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Abstract

We develop a model of manipulation of indexes, whose components are illiquid in

that they require fair valuation based on comparable instruments. Such an index may

be susceptible to manipulation since distorting the prices of only a few assets could

potentially shift its value. Our model provides a measure of the manipulability of an

index and identifies which assets are most likely to be manipulated. We apply our

model to analyze the manipulability of national municipal bond indexes subject to

various bond size thresholds.
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1 Introduction

The ability to profit from derivatives positions by manipulating underlying assets has been

a longstanding concern of those who oversee and participate in financial markets. Numerous

academic studies have articulated concerns regarding manipulation of underlying markets

for both physical and cash-settled derivatives.1 A number of financial institutions have

been accused over time of engaging in this type of manipulation. For example, the United

Kingdom’s Financial Conduct Authority fined Barclay’s in 2014 for placing manipulative

orders during the daily gold price fixing in order to avoid paying out on a derivative position.2

In the US, the CFTC imposed sanctions in 2001 on the energy trading firm, Avista, for

manipulating the NYMEX electricity futures contract. The CFTC stated in its order: “To

the extent that Avista Energy’s Traders could distort the price for futures contracts with an

order at the Close on Options Expiration Day that was smaller than the positions created

by Avista Energy’s OTC derivatives contracts, Avista Energy’s Traders thought that they

might be able to profit via an artificially created increase in the value of its OTC derivatives

contracts.”3 Other manipulations of this type have involved firms misreporting transactions

and prices to distort derivative settlement values in commodities, interbank lending, and

other markets.4

The aforementioned examples all involve manipulation of a single reference asset or in-

strument. Manipulation may also be feasible for derivatives which reference an index of

assets when either economic or structural issues make the index vulnerable to manipulation.

For example, Dutt and Harris (2005) develop a model of manipulation which they apply to

narrow-based index derivatives. Manipulation of a concentrated or narrow-based index may

be feasible since the cost of manipulating a small number of assets may be sufficiently low.

Our paper examines another setting of such vulnerability, in which the index consists of illiq-

uid assets. We use the term illiquid to refer to assets with two features. First, these assets

are costly to trade in terms of market impact, bid-ask, and other transaction costs. Second,

1See Kyle (1984), Kumar and Seppi (1992), Pirrong (2001), and Dutt and Harris (2005).
2See: https://www.fca.org.uk/news/barclays-fined-26m-for-failings-surrounding-the-london-gold-fixing.
3See: http://www.cftc.gov/files/enf/01orders/enfavista-speaking.pdf.
4Regarding the well-publicized LIBOR manipulation, see: http://stream.wsj.com/story/the-

libor-investigation/SS-2-32262/. Regarding a recent alleged manipulation of the oil market, see:
http://www.bloomberg.com/news/articles/2013-05-24/bp-shell-statoil-face-u-s-lawsuit-after-eu-oil-price-
probe.
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they are traded infrequently and, as a result, generally require fair valuation based on similar

assets.5 A trader can, in principle, manipulate an index of such assets by distorting prices

in just a few select components of the index. The prices of other assets in the index should

shift as a result of this distortion since their prices are linked through fair valuation.6

In this paper, we develop a model of such manipulation. We assume that the manipulator

holds a derivative position which can be liquidated costlessly. This position can represent

a cash-settled or redeemable derivative or liquid exchange-traded product such as an ETF.

Prices are distorted either indirectly through trade (as in the aforementioned Barclay’s and

Avista manipulations) or directly by misreporting quotes and transactions (as in the LIBOR

manipulation). Our model can address two critical questions. First, to what degree is

a particular portfolio of illiquid assets manipulable? Second, which assets within such a

portfolio are most likely to be manipulated? Addressing the first question will give market

supervisors and others information about which derivatives and investment vehicles are prone

to manipulation. Addressing the second question can help market supervisors focus their

efforts to detect manipulation.

In this paper, we apply our model to assessing the manipulability of fixed-income in-

dexes. Our motivation derives from the growing class of indexed investment funds referenc-

ing fixed-income and other illiquid assets.7 Although these funds can be mutual funds, a

growing number are exchange-traded funds (ETFs) that list their shares on national secu-

rities exchanges.8 Exchange proposals to list new exchange-traded products are subject to

Sec. 6(b)(5) of the Securities Exchange Act of 1934, which requires, among other things,

that the exchange’s rules be designed to prevent manipulative acts and practices.

Some of these ETFs reference municipal bond indexes with bond supply thresholds that

vary significantly across funds in terms of issuance amount or par amount outstanding. One

5This notion of illiquidity does not necessarily conform to the definition provided by the Investment
Company Act of 1940 and Commission guidelines. The 40-Act definition of an illiquid asset is one which
cannot be disposed of in the ordinary course of business within 7 days for its carrying value. Long-standing
Commission guidelines have required 40-Act funds (e.g., mutual funds and ETFs) to hold no more than 15%
of their net assets in illiquid securities and other illiquid assets. Our definition admits a much larger class of
securities. In this paper, we examine indexes, which can potentially underlie 40-Act funds yet are composed
almost entirely of illiquid assets according to our definition.

6In this paper, we also consider the case whereby a manipulator distorts the index by trading in related
securities outside of the index as we discuss later.

