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Abstract 

A central theme in existing literature is that increased disclosure and transparency 

reduce the level of information asymmetry between market makers and informed traders 

and thus increase liquidity. In contrast, in this study we propose and empirically in-

vestigate a new and unexplored channel through which the information environment 

can affect liquidity. We predict that for a given level of information asymmetry, or 

even absent information asymmetry, reduced disclosure and less transparent informa-

tion environments make changes in the firm’s stock price more discontinuous (jumpy) 

and hence change the structure of volatility. We further predict that market mak-

ers reduce liquidity as a result, because it is significantly more diffi cult for them to 

hedge discontinuous price changes (jump volatility) to their inventory than continuous 

price changes (diffusive volatility). Using both associations and causal tests we find a 

negative relation between the transparency of the information environment and jump 

volatility. We then show that jump volatility is negatively associated with liquidity, 

even after controlling for information asymmetry, while diffusion has a positive asso-

ciation. Finally, we present causal evidence that the information environment affects 

liquidity through jump volatility. Our findings have implications for our understanding 

of liquidity, corporate finance decisions, and policy-makers. 
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1 Introduction 

Numerous studies in accounting and finance emphasize the importance of disclosure and 

the information environment to liquidity and liquidity driven outcomes (e.g., Leuz and Ver-

recchia, 2000; Kelly and Ljungqvist, 2012). The central idea in existing literature is that 

increased disclosure and more transparent information environments reduce the level of in-

formation asymmetry between market makers and informed traders and therefore increase 

liquidity. 

In this study we propose and empirically investigate a new and unexplored channel through 

which the information environment of the firm can affect liquidity. We suggest that for a given 

level of information asymmetry, or even absent information asymmetry, reduced disclosure 

and less transparent information environments make changes in the firm’s stock price more 

jumpy and less smooth (i.e., more discontinues) and hence change the structure of volatility. 

Consequently, as it is significantly more diffi cult for market makers to hedge discontinuous 

price changes in their inventory, they are likely to protect themselves by reducing liquidity. 

Therefore, we propose that the information environment affects liquidity not only through 

information asymmetry, as documented in prior literature, but also through the structure 

of volatility and the distinct channel of the market maker’s inventory risk (e.g., Johnson 

and So, 2018). These insights have important implications as they give rise to an additional 

path, which is independent from information asymmetry, through which the information 

environment can affect the cost of capital and result in real effects. 

Modern models for the structure of volatility treat stock returns as a jump-diffusion process, 

that is, as a combination of a continuous Brownian motion component and a discontinuous 

jump component such that total return volatility is an aggregate outcome of two separate 

sources that have very different characteristics. While volatility patterns generated by a 

discontinuous jump process (jump) arise from infrequent large isolated price changes diffusive 

volatility (diffusion) arises from smooth continuous small price changes. Figure 1 highlights 

graphically the different return patterns. Panel A displays an extreme case of two stocks 

with identical total volatility where the volatility for one stock is driven purely by a smooth 

diffusion process while the volatility in the second stock is driven solely by jump. In reality, 

the volatility in most stocks arises from a combination of both processes as depicted in Panel 

B, which describes a stock that is driven by both a jump and diffusion processes yet with 

the same level of total volatility as the stocks in Panel A. 

The firm’s information environment determines its information arrival rates, or the pace at 

which information arrives to the market, and therefore the structure of its volatility. Stocks 
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in which information flows in a smoother and more continuous way are more likely to be 

governed by a diffusive process, while stocks for which information arrives in a bulky discon-

tinuous way are more likely to be subject to jumps (Maheu and McCurdy, 2004). For a given 

amount of information, more transparent firms with increased disclosure levels experience a 

more continuous flow of information to the market. Therefore, our first prediction is that 

stocks with more transparent information environments, and more frequent disclosures, have 

lower jump volatility levels. 

The relation between the information environment and the structure of volatility has clear 

and direct implications for liquidity. Our second prediction is that even for a given level of 

total volatility, jump volatility has a different and more dominant effect on liquidity compared 

to diffusive volatility. Since the disclosure policy and information environment of the firm 

have a direct influence on the structure of volatility, that is whether volatility increases 

through the jump component or the diffusive one, disclosure can drive liquidity trough the 

structure of volatility. These effects are independent from the relation between information 

asymmetry and liquidity. Our prediction is motivated by the following facts. First, jumps 

in prices are diffi cult to hedge unlike diffusive changes (e.g., Garleanu et al., 2009). Because 

market-makers bear the risk of price changes in their inventories, bid-ask spreads increase 

to compensate them for bearing this source of inventory risk (e.g., Stoll 1978a; Amihud 

and Mendelson, 1980; Ho and Stoll, 1981; Ho and Stoll, 1983). Second, diffusive volatility is 

associated with increased trading while jump volatility is not (e.g., Giot et al., 2010). Higher 

turnover rates reduce market-makers’inventory costs because they can better manage order 

flows, and therefore increases liquidity (E.g., Tinic and West, 1972; Stoll, 1978a). Therefore, 

these facts predict a positive relation between jump volatility and illiquidity measures such 

as bid-ask spreads and a negative relation between diffusive volatility and illiquidity, due to 

the market makers’inventory risk.1 

Empirically, our paper proceeds in two steps. First, we examine how variation in firms’ 

disclosure policy and information environments relate to jump. Second, we examine the 

relation between volatility structure and liquidity and connect this relation to the information 

environment. Our idea is to show that disclosure affects the firm’s volatility structure which 

in turn affects liquidity. This provides an alternative channel through which disclosure 

can affect liquidity, independent of the link between information asymmetry and liquidity 

documented in prior literature. 

1We discuss these predictions in more detail in Section 2 
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Regarding our first step which examines how the firm’s information environment relates to 

jump, we find that firms that issue earnings guidance on a regular basis and firms that 

issue more earnings forecasts in a year experience lower levels of jump volatility. These 

relations exist after controlling for bid-ask spreads, the level of diffusion (diffusive volatility), 

and various control variables including firm and year fixed-effects. The results are also 

economically significant. For example, a one standard deviation increase in the number of 

forecasts issued decreases jump volatility between 10-47% of the sample average, depending 

on the specification employed. We find similar results using analyst forecasts dispersion as a 

measure of the firm’s information environment. Firms with higher levels of analyst forecast 

dispersion which have more uncertain information environments (e.g., Palmrose et al., 2004; 

Graham et al., 2008), and are relatively less transparent, experience higher levels of jump 

volatility. These relations exist after controlling for bid-ask spreads, the level of diffusion 

(diffusive volatility), and various control variables including firm and year fixed-effects. Taken 

together, these results suggest that variation in firm’s disclosure policy and information 

environments affect firms’jump volatility, independent of variation in information asymmetry 

and total volatility. 

To provide causal evidence on the relation between the information environment and jumps, 

we exploit the brokerage house closure setting employed by Kelly and Ljungqvist (2012) 

and Balakrishnan et al. (2014). Specifically, we examine how drops in analyst coverage that 

result from exogenous brokerage house closures causally affect jump volatility. We argue that 

exogenous drops in analyst coverage lower information arrival rates such that information 

arrives in a more bulky and discontinuous manner, in addition to increasing information 

asymmetry. Consistently, we show that exogenous drops in analyst coverage increase jump 

volatility after controlling for bid-ask spreads and diffusion (diffusive volatility). We fail to 

find similar increases in diffusion following the brokerage house closures, alleviating concerns 

that our results merely reflect changes in overall volatility. Taken together, these results show 

that decreases in information arrival rates causally increase jump much more than diffusion 

independent of changes in information asymmetry. 

Regarding our second step, which examines how volatility structure relates to liquidity, we 

find that the positive relation between volatility and bid-ask spreads is exclusively driven by 

the jump component. We find a strong positive relation between the jump component and 

bid-ask spreads. In contrast, we show that the diffusive component is negatively associated 

with bid-ask spreads.2 Supporting our hypothesis we also show that the negative association 

between diffusive volatility and illiquidity is driven by the relation between diffusive volatility 

2Similar inferences are made using the Amihud (2004) illiquidity measure. 
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and turnover. These results are independent of any information asymmetry effects as they 

are maintained in all levels of information asymmetry and remain robust to the inclusion of a 

proxy for information asymmetry as a control variable. Finally, we show that our results are 

maintained at all levels of turnover, making it unlikely that thin trading drives our findings. 

In terms of economic magnitude, a one standard deviation increase in the jump volatility 

component increases bid-ask spreads by approximately 30 basis points, whereas an equivalent 

increase in the diffusive volatility component decreases bid-ask spreads by approximately 10 

basis points. 

In additional analysis we provide more causal evidence related to the link between the infor-

mation environment and liquidity driven by jump volatility. We exploit the relation between 

brokerage house closures and jump volatility to instrument for jump volatility using a two 

stage shock based instrumental variable design (Atanasov and Black, 2016). Specifically, we 

estimate predicted values for jump volatility based on the relation between brokerage house 

closures and jump volatility. We then employ the fitted values in a second-stage regression. 

We document a positive relation between the predicted values and bid-ask spreads. This 

result suggests that a shock to the information environment which results in information 

arriving in a more bulky and discontinuous manner causally decreases liquidity through the 

channel of jump volatility. 

Finally, a number of studies show that liquidity levels can be a source of systematic risk (e.g., 

Pastor and Stambaugh, 2003; Sadka, 2006). Given our findings related to the differential 

effects jump and diffusive volatilities have on liquidity, to the extent that these relations 

are driven by systematic factors it is possible that these components play different roles in 

determining liquidity risk. We find that jump volatility drives not only liquidity levels but 

also liquidity risk. We do not find a significant effect for the diffusive component of volatility. 

Our study contributes to several streams of literature. First, our study contributes to the 

understanding of the economic forces that determine liquidity. While prior literature empha-

sizes the role of the information environment in liquidity (e.g., Leuz and Verrecchia, 2000; 

Kelly and Ljungqvist, 2012; Balakrishnan et al., 2014; Amir and Levi, 2016), we are the first 

to document its effect through the structure of volatility. Relatedly, our findings suggest 

that firms can improve their liquidity and cost of capital if they are able to enhance their 

information environment in a way that reduces jump volatility.3 One important distinction 

between the volatility structure channel and the information asymmetry channel is that a 

reduction in jump volatility does not crowd out the acquisition of private information by 

3Such a change would result in a new equilibrium, as there are significant costs involved in enhancing the 

information environment. 
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informed traders and thus likely has a smaller affect on price effi ciency (e.g., Goldstein and 

Yang). 

It is important to note that our paper differs from prior research that examines the relation 

between disclosure frequency and information asymmetry (e.g., Botosan and Harris, 2000; 

Van Buskirk, 2011; Fu et al., 2012). While disclosure frequency also affects information 

arrival rates, papers in this literature stream examine how variation in disclosure frequency 

relates to overall variation in illiquidity measures, as a proxy for information asymmetry. 

These studies further note that disclosure frequency has an ex-ante ambiguous relation with 

information asymmetry. In contrast, increases in information arrival rates are predicted to 

have a negative relation with jump volatility, and hence a positive relation with liquidity. 

