
July 8, 2010

By email to rule-comments@sec.gov
Ms. Elizabeth M. Murphy
Secretary
Securities and Exchange Commission
100 F Street, N.E.
Washington, D.C. 20549 Re:

Re: File No. S7-08-10 Asset-Backed Securities
Dear Ms. Murphy:

I write to comment on aspects of Release Nos. 33-9117; 34-61858 regarding the use of XML
data !les and the waterfall computer program in the o"ering disclosure, and reporting for asset-
backed securities. I am a securitization a#orney with experience since 1990 in residential and
commercial mortgage backed, credit card, auto loan and stranded asset transactions. From 1998
until 2008 I was in-house counsel to Washington Mutual, Inc. where I also was responsible for the
initial organization of its !xed-income broker-dealer subsidiary, WaMu Capital Corp. My
comments will be primarily based on my experience in residential assets.1

Endorsement of the Framework
$e Commission’s proposals to standardize data !elds and presentation format and to require

the integration of numeric and narrative descriptions of cash%ows will improve disclosure,
monitoring and regulation of securitizations and encourage enhanced a#ention to detail by
sponsors and underwriters. It will close the loop between the predominantly numeric orientation
by the designers of cash%ows and the bond administrators responsible for distribution
calculations, on the one hand, and lawyers dra&ing contractual provisions, on the other. $e
common ground provided by the waterfall computer program’s expression of the rules will be#er
con!rm the business intent and further clarify their contractual expression in the operative
documents.

Scope of the Waterfall Computer Program
$e scope of the program should be limited. It should not reproduce in full the exact working

of the distribution rules under every contingency. Issues sometimes arise in the administration of
distributions that require considerable interpretation and judgment to make the precise amounts
to each class of security accurate. Transaction operative documents contain extensive provision
for possibilities that seldom or never arise in practice. If all of these contingencies are included in
the disclosure, waterfall computer program users would have to make many assumptions about
the future state of pool assets that create them. Since the e"ect on the magnitude of distributions
are small except for structures with highly leveraged features, the contingencies should be

1 Readers interested in an informal presentation of these and other issues in the proposing release will !nd
commentary at http://blog.revisedregab.com and http://www.pylaw.org.

disregarded as second- or third-order e"ects. A model derives its usefulness from abstraction and
its ability to demonstrate results under a manageable number of assumptions.

Rather, the program should permit an assessment of the amount outstanding under
assumptions of prepayment, default probability and severity given default. $is facility would be
similar to, but with more user control of, the decrement tables in the prospectus currently and the
conclusory analysis represented by ratings. Of course, if the program is not su'cient to cover
material contingencies an appropriate disclosure to that e"ect would be necessary.

Content and Form of Inputs
$e data !elds that the Commission proposes are not all equally suitable for input to the

waterfall computer program. While the contractual terms of the pool assets do enter into the
calculation of distributions (beginning principal balance, maturity, interest rate, any adjustment
terms, etc.), most of the !elds provide information that is useful in estimating default and severity
given default probabilities. $ose probabilities provide a possible input, at the option of the user,
to vary assumptions about realized losses. A data structure for prepayment speeds should also be
provided, together with a sample table with stated assumptions against which to test that facility.

Two data !elds are problematic if nonpublic borrower information is to be provided. $e date
on which the loan closed, together with the actual sale price of the residence provide su'cient
information in most recording o'ces to identify the borrower. $e date of closing provides no
useful information that cannot be captured by the month or quarter of closing. $e approximate
sale price, similarly, is adequately captured by the loan to value ratio. If these date !elds are not so
modi!ed, the Commissions concerns about disclosing zip code will be defeated. If so, no reason
appears not to permit zip code improvement. In any event, the metropolitan area is too coarse a
unit of measurement to be useful, and a 3-digit zip code should be permi#ed.

XML format data provides the bene!t of a consistent means of extracting pool asset data
without the complications of extraneous forma#ing currently used to make web versions visually
a#ractive. $is is accomplished through the bene!cial separation of content from design. Design
elements are isolated to a portion of the !le (through XSLT style markup that governs the
rendering of data on the screen or print), while the XML data remains unencumbered for easy
extraction by program such as the waterfall computer program.

$e Commission should also consider the bene!ts of requiring static pool information be
provided in XML format.

Facilities for Alternative Inputs and Analysis
While the waterfall computer program provides a base level of functionality, many investors

have relied on vendors of proprietary systems to analyze investments. To avoid interfering with
their ability to do so, the waterfall computer program requires an application programming
interface (API) that speci!es the required form of inputs, the input required by each module and
the outputs produced.

2

Underwriters should also have the option to permit the waterfall computer program to be
provided in forms such as a spreadsheet2 or a proprietary input !le supplementally as a non-issuer
freewriting prospectus.

Outputs
$e waterfall computer program should project monthly (or another appropriate interval)

receipts of scheduled interest and principal along with prepayments and other reductions in
principal on the individual assets in the pool under stated assumptions, such as prepayment
speeds, interest rates or default and loss severity given default. Each such assumption should be
represented in a way that permits the user to vary the condition. $e waterfall computer program
should also provide for each trigger in which the rules for distribution change as a result of some
condition, such as a clean-up call, a stepdown date or loss or delinquency levels.

It is very important that the waterfall computer program provide for cases in which
distributions depend upon the character of the cash received. Examples include shi&ing of
interest rules on prepayments, prepayment penalties allocated to a class, strips on premium loans,
advances subject to reimbursement or payments under swap agreements.

$e waterfall computer program should include an output that captures and allocates results
of realized losses in a way that permits the user to vary the levels of anticipated losses. $e
resulting periodic payment of principal and interest on each security, according to its respective
entitlement, is the primary output.