7See: http://www.bloomberg.com/news/articles/2012-07-10/fixed-income-etfs-to-own-2t-in-10-years.
8See SR-NYSEArca-2015-25 (http://www.sec.gov/rules/sro/nysearca/2015/34-74730.pdf) and SR-

NYSEArca-2015-28 (http://www.sec.gov/rules/sro/nysearca/2015/34-74701.pdf).
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purpose these thresholds serve is as a proxy for liquidity. Morgan Stanley and BlackRock also

recently proposed the creation of “single issuer” fixed-income trusts, which would hold bonds

issued by a single corporate or municipal entity.9 These funds are currently prohibited by

concentration limits within US tax code and have been proposed to address bond illiquidity

exacerbated by CUSIP proliferation. However, the extent to which these highly concentrated

funds would be prone to manipulation is still unknown.

In this paper, we study how varying bond supply thresholds affects the manipulability

of a particular hypothetical bond index (based on the S&P National AMT-Free Municipal

Bond Index). A lower threshold will admit more components to the index. All else equal,

such a change should make this index less susceptible to manipulation, as having to distort

more components should increase the cost to the manipulator. However, a lower threshold

should also decrease the average liquidity of the index components, thus making the value

fo these components more sensitive to manipulative activity. Such a change should increase

susceptibility to manipulation, all else equal. Therefore, the net effect on manipulability of

lower supply thresholds is a priori unclear.

In this paper, we generate a number of novel findings. First, market impact cost does,

indeed, appear to decrease with bond supply. However, municipal bond maturity has a much

stronger relationship with market impact cost. This measure of liquidity is relevant for a

manipulator because it determines both the cost of a manipulation and the benefit in terms

of the magnitude of the price distortion. This result is consistent with the findings of the

European Securities and Market Authority (ESMA) in a 2014 consultation paper (ESMA

(2014)). The ESMA study documents a relationship between bond issuance size and liquidity

as measured by trading volume for sovereign and corporate bonds. Market impact cost also

decreases as credit rating increases. However, municipal bond maturity appears to have the

strongest relationship with market impact cost than these other two variables in our sample.

Second, we document a slight decrease in manipulability as the number of index components

increase in response to decreasing bond supply thresholds. This decrease in manipulability

stems from a decrease in index concentration, which more than offsets any changes in market

impact costs of the index components. We should add the caveat that our results hold for

9See: http://www.reuters.com/article/2015/05/15/us-morgan-stanley-bonds-
liquidity-idUSKBN0O025A20150515 and http://www.blackrock.com/corporate/en-
us/literature/whitepaper/viewpoint-bond-etfs-benefits-challenges-opportunities-july-2015.pdf.
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the particular index we examine and may not hold generally across all conceivable municipal

bond indexes.

Our paper is related to a number of others which examine manipulation in financial mar-

kets. First, our model is based on that of Dutt and Harris (2005), which applies to indexes

underlying cash-settled derivatives. We focus on indexes of illiquid assets that are routinely

fair-valued so that the index value moves when a manipulator trades in a small number of

comparable assets. There are also related papers which develop models of manipulation of

single reference assets for cash-settled derivatives. The paper of Kumar and Seppi (1992)

was the first to do so in a one-period model of trade in the underlying market. Horst and

Naujokat (2011) and Gallmeyer and Seppi (2000) both develop dynamic models of manip-

ulation to benefit cash-settled derivative positions. In their models, multiple manipulators

trade to distort the price of a single reference instrument over multiple periods – the former

in continuous time and the latter in discrete time. In contrast, we focus on one-shot manip-

ulation that occurs prior to the realization of gains. Our focus is on the manner in which a

manipulator distorts specific instruments to move an index and not on the dynamics of the

manipulation.

A related empirical study is that of Cornell (1997), which examines the possible manip-

ulation of the Bond Buyer Index (BBI) of municipal bonds underlying cash-settled futures

contracts listed on the Chicago Board of Trade. There are also a number of papers which em-

ploy data analysis or econometric methods to detect manipulation.10 Our proposed method

for detection differs in that it is grounded in a theory of profit-maximization by a manipulator

rather than deriving from an ad-hoc empirical model.

The remainder of this paper proceeds as follows. Section 2 desribes the general form

of our model, which only assumes that the manipulator exerts a linear impact on prices.

Section 3 describes a “first-principles” version of the model based on Kyle (1985) in which

the market forms rational expectations from informed trades. We then apply our model to

our hypothetical municipal bond indexes in Section 4. Section 5 concludes.

10See Cao et al. (2014), Cao et al. (2013), Comerton-Forde and Putnins (2011), Ogut et al. (2009), Aitken
et al. (2009), Diaz et al. (2011).
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2 General Model

The model described in this section is based on that of Dutt and Harris (2005) with a few

additional features including the fact that the assets in the index require fair valuation as a

result of illiquidity. We assume that the manipulator in our model holds a fixed endowment

of liquid index derivative securities, which could represent cash-settled futures or options,

ETFs with liquid secondary market trading, open-end mutual funds, etc. This position has

a notional value of 𝜅 dollars.

The manipulator trades in the illiquid underlying assets (or related securities) to manip-

ulate the index. However, our model can generalize to the case where the manipulator is

a market maker who misstates quotes as we discuss at the end of this section. We assume

that the manipulator trades in a segmented dealer market with delayed public revelation of

trades after execution as with a number fixed-income markets.11 Trades are assumed to have

a linear impact on prices as in the Kyle (1985) model. Namely, trading 𝜃𝑗 dollars of asset 𝑗

causes a return (i.e., the fractional change in price) on this asset of magnitude:

𝑟𝑗 = 𝛾𝑗 · 𝜃𝑗 (1)

Econometric models of market impact typically use a non-linear impact function.12 We

employ a linear model for simplicity although our results generally apply for a non-linear

impact function as well.

