Θ > Θc, the minimum liquidity risk is,

V ∗+
M = h2(Θ)/ω1/2 + h3(Θ)

(
σ/ω1/2

)
ψ, (46)

where h2(Θ) and h3(Θ) are rather complicated functions. For Θ ≤ Θc, liquidity risk

is minimized when markets clear continuously, i.e., when τ = 0. The equation for

liquidity risk when Θ ≤ Θc is,

V ∗−
M =

√
Θ
(
σ/ω1/2

)
ψ. (47)

In Fig. 4, we compare liquidity risk for the three models studied in the text.

Parameters used in the plot are ψ = 1, σ = 1, ω = 10, and Θ = 0.3. We also

show the optimal points (V ∗
P , τ

∗
P ), (V ∗

L , τ
∗
L), and (V ∗

M , τ
∗
M). Notice how liquidity risk
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Figure 4: A comparison of liquidity risk, V , for the three models studied in the text.
Parameters used in the plot are ψ = 1, σ = 1, ω = 10, and Θ = 0.3 (ρ ≈ 0.84). The
optimal points (V ∗

P , τ
∗
P ), (V ∗

L , τ
∗
L), and (V ∗

M , τ
∗
M) are shown with asterisks.

decreases with the addition of the liquidity provider and reduces even further when

the market security is added.

V Estimating the Optimal Trading Interval

Because the model’s inputs (σ, ψ, Θ, and ω) are statistical properties of order

flow and returns, we can use rough estimates of these parameters to determine the

optimal clearing frequency of a typical U.S. stock. In this section, we do just that.

To standardize the calculation, we always use units of seconds in our estimates. As

a consequence, the final estimate of the optimal trading interval is given in seconds.

• For the standard deviation of the security’s value, we use ψ = 0.0001, which

corresponds to an annualized volatility of approximately 25%.
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• For the standard deviation of reservation prices, we use a typical percent spread,

σ = 0.0003, which is equivalent to a $0.01 quoted spread for a $33 stock.

• For the correlation of the security with the market, we use ρ = 0.75 so that

Θ = 0.4375.

• For the order arrival rate, we use two different values based on reported Tape

A/B quotation updates. There are approximately 15,000 quote changes per

second for Tape A/B securities during trading hours. During peak times, this

increases dramatically, to approximately 300,000 quote changes per second (see

www.utpplan.com for both estimates). Because approximately 3,000 securities

are reported on Tape A/B, we use the following estimates for the order arrival

rate, ω = 5 and ωpeak = 100.

In the model with liquidity providers and the market security,

τ ∗ =

(
2h1(Θ)√

3

)
σ/ω1/2

ψ
. (48)

Putting everything into the equation, we have

τ ∗ ≈ 0.9 seconds, (49)

and,

τ ∗peak ≈ 0.2 seconds. (50)

Our estimates suggest that a typical U.S. stock should trade at intervals of 0.2

to 0.9 seconds. Of course we do not wish to over-interpret this result. Individuals

place limit orders in the market instead of price schedules, the market security is not

really infinitely liquid, securities are correlated to many other securities in addition to

the market security, and liquidity providers (rather than investors) represent a large

fraction of the orders we use in our estimate of the order arrival rate. All of these

points may require us to tweak the final value and we would place error bands of up
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to an order of magnitude around this estimate.

VI Conclusions

U.S. markets have undergone considerable changes over the last two decades.

Whereas before, trading was human mediated and quite slow (taking over half a

minute for a market order to execute), it is now electronic, automated, and extremely

fast (limited mainly by the speed of light). Market quality metrics have improved

considerably as market speeds have increased, but it is unclear if the current milli-

and microsecond environment is really necessary.

This paper attempts to determine the optimal speed of trading in financial mar-

kets. In our model of periodic market clearings, the optimal trading interval for a

security depends on three factors: (1) the volatility of the security, (2) the intensity

of trading in the security, and (3) the correlation of the security’s value with other

securities. All other things equal, a security should be traded more quickly if it is

volatile, has intense trading, and is highly correlated with other securities.

When plugging in rough estimates of the model parameters for a typical U.S.

stock, we calculate an optimal trading interval of 0.2 to 0.9 seconds. Delaying markets

longer than these intervals is likely to harm market quality. However, in light of these

estimates, for many securities it is hard to justify the extreme speeds at which U.S.

markets operate.
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APPENDIX

The Kalman Filter

The following is a straightforward application of the Kalman filter for the es-

timation of m̄t using contemporaneous and lagged values of r̄t (see Meinhold and

Singpurwalla (1983)). The observation equation is,

r̄t = m̄t + ft, (51)

ft ∼ N(0,Σ). (52)

and the system equation is,

m̄t = m̄t−1 + et, (53)

et ∼ N(0,Ψ). (54)

Denote by m̂t the estimate of m̄t based on {r̄t, r̄t−1, r̄t−2, . . . }. It can be shown that,

P (m̄t|̄rt, r̄t−1, . . . ) ∼ N(m̂t−1 + Gt [̄rt − m̂t−1], St), (55)

P (m̄t+1|̄rt, r̄t−1, . . . ) ∼ N(m̂t,Rt+1). (56)

where Gt is known as the Kalman gain and,

Gt = Rt(Rt + Σ)−1, (57)

Rt+1 = St + Ψ, (58)

