

MEMORANDUM

TO: File No. S7-01-13

FROM: Dhawal Sharma

RE: Proposed Regulation Systems Compliance and Integrity

DATE: July 12, 2013

On June 28, 2013, Commission staff had a meeting with representatives of CAST to
discuss proposed Regulation SCI.

Commission staff included David Shillman, Todd Scharf, Heidi Pilpel, Elizabeth
Badawy, Harrison Lou, Keith Riley, Yue Ding, and Dhawal Sharma from the Division of
Trading and Markets.

The CAST representatives at the meeting were Lev Lesokhin, Bill Curtis, Mark Jones,
and Pete Pizzutillo.

The topics discussed included: (1) introduction to CAST, and context for involvement
and comments; (2) CAST research on structural quality and impact on software risk; (3) current
state of IT software quality in financial services industry; (4) review of other federal government
policies on structural quality and assurance; (5) review of the overall approaches to managing
software risk and quality; and (6) review of the evolution of standards landscape and procedures
in the industry.

The attached documents were distributed by the CAST representatives and discussed at
the meeting.

 Briefing to SEC – System Compliance & Integrity

Measurement of system integrity at a structural code level

June 2013

Meeting agenda

 Intro to CAST, and context for our involvement/comments
 CAST research on structural quality and impact on software risk
 Current state of IT software quality in financial services industry
 Review other Federal government policy on structural quality & assurance
 Review overall approaches to managing software risk and quality
 Review evolution of standards landscape and procedures in the industry

– Capability Maturity Model (CMM)
– Consortium for IT Software Quality (CISQ), ISO
– Software Assurance standards (CWE, OWASP, etc.)

 Wrap up and discussion

1

CAST introduction & basis for opinion on SCI

Long term
mission

Market
presence

Research-
driven
focus

Transform application development and sourcing into a management
discipline through measurement and transparency

•	 Established market presence in North America, Europe and India
•	 Broadly endorsed by industry thought leaders
•	 Strong presence at top brands in Financial Services, Public Sector and

other IT-intensive industries

 Largest IT structural quality benchmarking database in the world
 Over $100 million of investment in R&D, driven by top talent in

software engineering
 CAST Research Labs, a premier R&D facility dedicated to the science

of Software Analysis & Measurement (SAM)

CAST is a leader in applying software CAST metrics have become the

quality analysis and measurement de facto standard for measuring the quality

technology in the IT space. and productivity of application services.

2

0

2

0
0.005
0.01
0.015
0.02
0.025

Structural issues correlate highly to SW defects

INSTITUTIONAL TRADING PLATFORMS

0.08 25
0.07

A
c

0.05
0.06

D
tu

a
l

P
n

s
/B

F

e

0.04 fe 20o
ti

0.03

c
ts

V
io

la

0.01
0.02

/B
F

P

0.020
12

10

8

6

4

A
c

tu
a

l D
e

fe
c

ts
/B

F
P

	
A

c
tu

a
l D

e
fe

c
ts

/B
F

P

V
io

la
ti

o
n

s
/B

F
P

0.015

0.010

0.005

0.000
0	 15
5.3.07	 5.7.0.1 5.11.0.7 Algo Global Order

Platform Orders Mgmt Order Mgmt Application Versions

Defects/BFP
Violations/BFP

R4 R5 R6 R7

30 0.45 0.03 14
12

10

8

6

4

V
io

la
tio

n
s
/B

F
P

V
io

la
ti

o
n

s
/B

F
P

25

20 0.40

15

10 0.35

A
c

tu
a

l
D

e
fe

c
ts

/B
F

P

2
 5

0
3.2 3.3 3.4 3.6

Release Number
GCS Versions

3

0 0.30

Financial services is more secure, but more complex

 Financial Services
technology has better
security than peer
industries

 But, after the public
sector, Financial
Services has the most
complex systems

Source: CAST Research
Labs study – CRASH 2011;
n=745 application, 365
million lines of code

4

(a) BASELINE SOFTWARE AsSURANCE POLICY.-The Under Sec­
retary of Defense for Acquisition, Technology, and Logistics, in
coordination with the Chief Information Officer of the Department
of Defense, shall develop and implement a baseline software assur­
ance policy for the entire lifecycle of covered systems. Such policy
shall be included as part of the strategy for trusted defense systems
of the Department of Defense.

(b) PoLICY ELE1viENTS.-The baseline software assurance policy
under subsection (a) shall-

(1) require use of appropriate automated vulnerability anal­
ysis tools in computer software code during the entire lifecycle
of a covered system, including during development, operational
testing, operations and sustainment phases, and retirement;

(2) require covered systems to identify and prioritize secu­
rity vulnerabilities and, based on risk, determine appropriate
remediation strategies for such security vulnerabilities;

(3) ensure such remediation strategies are translated into
contract requirements and evaluated during source selection;

H.R. 4310-254

(4) promote best practices and standards to achieve so -
re security, assurance, and quality; and

5 suppo · · eXI 1 y and compat-
ibility with cun·ent or emerging software methodologies.

II IIIII C A 5 T

NDAA Section 933 – software quality & assurance

5

Testing is Not Enough

“As higher levels of assurance are
demanded…testing cannot deliver the level of
confidence required at a reasonable cost.”

“The correctness of the code is rarely the
weakest link.”

“…a failure to satisfy a non-functional
requirement can be critical, even
catastrophic…non-functional requirements are
sometimes difficult to verify. We cannot write a
test case to verify a system’s reliability…The
ability to associate code to non-functional
properties can be a powerful weapon in a
software engineer’s arsenal.”