There are 𝑁 assets, in which the manipulator could trade to distort the index. However,

the manipulator only trades in a subset, 𝑛 ≤ 𝑁 , of these assets with different dealers.13 We

make this assumption to capture discrete costs of trading each asset. The subset of assets,

in which the manipulator trades, is denoted ℑ𝑛 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}. In vector notation, the

11For example, both the Municipal Securities Rulemaking Board and FINRA post trades and prices in the
municipal and corporate bond markets, respectively, to the public up to 15 minutes after each transaction.

12See Almgren (2003) and the references therein.
13We assume that the manipulator does not execute multiple trades in the same asset with different dealers.

This assumption can be justified by adding the presence of similar substitutable assets with identical market
impact cost. Trading in such assets can yield greater benefit to the manipulator if these assets are not
perfectly correlated. Namely, the index will react less to two trades in the same asset than to two trades
in imperfectly correlated assets. This property of inferences from multiple variables will be a feature of the
first-principles model outlined in the next section.
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manipulator makes the following dollar trades in these assets:

Θ⃗ℑ𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃𝑖1

𝜃𝑖2
...

𝜃𝑖𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

Trading in a single asset is assumed to influence not only the price of that asset, but also

other correlated assets in the index after revelation of the trade. This assumption is meant

to capture fair valuation for illiquid assets based on similar assets, such as “matrix pricing”

for bonds. We again assume a linear price impact so that, after revelation, the manipulator’s

trade causes a return (or fractional change in value) on the index of the following magnitude:

𝑟0 = Φ⃗𝑇
ℑ𝑛
Θ⃗ℑ𝑛 (3)

where Φ⃗ℑ𝑛 is the 𝑛-vector linear price impact coefficient for this trade on the index. We

account for the dollar amount of the manipulator’s trades in terms of the “true” (or pre-

trade) value of the assets. Therefore, the net cost of this trade to the manipulator is given

by:

𝐶
(︁
Θ⃗ℑ𝑛

)︁
=

𝑛∑︁
𝑚=1

𝑟𝑖𝑚𝜃𝑖𝑚 =
𝑛∑︁

𝑚=1

𝛾𝑖𝑚𝜃
2
𝑖𝑚 (4)

since 𝑟𝑖𝑚 is the amount by which the manipulator overpays for each dollar of asset 𝑖𝑚. We

can re-write this cost in vector notation as:

𝐶
(︁
Θ⃗ℑ𝑛

)︁
= Θ⃗𝑇

ℑ𝑛
Γℑ𝑛Θ⃗ℑ𝑛 (5)

where Γℑ𝑛 is a diagonal matrix such that (Γℑ𝑛)𝑚,𝑚 = 𝛾𝑖𝑚 . We assume that the value of the

manipulator’s derivative position moves in proportion to the change in the index. In other

words, information migrates from the underlying market to the derivative market as a result

of index arbitrage. Therefore, the profit of the manipulator is given by:

Πℑ𝑛

(︁
Θ⃗ℑ𝑛

)︁
= 𝜅𝑟0 − 𝐶

(︁
Θ⃗ℑ𝑛

)︁
= 𝜅Φ⃗𝑇

ℑ𝑛
Θ⃗ℑ𝑛 − Θ⃗𝑇

ℑ𝑛
Γℑ𝑛Θ⃗ℑ𝑛 (6)
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The first-order condition for this profit yields the manipulator’s optimal trade quantities:

Θ⃗*
ℑ𝑛

=
𝜅

2
Γ−1
ℑ𝑛
Φ⃗ℑ𝑛 (7)

Therefore, the manipulator’s maximum profit for the subset of assets ℑ𝑛 is given by:

Πℑ𝑛

(︁
Θ⃗*

ℑ𝑛

)︁
=

𝜅2

4
Φ⃗𝑇

ℑ𝑛
Γ−1
ℑ𝑛
Φ⃗ℑ𝑛 (8)

The manipulator will further maximize this profit over the subset of assets traded, so

that this optimized profit is given by:

Π* = max
ℑ𝑛

𝜅2

4
Φ⃗𝑇

ℑ𝑛
Γ−1
ℑ𝑛
Φ⃗ℑ𝑛 =

𝜅2

4
𝑀(𝑛) (9)

For a given 𝑛, the term 𝑀(𝑛) = maxℑ𝑛 Φ⃗
𝑇
ℑ𝑛
Γ−1
ℑ𝑛
Φ⃗ℑ𝑛 provides a measure of the manipulability

of this index. In addition, the optimal subset of assets and traded quantities derived from

this model can help market supervisors ascertain which assets are most likely to manipulated.

As mentioned earlier, this information can be used in determining the likelihood that certain

market actions were intended to manipulate prices for the purposes of investigating and

prosecuting offenses.

One can directly estimate the market impact coefficients for trade in an asset on the

transacted price for that asset, 𝛾·, using transaction and pricing data for the underlying

markets. We estimate these coefficients for the aforementioned municipal bond indexes in an

event-study framework in Section 4. Estimation of Φ⃗ℑ𝑛 , in contrast, is not as straightforward.

Generally, one will observe trading activity in different sets of assets each trading period in

real-world transactions data. It is not a priori clear what the associated data imply for the

market impact on the index from a trade in the specific set of assets, ℑ𝑛. For this reason,

we require a model to determine what information should be inferred when the manipulator

trades in ℑ𝑛. We consequently develop, in the next section, a first-principles model of

informed trade in multiple assets, in which the market forms rational expectations based on

this trade.

As mentioned previously, our model can generalize to the case where the manipulator is a

market maker who misstates quotes. In this case, the manipulator distorts prices directly and
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not indirectly through trading. We begin our argument by observing that the manipulator’s

cost function can be rewritten in terms of price distortions rather than traded quantities.