Narrative
While the waterfall computer program is responsible for translating the logic of the

transaction structure to distributions given the pool asset data and assumptions, the narrative is
responsible for describing the logic. Except for simple structures, this task requires the extensive
use of de!ned terms, just as the implementing logic is expressed in discrete variables and
functions. To keep the narrative both precise and comprehensible, it should be introduced by an
overview.

$e overview should begin with a description of the source of payments due to the pool
assets3 and the deductions from those payments for compensation to transaction parties such as
the servicer. $e overview should then discuss how distribution rules change over time. For each
!xed or variable period, the overview should discuss the priority of distribution of the available
distribution amount and whether distributions among securities of the same priority is
proportional to their balances or divided on some other basis. $e method of calculating interest
for the applicable period should be identi!ed by security, and the rule for application to interest
and principal should be described. $e overview should then discuss changes to the usual rules

3

2 A spreadsheet is a program with a graphical user interface that permits the contamination of clean data and
programming logic by human error, especially when it includes features designed primarily to make highly
decorated output.

3 This might include payments other than those made by the borrower, such as mortgage insurance, pool
insurance or liquidation proceeds.

that are contingent upon the nature of the payments (for example, prepayments and liquidations)
or triggers.

Special types of rules, such as shi&ing of interests, would bene!t from a description of their
purpose in the structure. Disclosures are easier to follow when the underlying motivation for
special features is explicit.

Once an overview is provided, a rigorous discussion of the rules should continue to be the
practice. Readers who wish to understand the details in depth will have been oriented by the
overview and readers who are not will escape the burden of a lengthy disclosure. Unfortunately,
the only way to make disclosure simple is to make structure simple.

Demonstration
To illustrate what a waterfall computer program would look like, in part, the exhibit that

follows the le#er includes Python source code of a program to generate a decrement table for a
recent actual transaction with user speci!ed assumptions about single monthly mortality of
individual mortgage loans. $is di"ers from the usual assumption that the pool consists of
representative mortgage loans that represent an aggregate of individual loans with the same
payment characteristics. $e methodology that is applied in the usual prospectus disclosure has
an unrealistic feature, which is that only portions of such loans prepay. While partial prepayments,
called curtailments, do occur they are much less common than prepayments in full. $e example
in the exhibit considers each loan in the pool individually and applies a randomization factor to
determine if a particular loan pays o" in a given period. $is is the sort of enhancement that
permits greater investor participation in analysis.

$e waterfall computer program is in novice style and heavily commented. $is is to make it
easier to follow for those unfamiliar with Python or programming. It is not intended as an
example of best programming practices.

Integration with Operative Documents
To mitigate the tension between the disclosure through the waterfall computer program and

the contractual implementation of the intent of the structure, the pooling and servicing
agreement or equivalent could include a clause such as the following: “$e [responsible
transaction party] shall interpret and administer this Agreement to give e"ect to its terms and
conditions governing distributions to securityholders consistently with the computer program in
Exhibit __ to the extent that the assumptions described in Exhibit __ conform to the actual
conditions for any Distribution Date.”

Updating and Reconciliation
Current pool asset data should be provided o&en enough to permit observers to compare

actual with projected results. Only the data !elds that change as a result of payment related
activity should be updated, although it would be helpful if the !elds that speak as of the cut-o"
date also be included. So, for example, no updated credit scores would be provided but the credit
scores at origination (or later if included in the original data tape) would be.

Actual results will di"er from projected results, and interested parties monitoring
performance would bene!t if the responsible transaction party provided a quarterly reconciliation

4

to show di"erences between an assumed cut-o" date set of assumptions for the waterfall
computer program and actual distributions. $is could cover di"erences due to asset pool
performance, interest rate changes, the more detailed administrative model and any di"erences
due to unidenti!ed causes.

Phase-in
Underwriters, issuers, parties responsible for bond administrators, investors and other users

of the waterfall computer program would bene!t from a phase-in period to familiarize themselves
thoroughly with the preparation and use of the waterfall computer program, to allow commercial
vendors to integrate their o"erings with the program and to allow practices to converge to shared
conventions. Along with whatever implementation e"ective date that the Commission
determines for this requirement, it would be appropriate during the !rst year to have the waterfall
computer program treated similarly to static pool data disclosure when it was !rst introduced. It
would be deemed to not be part of the registration statement, and good faith errors would not
carry strict Section 11 liability.

Importance of Standards
A waterfall computer program can be wri#en in many di"erent ways even within a single

programming language.4 While any single portion of a program may be easy to understand, it can
be confusing to have to keep straight several di"erent ways of dealing with the same type of
calculation. For example, many structures with subordination use a shi&ing of interests feature.
$is rule directs prepayments to the senior class, which increases, or shi&s, the relative
proportions of the interests of the senior and subordinate classes in the transaction. Usually the
amount of prepayments begins at 100% and decreases (steps down) at scheduled intervals
provided losses remain below set levels. An example is included in the exhibit.

Because this is a pa#ern that occurs o&en, it would bene!t from a consistent implementation.
$is might develop through the practice of issuers conforming disclosure practice to what they
see other issuers doing. Another way would be to adapt the open source model of a self-appointed
standards board to publish, receive comment and maintain reference modules. $is has been a
very successful approach in many academic and computer science applications. It could arise
spontaneously among securitization participants but more likely will require the sponsorship of a
body such as SIFMA or the American Securitization Forum. $e willingness of an industry group
to undertake this task during a phase-in period would provide strong reason for a phase-in period
that requires the waterfall computer program but does not deem it part of the registration
statement.

Burden on Dra!ing and Opining A"orneys
Some securitization a#orneys have expressed strong doubts that they would be able to deal

with computer code. $is is understandable but mistaken. It is not necessary that a#orneys be
su'ciently skilled to write waterfall computer programs but they do need to be able to read them.