By exploiting the jump and diffusion components of volatility, which have different relations 

with liquidity, we are able to highlight a more direct effect of information arrival rates on 

liquidity, which is distinct from the effect of information asymmetry. 

Second, our study contributes to the literature that studies the determinants of liquidity, 

particularly the literature which documents the relation between volatility and liquidity 

(Stoll, 1978a; Stoll 1978b; Stoll 2000; Amihud and Mendelson, 1989). Our study enhances 

this literature by being the first to document that the structure of volatility matters for 

illiquidity in addition to raw levels of volatility. Relatedly, our paper contributes to the 

literature that examines the link between disclosure and total volatility (e.g., Bushee and 

Noe 2000; Rogers, Skinner, and Van Buskrik, 2009; Billings, Jennings, and Lev, 2015). 

The results in this literature are mixed. Our analysis differs from prior analysis because we 

employ the structure of volatility. This allows us to isolate how disclosure and the information 

environment affects jump volatility, the component of volatility that affects liquidity. 

Third, our study contributes to the literature that studies the consequences of jumps to a 

variety of financial variables. This literature documented that jump and diffusion processes 

have very different effects on credit risk (e.g., Zhou 2001; Cremers, Driessen and Maenhout 

2008), market beta (e.g., Todorov and Bollerslev 2010; Cremers, Halling and Weinbaum 

2015; Bollerslev, Li, and Todorov 2016), and stock option pricing (e.g., Duffi e, Pan and 

Singleton 2000; Pan 2002; Garleanu, Pederson and Poteshman 2009). Our study adds to 

this literature by providing evidence that the jump and diffusive components of volatility 

have very different effects on liquidity. 

Moreover, our findings also have regulatory implications to security markets. Our results 

show that implementing accounting policies that encourage more continuous information 

disclosure may help increase liquidity, supporting the findings in Fu et al. (2012). These 
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considerations are relevant to reforms currently being implemented to the regulatory envi-

ronment in the EU and recently discussed in the US. The European Commission recently 

removed the obligation to publish interim management statements and announced its in-

tention to abolish quarterly financial reports for publicly traded companies. The current 

administration in the White House is leading a similar initiative in the US.4 These steps can 

have important consequences for the structure of volatility and liquidity. More generally, 

policies that increase the continuous stream of information to the markets (e.g., enhanced 

media coverage, social media discussions) and price informativeness are likely to improve 

the diffusion component of volatility, reduce the jump component of volatility, and improve 

liquidity. 

The remainder of this paper is organized as follows. Section 2 describes our hypothesis 

development and related literature. Section 3 discusses the research design and results for 

the analysis related to the firms’ information environment and the structure of volatility. 

Section 4 discusses the research design and results for the analysis related to the structure 

of volatility and liquidity. Section 5 concludes. 

2 Related Literature and Hypothesis Development 

2.1 The Firm’s Information Environment and Volatility Structure 

A large existing literature examines the link between disclosure, the firm’s information en-

vironment, and liquidity. Papers in this literature find that increased disclosure and more 

transparent information environments improve liquidity (e.g., Welker, 1995; Leuz and Ver-

recchia, 2000; Kelly and Ljungqvist, 2012; Balakrishnan et al., 2014). Empirically, these 

papers examine how various disclosure and information environment measures affect liquid-

ity measures such as bid-ask spreads, volatility, and trading volume. A related stream of 

literature examines the effect of disclosure on the cost of capital, based on the idea that 

improvements in liquidity result in lower cost of capital (e.g., Armstrong et al., 2010; Francis 

et al. 2005; Hail and Leuz, 2006). Motivated by theoretical models such as Diamond (1985) 

and Diamond and Verrecchia (1991), the underlying assumption in both literature streams 

is that improved disclosure reduces information asymmetry and hence improves liquidity. 

Motivated by recent developments in the asset pricing literature, in this paper we propose 

a new channel through which disclosure and the firm’s information environment can affect 

4https://www.wsj.com/articles/trump-directs-sec-to-study-six-month-reporting-for-public-companies-

1534507058?mod=article_inline&mod=djemCFO_h 
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liquidity based on the structure of volatility. In addition to affecting the level of information 

asymmetry, the firm’s information environment determines a firm’s information arrival rates, 

or the pace at which information arrives to the market. Stocks in which information flows in 

a smoother and more continuous way are more likely to be governed by a diffusive process. 

On the other hand, stocks for which information arrives in a bulky discontinuous way are 

more likely to be subject to jumps (e.g., Maheu and McCurdy, 2004). Consequently, the 

firm’s information environment affects the firm’s volatility structure, or the relative level 

of the jump versus diffusive components of volatility. In other words, even when holding 

the amount of information the firm releases constant, the rate at which the information is 

released has an effect on the level of jump volatility. For a given amount of information, 

more transparent firms with increased disclosure levels experience a more continuous flow of 

information to the market and hence lower levels of jump volatility. As discussed in more 

detail below, the relation between the firm’s information environment and jump volatility 

offers an alternative channel through which the information environment can affect liquidity. 

Our first prediction is as follows: 

H1: More transparent firms with increased disclosure levels experience lower levels of jump 

volatility 

Figure 1, Panel A, provides some intuition for our prediction. The stocks in the example 

experience the same total returns, and total volatility, but very different price paths. So 

while the total amount of information released is the same for both stocks, the information 

in "Jump" is released all at once, while the information in "Diffusion" is released in a more 

continuous manner. The more transparent information environment in "Diffusion" results 

in lower jump volatility levels. 

Hypothesis H1 is related to two additional literature streams. The first examines the as-

sociation between disclosure frequency and liquidity (e.g., Botosan and Harris, 2000; Van 

Buskirk, 2011; Fu et al., 2012). These papers find mixed results. Botosan and Harris (2000) 

find that decreases in liquidity motivate firms to increase segment disclosure frequency. Van 

Buskirk (2011) finds no relation between bid-ask spreads, depth, and more frequent disclo-

sure of monthly sales figures. In contrast, Fu et al. (2012) find that increased financial 

reporting frequency is associated with lower bid-ask spreads and lower price impact levels. 

These papers motivate their analysis by articulating how disclosure frequency impacts infor-

mation asymmetry and thus liquidity. They further highlight that disclosure frequency has 

an ambiguous effect on information asymmetry. However, disclosure frequency also affects 

information arrival rates or jump volatility which in turn affects liquidity. An increase in in-

formation arrival rates has an unambiguous negative relation with jump volatility, and hence 
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a positive relation with liquidity. By employing the structure of volatility in our analysis we 

are able to take a step towards disentangling these two effects. 

The second related literature stream examines the association between disclosure and total 

volatility. Prior research suggests that volatility is a characteristic of the information en-

vironment managers care about. For example, total volatility has been shown to decrease 

liquidity (Chordia et al., 2005) and increase the likelihood of litigation (Kim and Skinner, 

2012). Therefore, managers may make disclosure choices to reduced volatility (e.g., Graham 

et al., 2005). However, the empirical evidence in this literature is mixed. Bushee and Noe 

(2000) find that increased disclosure levels that attracts transient institutional investors re-

sults in increased volatility. Rogers et al. (2009) find that unbundled earnings forecasts are 

associated with increased implied volatility levels. In contrast, Billings et al. (2015) finds 

that firms issue more bundled earnings guidance in response to increased volatility levels, 

and that these disclosures result in a reduction in volatility. Our analysis differs from the 

analysis in this literature because we employ the structure of volatility in our analysis. This 

allows us to isolate how disclosure and the information environment affects jump volatility, 

which is the component of volatility that affects liquidity. 

2.2 Volatility Structure and Liquidity 

As a starting point, we note that according to microstructure theory illiquidity, or bid-

ask spreads, are determined by two economic forces (see Figure 2). The first is the level 

of information asymmetry that determines the adverse selection component of the bid-ask 

spread (Glosten and Milgrom, 1985; Kyle, 1985). The second is the inventory risk that 

the market maker faces (Stoll, 1978a; Amihud and Mendelson, 1980). The role of the 

structure of volatility, and jump volatility in particular, in determining liquidity arises from 

the link between jump volatility and the inventory risk the market maker faces. This link is 

independent of the level of information asymmetry in the firm. 

The literature on jumps highlights two facts that lead to the predictions for how each volatil-

ity component affects liquidity. These facts are directly linked to the theory of liquidity, which 

emphasizes the risks market makers face in determining liquidity and particularly inventory 

risk. The first fact is that jumps in prices are diffi cult to hedge unlike diffusive changes 

(e.g., Garleanu et al., 2009). Market-makers bear the risk of price changes to their stock 

inventories which they must maintain. Therefore, bid-ask spreads are set to compensate 

them for bearing this inventory risk (e.g., Stoll, 1978a; Amihud and Mendelson, 1980; Ho 

and Stoll, 1981; Ho and Stoll, 1983). In a diffusive environment market-makers can control 
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their potential losses, update their inventory portfolios, and fix "stop-loss" rules in a more 

flexible and gradual manner compared to a trading environment that exhibits infrequent 

dramatic price changes. That is, jumps impose a more restrictive set of risk management 

tools and stopping rules compared to diffusive price changes.5 

Similarly, to reduce inventory risk, market-makers often hedge their inventories with cor-

related instruments such as options and other correlated stocks or ETFs. Therefore, it is 

mainly the non-hedgeable portion of their inventory that drives their compensation in the 

form of bid-ask spreads (e.g., Benston and Hagerman 1974; Ho and Stoll, 1983; Froot and 

Stein 1998; Naik and Yadav, 2003a; Naik and Yadav, 2003b). Jump risk, as a discontinuous 

price change, cannot be easily hedged away as dynamic replicating strategies become infea-

sible under incomplete markets (e.g., Garleanu et al., 2009; Jameson and Wilhelm, 1992; 

Gromb and Vayanos, 2002; Chen et al., 2014). Therefore, as the non-hedgeable portion of 

total volatility, it is the jump-driven component that market-makers are likely to demand 

compensation for. 

The second fact is that diffusive volatility is associated with increased trading, while jump 

volatility is not (e.g., Giot et al., 2010). Higher turnover rates reduce market-makers’ in-

ventory costs as they can match the order flow much more easily and consequently increase 

liquidity (E.g., Tinic and West, 1972; Stoll, 1978a). This line of reasoning entails a nega-

tive association between diffusive volatility and illiquidity, due to increased turnover. Taken 

together, these lines of reasoning lead us to our second prediction: 

H2: There is a positive relation between jump volatility and illiquidity measures such as 

bid-ask spreads. In contrast, there is a negative relation between diffusive volatility and 

illiquidity. 

We further note that according to theory the predicted relation in H2 is independent of the 

relation between the level of information asymmetry and the adverse selection component of 

the bid-ask spread. We test his theory empirically by controlling for the level of information 

asymmetry in our analysis. 