Namely, we invert equation (1) and re-write in vector notation as: Θ⃗ℑ𝑛 = Γ−1
ℑ𝑛
𝑟⃗ℑ𝑛 where

𝑟⃗ℑ𝑛 is a vector capturing price distortions for these assets in terms of the returns caused by

trading. Substituting into the manipulator’s cost from equation (5) yields:

𝐶 (𝑟⃗ℑ𝑛) = 𝑟⃗ℑ𝑛Γ
−1
ℑ𝑛
𝑟⃗ℑ𝑛 (10)

Therefore, the manipulator’s profit in equation (6) can also be rewritten as follows:

Πℑ𝑛 (𝑟⃗ℑ𝑛) = 𝜅𝑟0 − 𝐶 (𝑟⃗ℑ𝑛) = 𝜅𝑟0 − 𝑟⃗ℑ𝑛Γ
−1
ℑ𝑛
𝑟⃗ℑ𝑛 (11)

The manipulator’s cost in this objective function is quadratic in price distortions and

proportional to the liquidity of the distorted assets (as captured by Γ−1
ℑ𝑛
). In addition, the

manipulator’s revenue is proportional to the price impact on the index from the manipulation.

We argue that a manipulator who distorts prices directly will face an objective function that

is roughly equivalent to this one. It is reasonable to surmise that such a manipulation will

involve costs that are convex in the the magnitude of the distortion and proportional to the

liquidity of the distorted assets. For example, misreporting the price of a more liquid asset

will be more likely to arouse suspicions of manipulation.14 In addition, manipulating prices

directly can lead the market to make similar inferences as trades that lead to those price

distortions, as long as prices impound information efficiently. Therefore, the price impact

on the index should be similar whether conducted through trading or prices. We conclude

that our model can generalize to the case of a market maker manipulating prices directly.

3 First-Principles Model

The following model is a one-period model of trade in a competitive dealer market similar

to Kyle (1985). Our variation of his model features trading in multiple assets through

segmented dealers. In addition, information about all transactions is publicly revealed prior

14Misstating the price of a more liquid asset may also attract informed trade attempting to exploit this
distorted price if based on marketable quotes.
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to assets paying off. We assume that trading by a manipulator in this market is sufficiently

rare so that it has no material effect on the equilibrium for prices. Under normal market

conditions, a number of informed traders arrive randomly to the market independently of

one another. For simplicity, all agents in this model are assumed to be risk-neutral, and the

risk-free rate is assumed to be zero.

Dealers offer competitive prices in 𝑁 risky assets. At time 1, asset 𝑗 provides a terminal

payoff of ℜ𝑗, which is normally distributed with mean of 1. At time 0, each informed trader

transacts with a different dealer after observing information about one of the risky assets.

Specifically, a trader observes a signal of 𝑠𝑗 = ℜ𝑗 + 𝜀𝑗 where 𝜀𝑗 is normally distributed

with mean zero. This trader then transacts with a dealer by soliciting a quote for their

desired dollar quantity, 𝜃𝑗. In addition to their own trade, the informed trader must also

intermediate a trade of 𝑣𝑗 in dollar terms, which is distributed normally with mean zero. This

additional demand is equivalent to noise trade in the model of Kyle (1985). This demand

could represent external trades passed through to dealers such as creation and redemption

requests made to asset managers.

Following the analysis of Kyle (1985), the linear equilibrium for prices and trade in this

market is as follows:

Δ𝑝𝑗 = 𝑟𝑗 = 𝛾𝑗 · 𝜃𝑗
𝜃𝑗 =

1
2𝛾𝑗

(𝐸[ℜ𝑗|𝑠𝑗]− 1) + 𝑣𝑗
(12)

where 𝛾𝑗 = 1
2

{︁
𝑣𝑎𝑟(𝐸[ℜ𝑗 |𝑠𝑗 ]

𝑣𝑎𝑟(𝑣𝑗)

}︁ 1
2 . We can equate price changes from the Kyle (1985) model to

returns above since the price of each risky asset is marked to its unconditional mean of 1

prior to trade.15

We denote the terminal value of the index by ℜ0, which is a normally distributed average

of the individual asset payoffs. After public revelation of trades, the value of the index should

change by the following amount dependent upon the conditional expectation on ℜ0 based

on the observed trade of Θ⃗𝑇
ℑ𝑛
:

𝑟0 = 𝐸
[︁
ℜ0|Θ⃗𝑇

ℑ𝑛

]︁
− 1 = Φ⃗𝑇

ℑ𝑛
Θ⃗ℑ𝑛 (13)

15For the same reason, we can equate the dollar value of trade (marked at its pre-trade value as in the
previous section) to share demand from the Kyle (1985) model.
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where Φ⃗ℑ𝑛 = Σ−1
ℑ𝑛,ℑ𝑛

Σ⃗{0},ℑ𝑛 .

Σ⃗{0},ℑ𝑛 is the vector covariance between the index value and trade in these assets with

elements given by: (︁
Σ⃗{0},ℑ𝑛

)︁
𝑚

= 𝑐𝑜𝑣(ℜ0, 𝜃𝑖𝑚)

= 𝛿𝑖𝑚
2𝛾𝑖𝑚

𝑐𝑜𝑣(ℜ0,ℜ𝑖𝑚)
(14)

where 𝛿𝑗 = 𝑣𝑎𝑟(ℜ𝑗)

𝑣𝑎𝑟(ℜ𝑗)+𝑣𝑎𝑟(𝜀𝑗)
is a parameter ranging between 0 and 1, which measures the

informativeness of signal 𝑠𝑗 = ℜ𝑗 + 𝜀𝑗.