5

4 For an amusing illustration see http://www.99-bottles-of-beer.net/language-python-808.html (Python
programs in 10 di"erent idioms to print the lyrics to the popular ditty); cf. http://www.99-bottles-of-beer.net/
abc.html (other languages).

$at is not as di'cult as may be imagined. It involves, in abbreviated form, the same skills in
parsing, logic and de!ned terms as dra&ing. $e syntax of Python, for example, is far more
consistent and intuitive than that of the Uniform System of Citation. A#orneys cannot perform their
required roles without becoming literate enough to be able to read and understand the waterfall
computer programs.

If the burden of authoritatively de!ning the structure is shi&ed to the programmers of the
waterfall computer program and the a#orney is merely a scrivener, the a#orney still needs to be
able to read the result to dra& the contractual terms. If the de!nitive expression remains the
pooling agreement or equivalent transaction document, the a#orney still needs to be able to
explain to the programmer how to understand it. For example, many usages that are perfectly
intelligible to a#orneys, such as clauses using notwithstanding, can ba(e a programmer. As
con!dent as the a#orney is in her explanation, she must still be able to read the result to know if
she has been understood.

While opining a#orneys are justi!ed in excluding the computational results of the waterfall
computer program from the scope of their negative assurance opinions to underwriters, they
should undertake to provide comfort on programming logic, excluding syntax ma#ers.

Comment on Speci#c Questions
Is there an alternative form of required information !ling that would be more useful to investors,
subject to the limitation that executable code may not be !led on EDGAR?

Potentially. No language should be excluded simply because it is compiled before running
rather than interpreted as it is run. Depending on the security measures taken, source code for a
waterfall computer program in a compiled language such as C++ is as innocuous or dangerous as
source code in an interpreted language, such as Python, PERL or Ruby.
Should we require, as proposed, that the Rule 424(h) !ling include the waterfall computer
program?

No, it should be in the Rule 430 !ling. $e waterfall computer program should be a part of the
statutory prospectus and available to the investor before a sale. A preliminary prospectus is not,
however, necessary for this purpose. $e pricing and expense information has never been relevant
to investors in asset backed securities and now that asset backed securities will have distinct
registration forms the requirement should be dropped. Unlike an equity or debt investor in an
operating company who has an interest in knowing how much of its investment will be applied to
the enterprise, the asset backed investor has no interest in how the purchase proceeds are
allocated among the issuer and underwriters.
Is it appropriate to require issuers to submit the waterfall computer program in a single
programming language, such as Python, to give investors the bene!t of a standardized process?

Yes. Even if investors have su'cient resources to deal with multiple programming languages,
their regulators and other interested parties may not. Lack of a common standard would also
hinder comparative analyses of di"erent issuer transactions.

6

If so, is Python the best choice or are there other open source programming language alternatives
(such as PERL) that would be be"er suited for these purposes?

Each programming language has its relative strengths. Given application requirements,
programmers may prefer one over the other. C++ provides advantages in working within the
Windows operating environment. PERL, the duct tape of the Internet, is particularly suited for
one-o" problems that can be solved by quickly adapting existing code to a new use. Java has
strengths for graphical user interface applications that will run unmodi!ed on di"erent operating
systems. Ruby is concise yet understandable and has widely accepted coding conventions that
promote consistency. Haskell enforces referential integrity so that code will produce identical
results una"ected by side e"ects of other code. Lisp is very concise and provides good facilities to
program the programming. R has libraries for almost every statistical tool that exists. C is fast,
universally portable, compact and very mature. Python is highly readable and maintainable, stable
and well adapted to programming by snapping together module pieces. Python can embed
modules from other languages.

A trained programmer could prepare the waterfall computer program in any of these
languages. $e compiled languages, C, C++ and Java would be more di'cult for novices to follow
than the interpreted languages. Among the interpreted languages, Ruby, Haskell and Lisp are
somewhat terse compared to Python and, for that reason, may also be more di'cult for beginners
to read. Python represents a good balance between programmer productivity and user
accessibility.
Should more than one programming language be allowed?

On if there is a single required language should additional languages should be allowed. It
should be the issuer’s choice whether to provide the waterfall computer program in additional
languages as part of the prospectus or to rely on the underwriter to provide it as a non-issuer
freewriting prospectus.
If so, which ones and why?

Any language, open source or proprietary, should be permi#ed, based on market demand,
because the Commission should encourage an investor to use whatever combination of analytic
tools is most e"ective for that investor.
Should we restrict ourselves to only open source programming languages or allow fully
commercial or partly-commercial languages (such as C-Sharp or Java) to be used?

$e required language should be open source so that no investor or other interested party is
required to pay any fee to a vendor or to incur potential intellectual property infringement
liability for using or modifying a waterfall computer program.
Are there other requirements we should impose on the possible computer programming
languages that are used to satisfy this requirement, other than that such languages be open source
and interpreted?

 $e Commission should not limit its consideration to interpreted languages. Source codes for
compiled and interpreted languages do not require separate treatment to protect the integrity of

7

the EDGAR system. $e types of precautions required for system security are identical whether
the code is to be invoked by an interpreter and executed or !rst by a compiler and then executed.
Would downloading the code onto a local computer give rise to any signi!cant risks for investors?
If so, please identify those risks and what steps or measure we should take to address the risks, if
any.

$e risk posed to investor systems depends primarily on the individual user’s sophistication
and alertness to security and the e"ectiveness of the user’s organizational information technology
protocols. Part of the standards se#ing process should be identifying the types of system
operations that are permissible within the program, those that should be allowed only with an
advisory statement and those that should be prohibited.
Should the outputs of the waterfall computer program be speci!ed in detail by rule, or broadly
de!ned to a#ord $exibility to ABS issuers?

$e outputs should be broadly de!ned to include the amounts and character of each periodic
distribution and information on the source of payments for cases in which the source of payment
a"ects amounts or allocations. Also, the outputs should include beginning and ending amounts or
levels of variables that a"ect future payments, such as triggers.
Should we require comments in the code that explain what each line does?