Jackson, D. (2009). Communications of the ACM, 52 (4); Spinellis, D. (2006). Code Quality. Addison-Wesley.

6

Would you put untested code into operation?

If functional testing at the code unit level is inadequate for release,

why would code review at unit level be adequate?

System

Level

(Quality

Assurance)

Code Unit

Level

(Developer)

Structural Analysis & Control

(Non-functional Defect Removal—Reliability,

Performance, Security, Maintainability)

7

IDE Static Analysis IDE Unit Testing

System Testing

(functional defect removal)

SIT, Performance Tests

Build and Integration

Functional Unit Tests

(code unit correctness)

Coding Best Practices

(readability, code unit reliability)

Code Unit Level  Can be performed by developer

 Code style & layout

 Expression complexity

 Code documentation

 Class or program design

 Basic coding standards

 Developer level

Code Unit Level
1

IDE Static

Analysis tools

Developer level

code unit analysis

8

 Technology Level  Requires tools and program focus

 Single language/technology layer

 Intra-technology architecture

 Intra-layer dependencies

 Design & structure

 Inter-program invocation

 Security vulnerabilities

 Development team level

Technology Level
2

Java

Java

Java Java
Java

Java

Web
Services

 Code style & layout

 Expression complexity

 Code documentation

 Class or program design

 Basic coding standards

 Developer level

Code Unit Level
1

Java

Single language
commercial static

analysis tools
Quality Assurance

9

10

 Single language/technology layer

 Intra-technology architecture

 Intra-layer dependencies

 Design & structure

 Inter-program invocation

 Security vulnerabilities

 Development team level

Technology Level
2

Data Flow Transaction Risk
Propagation Risk

PL/SQL

Oracle

SQL
Server

DB2

T/SQL

Hibernate

Spring

Struts
.NET

VB

Sybase IMS

Messaging

 Integration quality

 Architectural

compliance

 Risk propagation

 Application security

 Resiliency checks

 Transaction integrity

 Function point,

 Effort estimation

 Data access control

 SDK versioning

 Calibration across

technologies

 IT organization level

Application Stack Level

3

JSP ASP.NET APIs

 Code style & layout

 Expression complexity

 Code documentation

 Class or program design

 Basic coding standards

 Developer level

Code Unit Level
1

System Level  Requires holistic analysis, across teams

C++ Java

Web
Services Java C#COBOL

COBOL

EJB

Standards in software measurement & assurance

 Software product quality
―	 ISO 9126, CISQ, ISO 25000

 Software sizing
― IFPUG, OMG/CISQ, SEI

 Large system engineering
―	 SEI

 CWE, CVE, MAEC, Software

Assurance Forum
― MITRE, NIST, DHS

 SANS Institute

 COBIT/ISACA, BSIMM

11

http://www.omg.org/
http://images.google.com/imgres?imgurl=http://www.infowars.net/pictures/may2007/280507homeland_security_logo2.jpg&imgrefurl=http://www.infowars.net/articles/may2007/280507DHS.htm&h=302&w=300&sz=88&hl=en&start=7&um=1&tbnid=PYGu1IUVN60g7M:&tbnh=116&tbnw=115&prev=/images?q=DHS+logo&um=1&hl=en&rlz=1T4ADBF_enUS270US271&sa=G

CMMI & Application Quality Engineering

Application Quality Engineering supplements

CMMI to better control risk in applications

Focus Similar program

CMMI Process improvement Six Sigma

AQE Product improvement Design for Six Sigma

12

1

Standard Metrics to

Manage Software Risk

Dr. Bill Curtis

Director, CISQ

June 28, 2013

2

Consortium for IT Software Quality

Co-sponsorship

IT Executives CISQ Technical
experts

www.it-cisq.org

http://clabedan.typepad.com/photos/uncategorized/atos_origin.jpg
http://images.google.com/imgres?imgurl=http://www.infowars.net/pictures/may2007/280507homeland_security_logo2.jpg&imgrefurl=http://www.infowars.net/articles/may2007/280507DHS.htm&h=302&w=300&sz=88&hl=en&start=7&um=1&tbnid=PYGu1IUVN60g7M:&tbnh=116&tbnw=115&prev=/images?q=DHS+logo&um=1&hl=en&rlz=1T4ADBF_enUS270US271&sa=G
http:www.it-cisq.org

CISQ Measures & ISO 25010

 Starting point for CISQ work

– Defines quality characteristics and sub-characteristics

– CISQ to define quality attributes and measurable elements

4

CISQ Security Measure

Team Lead

Robert

Martin

MITRE

Objective

Develop automated source

code measures that predict the

vulnerability of source code to

external attack. Base measure

on the Top 25 in the Common

Weakness Enumeration

5

Quality Characteristic Hierarchy

Software Quality Characteristics

Quality Sub-Characteristics

Software Quality Attributes

Security

Confidentiality, Integrity, etc.

Quality Rule Violations

Quality Measure Elements

 SQL injection

 Cross-site scripting

 Buffer overflows

 Functional injection

6

Example Quality Measure Specs

Reliability

Security

www.it-cisq.org

1. Join CISQ

2. Contribute to the blog

3. Use CISQ standards

4. Attend CISQ seminars
• Berlin, June 19

• NJ, Sept. 25

• SF, Dec. 11

5. Initiate measurement

6. Improve continually

7. Build great software