5See Longstaff (1995, 2014), who models the implications of a similar aspect to illiquidity. 
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3 The Firm’s Information Environment and Volatility 

Structure 

3.1 Research Design 

3.1.1 Estimating the Jump-Diffusion Process 

In our analysis, we follow a standard framework to model the jump-diffusion processes. We 

apply estimation procedures used, validated, and empirically tested in numerous prior studies 

(e.g., Ait-Sahalia, 2004; Yu, 2007).6 Following Merton (1976), we assume a continuous 

trading market for a stock with price St at time t, in which there are three sources of 

uncertainty: a standard Brownian motion Wt, an independent Poisson process of jump 

events Nt with intensity λ, and a random jump size Zt which is distributed lognormally 

with mean α and variance γ2 . The stock return dynamics are described by the following 

stochastic differential equation: 

dSt 
= (µ − λ · κ) dt + σ · dWt + dJt (1) 

St 

where µ and σ are constants, κ ≡ E (Zt − 1) is the expected relative jump of St, and Jt ≡ 

(Zt − 1) · Nt denotes the compound Poisson process.7 Following Merton (1976) and Navas 

(2003), the diffusive and jump components of total return variance can be expressed in terms 

of the respective process parameters as, 

V d = σ2t (2) � � 
V j α2 + γ2 = λ t 

which allows us to calculate the values of the variance components. Total return variance is 

just the sum of the two components, 

V = V d + V j . (3) 

6The estimation procedures for jump-diffusion processes are standard and can be found, for example, in 

Rama and Tankov (2003) and Rüschendorf and Woerner (2002). Furthermore, Ait-Sahalia (2004) validated 

that such maximum likelihood methods can perfectly identify the diffusive and jump components, particularly 

in the context of the framework we follow here, Merton (1976). 
7We follow vast prior literature and do not model volatility as a stochastic process as some studies 

do. Although stochastic volatility makes the model more “realistic” it adds unnecessary complexity at the 

expense of tractability in the context of the current study. Moreover, simulation analysis reveals that the 

correlation between our estimated jump and diffusion parameters in a model with stochastic volatility to 

a model without stochastic volatility is 0.9 and therefore suggests that there is very little benefit for the 

additional complexity. 
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Applying maximum likelihood estimation (ML), we calibrate the model based on historical � � 
stock return data and obtain a vector of parameter estimates θti = µti, σi

t, λi
t, αi

t, γi
t for 

each stock i estimated over period t. Based on θti, we then calculate Vi,t
d and Vi,t

j , that 

is, the respective diffusive and jump variance components of total variance.8 For a more 

detailed description of our framework, estimation procedure, and related references, see 

Appendix A. While the jump and diffusion components, Vi,t
j and Vi,t

d , are measures of variance, 

following prior literature we refer to variance and volatility interchangeably when discussing 

the structure of volatility. 

3.1.2 The information environment and jump volatility 

To examine how the information environment affects liquidity through the structure of 

volatility, we begin by examining the relation between various measures of disclosure and the 

firm’s information environment, and jump volatility. Specifically we employ the following 

regression: 

V j i,t = β0 + β1Disclosurei,t + β2Controlsi,t + F irm_FEi + Y ear_FEt + εi,t (4) 

where the dependent variable is our estimate of jump volatility. Disclosurei,t equals one 

of three measures. First, we define the variable F orecasteri,t which equals one if the firm 

issues earnings guidance on a regular basis following the definition in Rogers et al. (2009), 

and zero otherwise. Second, we employ the number of forecasts issued by the firm over the 

year (Num_F orecastsi,t). As our third measure we use the dispersion in analyst forecasts 

(Dispersioni,t) as an overall measure of the firm’s information environment. Prior research 

employs dispersion as a measure of increased uncertainty (e.g., Palmrose et al., 2004; Graham 

et al., 2008). We hypothesize that firms with increased levels of uncertainty experience less 

transparent information environments. Therefore, we expect β1 < 0 for our first two forecast 

based measures, and β1 > 0 for our dispersion measure. 

The first control variable we add is the relative bid-ask spread to control for the possibility 

that variation in information asymmetry drives variation in spreads which can mechanically 

result in variation in jump. Next, we proceed to add various control variables that prior 

research has shown to be associated with firms’ disclosure choices, that may also relate 

8An alternative valid way to estimate jump parameters is to use option prices (e.g., Yan, 2011; Cremers, 

Halling and Weinbaum, 2015). However, many stocks do not have available options for trade. Moreover, 

trading and quotes are very "thin" and illiquid for other stock options. Therefore, to gain a better coverage 

of the market, and particularly to study liquidity and liquidity risk implications, we chose our methodology. 
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to variation in jump volatility (e.g., Lang and Lundholm, 1993; Skinner, 1994; Leuz and 

Verrecchia, 2000; Miller, 2002). Specifically, we include prior returns, return on assets, and 

whether the firm experiences a loss to control for differences in firm performance. We include 

earnings volatility to capture firm-level uncertainty that may affect manager’s disclosure 

activities. We also control for the following additional variables that prior literature has 

found to be associated with a firm’s disclosure policy: firm size, leverage, market-to-book, 

institutional ownership, and the number of analysts following the firm. Moreover, all our 

regressions include firm and year fixed-effects to control for unobservable time invariant 

characteristics that may determine variation in firms’ disclosure choices and variation in 

jump volatility, as well as time trends in firm’s disclosure and jump volatility levels. Finally, 

we control for diffusion to alleviate concerns that our results merely reflect an association 

between disclosure, the firm’s information environment, and total volatility. All the variables 

are described in detail in Appendix B 

To provide more causal evidence related to how the information environment affects jump 

volatility we examine how brokerage house closures, which result in an exogenous drop in 

analyst coverage and hence an exogenous change in the flow of information to the market, 

affect jump volatility. We follow Kelly and Ljungqvist (2012) and identify firm-years where 

there was a brokerage house closure that resulted from either a stand-alone brokerage house 

closures or a merger.9 We compare changes in jump volatility in the two years following 

the closures for the affected firm-year observations, relative to the unaffected firm-year ob-

servations.10 To clearly identify affected and unaffected firm-years we only retain firm-years 

following the closure, and firm-years with no closures in the past three years. This process 

removes contaminated firm-years that could be construed as both pre and post closures, or 

both affected and unaffected. Specifically, we estimate the following model: 

Vi,t
j = β0 + β1T reat ∗ P osti,t + β2Controlsi,t + F irm_FEi + Y ear_FEt + εi,t (5) 

The dependent variable is our estimate of jump volatility. T reati is an indicator variable that 

receives the value of one for all firms that experience a closure at some point in the sample, 

and zero otherwise. P osti,t is an indicator variable that receives the value of one for all firms 

that experience a closure in yeart or yeart−1, and zero otherwise. Therefore, T reati ∗ P osti,t 
is an indicator variable that takes the value of one for all firms that experience a closure in 

9We use the data employed in Rozenbaum (2014) starting in 2002. We thank Oded Rozenbaum for 

providing his data. 
10 This horizon is comparable to the horizon employed by Balakrishnan et al., (2014). They employ four 

quarters before and after the closure, in addition to the quarter of the closure. 
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yeart or yeart−1, and zero for those that do not experience any closures in years t, t − 1 and 

t − 2. The main effects, T reat/P ost, are subsumed by the firm and time fixed-effects and 

thus drop out. Similar to Balakrishnan et al. (2014) we control for size and the number 

of analysts following the firm. We further include the relative bid-ask spread, to control 

for variation in information asymmetry that results from the closure that can mechanically 

increase jump. Finally, we control for diffusion to alleviate concerns that our results merely 

reflect an increase in total volatility. We expect β1 < 0. 

As a counterfactual test, we reestimate the model using diffusion (Vi,t
d ) as the dependent 

variable. If the brokerage house closures change the structure of volatility and increase 

volatility through jump volatility, we expect brokerage house closures to affect diffusion 

relatively less. 

As an alternative analysis, we estimate model 5 only for firms that experience a closure at 

some point in our sample. This analysis alleviates concerns that differences between firms 

that experience closures, and firms that do not, are driving our results. All the variables are 

described in detail in Appendix B. 

3.2 Empirical Analysis 

3.2.1 Sample and Descriptive Statistics 

We obtain daily stock prices, volume, shares outstanding, and market-capitalization for all 

stocks listed on the NYSE and NASDAQ between 2002—2012 from CRSP. We start our 

sample in 2002, as this is the last year of the minimum tick rules, which imposed regulatory 

constraints on minimum bid-ask spreads and price changes. For these stocks and years, 

we also obtain historical TAQ data for bid-ask quotes and calculate their average annual 

percentage spreads. We calculate average annual turnover rates using volume and shares 

outstanding data for each stock. 

We eliminate all firm-years with less than 245 observations per year, and those with bid-ask 

spreads (percent) that are larger than 50% or negative. We also eliminate securities that 

do not have data on market capitalization for year t in the CRSP database; this excludes 

non-stock securities listed on exchanges. This process results in 9,088 unique stocks in the 

period 2002—2012, for a total of 61,299 stock-year observations. 

We calibrate the return-process model specified in Equation (1) for daily returns and obtain � � 
for each stock i and year t a vector of parameters θi

t = µi
t, σti, λi

t, αti, γi
t that characterizes 

the jump-diffusion return process. To gauge the consistency of our calibration with the 
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realized historical data, we compare our model-implied daily-return variance (Vi
t as specified 

in Equation (3)) with the realized daily return-variance, measured over the corresponding 

year t. We denote the realized variance by Ve it . For more than 90% of our sample, the ratio 
t
i 
eV 
V ti 

falls between 0.8 and 1.2, implying that there was a good fit between our predicted variance 

and the actual variance, i.e., no more than 20% deviation. 

To finalize our estimation process, we eliminate all estimates with extreme values, that is, the 

highest and lowest 1% for all parameters of the vector θti. We also eliminate all observations eV 
V 

t
i that do not satisfy the condition ∈ [0.8, 1.2]. 11 After applying these additional filters, t
i 

our final sample contains 55,558 stock-years observations. The average jump size α in our 

sample is 3% (in absolute values), and the average jump frequency λ is 16%. These estimates 

are comparable to estimates obtained in prior studies (e.g., Todorov and Bollerslev, 2010; 

Tauchen and Zhou, 2011).12 

To create our final sample, for each firm-year we determine whether the firm issues earnings 

guidance on a regular basis, and the number of forecasts issued by the firm in a year, based 

on the data available in the CIG file in the First Call database. We collect data on the 

number of analyst forecasts issued and the dispersion of analyst forecasts from the summary 

file in the IBES database. Additional control variables are obtained from Compustat and 

Thompson Reuters. For the analysis related to management forecasts we end our sample in 

2010, because the First Call database was discontinued in early 2011. 

The descriptive statistics are reported in Table 1. Panel A reports overall average and 

quintile values for total variance, jump variance, and diffusive variance estimated using 

the model. Variance is computed for each firm i in year t using daily stock return data. 

The average total return variance across all years and stocks is around 0.11%, while the 

average jump and diffusive variances are around 0.065% and 0.044% respectively. Panel 

B reports overall average and quintile values for total volatility (standard deviation), jump 

volatility, and diffusive volatility, which equal the square root of the model implied variances. 