Although line-by-line commenting, like that used in many parts of the a#ached exhibit, is
helpful to novices, it does not add much to the understanding of users who are su'ciently versed
in the language. $e waterfall computer program and each of its functions, classes or methods,
however, should contain a docstring that conforms to standard Python conventions.5 An
extended comment should also be included that explains, in a general way, the correspondence
between each major portion of the program and the treatment in the narrative portion of the
prospectus.
Is this necessary given the narrative disclosure of the waterfall in the prospectus?

Yes. Understanding the narrative helps in understanding the implementation in the waterfall
computer program but does not provide su'cient information to understand how to follow the
cash%ow through the program or how to modify the program.
Is the proposed requirement to provide the waterfall computer program with the proposed Rule
424(h) prospectus as of the date of !ling and a !nal prospectus under Rule 424(b) as of the date of
!ling appropriate?

It is appropriate only if the Commission determines that a preliminary prospectus without
price and proceeds/expenses information and a !nal prospectus with price and proceeds/
expenses information are still necessary given the introduction of Forms SF-1 and SF-3 and the
lack of signi!cance of this information to investors. $e proceeds/expenses information has no
bearing on the future value of the investment. $e price disclosure never varies from the phrase
“are being o"ered by the underwriters from time to time for sale to the public in negotiated
transactions or otherwise at varying prices.”

8

5 PEP 257 Docstring Conventions http://www.python.org/dev/peps/pep-0257/

Should we provide a transition period prior to the required compliance date that would allow
!lers to submit only test !lings?

No. Test !lings are needed only to con!rm that the submission is in the form required to be
lodged on the EDGAR system and are non-public. What is needed is a period in which waterfall
computer programs can be freely disseminated with o"erings to familiarize all participants with
their composition and use and to promote the development of standardization. $is will only
happen if the material is deemed not a part of the registration statement during the transition
period.
Is our proposal to permit the !ling of an exhibit to disclose additional program functionality
appropriate?

Although additional program functionality is permissive, Item 601(b)(105) makes its !ling
mandatory, rather than permissive.
Are there any impediments that issuers would face if they are required to !le the waterfall
computer program on EDGAR?

No, !ling the program on EDGAR presents no unusual di'culty because it is just text.
Provided it is !led as plain text (.txt) rather than forma#ed as HTML, downloading or copying
the waterfall computer program should permit it to be run in the Python interpreter program
without any editing. Python treats whitespace (tabs and spaces) as part of the syntax. $is makes
consistency in indentation important to preserve in the !led version.
We note that the waterfall computer program and the narrative description of the waterfall would
need to be accurate and the accuracy of one would not compensate for inaccuracies in the other.

 $e accuracy desired of the narrative is that it describe the material terms and conditions of
the operative agreements. $e accuracy of the waterfall computer program is that it implement
that description for the required pool asset data given stated assumptions to produce numerically
correct results. Because the waterfall computer program should not a#empt to fully address every
possible contingency that the narrative summarizes the standard should be accuracy given the same
level of detail and not identical level of detail in coverage of all the same conditions.

XML Tagging of the Waterfall Computer Program
A key feature of the waterfall computer program is that it be able to parse the pool asset !le

data in XML format. $e Commission should not require the waterfall computer program source
code itself be required to be submi#ed as tagged XML data. $ere is no reason why source code
could not be presented as an XML document, but it is not commonly done and no speci!cation
exists to provide a common presentation.

$e following line is the source code for a minimal Python program:

print “Hello, world!”

It might look like the following tagged in XML

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="http://www.revisedregab.com/xmlsample.xsl"
type="text/xsl" ?>
<program>

9

 <keyword name = “print”>
 <argument>”Hello, world!”</argument>
 </keyword>
</program>

$e Commission should reconsider the need for this requirement.
Intellectual Property Rights in the Waterfall Computer Program
To avoid disputes about the use of the waterfall computer program by investors, regulators,

vendors and other issuers, the Commission should require that a waterfall computer program
should be provided under a royalty free license similar to those commonly provided with open
source so&ware.

I hope that the Commission !nds these comments useful. Please call me at (941) 907-0645 or
email me at info@revisedregab.com with questions if needed.

Very truly yours,

Richard Careaga
A#achment: Demonstration Program Exhibit

10

#!/usr/bin/env python
encoding: utf-8
"""
demonstration.py

Created on 2010-07-07
Copyright (c) 2010 __Richard Careaga__ All rights reserved

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are
 met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Richard Careaga nor the names of
 contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS
 IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RICHARD
 CAREAGA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.
"""
Obtain various standard helper functions and classes
from __future__ import division # needs to be first line
import sys
import os
import plac
import urllib2
from collections import defaultdict
from datetime import date
from datetime import datetime
from dateutil.relativedelta import *
from lxml import etree
from StringIO import StringIO
help_message = '''
demonstration: calculate a decrement table for Sequoia 2010-H1 at a constant
prepayment rate assumption modified so that each loan that prepays does so
in full, rather than a curtailment.
Usage: python ./demonstration.py cpr where cpr is a decimal fraction between
0.01 and 1.00, inclusive
For discussion of the code visit http://www.pylaw.org/demonstration.html and to download
http://www.pylaw.org/demonstration.txt
'''