Σℑ𝑛,ℑ𝑛 is the covariance matrix of trade in these assets with elements given by:

(︁
Σ⃗ℑ𝑛,ℑ𝑛

)︁
𝑙,𝑚

= 𝑐𝑜𝑣(𝜃𝑖𝑙 , 𝜃𝑖𝑚)

=
𝛿𝑖𝑙𝛿𝑖𝑚
4𝛾𝑖𝑙𝛾𝑖𝑚

𝑐𝑜𝑣(ℜ𝑖𝑙 ,ℜ𝑖𝑚) + 1(𝑙 = 𝑚)𝑣𝑎𝑟(𝑣𝑖𝑚)
(15)

Therefore, the index market impact coefficient vector, Φ⃗ℑ𝑛 , can be estimated using the

covariance of returns, trades, or some combination thereof.

4 Application to Municipal Bond Indexes

4.1 Index Information and Data

In this section, we apply our model to assessing the manipulability of municipal bond indexes

as discussed earlier. Specifically, we analyze the effects of bond supply thresholds on the

manipulability of a specific hypothetical national municipal bond index based on the S&P

National AMT-Free Municipal Bond Index. This index admits all outstanding non-callable

investment grade U.S. municipal bonds rated by the big three credit rating agencies (i.e.,

S&P, Moody’s, and Fitch) with deal size greater than $100 million. We consider four possible

supply thresholds at issuance for this index: 1) $100 million (bond or CUSIP-level), 2) $100

million (deal-level), 3) $75 million (deal-level), and 4) $20 million (deal-level).

The first threshold roughly corresponds to the generic standard for fixed-income ETF

indexes on the NYSE Arca exchange, the primary listing venue for ETFs. Conforming to

this standard allows the exchange to list the ETF without external regulatory approval.

The precise threshold for this standard is $100 million par amount outstanding per bond (or
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CUSIP). However, we lack precise daily data on amount outstanding. Therefore, we use bond

size at issuance as a proxy for this threshold. The second threshold obviously corresponds to

the existing threshold for the S&P National Index. There are municipal bond indexes with

listed ETFs which correspond to the last two thresholds.

We divide our index into “matrix categories” (i.e., groupings of similar bonds) based on

these four thresholds as well as two other characteristics. Specifically, we further subdivide

bonds by high and low credit ratings (AA or higher and below AA) and high and low

maturity (>15 years and ≤15 years). Therefore, there are 16 = 4× 2× 2 matrix categories

in our analysis. We assume that bonds are homogeneous within each category with respect

to their market impact and their trade and return distribution.

We use daily fixed-income price and transaction data for the 2014 calendar year from

three sources. First, trade size and price data are obtained for the bonds in our sample

from the Municipal Securities Rulemaking Board (MSRB). In keeping with the model of

Kyle (1985), we eliminate inter-dealer trades and use customer transactions only. We also

winsorize this data, eliminating extreme trade prices and sizes. Specifically, any trade with

a price greater than or equal to $148 or less than $70 (less than 0.01% of the sample each)

is dropped.16 In addition, any trade below $5000 par (0.05% of our sample) and above $1

million par (2.5% of our sample) is eliminated. Small and large trade sizes are omitted from

our sample for two reasons. First, the market impact function is likely closer to linear than

with the inclusion of extreme trade sizes. Second, there are potential timing issues with large

trades. Namely, our discussions with a bond transaction data provider (MSRB) indicate that

dealers may become aware of large trades prior to their execution. Therefore, large trades

may be reported too late relative to their associated price movement. Our second data

source is Thomson Reuters DataScope, which provides ratings data from the big three credit

rating agencies and daily valuations from Thomson Reuters for the bonds in our sample. We

finally obtain the following daily macro interest-rate series from the St.Louis Federal Reserve

Bank: the 3 month and 10 year Constant Maturity Treasury Bond yields and the Aaa and

Baa Moody’s Bond yields. Based on this data, we control all municipal bond returns for

daily changes in three macro interest-rate factors: 1) the change in the 3-month Treasury

yield, 2) the change in the 10-year Treasury yield, and 3) the change in the Baa – Aaa credit

16We assume such prices represent errors in the data.
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spread. Our goals is to isolate the municipal bond specific component of price movements, as

information embedded in municipal bond trades is most likely related to these components.

4.2 Parameter Estimation

We estimate the market impact coefficients for individual bonds using the following panel

regression:

𝑟𝑗,𝑡 = 𝛾𝑛(𝑗) · 𝜃𝑗,𝑡 + 𝜖𝑗,𝑡 (16)

where 𝑟𝑗,𝑡 is the return on bond 𝑗 at the time of transaction relative to the most recent

transaction or valuation price, 𝜃𝑗,𝑡 is the dollar size of the trade (marked at the most recent

previous price), and 𝛾𝑛(𝑗) is the market impact coefficient for bond 𝑗’s matrix category, 𝑛(𝑗).

Our estimates for these market impact coefficients are shown in Figure 1 and Table 1.

Other than for low credit rating/low maturity bonds, market impact costs increase as bond

supply thresholds decrease. Therefore, municipal bond supply appears to be a reasonable

proxy for liquidity in the context of manipulation. As mentioned previously, this result is

consistent with the findings of a 2014 ESMA consultation paper (ESMA (2014)). The ESMA

analysis documents a relationship between bond issuance size and liquidity as measured by

trading volume for sovereign and corporate bonds. In addition, market impact cost is higher

for low credit rating and high maturity bonds. Maturity serves as the best proxy for liquidity

in our sample, as this relationship is particularly strong.