St = Rt −GtRt. (59)

The best estimate of m̄t based on {r̄t, r̄t−1, r̄t−2, . . . } is just the mean of the distribu-

tion P (m̄t|̄rt, r̄t−1, . . . ),

m̂t = m̂t−1 + Gt(r̄t − m̂t−1). (60)
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The estimation variance is

Var[m̂t − m̄t] = St. (61)

In general, the above equations are solved iteratively, starting at time zero. Here,

we search for convergence of the estimation variance to a limiting value, i.e., we

search for a solution when Rt+1 = Rt. Rearranging the above equations and setting

R = Rt+1 = Rt produces the following equation,

R(R + Σ)−1R−Ψ = 0, (62)

which is a version of the discrete time algebraic Riccati equation. The conditions

required for a solution to exist are discussed in Anderson and Moore (2005). Note

that when R has reached its steady state, that G and S will also be steady. Once R

is determined, then G and S can be calculated as follows,

G = ΨR−1, (63)

S = R−Ψ. (64)

Solving the Riccati Equation

In the model with a liquidity provider who does not have access to market infor-

mation, all variables in the Kalman filter are scalars. Furthermore,

Σ = σ2/(ωτ), (65)

Ψ = τψ2. (66)

The Riccati equation is therefore,

R2/(R + σ2/(ωτ))− τψ2 = 0, (67)
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Solving for R and the rest of the variables in the Kalman filter,

R = (1/2)
[
τψ2 +

√
τ 2ψ4 + 4ψ2σ2/ω

]
, (68)

G =
2τψ2

τψ2 +
√
τ 2ψ4 + 4ψ2σ2/ω

, (69)

S = (1/2)
[√

τ 2ψ4 + 4ψ2σ2/ω − τψ2
]
, (70)

In the model with a liquidity provider who has access to market information, we have,

Σ =

σ2/(ωτ) 0

0 0

 Ψ =

 τψ2 ρτψψM

ρτψψM τψ2
M

 . (71)

Solving the Riccati equation,

R =

(1/2)
[
(2−Θ)τψ2 + Θτψ2

√
1 + 4σ2/ω

Θτ2ψ2

]
ρτψψM

ρτψψM τψ2
M

 , (72)

G =


2

−1+

√
1+

4σ2/ω

Θτ2ψ2

(
−1+

√
1+

4σ2/ω

Θτ2ψ2

)
ρτψψM(

1+

√
1+

4σ2/ω

Θτ2ψ2

)
τψ2

M

0 1

 , (73)

S =

(1/2)
[
Θτψ2

(
−1 +

√
1 + 4σ2/ω

Θτ2ψ2

)]
0

0 0

 (74)

where Θ ≡ 1− ρ2. Note that when the security is uncorrelated with the market, i.e.,

Θ = 1, that the elements R(1,1), G(1,1), and S(1,1) all reduce to the values found in

the case when the liquidity provider has no market information (Eqs. 68-70).
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Liquidity Risk

The equation for the liquidity risk of an investor trading the security when a

liquidity provider is present is,

VL,M = Var[(m̂t − m̄t) + (m̄t −mi)], (75)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi]. (76)

We will start with the first term, Var[(m̂t − m̄t)]. The estimation variance of m̄t is

just S (see Eq.61). For the security, the variance is reported at position (1, 1),

Var[m̂t − m̄t] = S(1,1). (77)

The second term is derived in the text (Eq. 16),

Var [m̄t −mi] = (1/2)
[
φ3 + (1− φ)3

]
τψ2, (78)

= φ1τψ
2. (79)

where φ1 ≡ (1/2) [φ3 + (1− φ)3].

The third term, 2Cov[m̂t − m̄t, m̄t −mi], can be derived as follows. Subtracting

m̄t from both sides of Eq. 60 and rearranging,

m̂t − m̄t = (I−Gt) (m̂t−1 − m̄t−1) + Gt (r̄t − m̄t) + (Gt − I) (m̄t − m̄t−1) , (80)

where I is the identity matrix. The elements in the vectors (I −Gt)(m̂t−1 − m̄t−1)

and Gt (r̄t − m̄t) are uncorrelated with (m̄t −mi) so we can disregard them. In the

last vector, (Gt − I) (m̄t − m̄t−1), the relevant contribution to m̂t − m̄t is the first

element,

(G(1,1) − 1)(m̄t − m̄t−1) + G(1,2)(m̄M,t − m̄M,t−1). (81)
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The covariance of the random terms in this equation with (m̄t −mi) are,

Cov[m̄t − m̄t−1, m̄t −mi] = φ2τψ
2, (82)

Cov[m̄M,t − m̄M,t−1, m̄t −mi] = φ2ρτψψM . (83)

where φ2 ≡ (1/4) [φ3 + 2(1− φ)3 + 3(1− φ)φ2]. The structure of φ2 can be derived

by noting the covariance of the difference of averaged points of a Brownian motion

with the difference of an averaged point and a particular point of the same Brownian

motion. The result is left for the reader to verify.

Putting everything together, we have,

VL,M = Var[(m̂t − m̄t) + (m̄t −mi)], (84)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi], (85)

= S(1,1) + φ1τψ
2 + 2(G(1,1) − 1)φ2τψ

2 + 2G(1,2)φ2ρτψψM , (86)
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