11

'''Constants, from Sequoia Mortgage Trust 2010-H1 (http://goo.gl/I9Wi)'''
dealname = 'Sequoia 2010-H1'
bond = 'Class A-1'
replinefile = 'http://www.pylaw.org/dectable.csv'
margin = 2.25 # identical for each loan
index = 0.9410 # assumed constant per 'modeling assumptions'
expfee = 0.2585 # servicing and trustee fees
reset = margin + index - expfee # interest rate calculation on adjustment
 # dates
pbal = 237838333.0 # initial aggregate principal balance of the loans
obal = 222378000.0 # initial aggregate principal balance of the Class A-1
srpct = obal/pbal # initial Senior Principal Percentage
cod = date(2010,5,1)# cut-off date
close_month = cod - relativedelta(months=1)
anniversary_month = (cod - relativedelta(months=1)).strftime('%B')
'''stepdown dates'''
stepdown = dict(
stepone = [date(2017,5,1), 1.0],
steptwo = [date(2018,5,1), 0.7],
stepthree = [date(2019,5,1), 0.6],
stepfour = [date(2020,5,1), 0.4],
stepfive = [date(2021,5,1), 0.2]
)
tttdate = date(2013,5,1) # two times test date
num_replines = 16
num_loans = 255
speeds = [0, 0.1, 0.2, 0.3, 0.4, 0.5]

url='http://www.revisedregab.com/xmlsample.xhtml' #XML file of loans

helper functions
def generateItems(seq):
 for item in seq:
 yield item

def md(lexicon,key, contents):
 """Generic append key, contents to lexicon"""
 lexicon.setdefault(key,[]).append(contents)

class Solver(object):
 '''takes a function, named arg value (opt.) and returns a Solver object
 http://code.activestate.com/recipes/303396/'''
 def __init__(self,f,**args):
 self._f=f
 self._args={}
 # see important note on order of operations in __setattr__ below.
 for arg in f.func_code.co_varnames[0:f.func_code.co_argcount]:
 self._args[arg]=None
 self._setargs(**args)
 def __repr__(self):
 argstring=','.join(['%s=%s' % (arg,str(value)) for (arg,value) in
 self._args.items()])

12

 if argstring:
 return 'Solver(%s,%s)' % (self._f.func_code.co_name, argstring)
 else:
 return 'Solver(%s)' % self._f.func_code.co_name
 def __getattr__(self,name):
 '''used to extract function argument values'''
 self._args[name]
 return self._solve_for(name)
 def __setattr__(self,name,value):
 '''sets function argument values'''
 # Note - once self._args is created, no new attributes can
 # be added to self.__dict__. This is a good thing as it throws
 # an exception if you try to assign to an arg which is inappropriate
 # for the function in the solver.
 if self.__dict__.has_key('_args'):
 if name in self._args:
 self._args[name]=value
 else:
 raise KeyError, name
 else:
 object.__setattr__(self,name,value)
 def _setargs(self,**args):
 '''sets values of function arguments'''
 for arg in args:
 self._args[arg] # raise exception if arg not in _args
 setattr(self,arg,args[arg])
 def _solve_for(self,arg):
 '''Newton's method solver'''
 TOL=0.0000001 # tolerance
 ITERLIMIT=1000 # iteration limit
 CLOSE_RUNS=10 # after getting close, do more passes
 args=self._args
 if self._args[arg]:
 x0=self._args[arg]
 else:
 x0=1
 if x0==0:
 x1=1
 else:
 x1=x0*1.1
 def f(x):
 '''function to solve'''
 args[arg]=x
 return self._f(**args)
 fx0=f(x0)
 n=0
 while 1: # Newton's method loop here
 fx1 = f(x1)
 if fx1==0 or x1==x0: # managed to nail it exactly
 break
 if abs(fx1-fx0)<TOL: # very close
 close_flag=True
 if CLOSE_RUNS==0: # been close several times
 break

13

 else:
 CLOSE_RUNS-=1 # try some more
 else:
 close_flag=False
 if n>ITERLIMIT:
 print "Failed to converge; exceeded iteration limit"
 break
 slope=(fx1-fx0)/(x1-x0)
 if slope==0:
 if close_flag: # we're close but have zero slope, finish
 break
 else:
 print 'Zero slope and not close enough to solution'
 break
 x2=x0-fx0/slope # New 'x1'
 fx0 = fx1
 x0=x1
 x1=x2
 n+=1
 self._args[arg]=x1
 return x1

def tvm(pv,fv,pmt,n,i):
 '''equation for time value of money'''
 i=i/100
 tmp=(1+i)**n
 return pv*tmp+pmt/i*(tmp-1)-fv
end of http://code.activestate.com/recipes/303396/ }}}

class Payoff():
 '''prepares a decrement table given constant prepayment speed'''
 def __init__(self, L, C):
 self.L = L
 self.C = C
 self.bbal = float(L[0]) #beginning balance
 self.rbal = self.bbal #remaining balance
 self.i = float(L[1]) #interest rate in form 4.5
 self.rtm = int(L[2]) #remaining months to maturity
 self.mtr = int(L[3])+1 #months to roll date new i in effect
 self.mta = int(L[4]) #months remaining of interest only
 self.cod = C[0] #cut-off date
 self.tttdate = C[1] #twotimes test date
 self.srpct = C[2] #initial senior percentage
 self.osrpct = C[2] #original senior percentage
 self.reset = C[3] #interest rate at reset
 self.stepdown = C[4] #stepdown dates
 self.pbal = C[5] #original aggregate principal balance
 self.obal = C[6] #original aggregate class balance
 self.obsupct = 1 - C[2] #original subordinate percentage
 s = Solver(tvm,pv=self.bbal, fv=0, i = self.i/12, n = self.rtm)
 self.pmt = s.pmt #monthly payment
 self.teaser = self.mtr #counter for initial fixed rate period
 self.io = self.mta #counter for remaining interest only
 self.n = self.rtm+1 #to take into account range()