We next turn our attention toward estimation of the index impact vector, Φ⃗ℑ𝑛 = Σ−1
ℑ𝑛,ℑ𝑛

Σ⃗{0},ℑ𝑛 .

Estimates of Σ⃗{0},ℑ𝑛 and Σℑ𝑛,ℑ𝑛 based on trade covariances in equations (14) and (15) are

shown in Table 2. One can see from these estimates that only 5 of 16 of the elements of

Σ⃗{0},ℑ𝑛 are significantly different from zero. We conjecture that there is low power in the

non-zero alternative since other factors which drive returns (including concurrent trades in

other assets) create noise in these covariance estimates. As a result, we use an estimate for

Σ⃗{0},ℑ𝑛 based on the return covariance in equation (14). One only needs to estimate 𝛿· for

each matrix category to employ this approach.

We estimate 𝛿· (and 𝑣𝑎𝑟(𝑣·)) using a GMM procedure which equates the estimates of

the elements of Σ⃗ℑ𝑛,ℑ𝑛 in equation (15). These estimates for 𝛿· are shown in Table 1. Our

GMM procedure yields estimates for 𝛿·, which all range within the prescribed bounds of 0

13



to 1. One can see that there is little variation in these estimates across matrix categories.

Within the Kyle (1985) model, one would interpret this finding to mean that variability in

liquidity across assets is driven by the volume of noise trading and not by the accuracy of

information.

4.3 Manipulability Analysis

We now discuss our main findings regarding the effect of bond supply thresholds on the

manipulability of our hypothetical municipal bond index. Our analysis assumes that the

manipulator holds a $10 million notional position in a municipal bond index derivative,

which can be traded or redeemed costlessly. In addition, the manipulator distorts prices

by executing eight trades in our 16 possible matrix pricing categories. We believe that a

manipulator in the municipal bond market could reasonably execute eight trades within a

15-minute time span before these trades are revealed to the public. We have performed

this analysis for both five and ten simultaneous trades and produced similar findings. One

implicit assumption in our analysis is that the manipulator can distort an index with a given

supply threshold by trading in any bond within our universe, whether or not this bond is a

component of the index.

Table 3 shows results for our four bond supply thresholds in terms of M-factor, manipu-

lator profit, and index distortion in percent. We see that manipulability decreases slightly as

bond supply thresholds decrease. In addition, the manipulator executes trades in two matrix

categories. Specifically, one trade is in a bond with high credit quality, low maturity, and

at least $100 million CUSIP-level issuance size; seven trades are in bonds with high credit

quality, low maturity, and between $100 million CUSIP-level issuance size and $100 million

deal-level issuance size. The manipulator trades in this manner irrespective of the index

threshold. This finding is noteworthy because the manipulator trades in these categories

whether or not they are included in the index. The reason is related to the high correlation

between size-weighted returns of these matrix categories as shown in Table 4. Therefore,

the manipulator selects matrix categories based on attributes other than their degree of

correlation with (or inclusion in) the index.

In particular, the two optimal matrix categories offer the two lowest market impact
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costs for the manipulator. Hence, we find minimizing market impact costs to be a primary

determinant of the manipulator’s trading behavior. One can see from equation (14) that

the manipulator’s impact on the index is inversely related to this market impact cost (as

represented by 𝛾·). Therefore, decreasing market impact cost, all else equal, increases the

manipulator’s benefit while decreasing the cost of the manipulation.17

The decrease in manipulability of the index across lower thresholds is caused by a decrease

in index concentration. It is clearly not caused by a shift in the manipulator’s trading

strategy to more liquid instruments as this strategy stays fixed across thresholds. However,

the decrease in M-factor is slight and does not fall in proportion to the number of index

components. The reason is again related to the high correlation between matrix categories.

As a result, the “effective” concentration of the index does not decrease dramatically as more

components are admitted.

5 Conclusion

In this paper, we developed a novel model of manipulation of indexes of illiquid assets.

Manipulation becomes feasible with such an index in our framework since shifting prices of a

few assets should move the index as a result of fair valuation. Our model offers a quantitative

measure of manipulability of a particular index and a prediction about which particular assets

would be targeted for manipulation. We applied our model to a specific hypothetical national

municipal bond index with varying bond supply thresholds. Our model indicated that lower

thresholds can decrease susceptibility to manipulation by decreasing the concentration of the

index. We should add the caveat that our findings may not hold for other municipal bond

indexes with greater concentration in terms of geographical region, maturity, rating, bond

type, and purpose. We should also note that our empirical analysis was based on an ad hoc

model of asset returns with coarse matrix categories. This empirical implementation could

be improved using the actual matrix model employed by pricing vendors in this market.

One could also extend the model to multiple periods as in Horst and Naujokat (2011) and

Gallmeyer and Seppi (2000) to understand the dynamic strategy of a manipulator holding a

17This relationship only holds if the accuracy of information (as represented by 𝛿·) is unrelated to market
impact cost (as represented by 𝛾·) as we find in our estimates.
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derivative whose “delta” could change over time.