Average total return volatility across all years and stocks is around 2.9%. Average values 

for the diffusive and jump components are of the same order of magnitude, 1.8% and 2.0%, 

respectively, and their medians are around 1.7%.13 Panel C reports summary statistics for 

11 This final elimination does not alter the inferences reported in this paper. 
12 While our starting sample of 55,558 observations remains constant across our tests, the actually number 

of observations in each table varies according to the variables employed and years included in each analysis. 
13 The jump and diffusive volatility components do not sum up to total volatility for two reasons. First, the 

equality holds true for variances and not for standard deviations. Additionally, for total standard variations 

of returns we use realized standard deviations, while for the diffusive and jump components, we use model 

implied volatilities. These values are close but not identical. 
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the remaining variables used in our analysis. The average level of bid-ask spreads is around 

1.8%. Approximately 20% of the firms in our sample provide forecasts on a regular basis. 

The average number of forecasts issued by a firm in a year is close to 1.5. The mean level of 

dispersion in our sample is approximately 1.4% of price. 

3.2.2 Disclosure and the Information Environment 

The results for the disclosure related analysis are presented in Tables 2 and 3. Table 2 

reports the results for our forecasting variable (F orecasteri,t). The coeffi cient in column 

(1) is negative (−0.017) with a t-statistic of −10.30. This result is consistent with H1 and 

shows that firms that issue management forecasts on a regular basis, which have a relatively 

more continuous flow of information, experience lower levels of jump volatility. On average, 

forecasting firms have jump volatility levels that are lower by 26% of the sample average. 

We find a similar effect after controlling for the level of bid-ask spreads. The coeffi cients 

remain negative and significant after we include a host of control variables, including the 

level of diffusion. Coeffi cients in these specifications range from −0.0052 to −0.0043 with 

t-statistics ranging from −2.75 to −3.24. 

Table 3 report results for the number of forecasts issued by the firm (Num_F orecastsi,t). 

The results in this analysis mirror the results in Table 2. The coeffi cient in column (1) is 

negative (−0.012) with a t-statistic of −10.44. This result is also consistent with H1. Firms 

that issue more forecasts throughout the year and have a relatively more continuous flow of 

information experience lower levels of jump volatility. Once again, the coeffi cients remain 

negative and significant across the specifications with coeffi cients ranging from −0.0022 to 
−0.01, with t-statistics ranging from −2.18 to −9.13. In terms of economic magnitude, a 

one standard deviation increase in the number of forecasts issued, reduces jump volatility 

by between 10-47% of the sample average, depending on the specification employed. 

Table 4 report results when we use analyst forecast dispersion (Dispersioni,t) as our measure 

of the firm’s information environment. We find a strong positive relation between the relative 

dispersion in analyst forecasts and the level of jump volatility in the firm. To the extent that 

firms with increased forecast dispersion are less transparent and experience a less continuous 

flow of information to the market, these results support our findings in Tables 2 and 3. 

3.2.3 Brokerage House Closures 

The results related to equation(5) are presented in Table 5. In Panel A, the coeffi cient 

for the variable T reat ∗ P ost in columns (1) - (3) is positive and significant across the 
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specifications, after controlling for bid-ask spreads and diffusion. The coeffi cients range from 

0.0041 to 0.0047, and t-statistics ranging from 2.87 to 3.34. These results provide more 

causal evidence related to the relation between the information environment of the firm and 

jump volatility. Firms that experience an exogenous drop in information arrival rates such 

that information arrives in a more bulky and discontinuous manner, due to an exogenous 

decline in analyst coverage, experience increases in jump volatility. We find similar results 

in Panel B, when we limit our sample to firms that experience at least one brokerage house 

closure in our sample.14 

To validate that our results reflect a change in the structure of volatility, in columns (4)-(5) 

we replace the dependent variable jump (V j ) with diffusion (V d). We fail to find similar 

increases in diffusion following brokerage house closures. Once again, we find similar results 

in Panel B, when we limit our sample to firms that experience at least one brokerage house 

closure in our sample. Taken together, the results in Table 5 provide causal evidence on 

the relation between the information environment and jump volatility, independent from the 

link between the information environment and information asymmetry. 

4 Volatility Structure and Liquidity 

4.1 Research Design 

We estimate Fama-MacBeth regressions to formally test how the different components of 

variance relate to liquidity. We first confirm that indeed total volatility has a positive effect 

on bid-ask spreads in our sample, as previous studies have shown. Therefore we run the 

following cross-section regression year-by-year 

Liqi,t+1 = β0 + β1Vi,t + β2 ln(size)i,t + εi,t (6) 

where the dependent variable Liqi,t+1 denotes the relative bid-ask spread (in percent) for 

stock i in the following year t+1.15 The explanatory variables on the right-hand side include 

total variance Vi,t, the log of the market capitalization ln(size)i,t, and an error term εi,t, all 

measured for stock i in year t (January 1 to December 31). This cross-section regression 

is estimated year-by-year, and then time-series averages are calculated for all coeffi cients, 

14 Our sample includes 2,300 treated firms and 6,270 treated firm-years. 
15 In our specification we test for lagged effects since for any decision made in year t+1 the only information 

available is from year t. However, in unreported results we repeated all our regressions using contemporaneous 

variables instead of lagged ones and find the same effects. 
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following the Fama-MacBeth method. Therefore this procedure yields a vector of estimates � � 
β = β0, ..., β1+J that characterizes the variables’effect on liquidity.16 

In the next step, we explicitly include in the model the decomposition of total variance into 

its jump and diffusion-driven components. Therefore the new specification is 

Liqi,t+1 = β0 + β1Vi,t
d + β2Vi,t

j + β2 ln(size)i,t + εi,t (7) 

where the explanatory variables Vi,t
d and Vi,t

j , the diffusion- and jump-driven variance com-

ponents, respectively, replace the total variance Vi,t in Equation (6). 

As discussed in the introduction, because the structure of volatility is governed by the in-

formation environment of the firm, the link between jump and liquidity provides a link be-

tween the information environment and liquidity. Nevertheless, prior literature has already 

established a link between the information environment of the firm and liquidity through in-

formation asymmetry. Our predictions suggest that the information environment is likely to 

create observable differences in liquidity even for firms with identical information asymmetry 

(or even in the absence of information asymmetry). 

We test this predication in two different ways. First, we simply add a control variable 

to Equation (7) to account for the level of information asymmetry. Second, we sort our 

sample into five quintiles of information asymmetry and re-estimate Equation (7) in each 

quintile. Our empirical proxy for information asymmetry is the probability of informed 

trade (PIN). PIN is based on the imbalance between buy and sell orders among investors 

and is therefore technically unrelated to bid-ask spread. The PIN measures are obtained 

from Stephen Brown’s website and are based on Brown and Hillegeist (2007). In their paper 

they compute PINs using the Venter and De Jong (2006) model to extend the Easley et al. 

(1997) model. 

4.2 Empirical Analysis 

4.2.1 Univariate Analysis - Sorted Portfolios 

As a first step we provide univariate evidence using a portfolio framework. We examine how 

each volatility component relates to illiquidity while controlling for the remaining volatility 

16 The fact that market-makers face high-frequency intra-day inventory risk should not be confused with 

our use of annual variables. These variables represent firm characteristics that represent jump and diffusive 

risks, not realized jumps or price changes. They represent the likelihood of jumps and diffusive price changes 

upon which market-makers base their approach to setting bid-ask spreads. As mentioned earlier, these 

characteristics are indeed estimated using higher frequency data (daily). 
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component. In Table 6, Panel A, we sort all stocks in our sample for each year t on their 

diffusion-driven variance portion V d and form five equally weighted portfolios. The first 

quintile portfolio contains stocks with the lowest diffusive volatility component for a given 

year, and the fifth quintile contains stocks with the highest diffusive volatility component. 

We denote these portfolios by d = 1, ..., 5. Then, for each year t, we further sort each of the 

five portfolios d = 1, ..., 5 on their jump-driven variance component V j to form additional five 

equally weighted sub-portfolios per portfolio rank d. The first quintile sub-portfolio contains 

stocks with the lowest V j and the fifth quintile sub-portfolio contains stocks with the highest 

V j . This way, we create for each year t, and diffusive portfolio rank d, five subgroups of 

stocks ranked from 1-5 sorted on V j . We denote these sub-portfolios by dj = 1, ..., 5. We 

then calculate average bid-ask spreads for each sub-portfilo in year t + 1. 

As seen in Panel A, there is a strong positive relation between bid-ask spreads and the jump 

volatility ranking, while holding diffusive volatility levels fixed. This relation exists for all 

levels of diffusive volatility. The difference in means for bid-ask spreads between high- and 

low-jump volatility portfolios are all positive and range from 164 to 278 basis points, with 

t-statistics ranging from 18.94 to 27.57 indicating high statistical significance. 

In Panel B of Table 6 we repeat the same procedure the other way around. That is, we sort 

all stocks on the jump variance component V j and then further sort each jump portfolio 

j = 1, ..., 5 on the diffusive variance component. This way, we create for each year t, and 

jump portfolio rank j, five sub-portfolios ranked from 1—5 sorted on V d . We denote these 

sub-portfolios by jd = 1, ..., 5. We then calculate the average bid-ask spread for each portfolio 

(in year t + 1). 

A very different picture arises from this analysis. As seen in Panel B, there is now a negative 

relation between bid-ask spreads and the ranking of diffusive volatility, controlling for jump 

volatility levels. Overall the difference in average bid-ask spreads between high diffusive 

and low diffusive volatility portfolios are all negative, and around −65 basis points, with t-

statistics ranging from −7.76 to −13.10. The only exception is for the highest jump portfolio 

which exhibits a very small and insignificant difference in bid-ask spreads between its high 

and low diffusive volatility portfolios. 

4.2.2 Fama-MacBeth Regressions: Total Volatility and Illiquidity 

In the first step, we replicate the results from previous studies to confirm that total volatility 

has a positive impact on illiquidity in our sample. The first column in Table 7 reports Fama-

MacBeth regression results based on the model specified in Equation (6). Total variance 
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indeed has a positive and significant impact on bid-ask spreads, with a coeffi cient estimate 

of 2.19 and t-statistic of 5.52. Market capitalization also has a negative and statistically 

significant effect. These findings are consistent with prior studies that found a positive rela-

tion between volatility and illiquidity costs (e.g., Stoll, 1978b, 2000; Pastor and Stambaugh, 

2003). 

4.2.3 Fama-MacBeth Regressions: Volatility Components and Illiquidity 

In the next step, we decompose total volatility into its jump and diffusive driven components. 

The second column of Table 7 reports Fama-MacBeth regression results for the regression 

specified in Equation (7), which explicitly models separate effects for each component. The 

estimated effects of jump and diffusive volatilities are very different. The jump-driven vari-

ance coeffi cient is 4.25 compared to −1.87 for the diffusive one. Both coeffi cients are statis-

tically significant with t-statistics of 7.84 and −4.14, respectively. This implies that the two 
volatility components affect illiquidity very differently: the jump component positively and 

the diffusive negatively. These coeffi cients imply that an increase of one standard deviation 

in the jump-driven volatility component increases bid-ask spreads by approximately 40 basis 

points, whereas an equivalent increase in the diffusive volatility component decreases bid-ask 

spreads by approximately 10 basis points. Firm size maintains a very similar effect compared 

to those obtained for total volatility. Finally, the Fama-MacBeth average R 
2 
is between 48% 

and 49%, indicating that the model has strong explanatory power. 