14

 self.current = self.cod + relativedelta(months=+1)
 self.smm = 0.0 #single monthly mortality
 def __nonzero__(self):
 return True
 def __bool__(self):
 return False
 def payone(self):
 def is_twice(): #Twotimes test
 if self.subprct >= 2*self.osubpct:
 return 1
 else:
 return 0
 def is_shrinking():
 if self.srpct > self.osrpct:
 return 1
 else:
 return 0
 def payoff():
 import random #import standard randomization module
 space = int(1//self.smm) #calculate sample space
 outcomes = [1] #create list with one positive outcome
 for n in range(space-1): #for the remainder of the sample space
 outcomes.append(0) #populate with negative outcome
 payoff = random.choice(outcomes)#randomly choose an outcome
 return payoff #report result to calling function
 def senior_prepay_percentage():
 if self.current < self.tttdate and is_twice:
 self.srpppct = self.srpct + 0.5*(1-self.srpct)
 elif self.current >= self.tttdate and is_twice:
 self.srpppct = self.srpct
 elif self.current < self.stepdown['stepone'][0]:
 if is_shrinking():
 self.srpppct = 1.0
 elif is_twice():
 self.srpppct = self.stepdown['stepone'][1]
 else:
 self.srpppct = self.srpppct
 elif self.current < self.stepdown['steptwo'][0]:
 if is_shrinking():
 self.srpppct = 1.0
 elif is_twice():
 self.srpppct = self.stepdown['steptwo'][1]
 else:
 self.srpppct = self.srpppct
 elif self.current < self.stepdown['stepthree'][0]:
 if is_shrinking():
 self.srpppct = 1.0
 elif is_twice():
 self.srpppct = self.stepdown['stepthree'][1]
 else:
 self.srpppct = self.srpppct
 elif self.current < self.stepdown['stepfour'][0]:
 if is_shrinking():
 self.srpppct = 1.0

15

 elif is_twice():
 self.srpppct = self.stepdown['stepfour'][1]
 else:
 self.srpppct = self.srpppct
 elif self.current < self.stepdown['stepfive'][0]:
 if is_shrinking():
 self.srpppct = 1.0
 elif is_twice():
 self.srpppct = self.stepdown['stepfive'][1]
 else:
 self.srpppct = self.srpppct
 elif self.current >= self.stepdown['stepfive'][0]:
 self.srpppct = self.srpct
 else:
 self.srpppct = self.srpct
 next_month = self.current + relativedelta(months=+1)
 self.current = next_month
 senior_prepay_percentage() #calculate senior prepayment
 #percentage
 self.teaser -= 1 #reduce remaining teaser period
 self.io -= 1 #reduce remaining interest only period
 self.bbal = self.rbal #beginning balance to last period's ending
 ipay = self.rbal*self.i/1200 #interest payment portion
 if payoff():
 self.smm = 1.0
 if self.mta > 0: #if during interest only period
 self.paydown = 0 #no scheduled principal
 self.prepay = self.smm*(self.bbal-self.paydown)
 else:
 self.paydown = -self.pmt-ipay # reverse negative paid out conv
 self.prepay = self.smm*(self.bbal-self.paydown)
 if self.rtm > 0: #decrement remaining term to maturity
 self.rtm -= 1
 if self.mtr == 0: #begin 12-month reset period 11 .. 0
 self.mtr = 11
 elif self.mtr > 0: #decrement months to reset
 self.mtr -= 1
 if self.mta > 0: #decrement months to end of i/o period
 self.mta -= 1
 if self.bbal == 0: #see if final payment has been made
 self.paydown = 0
 self.prepay = 0
 elif self.bbal >= self.paydown + self.prepay: #not last payment?
 self.rbal -= self.paydown + self.prepay
 elif self.bbal < self.paydown: # scheduled payment enough to final out
 self.paydown = self.bbal
 self.prepay = 0
 self.rbal = 0
 elif self.bbal < self.prepay: # prepayment enough to final out
 self.paydown = self.bbal
 if self.bbal > 0: # if any still left, allocate to prepay
 self.prepay = self.bbal
 self.rbal = 0
 else:

16

 self.rbal = 0
 if self.teaser == 1: #last month of fixed rate period
 self.i = self.reset #change interest rate for following month
 s = Solver(tvm,pv=self.rbal, fv=0, i = self.i/12, \
 n = self.rtm+1) #calculate new amortizing payment
 self.pmt = s.pmt #set new payment
 if self.io == 1: #last month of i/o period
 s = Solver(tvm,pv=self.rbal, fv=0, i = self.i/12, \
 n = self.rtm) #calculate amortizing payment
 self.pmt = s.pmt #set new payment
 yield self.srpct*self.paydown + self.srpppct*self.prepay

#create an empty dictionary for each loan record
d1 = defaultdict(list)
d2 = defaultdict(list)
d3 = defaultdict(list)
d4 = defaultdict(list)
d5 = defaultdict(list)
d6 = defaultdict(list)
d7 = defaultdict(list)
d8 = defaultdict(list)
d9 = defaultdict(list)
d10 = defaultdict(list)
d11 = defaultdict(list)
d12 = defaultdict(list)
d13 = defaultdict(list)
d14 = defaultdict(list)
d15 = defaultdict(list)
d16 = defaultdict(list)
d17 = defaultdict(list)
d18 = defaultdict(list)
d19 = defaultdict(list)
d20 = defaultdict(list)
d21 = defaultdict(list)
d22 = defaultdict(list)
d23 = defaultdict(list)
d24 = defaultdict(list)
d25 = defaultdict(list)
d26 = defaultdict(list)
d27 = defaultdict(list)
d28 = defaultdict(list)
d29 = defaultdict(list)
d30 = defaultdict(list)
d31 = defaultdict(list)
d32 = defaultdict(list)
d33 = defaultdict(list)
d34 = defaultdict(list)
d35 = defaultdict(list)
d36 = defaultdict(list)
d37 = defaultdict(list)
d38 = defaultdict(list)
d39 = defaultdict(list)
d40 = defaultdict(list)
d41 = defaultdict(list)