Our framework is relevant to a number of current regulatory issues. For example, ex-

changes are seeking to expand the range of fixed-income index derivatives available for trad-

ing. An understanding of the potential manipulation of indexes becomes increasingly im-

portant as regulation expands its oversight to new exchange-listed derivatives and direct

supervision of index providers.18

18The Financial Conduct Authority in the United Kingdom has begun to regulate eight benchmarks used to
price financial instruments and contracts. The European Commission has also recommended the regulation
of all benchmarks used for pricing in the EU. A principal stated goal of these new regulations is to deter
manipulation.
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Table 1: Market Impact (𝛾·) and Information Accuracy (𝛿·) Estimates

This table shows estimates for market impact coefficients (𝛾·) and information accuracy (𝛿·) parameters

for 16 matrix categories using data from Jan-Dec 2014. The numbers after “Cat” (i.e., matrix category)

represent the following. In the left (tens) digit: 1 means at least $100 million CUSIP-level size; 2 means at

least $100 million deal-level but less than $100 million CUSIP-level size; 3 means at least $75 million but

less than $100 million deal-level size; 4 means at least $20 million but less than $75 million deal-level size.

In the ones digit: 1 means high maturity (>15 years) and high rating (AA or above); 2 means high maturity

and low rating (AA– or below); 3 means low maturity (≤15 years) and high rating; 4 means low maturity

and low rating.

Cat 11 Cat 12 Cat 13 Cat 14 Cat 21 Cat 22 Cat 23 Cat 24

Market Impact (×10−7) 14.5 17.7 4.49 7.67 14.3 20.1 5.40 7.27

Information Accuracy 0.148 0.145 0.134 0.132 0.154 0.152 0.136 0.139

Cat 31 Cat 32 Cat 33 Cat 34 Cat 41 Cat 42 Cat 43 Cat 44

Market Impact (×10−7) 15.7 19.9 5.70 7.80 20.9 22.7 7.63 9.38

Information Accuracy 0.139 0.152 0.131 0.139 0.156 0.143 0.140 0.140
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Table 2: Trade Covariances

This table shows sample covariance (×105) of daily average dollar transaction size for each of 16 matrix

categories using data from Jan-Dec 2014. The last row is the sample covariance of daily average dollar

transaction size with the return on our national municipal bond index with threshold of $20 million per

offering at issuance. The numbers after “Cat” (i.e., matrix category) represent the following. In the left

(tens) digit: 1 means at least $100 million CUSIP-level size; 2 means at least $100 million deal-level but less

than $100 million CUSIP-level size; 3 means at least $75 million but less than $100 million deal-level size; 4

means at least $20 million but less than $75 million deal-level size. In the ones digit: 1 means high maturity

(>15 years) and high rating (AA or above); 2 means high maturity and low rating (AA– or below); 3 means

low maturity (≤15 years) and high rating; 4 means low maturity and low rating. For each row, 𝑝-values are

shown in parenthesis below each covariance; ***, **, and * indicate statistical significance at the 1%, 5%,

and 10% level, respectively.

Cat 11 Cat 12 Cat 13 Cat 14 Cat 21 Cat 22 Cat 23 Cat 24

Cat 11 1,428.8***

(0.000)

Cat 12 153.9** 927.4***

(0.035) (0.000)

Cat 13 118.9 370.6** 7,320.9***

(0.563) (0.025) (0.000)

Cat 14 41.5 157.9 -41.6 5,222.2***

(0.811) (0.258) (0.916) (0.000)

Cat 21 294.0*** 255.5*** 199.3 217.9 897.1***

(0.000) (0.000) (0.220) (0.112) (0.000)

Cat 22 139.0*** 147.1*** 98.8 3.5 269.1*** 491.8***

(0.009) (0.001) (0.412) (0.973) (0.000) (0.000)

Cat 23 147.3** 145.5*** 543.8*** 322.5*** 259.6*** 177.7*** 590.4***

(0.011) (0.002) (0.000) (0.004) (0.000) (0.000) (0.000)

Cat 24 194.1*** 158.6*** 360.6*** 398.2*** 191.0*** 210.1*** 359.4*** 602.1***

(0.001) (0.001) (0.006) (0.000) (0.000) (0.000) (0.000) (0.000)

Cat 31 4.6 -87.3 349.7 177.4 178.8** 186.8*** 212.4*** 188.7***

(0.967) (0.333) (0.167) (0.407) (0.043) (0.004) (0.003) (0.009)

Cat 32 197.6** 141.8* 6.8 95.3 261.9*** 226.8*** 250.6*** 158.4***

(0.037) (0.063) (0.975) (0.600) (0.000) (0.000) (0.000) (0.010)

Cat 33 173.6* 38.9 302.6 358.1** 237.5*** 127.2** 328.9*** 276.5***

(0.060) (0.602) (0.148) (0.042) (0.001) (0.019) (0.000) (0.000)

Cat 34 233.8** 132.3 126.5 282.0 159.0* 56.9 313.8*** 379.8***

(0.033) (0.135) (0.611) (0.179) (0.067) (0.378) (0.000) (0.000)

Cat 41 257.8*** 155.9*** 143.7 146.1 260.4*** 119.9*** 199.4*** 161.7***

(0.000) (0.001) (0.294) (0.207) (0.000) (0.001) (0.000) (0.000)

Cat 42 104.3** 125.6*** 403.3*** 158.2* 60.7 80.3*** 111.3*** 100.1***

(0.030) (0.001) (0.000) (0.086) (0.112) (0.004) (0.000) (0.001)

Cat 43 131.9** 125.4*** 380.1*** 308.1*** 195.9*** 114.7*** 319.5*** 279.6***

(0.018) (0.005) (0.002) (0.004) (0.000) (0.000) (0.000) (0.000)

Cat 44 96.0* 112.2*** 248.8** 94.2 129.4*** 146.3*** 279.8*** 226.9***

(0.065) (0.007) (0.034) (0.344) (0.002) (0.000) (0.000) (0.000)