An alternative yet equivalent way to state our results is that controlling for total volatility, 

the jump volatility component has a strong positive effect on illiquidity whereas the diffusive 

component has a negative effect. Although this analysis is exactly equivalent to the one 

carried out thus far, for convenience and ease of presentation we report estimation results 

for the effects jump and diffusive volatility have on illiquidity when controlling for total 

volatility. These results are presented in the last two columns of Table 7, using Models A 

and B respectively. The coeffi cient estimates in Model A and B match their implied values 

from the coeffi cient estimates in the original specification.17 

In summary, our results indicate that the structure of volatility significantly matters for bid-

ask spreads beyond the raw levels of volatility. While the jump-driven volatility component 

drives the positive relation between volatility and illiquidity, the diffusive component has an 

opposite relation. 

17 To see this clearly, define the bid-ask spread as y, jump volatility as x1, diffusive volatility as x2, and 

total volatility as x3, where x3 = x1 +x2. If y = αx1 +βx2 then y = (α−β)x1 +βx3 and y = (β −α)x2 +αx3. 
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4.2.4 Controlling for Information Asymmetry 

In our next analysis we examine the relation between the structure of volatility and liquidity 

controlling for information asymmetry. The results from these tests are presented in Table 8. 

The first column presents estimation results for Equation (7) when controlling for information 

asymmetry. The results reveal that although PIN is, as expected, positively associated with 

bid-ask spreads all our other results remain qualitatively unchanged (as in Table 7). Columns 

2-6 present estimation results for Equation (7) for each information asymmetry quintile from 

low to high separately. The coeffi cient for jump volatility is positive with high t-statistics in 

all quintiles, while the coeffi cient for diffusive volatility is mostly negative. Taken together, 

these results suggest that the relation between each source of volatility and liquidity remains 

unaltered even for firms with similar levels of information asymmetry. 

These tests do not suggest that the structure of volatility does not affect liquidity through 

information asymmetry as well. Nor do these tests suggest that the information environment 

does not affect liquidity through information asymmetry. These result simply suggest that 

the information environment can affect liquidity through its effect on volatility structure in-

dependently of the effects the information environment has on liquidity through information 

asymmetry. 

4.2.5 Causal Evidence for the Relation between the Information Environment 
and Liquidity Driven by Jump Volatility 

In section 3.2.3 (Table 5) we provided casual evidence that more opaque information 

environments result in higher levels of jump volatility. Specifically, we show that firms that 

experience an exogenous drop in information arrival rates, due to an exogenous decline in 

analyst coverage, experience increases in jump volatility. In this section, we use the same 

shock to analyst coverage to employ a two-stage shock based Instrumental Variable (IV) 

design with which to estimate the relation between the information environment and liquidity 

that is driven by jump volatility (see Atanasov and Black, 2016, for a survey on shock based 

IV designs). A shock based IV design is useful when there is a particular channel through 

which the causal relation between two variables is expected. In our setting, we expect that 

a shock to the information environment will affect liquidity through the channel of jump 

volatility. 

To operationalize the shock based IV design we employ the analysis presented in Table 5 as a 

first stage regression and estimate the effect of the shock to the information environment on 

jump volatility. The results in Table 5 show that the shock to the information environment, 
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which results from the exogenous drop in analyst coverage, has a strong effect on jump 

volatility. Using the variable T reat ∗ P ost as an instrument for jump, we estimate the 

predicted value of jump using the specification in column (3) of Table 5, excluding the bid-

ask spread variable. We label the predicted value Jump_Hat. In the second stage regression, 

we regress the newly constructed Jump_Hat variable and all the controls variables used in 

the first stage on illiquidity. Specifically, we estimate the following model where V̂ j is the 

predicted value Jump_Hat. Following the prior analysis equation (8) is estimated using 

Fama-MacBeth regressions. 

Liqi,t+1 = β0 + β1V̂ 
i,t
j + β2Vi,t

d + β3Controlsi,t + εi,t (8) 

Jump_Hat is the change in jump that results form the exogenous change in analyst fol-

lowing. Therefore, the coeffi cient β1 represents an estimate for the change in liquidity that 

results only through the effect of the drop in analyst coverage on jump volatility, as opposed 

to through an alternative channel.18 

The results from the second stage are presented in Table 9. The coeffi cient on Jump_Hat 

is positive and significant (40.82 with a t-statistic of 3.59).19 This result suggests that a 

deterioration in the information environment resulting in information arriving in a more 

bulky and discontinuous manner causally decreases liquidity through the channel of jump 

volatility. 

4.2.6 Testing for Reverse Causality - Turnover 

By definition, illiquid assets are subject to greater jump risk as thin trading means infrequent 

transactions where each transaction is more likely to generate large price impacts. Put 

differently, “technical jumps”can be generated through prices that bounce between bid and 

ask quotes for wide bid-ask spreads. 

18 One potential concern is that the change in jump that resutls from the breokerage house clsoures is 

highly correlated with the change in information asymmetry that results from the brokerage house closures. 

However, the results in Table 5 show that the relation between the closures and jump is not affected by the 

inclusion of spreads as a control variable. 
19 In untabulated results, we confirm that the coeffi cient for size is negative and significant similar to the 

result in Table 7 when the number of analysts following the firm is removed from the regression. 
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To mitigate the concern that this reverse causality drives our results, we test for the effect of 

increasing the jump volatility component while controlling for turnover rates. By construc-

tion, stocks with high turnover rates do not exhibit thin trading. Therefore, we first sort 

all stocks in each year on turnover rates and form five different portfolios, from low to high. 

Then, for each turnover portfolio, we double sort on total volatility and jump-driven volatil-

ity creating 25 portfolios for each turnover level. To control for total volatility, we calculate 

average bid-ask spreads per jump level across all five total volatility buckets. Therefore, we 

have a five-by-five portfolio ranking sorted on turnover level and jump-driven volatility level 

while controlling for total volatility. We report the results in Table 10. 

Our results show that the dominance of the jump volatility component is maintained in all 

portfolios: higher jump-driven portfolios always exhibit higher average bid-ask spreads, for 

all five turnover portfolios. Formal t-tests for the difference between high and low jump-

portfolios all reject the null hypothesis that the corresponding average bid-ask spreads are 

identical per turnover portfolio, with t-statistics ranging from 8.26—10.76. This suggests that 

jump volatility plays an important role even for stocks that do not suffer from thin trading. 

4.2.7 Turnover 

Higher turnover rates reduce market-makers’inventory costs because they can better match 

the order flow and consequently increase liquidity (E.g., Tinic and West, 1972; Stoll, 1978a). 

As discussed earlier , diffusive volatility is associated with increased trading, while jump 

volatility is not (e.g., Giot et al., 2010). This fact entails that the negative association 

between diffusive volatility and illiquidity is mediated through the effect turnover has on 

illiquidity. This gives rise to a prediction that diffusive volatility should have no effect on 

illiquidity after controlling for turnover effects. 

To test this prediction we repeat the regressions specified in Equations (6)-(7) this time 

explicitly accounting for turnover effects by including a turnover variable in these regressions. 

Table 11 reports estimation results for these regressions. The first column displays the results 

for the effect total variance has on bid-ask spreads. Under this specification, the coeffi cient 

estimate for total variance increases to 3.44 with a t-statistic of 6.02 (compared to 2.19 and 

5.52 in Table 7, respectively). The turnover coeffi cient is negative, as expected, consistent 

with prior studies that argue that higher trading activity decreases illiquidity. The coeffi cient 

for total volatility becomes more positive since here we explicitly account for the negative 

impact turnover has on illiquidity, capturing only the pure relation between total volatility 

and illiquidity and ignoring its indirect negative effect through turnover. 
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The second column in Table 11 reports the results for separating between the two volatility 

components. Under this specification the jump-driven variance coeffi cient increases to 5.15, 

while the diffusion-driven variance coeffi cient dramatically drops to 0.02 (compared to 4.25 

and −1.87 in Table 7, respectively). Moreover, the t-statistic for the jump-component co-

effi cient remains high (8.30) but for the diffusive component it drops to 0.04 (compared to 

7.84 and −4.14 in Table 7, respectively). The turnover coeffi cient is negative, similar to that 

obtained for total volatility. These results confirm that the entire relation between diffusive 

volatility and illiquidity is indirect and it is completely driven by turnover, as predicted. 

In contrast, the relation between jump volatility and illiquidity is direct and unrelated to 

increased trading activity. 

4.2.8 Crash Risk 

We also verify that the dominant effect the jump component has on illiquidity is not driven 

by crash risk. In unreported results, we find that the dominance of the jump components 

is qualitatively the same for positive and negative average jump sizes (α). Similarly, when 

including a dummy variable for negative jumps to control for crash risk, its coeffi cient es-

timate is insignificant. This result is expected and consistent with the way market-makers 

operate, as they hold non-zero stock inventories in both directions, long and short, exposing 

them to price changes risk in both directions, for positive and negative price changes. 

4.2.9 Volatility Components and Liquidity Risk 

A number of studies have shown that liquidity levels are risky (e.g., Pastor and Stambaugh, 

2003; Sadka, 2006).20 Given our findings about the differential effects jump and diffusive 

volatilities have on liquidity, to the extent that some of this relation is driven by systematic 

factors, it is possible that these components would play different roles in determining liquidity 

risk. 

Acharya and Pedersen (2005) use a liquidity-adjusted CAPM model to provide a unified 

framework that accounts for the various effects liquidity risk has on asset prices. In their 

model, the CAPM “beta” is decomposed into the standard market beta and additional 

three liquidity-related betas, representing three different channels through which liquidity 

risk operates: (1) the sensitivity of the stock’s illiquidity to the market’s illiquidity; (2) 

the sensitivity of the stock’s return to the market’s illiquidity; and (3) the sensitivity of 

the stock’s illiquidity to the market’s return. Investors demand higher risk premiums for 

stocks that suffer more in times of stress, times in which they also exhibit large losses in 

20 Amihud and Mendelson (2015) review this literature, see additional references therein. 
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wealth. That is, investors should worry about a security’s performance and tradability both 

in market downturns and when liquidity “dries up”. 

While Acharya and Pedersen’s (2005) model gives clear predictions as to the effects these 

three sensitivities have on stocks’expected returns, they recognize that they do not explain 

why different stocks possess those different sensitivity characteristics. Rather, they merely 

estimate the sensitivities and treat them as given. Our framework allows for a deeper insight 

into the heterogeneity of these characteristics, which complements their analysis. 

The relation between jump volatility and two of the liquidity risk channels described above 

is straightforward. The first and third channels describe the comovement in individual stock 

illiquidity with market illiquidity and market returns, respectively, over time. Since we 

showed that the jump-volatility component is the dominant driver behind illiquidity, it is 

possible that it would also be the main driver determining its commonality with the other 

two variables. 

The second channel, which describes the comovement between returns and market liquidity, 

might also be driven by jump risk. Firms with higher jump risk are more likely to experience 

large losses (i.e., a negative jump) when markets "dry up" for lack of funding, thus increasing 

the commonality between returns and market liquidity. Furthermore, trading costs for indi-

vidual stocks might also increase in an illiquid environment and thus put downward pressure 

on prices. Since liquidity costs are driven by jump risk, it is possible that these firms with 

higher jump risk that are more likely to experience price declines in illiquid markets. 