17

d42 = defaultdict(list)
d43 = defaultdict(list)
d44 = defaultdict(list)
d45 = defaultdict(list)
d46 = defaultdict(list)
d47 = defaultdict(list)
d48 = defaultdict(list)
d49 = defaultdict(list)
d50 = defaultdict(list)
d51 = defaultdict(list)
d52 = defaultdict(list)
d53 = defaultdict(list)
d54 = defaultdict(list)
d55 = defaultdict(list)
d56 = defaultdict(list)
d57 = defaultdict(list)
d58 = defaultdict(list)
d59 = defaultdict(list)
d60 = defaultdict(list)
d61 = defaultdict(list)
d62 = defaultdict(list)
d63 = defaultdict(list)
d64 = defaultdict(list)
d65 = defaultdict(list)
d66 = defaultdict(list)
d67 = defaultdict(list)
d68 = defaultdict(list)
d69 = defaultdict(list)
d70 = defaultdict(list)
d71 = defaultdict(list)
d72 = defaultdict(list)
d73 = defaultdict(list)
d74 = defaultdict(list)
d75 = defaultdict(list)
d76 = defaultdict(list)
d77 = defaultdict(list)
d78 = defaultdict(list)
d79 = defaultdict(list)
d80 = defaultdict(list)
d81 = defaultdict(list)
d82 = defaultdict(list)
d83 = defaultdict(list)
d84 = defaultdict(list)
d85 = defaultdict(list)
d86 = defaultdict(list)
d87 = defaultdict(list)
d88 = defaultdict(list)
d89 = defaultdict(list)
d90 = defaultdict(list)
d91 = defaultdict(list)
d92 = defaultdict(list)
d93 = defaultdict(list)
d94 = defaultdict(list)
d95 = defaultdict(list)

18

d96 = defaultdict(list)
d97 = defaultdict(list)
d98 = defaultdict(list)
d99 = defaultdict(list)
d100 = defaultdict(list)
d101 = defaultdict(list)
d102 = defaultdict(list)
d103 = defaultdict(list)
d104 = defaultdict(list)
d105 = defaultdict(list)
d106 = defaultdict(list)
d107 = defaultdict(list)
d108 = defaultdict(list)
d109 = defaultdict(list)
d110 = defaultdict(list)
d111 = defaultdict(list)
d112 = defaultdict(list)
d113 = defaultdict(list)
d114 = defaultdict(list)
d115 = defaultdict(list)
d116 = defaultdict(list)
d117 = defaultdict(list)
d118 = defaultdict(list)
d119 = defaultdict(list)
d120 = defaultdict(list)
d121 = defaultdict(list)
d122 = defaultdict(list)
d123 = defaultdict(list)
d124 = defaultdict(list)
d125 = defaultdict(list)
d126 = defaultdict(list)
d127 = defaultdict(list)
d128 = defaultdict(list)
d129 = defaultdict(list)
d130 = defaultdict(list)
d131 = defaultdict(list)
d132 = defaultdict(list)
d133 = defaultdict(list)
d134 = defaultdict(list)
d135 = defaultdict(list)
d136 = defaultdict(list)
d137 = defaultdict(list)
d138 = defaultdict(list)
d139 = defaultdict(list)
d140 = defaultdict(list)
d141 = defaultdict(list)
d142 = defaultdict(list)
d143 = defaultdict(list)
d144 = defaultdict(list)
d145 = defaultdict(list)
d146 = defaultdict(list)
d147 = defaultdict(list)
d148 = defaultdict(list)
d149 = defaultdict(list)

19

d150 = defaultdict(list)
d151 = defaultdict(list)
d152 = defaultdict(list)
d153 = defaultdict(list)
d154 = defaultdict(list)
d155 = defaultdict(list)
d156 = defaultdict(list)
d157 = defaultdict(list)
d158 = defaultdict(list)
d159 = defaultdict(list)
d160 = defaultdict(list)
d161 = defaultdict(list)
d162 = defaultdict(list)
d163 = defaultdict(list)
d164 = defaultdict(list)
d165 = defaultdict(list)
d166 = defaultdict(list)
d167 = defaultdict(list)
d168 = defaultdict(list)
d169 = defaultdict(list)
d170 = defaultdict(list)
d171 = defaultdict(list)
d172 = defaultdict(list)
d173 = defaultdict(list)
d174 = defaultdict(list)
d175 = defaultdict(list)
d176 = defaultdict(list)
d177 = defaultdict(list)
d178 = defaultdict(list)
d179 = defaultdict(list)
d180 = defaultdict(list)
d181 = defaultdict(list)
d182 = defaultdict(list)
d183 = defaultdict(list)
d184 = defaultdict(list)
d185 = defaultdict(list)
d186 = defaultdict(list)
d187 = defaultdict(list)
d188 = defaultdict(list)
d189 = defaultdict(list)
d190 = defaultdict(list)
d191 = defaultdict(list)
d192 = defaultdict(list)
d193 = defaultdict(list)
d194 = defaultdict(list)
d195 = defaultdict(list)
d196 = defaultdict(list)
d197 = defaultdict(list)
d198 = defaultdict(list)
d199 = defaultdict(list)
d200 = defaultdict(list)
d201 = defaultdict(list)
d202 = defaultdict(list)
d203 = defaultdict(list)