Index Returns -46.13 29.63 -139.45 -115.43 -112.60** -68.52* -98.64** -102.29***

(0.443) (0.541) (0.306) (0.316) (0.018) (0.052) (0.010) (0.008)

Cat 31 Cat 32 Cat 33 Cat 34 Cat 41 Cat 42 Cat 43 Cat 44

Cat 31 2,176.2***

(0.000)

Cat 32 81.3 1,569.9***

(0.489) (0.000)

Cat 33 270.9** 102.7 1,487.1***

(0.017) (0.290) (0.000)

Cat 34 166.5 186.4 250.4** 2,097.0***

(0.220) (0.105) (0.025) (0.000)

Cat 41 163.9** 79.2 122.6** 196.5*** 636.2***

(0.028) (0.212) (0.047) (0.007) (0.000)

Cat 42 86.0 47.6 42.2 93.5 134.4*** 404.0***

(0.148) (0.346) (0.391) (0.109) (0.000) (0.000)

Cat 43 149.1** 151.7*** 341.7*** 273.4*** 200.9*** 89.0*** 542.5***

(0.030) (0.009) (0.000) (0.000) (0.000) (0.003) (0.000)

Cat 44 183.0*** 171.4*** 196.7*** 175.1*** 119.7*** 72.4*** 233.8*** 471.0***

(0.004) (0.002) (0.000) (0.005) (0.000) (0.009) (0.000) (0.000)

Index Returns -69.55 -102.84 -50.96 -26.59 -63.64 -62.56** -126.89*** -34.23

(0.349) (0.102) (0.407) (0.715) (0.112) (0.050) (0.001) (0.322)
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Table 3: Manipulability of National Municipal Bond Indexes

This table shows, for various supply thresholds: the M-factor, the manipulator’s profit, total size of trading

activity, and amount in percent by which the index would be distorted. We assume that the manipulator:

1) holds a $10 million position in a municipal bond index derivative which can be liquidated costlessly; 2)

the manipulator distorts prices by executing eight trades in 16 possible matrix pricing categories.

Size threshold $100 M CUSIP $100 M deal $75 M deal $20 M deal

M factor (×10−9) 5.89 5.33 5.28 5.13

Manipulator profit $147,279 $133,201 $132,071 $128,367

Index distortion (percent) 2.95% 2.66% 2.64% 2.57%

Number of components 1,348 68,587 86,841 203,319

Trade size $149,523 $142,189 $141,584 $139,584
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Table 4: Correlation between Matrix Category Returns

This table shows the correlation between size-at-issuance weighted returns for each matrix category using

data from Jan-Dec 2014. The numbers after “Cat” (i.e., matrix category) represent the following. In the left

(tens) digit: 1 means at least $100 million CUSIP-level size; 2 means at least $100 million deal-level but less

than $100 million CUSIP-level size; 3 means at least $75 million but less than $100 million deal-level size; 4

means at least $20 million but less than $75 million deal-level size. In the ones digit: 1 means high maturity

(>15 years) and high rating (AA or above); 2 means high maturity and low rating (AA– or below); 3 means

low maturity (≤15 years) and high rating; 4 means low maturity and low rating. All entries are significant

at the 1% level.

Cat 11 Cat 12 Cat 13 Cat 14 Cat 21 Cat 22 Cat 23 Cat 24

Cat 11 1

Cat 12 0.956 1

Cat 13 0.804 0.777 1

Cat 14 0.777 0.791 0.918 1

Cat 21 0.961 0.938 0.858 0.828 1

Cat 22 0.957 0.970 0.835 0.832 0.980 1

Cat 23 0.828 0.795 0.974 0.939 0.887 0.861 1

Cat 24 0.811 0.810 0.956 0.963 0.872 0.871 0.982 1

Cat 31 0.956 0.935 0.840 0.806 0.981 0.971 0.865 0.849

Cat 32 0.953 0.967 0.831 0.828 0.972 0.991 0.857 0.864

Cat 33 0.824 0.790 0.971 0.935 0.884 0.857 0.998 0.980

Cat 34 0.813 0.804 0.956 0.956 0.874 0.869 0.984 0.995

Cat 41 0.961 0.942 0.851 0.824 0.996 0.982 0.881 0.867

Cat 42 0.954 0.967 0.828 0.831 0.974 0.991 0.858 0.865

Cat 43 0.820 0.788 0.971 0.936 0.882 0.855 0.998 0.981

Cat 44 0.803 0.795 0.954 0.960 0.865 0.859 0.983 0.995

Cat 31 Cat 32 Cat 33 Cat 34 Cat 41 Cat 42 Cat 43 Cat 44

Cat 31 1

Cat 32 0.963 1

Cat 33 0.863 0.853 1

Cat 34 0.852 0.867 0.982 1

Cat 41 0.983 0.974 0.880 0.869 1

Cat 42 0.963 0.989 0.854 0.867 0.976 1

Cat 43 0.860 0.852 0.999 0.983 0.877 0.852 1

Cat 44 0.841 0.857 0.982 0.996 0.860 0.861 0.983 1
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Figure 1: Market Impact Cost for Matrix Categories

This figure shows estimates for market impact coefficients (𝛾·) as percentage of bond price change per

$1,000,000 trade for 16 matrix categories using data from Jan-Dec 2014. Each line represents a different

rating/maturity category (in Table 1 notation, Cat ·2, Cat ·1, Cat ·4, and Cat ·3, from top to bottom), and

each category on the 𝑥-axis represents a bond supply (issuance size) category. The 𝑥-axis categories are

ordered in the order of decreasing bond issuance size (in Table 1 notation, Cat 1·, Cat 2·, Cat 3·, and Cat

4·, from left to right).
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