To test these possibilities we follow Acharya and Pedersen (2005) and Sadka (2006). In 

untabulated results we find that jump and diffusive volatilities have very different effects. 

The interactions between the jump component and the liquidity factors have positive and 

statistically significant coeffi cients. On the other hand, the interactions between the diffusive 

component and the liquidity factors are non-significant. That is, this richer framework for 

the liquidity measure also supports the unique role jump volatility plays: given the structure 

of volatility only the jump volatility component increases liquidity risk. 

In summary, these findings provide further support for the dominant role jump volatility 

plays in the relation between volatility and liquidity. Not only liquidity levels are driven by 

the jump component but liquidity risk as well. We do not find a similar significant effect 

for the diffusive component. Finally, this pattern exists in all three channels through which 

liquidity risk operates. 

24 



5 Conclusions 

In this paper, we propose and empirically investigate a new channel through which the 

information environment of the firm can affect liquidity. We propose that the information 

environment affects liquidity not only through information asymmetry, as documented in 

prior literature, but also through the structure of volatility and the distinct channel of the 

market maker’s inventory risk (e.g., Johnson and So, 2018). This gives rise to an additional 

path, which is independent from information asymmetry, through which the information 

environment can affect liquidity, the cost of capital, and result in real effects. 

We employ modern models for the structure of volatility to decompose total volatility into 

its jump and diffusive components. Volatility patterns generated by a discontinuous jump 

process (jump) arise from infrequent large isolated price changes while diffusive volatility 

(diffusion) arises from smooth continuous small price changes. Stocks in which information 

arrives in a more bulky and discontinuous way are more likely to be subject to jumps (Maheu 

and McCurdy, 2004). Consistently, we show that stocks with more transparent information 

environments and more frequent disclosures have lower jump volatility levels. 

Specifically, we find that firms that issue earnings guidance on a regular basis, and firms 

that issue more earnings forecasts in a year, experience lower levels of jump volatility. These 

results are found after controlling for bid-ask spreads, the level of diffusion, and firm and year 

fixed-effects. The effect is economically significant. For example, a one standard deviation 

increase in the number of forecasts issued during the year decreases jump volatility between 

10-47% of the sample average. We find similar results using analyst forecasts dispersion as a 

measure of the firm’s information environment. To provide more causal evidence on the role 

of the information environment, we exploit the brokerage house closure setting employed by 

Kelly and Ljungqvist (2012) and Balakrishnan et al. (2014). We find that an exogenous 

drop in analyst coverage causally increases jump volatility. 

The relation between the information environment and the structure of volatility has impli-

cations for liquidity. We show that jump volatility drives the positive relationship between 

volatility and illiquidity, while diffusive volatility has a negative relation. These relations 

are found at all levels of information asymmetry. These results are consistent with the idea 

that jump volatility increases the market maker’s inventory risk which in turn decreases 

liquidity. In an effort to provide more causal evidence, we employ a two stage shock based 

instrumental variable design using the brokerage house closures as an instrument for jump. 

We continue to find a positive relation between jump and illiquidity using this approach. 
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This result suggests that a shock to the information environment resulting in information 

arriving in a more bulky and discontinuous manner causally decreases liquidity due to an 

increase in jump volatility. 

The relation between jump volatility and liquidity is independent of the relation between 

information asymmetry and liquidity. Since the disclosure policy and information environ-

ment of the firm have a direct influence on the structure of volatility, disclosure can drive 

illiquidity trough the structure of volatility. 

At the regulatory level, our study provides evidence that implementing accounting and dis-

closure policies that encourage more continuous flows of information may help increase liq-

uidity. Such policies are likely to reduce the jump component of volatility, smooth potential 

surprises, and thus improve liquidity. 

In closing, we note that causal terms we used to describe the mechanism through which the 

volatility components affect liquidity are purely inspired by the theoretical arguments that 

motivate our empirical study. We realize that we do not offer an explicit theoretical model to 

gauge the different effects that jump and diffusive volatilities have on liquidity. Nevertheless, 

the theoretical paradigms mentioned in the introduction and in Section 2 provide the inspi-

ration for our empirical investigation, which is significant in itself, particularly given the fact 

that no work has been done on this topic. Therefore, our findings also provide motivation 

for further developments of an explicit theoretical model, which we leave for future research. 

26 



Appendix A: Model and Estimation Method 

Following Merton (1976), let St denote a stock price at time t on a filtered probability space 

(Ω, F, (Ft) , P ), which is assumed to satisfy the following stochastic differential equation: 

dSt 
= (µ − λ · E (Z − 1)) dt + σdWt + (Z − 1) dNt, 

St 

where µ and σ2 denote the instantaneous mean and variance of the stock return in the 

absence of jumps, and Wt is a Wiener process. Furthermore, Nt is a Poisson process with 

intensity λ > 0, and Z is the log-normal jump amplitude with ln Z v N(α; γ2) such that 

γ2 

E(Z − 1) = exp(α + ) − 1. 
2 

We postulate that Wt,Nt, and Zt are mutually independent. The parameter vector θ is 

θ = (µ, σ2, λ, α, γ2)0 , where α and γ2 represent the mean and variance of the jump size of 

stock returns. 

Since the Brownian motion and the Poisson process of jump events are independent, the 

total return variance can be decomposed into � � 
St 

V ≡ V ar = V ar (σWt) + V ar (Jt) , (9) 
S0 

which is the sum of the diffusion-related variance and the jump-related variance. We denote 

V d ≡ V ar (σWt) 

V j ≡ V ar (Jt) 

as the respective variances. Furthermore, following Merton (1976) and Navas (2003), these 

variances can be expressed in terms of the respective basic process parameters as 

V d = σ2t (10) � � 
V j = λ α2 + γ2 t, 

which allow for easily calculating these values based on the parameter vector θ. 

Following Ait-Sahalia (2004), under the assumptions specified above, the transition density 

fΔ ln S of ln St can be expressed by 

fΔ ln S (x; θ) = (1 − λ · Δt) · fΔ ln S|ΔNt=0(x|ΔNt = 0; θ) + λ · Δt · fΔ ln S|ΔNt=1(x|ΔNt = 1; θ), 
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where fΔ ln S|ΔNt=0 and fΔ ln S|ΔNt=1 represent the transition densities of ln St, conditioning 

on ΔNt = 0 and ΔNt = 1 jumps between two sampling points, respectively, and Δt > 0 

denotes the time distance between sampling points. Since 

P (ΔNt = 0) = 1 − λ · Δt + o(Δt) 

P (ΔNt = 1) = λ · Δt + o(Δt) 

P (ΔNt > 0) = o(Δt), 

additional jumps between two sampling points are neglected. Closed form expressions for 

the conditional densities are given by � � 
1 (x − m(k))2 

fΔ ln S|ΔN=k(x|ΔNt = k; θ) = p · exp − , 
2 · π · v(k) 2 · v(k) 

where � � 
m(k) = µ − σ2/2 − λ · E(Z − 1) · Δt + k · a 

v(k) = σ2 · Δt + k · γ2 , 

with k ∈ {0, 1}. Based on a sample of n stock returns Δ ln s1, ..., Δ ln sn, the resulting 

likelihood estimate bθ of θ is computed numerically as ! 
nX 

θ̂ = arg max ln fΔ ln S (Δ ln si; θ) . 
θ 

i=1 
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Figure 1 
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Panel A presents a simulated price path for two stocks. The total volatility of the stock Jump is 20%, resulting from 
one jump process. The total volatility of the stock Diffusion is also 20%, resulting from a diffusive process with 
no jumps. Panel A presents the price paths for each stock separately. Panel B presents the price path for a new 
stock, Jump-Diffusion, which is a combination of the two stocks.  
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Figure 2 

This figure presents a conceptual sketch of the drivers of illiquidity or bid-ask spreads. The figure highlights that 
illiquidity is driven by both information asymmetry and inventory risk. Therefore, the effect of jump volatility on 
illiquidity presents an alternative channel that affects illiquidity, independent from the relation between information 
asymmetry and illiquidity.  
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Appendix B: Variable Definitions 

Variable Name Description 

μ  Constant parameter of the diffusion process representing the 
diffusive drift. 

 See Appendix A 
σ  Constant parameter of the diffusion process representing the 

diffusive volatility. 
 See Appendix A 

Λ  Constant parameter of the compound jump process representing 
the average number of jumps per annum (year). 

 See Appendix A 
Α  Constant parameter of the compound jump process representing 

the average jump size. 
 See Appendix A 

γ  Constant parameter of the compound jump process representing 
the standard deviation of the jump size α. 

 See Appendix A 
Total Variance  

௝ 

 Total return variance for stock i in year t, based on daily stock 
returns. 

 Stock return data is obtained from CRSP. 

Jump ( ௜ܸ,௧)  The jump component of total return variance for stock i in year 
t, based on daily stock return data. 

Diffusion ( ௜ܸ,௧
ௗ )  The diffusive component of total return variance for stock i in 

year t, based on daily stock return data. 
Bid-Ask Spread (Liq)   Annual average bid-ask spread for firm i across all intraday 

quotes based on available TAQ data. 
PIN  The probability of informed trade as measured by Brown and 

Hillegeist (2007). 
 Annual data are obtained from Stephen Brown’s website. 

Turnover  The annual average ratio of daily volume to shares-outstanding 
for firm i in year t. 

 Daily data is obtained from CRSP. 
Size  Natural log of the market cap of the firm measured at the end of 

the calendar year, as reported by CRSP. 
Forecaster  An indicator variable that equals 1 if the firm issues at least one 

earnings forecast in three out of four quarters in a given year, 
and zero otherwise (Rogers et al. 2009). 

 Management forecast activity is obtained from First Call’s 
Company Issued Guidelines (CIG) database. 

Num_Forecasts   Natural log of (1+ the number of management earnings 
forecasts issued in a given year). 

Dispersion  The dispersion of analyst forecasts scaled by the firms’ price in 
the prior month. 

 Analyst forecast data is obtained from the IBES summary file. 
We use the first available observation in the calendar year. 
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 Price is obtained from the CRSP monthly file 
Market-to-Book (MTB)  The market value of equity / the book value of equity at the 

beginning of year t (end of year t-1).* 
 The book and market value of equity is obtained from 

Compustat. 
Leverage  Ratio of (debt in current liabilities + long term debt) / (total 

assets) at the beginning of year t (end of year t-1).* 
  Data are obtained from Compustat.  

Return on assets (ROA)  Annual earnings before extraordinary items at the beginning of 
year t (end of year t-1) *, scaled by total assets. 

 Data are obtained from Compustat.   
Loss  An indicator variable equal to one if the firm’s annual net 

income is negative at the beginning of year t (end of year t-1).* 
 Earnings data are obtained from Compustat.  

Institutional Ownership  The (%) of outstanding shares held by institutions based on 
quarter-end 13F filings, for the first quarter in the year  

 The variable is constructed by WRDS in its s34 database. 
 In cases where the (%) reported exceeds 100%, we redefine the 

variable to equal 100%. 
Total Return  Total returns in year t, as reported by CRSP in the monthly file. 