20

d204 = defaultdict(list)
d205 = defaultdict(list)
d206 = defaultdict(list)
d207 = defaultdict(list)
d208 = defaultdict(list)
d209 = defaultdict(list)
d210 = defaultdict(list)
d211 = defaultdict(list)
d212 = defaultdict(list)
d213 = defaultdict(list)
d214 = defaultdict(list)
d215 = defaultdict(list)
d216 = defaultdict(list)
d217 = defaultdict(list)
d218 = defaultdict(list)
d219 = defaultdict(list)
d220 = defaultdict(list)
d221 = defaultdict(list)
d222 = defaultdict(list)
d223 = defaultdict(list)
d224 = defaultdict(list)
d225 = defaultdict(list)
d226 = defaultdict(list)
d227 = defaultdict(list)
d228 = defaultdict(list)
d229 = defaultdict(list)
d230 = defaultdict(list)
d231 = defaultdict(list)
d232 = defaultdict(list)
d233 = defaultdict(list)
d234 = defaultdict(list)
d235 = defaultdict(list)
d236 = defaultdict(list)
d237 = defaultdict(list)
d238 = defaultdict(list)
d239 = defaultdict(list)
d240 = defaultdict(list)
d241 = defaultdict(list)
d242 = defaultdict(list)
d243 = defaultdict(list)
d244 = defaultdict(list)
d245 = defaultdict(list)
d246 = defaultdict(list)
d247 = defaultdict(list)
d248 = defaultdict(list)
d249 = defaultdict(list)
d250 = defaultdict(list)
d251 = defaultdict(list)
d252 = defaultdict(list)
d253 = defaultdict(list)
d254 = defaultdict(list)
d255 = defaultdict(list)
websters = [d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18,
d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31, d32, d33, d34, d35, d36,

21

d37, d38, d39, d40, d41, d42, d43, d44, d45, d46, d47, d48, d49, d50, d51, d52, d53, d54,
d55, d56, d57, d58, d59, d60, d61, d62, d63, d64, d65, d66, d67, d68, d69, d70, d71, d72,
d73, d74, d75, d76, d77, d78, d79, d80, d81, d82, d83, d84, d85, d86, d87, d88, d89, d90,
d91, d92, d93, d94, d95, d96, d97, d98, d99, d100, d101, d102, d103, d104, d105, d106, d107,
d108, d109, d110, d111, d112, d113, d114, d115, d116, d117, d118, d119, d120, d121, d122,
d123, d124, d125, d126, d127, d128, d129, d130, d131, d132, d133, d134, d135, d136, d137,
d138, d139, d140, d141, d142, d143, d144, d145, d146, d147, d148, d149, d150, d151, d152,
d153, d154, d155, d156, d157, d158, d159, d160, d161, d162, d163, d164, d165, d166, d167,
d168, d169, d170, d171, d172, d173, d174, d175, d176, d177, d178, d179, d180, d181, d182,
d183, d184, d185, d186, d187, d188, d189, d190, d191, d192, d193, d194, d195, d196, d197,
d198, d199, d200, d201, d202, d203, d204, d205, d206, d207, d208, d209, d210, d211, d212,
d213, d214, d215, d216, d217, d218, d219, d220, d221, d222, d223, d224, d225, d226, d227,
d228, d229, d230, d231, d232, d233, d234, d235, d236, d237, d238, d239, d240, d241, d242,
d243, d244, d245, d246, d247, d248, d249, d250, d251, d252, d253, d254, d255]

content = urllib2.urlopen(url).read()
root = etree.fromstring(content)
records = list(root)
lexicon = generateItems(websters)
for record in records:
 lex = lexicon.next()
 for field in record:
 md(lex, field.attrib['name'], field.text)

tape = []
for loan in websters:
 record = []
 record.append(float(loan['obal'][0]))
 record.append(float(loan['cintpct'][0]))
 tmat = loan['maturity'][0]
 mat = datetime.strptime(tmat, '%Y-%m-%d').date()
 to_mat = relativedelta(mat,cod)
 mtm = to_mat.months + to_mat.years*12
 record.append(mtm)
 fpd = datetime.strptime(loan['fpd'][0], '%Y-%m-%d').date()
 to_roll = relativedelta(fpd + relativedelta(months=60), cod)
 mtr = to_roll.months + to_roll.years*12
 record.append(mtr)
 intonlyterm = int(loan['intonlyterm'][0])
 to_amort = relativedelta(fpd + relativedelta(months=intonlyterm), cod)
 mta = to_amort.months + to_amort.years*12
 record.append(mta)
 tape.append(record)

def run_loan_payoff(cpr):
 '''cpr = 0.1 Constant Prepayment Rate in decimal fraction'''
 C = [cod, tttdate, srpct, reset, stepdown, pbal, obal]
 cbal = obal
 anniversary = cod.year+1
 E = {}
 for record in tape:
 md(E,'tape', Payoff(record,C))
 twelfth = 1.0/12.0
 smm = 1.0 - (1.0-cpr)**twelfth # single monthly mortality
 column = [] # empty list to collect principal payments

22

 for year in range(2011,2041):
 annual = [] # temporary list
 for month in range(12):
 for entry in E['tape']:
 payment = [] # temporary list
 entry.srpct = srpct # set object senior percentage
 entry.subpct = 1 - srpct
 entry.smm = smm # set smm for object
 try: # while still data
 payment.append(entry.payone().next())
 except StopIteration:
 pass
 annual.append(sum(payment)) # aggregate for month
 cbal -= sum(payment) # knock down senior
 sprct = cbal/obal # recalculate senior percentage
 column.append(annual) # collect months
 column[:] = [sum(item) for item in column] # aggregate for year
 cbal=obal
 ''' output decrement table for given CPR speed '''
 print "%s %s at CPR of %d%%" % (dealname, bond, cpr*100)
 for year in column:
 cbal -= year
 percentout = round(cbal/obal*100,2)
 if percentout >= 1:
 print("%s %d:\t\t%0.0f") % (anniversary_month, anniversary,\
 percentout)
 elif percentout <= 0:
 print("%s %d:\t\t0") % (anniversary_month, anniversary)
 else:
 percentout < 1
 print("%s %d:\t\t*") % (anniversary_month, anniversary)
 anniversary += 1

def main(cpr_arg):
 print help_message
 cpr = float(cpr_arg) # command line argument is a string
 run_loan_payoff(cpr) # call the function to produce the table

if __name__ == "__main__":
 plac.call(main)

23