 Returns are measured for the entire calendar year.  
Analysts Following  Natural log of (1 + the number of annual earnings estimates 

(for the next fiscal period) present in the IBES summary file in 
year t. 

 We use the record at the end of the calendar year (November or 
December).  

 If no data are present on IBES, the variable is set to zero. 
Earnings Volatility  The standard deviation of annual operating income after 

depreciation scaled by total assets at the beginning of year t 
(end of year t-1) *, measured over five years, using a minimum 
of three years. 

 Data are obtained from Compustat.  

* Compustat based variables are measured during the current year for firms with a fiscal year end between 
January and June. Compustat based variables are measured during the prior year for firms with a fiscal 
year end between June and December. 
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Table 1: Descriptive Statistics 

This table reports descriptive statistics for our sample. Panels A reports average estimates for total, jump, and diffusive 
return variances as defined in Equations (4) and (5), multiplied by 100. Variance is calculated for each firm i in year 
t using daily stock return data. Panel B reports the corresponding volatilities (standard deviations). Total volatility is 
the realized standard deviation of daily returns. The diffusive and jump components reported in Panel B equal the 
square root of their model implied variances. Panel C reports descriptive statistics for the remaining variables 
employed in our analysis. We report summary statistics for the raw variables even though we employ log 
transformations for some of the variables in our regressions. The number of observations in our primary sample where 
we obtain estimates for jump and diffusive daily return variances is 55,558. See Appendix B for detailed variable 
definitions. 

VARIABLES Mean p25 p50 p75 SD 

Panel A: Daily Stock Return Variance (x100) 

Total 0.1096 0.0204 0.0591 0.1412 0.1381 
Jump 0.0653 0.0081 0.0300 0.0821 0.0921 
Diffusion 0.0443 0.0123 0.0291 0.0591 0.0460 

Panel B: Daily Stock Return Volatility (Std) 

Total 0.0292 0.0169 0.0255 0.0376 0.0168 
Jump 0.0203 0.0090 0.0173 0.0286 0.0159 
Diffusion 0.0186 0.0111 0.0170 0.0243 0.0100 
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Panel C 

VARIABLES N Mean p25 p50 p75 SD 

Bid-Ask Spread (%) 55,558 1.858 0.307 0.852 2.36 2.428 
Analyst Following 55,558 4.5 0 2.0 7.0 5.97 
Forecaster 46,451 0.195 0 0 0 0.396 
Num_Forecasts 46,451 1.50 0 0 1.0 3.09 
Dispersion 29,369 0.0139 0.0006 0.0016 0.0048 0.0624 
MTB 45,808 2.77 1.13 1.79 3.00 3.38 
Leverage 46,830 0.208 0.019 0.151 0.323 0.221 
ROA 44,942 -0.020 -0.019 0.024 0.075 0.267 
Earnings volatility 46,374 0.085 0.014 0.033 0.080 0.194 
Loss 46,948 0.298 0 0 1.0 0.457 
Institutional Ownership 48,577 0.475 0.158 0.474 0.775 0.326 
Total Return 47,203 0.125 -0.203 0.069 0.341 0.540 
Market Cap ($ Millions) 55,558 1,847 88.83 318.80 1,246 4,556 
Turnover  55,558 1.589 0.402  0.921  1.901  9.254  
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Table 2: The Information Environment and Jump Volatility: Issuance of Management 
Forecasts 

This table reports results for the estimation of Equation (4), which estimates the relation between the management 
forecasting policy of the firm and jump volatility. Forecaster is an indicator variable that equals 1 if the firm issues at 
least one earnings forecast in three out of four quarters in a given year, and zero otherwise (Rogers et al. 2009). We 
multiple the variables Jump, Diffusion, and Bid-Ask Spread by 100 for expositional purposes. Statistical significance 
levels are denoted by *** p<0.01, ** p<0.05, * p<0.1. t-statistics based on standard errors clustered at the firm level 
are reported in parentheses. See Appendix B for detailed variable definitions. 

VARIABLES Jump Variance ( ௜ܸ,௧
௝ ) 

Forecaster -0.0172*** -0.0151*** -0.0052*** -0.0043*** 
[-10.30] [-9.13] [-3.24] [-2.75] 

Bid-Ask Spread 0.0134*** 0.0082*** 0.0079*** 
[26.46] [12.32] [12.18] 

Diffusion 0.2292*** 
[10.48] 

MTB 0.0010*** 0.0009*** 
[3.10] [2.76] 

Leverage 0.0000 0.0005 
[0.00] [0.08] 

ROA -0.0080* -0.0074 
[-1.69] [-1.57] 

Loss 0.0127*** 0.0107*** 
[7.62] [6.57] 

Institutional Ownership -0.0081 -0.0067 
[-1.57] [-1.34] 

Total Return 0.0095*** 0.0081*** 
[6.95] [6.00] 

Size (ln) -0.0405*** -0.0378*** 
[-21.23] [-21.04] 

Analyst Following (ln) 0.0106*** 0.0093*** 
[6.82] [6.20] 

Earnings Volatility 0.0274*** 0.0224*** 
[3.44] [3.02] 

Observations 46,451 46,451 31,319 31,319 
Adj. R-squared 0.545 0.577 0.620 0.626 

Fixed Effects 
Firm & 

Year 
Firm & 

Year 
Firm & 

Year 
Firm & 

Year 
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Table 3: The Information Environment and Jump Volatility: Number of Management 
Forecasts 

This table reports results for the estimation of Equation (4), which estimates the relation between the management 
forecasting policy of the firm and jump volatility. Num_Forecasts equals the natural log of (1+ the number of 
management earnings forecasts issued in a given year). We multiple the variables Jump, Diffusion, and Bid-Ask 
Spread by 100 for expositional purposes. Statistical significance levels are denoted by *** p<0.01,   ** p<0.05,* 
p<0.1. t-statistics based on standard errors clustered at the firm level are reported in parentheses. See Appendix B 
for detailed variable definitions. 

VARIABLES ௝ Jump Variance ( ௜ܸ,௧) 

Num_Forecasts -0.0116*** -0.0100*** -0.0027*** -0.0022** 
[-10.44] [-9.13] [-2.59] [-2.18] 

Bid-Ask Spread 0.0133*** 0.0082*** 0.0079*** 
[26.38] [12.33] [12.19] 

Diffusion 0.2295*** 
[10.49] 

MTB 0.0010*** 0.0009*** 
[3.12] [2.78] 

Leverage -0.0000 0.0005 
[-0.00] [0.08] 

ROA -0.0079* -0.0073 
[-1.67] [-1.56] 

Loss 0.0127*** 0.0107*** 
[7.59] [6.55] 

Institutional Ownership -0.0082 -0.0068 
[-1.60] [-1.35] 

Total Return 0.0094*** 0.0081*** 
[6.92] [5.98] 

Size (ln) -0.0405*** -0.0377*** 
[-21.18] [-20.98] 

Analyst Following (ln) 0.0106*** 0.0094*** 
[6.84] [6.22] 

Earnings Volatility 0.0274*** 0.0224*** 
[3.44] [3.02] 

Observations 46,451 46,451 31,319 31,319 
Adj. R-squared 0.546 0.578 0.620 0.626 

Firm & Firm & Firm & Firm & 
Fixed Effects Year Year Year Year 
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Table 4: The Information Environment and Jump Volatility: Analyst Forecast Dispersion 

This table reports results for the estimation of Equation (4), which estimates the relation between analyst forecast 
dispersion and jump volatility. Dispersion equals the dispersion of analyst forecasts scaled by the firms’ price in the 
prior month. We multiple the variables Jump, Diffusion, and Bid-Ask Spread by 100 for expositional purposes. 
Statistical significance levels are denoted by *** p<0.01, ** p<0.05, * p<0.1. t-statistics based on standard errors 
clustered at the firm level are reported in parentheses. See Appendix B for detailed variable definitions. 

VARIABLES ௝ Jump Variance ( ௜ܸ,௧) 

Dispersion 0.3483*** 0.3058*** 0.2764*** 0.2501*** 
[14.70] [13.24] [6.86] [6.42] 

Bid-Ask Spread 0.0173*** 0.0083*** 0.0085*** 
[13.78] [6.54] [6.95] 

Diffusion 0.2368*** 
[8.90] 

MTB 0.0009*** 0.0007** 
[2.94] [2.55] 

Leverage 0.0024 0.0023 
[0.38] [0.38] 

ROA -0.0144** -0.0139** 
[-2.50] [-2.46] 

Loss 0.0112*** 0.0090*** 
[6.26] [5.22] 

Institutional Ownership -0.0185*** -0.0173*** 
[-3.88] [-3.71] 

Total Return -0.0016 -0.0026* 
[-1.09] [-1.75] 

Size (ln) -0.0273*** -0.0250*** 
[-15.14] [-14.63] 

Analyst Following (ln) 0.0052*** 0.0046*** 
[3.14] [2.84] 

Earnings Volatility 0.0427*** 0.0329*** 
[4.09] [3.23] 

Observations 29,369 29,369 24,677 24,677 
Adj. R-squared 0.538 0.555 0.587 0.594 

Fixed Effects 
Firm & 

Year 
Firm & 

Year 
Firm & 

Year 
Firm & 

Year 
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Table 5: The Information Environment and Jump Volatility: Brokerage House Closures 

This table reports results for the estimation of Equation (5), which estimates the effect of an exogenous reduction in 
analyst coverage on jump volatility. We measure the exogenous reduction in analyst coverage using brokerage 
house closures. Panel A reports results for all available observations as discussed in Section 3.1. Panel B reports 
results only for firms that experience a closure at some point in our sample. Treat is an indicator variable equal to 
one for firms that experience a brokerage house closure, and zero otherwise. Post is an indictor variable equal to one 
for firm-years including and following the year of the brokerage house closure, and zero otherwise. Treat*Post is the 
interaction of Treat and Post. The main effects, Treat and Post, are subsumed by the firm and year fixed effects. 
Columns 1–3 employ Jump as the dependent variable. Columns 4–5 employ diffusion as the dependent variable and 
serve as a counterfactual test. We multiple the variables Jump, Diffusion, and Bid-Ask Spread by 100 for 
expositional purposes. Statistical significance levels are denoted by *** p<0.01, ** p<0.05, * p<0.1. t-statistics 
based on standard errors clustered at the firm level are reported in parentheses. See Appendix B for detailed variable 
definitions. 

Panel A 

VARIABLES ௝ Jump Variance ( ௜ܸ,௧) 
ௗ ) Diffusion Variance ( ௜ܸ,௧

Treat * Post

(1) 

 0.0041*** 

(2) 

0.0047*** 

(3) 

0.0046*** 

(4) 

0.0003 

(5) 

0.0004 

Diffusion 
[2.87] [3.31] [3.34] 

0.2899*** 
[0.36] [0.56] 

Bid-Ask Spread 

Size (ln) 

Analyst Following (ln) 

-0.0381*** 
[-26.30]
0.0035** 

[2.57]

0.0090*** 
[13.83] 

-0.0309*** 
 [-21.03] 

0.0060*** 
 [4.44] 

[12.48] 
0.0083*** 

[12.99] 
-0.0282*** 

[-20.63] 
0.0056*** 

[4.26] 

-0.0113*** 
[-16.08] 
0.0009 
[1.20] 

0.0023*** 
[7.10] 

-0.0095*** 
[-13.39] 
0.0016** 

[2.01] 

Observations 
Adj. R-squared 

Fixed Effects 

35,531 
0.593 

Firm & 
Year 

35,531 
0.605 

Firm & 
Year 

35,531 
0.614 

Firm & 
Year 

35,531 
0.547 

Firm & 
Year 

35,531 
0.550 

Firm & 
Year 
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Panel B 

VARIABLES ௝ Jump Variance ( ௜ܸ,௧) 
ௗ ) Diffusion Variance ( ௜ܸ,௧

Treat * Post

(1) 

 0.0033** 

(2) 

0.0032** 

(3) 

0.0031** 

(4) 

0.0001 

(5) 

0.0002 

Diffusion 
[2.30] [2.22] [2.27] 

0.3300*** 
[0.19] [0.20] 

Bid-Ask Spread 

Size (ln) 

Analyst Following (ln) 

-0.0328*** 
[-15.57]

0.0065*** 
[2.95]

0.0092*** 
[4.83] 

-0.0296*** 
 [-14.27] 

0.0093*** 
 [4.20] 

[8.99] 
0.0093*** 

[4.97] 
-0.0263*** 

[-13.89] 
0.0087*** 

[4.17] 

-0.0099*** 
[-9.67] 
0.0019 
[1.52] 

-0.0003 
[-0.35] 

-0.0101*** 
[-9.64] 
0.0018 
[1.43] 

Observations 
Adj. R-squared 

Fixed Effects 

13,012 
0.646 

Firm & 
Year 

13,012 
0.629 

Firm & 
Year 

13,012 
0.633 

Firm & 
Year 

13,012 
0.646 

Firm & 
Year 

13,012 
0.620 

Firm & 
Year 
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Table 6: Volatility Structure and Liquidity: Univariate Portfolio Analysis 

We sort all stocks, in each year, on one volatility component, and then resort the stocks in each quintile on the other 
component. In Panel A, we first sort stocks on diffusive volatility and form portfolios d=1,...,5. Then, each diffusive 
portfolio d is sorted again using the jump volatility component, to form five additional portfolios. This allows us to 
test the marginal effect of an increase in total volatility which is driven solely by jump volatility, controlling for the 
diffusive component. In Panel B, we first sort stocks on jump volatility and then on diffusive volatility to test the 
marginal effect of diffusive volatility while controlling for jump volatility. We report average bid-ask spreads in period 
t+1 for each portfolio. We also report the differences in bid-ask spreads between the highest and lowest portfolios and 
their related t-statistics. 

Portfolio Low 2 3 4 High 

Panel A: Controlling for Diffusive Volatility 

Low Jump 0.0162 0.0085 0.0097 0.0090 0.0115 
2 0.0149 0.0090 0.0090 0.0099 0.0160 
3 0.0147 0.0103 0.0103 0.0125 0.0208 
4 0.0183 0.0157 0.0151 0.0169 0.0284 
High Jump 0.0339 0.0266 0.0261 0.0285 0.0393 
High-Low 0.0176 0.0181 0.0164 0.0194 0.0278 
t-stat 18.94 22.90 20.86 24.80 27.57 

Panel B: Controlling for Jump Volatility 

Low Diffusion 0.0166 0.0169 0.0204 0.0253 0.0364 
2 0.0141 0.0106 0.0133 0.0190 0.0270 
3 0.0086 0.0088 0.0113 0.0166 0.0262 
4 0.0092 0.0089 0.0102 0.0139 0.0294 
High Diffusion 0.0093 0.0102 0.0139 0.0184 0.0361 
High-Low -0.0073 -0.0067 -0.0065 -0.0068 -0.0003 
t-stat -13.10 -10.95 -8.42 -7.76 -0.20 
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Table 7: Volatility Structure and Liquidity, Fama-Macbeth Regressions 

This table reports results for the Fama-MacBeth regressions of total volatility and bid-ask spread, as well as the 
marginal effects of each volatility component on bid-ask spreads, as specified in Equations (6) & (7). The first column 
corresponds to Equation (6) and estimates the effect of total volatility on bid-ask spreads. The second column 
corresponds to Equation (7) and estimates the effect of each volatility component on bid-ask spreads separately. Model 
A and B are additional versions of Equation (7) as discussed in Section 4.2.4. Statistical significance is denoted by 
*** p<0.01, ** p<0.05, * p<0.1, and t-statistics are reported in parentheses. See Appendix B for detailed variable 
definitions. 

VARIABLES Bid-Ask Spread 

Total 
Volatility 

Volatility 
Components 

Model A Model B 

Diffusion 

Jump 

Total Variance 

Size (ln) 

Constant

2.1974*** 
[5.52] 

-0.0082*** 
[-10.09] 

 0.1209*** 
[10.90] 

-1.8707*** 
[-4.14] 

4.2549*** 
[7.84] 

-0.0081*** 
[-9.86] 

0.1196*** 
[10.70] 

6.1256*** 
[9.25] 

-1.8707*** 
[-4.14] 

-0.0081*** 
[-9.86] 

0.1196*** 
[10.70] 

-6.1256*** 
[-9.25] 

4.2549*** 
[7.84] 

-0.0081*** 
[-9.86] 

0.1196*** 
[10.70] 

Observations 
Avg. R-squared 

44,171 
0.483 

44,171 
0.489 

44,171 
0.489 

44,171 
0.489 
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Table 8: Volatility Structure and Liquidity, Controlling for Information Asymmetry 

This table reports results for Equation (7) related to the relation between volatility and illiquidity while controlling for 
information asymmetry. Our proxy for information asymmetry is the probability of informed trade (PIN). PIN is based 
on the imbalance between buy and sell orders among investors. PIN related data are obtained from Stephen Brown's 
website and are based on Brown and Hillegeist (2007). The results in the first column are based on all firm years in 
our sample. Columns 2-6 report results for each information asymmetry quintile separately, sorted from low to high. 
Statistical significance levels are denoted by *** p<0.01, ** p<0.05, * p<0.1, and t-statistics are reported in 
parentheses. See Appendix B for detailed variable definitions.  

VARIABLES Bid-Ask Spread 

All Low Rank 2 Rank 3 Rank 4 High 

Jump 

Diffusion  

Size (ln) 

PIN 

Constant

4.3676*** 
[5.91]

-0.7488 
[-0.80] 

-0.0071*** 
[-10.91]

0.0231*** 
[10.35] 

 0.0930*** 
[10.65]

6.6467***
 [4.16] 

0.5934 
[0.58] 

-0.0076*** 
 [-12.65] 

0.1120*** 
 [12.23] 

 3.3863***
[4.42] 

-1.0056 
[-1.22] 

-0.0051*** 
[-12.75] 

0.0758*** 
[12.73] 

 2.3236***
[5.58] 

-0.6360 
[-0.69] 

-0.0047*** 
[-10.06] 

0.0712*** 
[10.43] 

 3.0447***
[7.11] 

-1.2862** 
[-2.42] 

-0.0046*** 
[-13.79] 

0.0707*** 
[14.41] 

 6.3039*** 
[5.96] 
3.8679 
[1.71] 

-0.0102*** 
[-8.58] 

0.1498*** 
[8.93] 

Observations 
Avg. R-squared 

38,355 
0.524 

7,675 
0.523 

7,672 
0.477 

7,670 
0.455 

7,672 
0.467 

7,666 
0.496 
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Table 9: Volatility Structure and Liquidity, Predicted Exogenous Jumps 

This table reports results for the 2nd stage of the two-stage shock based Instrumental Variable (IV) design discussed 
in Section 4.6. To provide more causal evidence, we employ the predicted values of the jump volatility component 
based on exogenous reductions in analyst coverage driven by brokerage house closures as estimated in Table (5), as 
an instrument for Jump. We apply a two-stage regression procedure. In the first stage, we use the regression depicted 
in Column (3) of Table (5), excluding the bid-ask spread variable, to derive predicted values for jumps. In the second 
stage, we use Equation (8) to estimate the effect of the two volatility components on bid-ask spreads. Since our 
predicted jump component captures only exogenous values not driven by spreads, we are able to test for causal effects 
from jumps to spreads. Statistical significance levels are denoted by *** p<0.01, ** p<0.05, * p<0.1, and t-statistics 
are reported in parentheses. See Appendix B for detailed variable definitions. 

Variables Bid-Ask Spread 

Jump Hat 

Diffusion 

Size (ln) 

Analyst Following (ln) 

Constant 

40.8231*** 
[3.59] 

-11.6865** 
[-3.25] 

0.7402** 
[2.48] 

-0.3184*** 
[-6.77] 

-9.8987* 
[-2.21] 

Observations 
R-squared 

27,932 
0.484 
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Table 10. Volatility Structure and Liquidity, Controlling for Turnover 

This table uses a portfolio analysis approach to test for the causal effects of jumps on liquidity by increasing the jump 
volatility component while controlling for turnover. By construction, stocks with high turnover ratios do not exhibit 
thin trading. We first sort all stocks in each year based on their turnover ratio into five different portfolios, from low 
to high. Then, for each turnover portfolio, we double sort on total volatility and jump-driven volatility creating 25 
portfolios for each turnover level. To control for total volatility, we calculate average bid-ask spreads per jump level 
across all five total volatility buckets. Therefore, we have a five-by-five portfolio ranking sorted on turnover level and 
jump-driven volatility level while controlling for total volatility. We report average bid-ask spreads in period t+1 for 
each portfolio, and differences in bid-ask spreads between the highest and lowest portfolios and their related t-
statistics. See Section 4.2.7 for more detailed description. 

Jump Low 2 3 4 High High-Low t-stat 

Low Turnover 0.0354 0.0384 0.0389 0.0424 0.0479 0.0125 10.73 
2 0.0174 0.0201 0.0213 0.0227 0.0248 0.0074 10.08 
3 0.0083 0.0103 0.0107 0.0126 0.0151 0.0068 13.19 
4 0.0050 0.0058 0.0059 0.0071 0.0088 0.0038 10.76 
High Turnover 0.0040 0.0044 0.0044 0.0052 0.0066 0.0026 8.26 
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Table 11. Volatility Structure and Liquidity, Controlling for Turnover 

This table reports results for the Fama-MacBeth regressions of total volatility and bid-ask spread, as well as the 
marginal effects of each volatility component on bid-ask spreads after controlling for turnover. The first column 
corresponds to Equation (6) and the second column corresponds to Equation (7). Statistical significance levels are 
denoted by *** p<0.01, ** p<0.05, * p<0.1, and t-statistics are reported in parentheses. See Appendix B for detailed 
variable definitions 

VARIABLES Bid-Ask Spread 

Jump 5.1547*** 
[8.30] 

Diffusion  0.0225 
[0.04] 

Total Variance 3.4453*** 
[6.02] 

Size (ln) -0.0076*** -0.0075*** 
[-11.93] [-11.55] 

Turnover -0.0016*** -0.0015*** 
[-5.50] [-5.44] 

Constant 0.1145*** 0.1136*** 
[12.90] [12.57] 

Observations 44,171 44,171 
Avg. R-squared 0.505 0.509 
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