June 14, 2021

VIA ELECTRONIC SUBMISSION

Attn: Gary Gensler, Chair, Securities and Exchange Commission
Re: Public Input Welcomed on Climate Change Disclosures

Dear Chair Gensler:

Attached to this letter are two reports *Flying Blind...* and *Inviting Danger...* that were the product of a team of scholars based at the Brookings Institution. The undersigned individuals, Eric Gesick, Visiting Scholar at the Institute on the Environment, University of Minnesota and David G. Victor, Nonresident Senior Fellow at The Brookings Institution and Professor of Innovation and Public Policy at the UC San Diego were members of that team.¹ We respectfully submit this report to the Securities and Exchange Commission (“SEC”) in response to its request for public input on climate change disclosures.² The Brookings Institution is a nonprofit public policy organization based in Washington, DC. Its mission is to conduct in-depth research that leads to new ideas for solving problems facing society at the local, national and global level.

Both of these reports speak to the themes in your request for input. In particular, the *Flying Blind...* study looks at patterns in climate-related disclosure for all large equities traded in US markets (the full Russell 3000) along with a large sample of municipal bonds. For equities we find huge variation across industry and within industry in patterns of disclosure. The within industry variation suggests the need for a more standardized approach to basic climate-related information—an approach that the SEC is uniquely in a position to require, with due care for aligning the market benefits from such disclosure and the costs. The across-industry variation leads to similar insights and also offers an empirical basis for identifying which industries already find themselves on the front lines of climate concerns and which might be exposed yet, for the most part, have done little on this matter. This first report also finds that disclosure around “transition risks” (ie, shifts in valuation of equities as emissions of warming gases are regulated and traditional lines of business become less profitable) is much more extensive than disclosure around the physical risks of climate change. We are mindful that the SEC has limited oversight with regard to municipal debt instruments, but we draw your attention to our finding that there is, as far as we can discern, effectively zero relationship between the exposure of municipalities to the impacts of climate change (which, in turn, will affect their ability to raise tax revenue and repay long-dated debt) and what they disclosure to the market about those risks.

A central theme that has emerged from our research is the physical risks of climate change are the sleeper issue when it comes to disclosure. There is more work to be done on disclosure around transition risks, to be sure, but the biggest gaps between what’s knowable in terms of climate

¹ Both make this filing in their individual capacities, not as a representative of any of affiliated institutions. This letter and the attached report do not necessarily reflect the views, if any, of those institutions.
impacts and what’s being disclosed concerns physical risks. Through our work at Brookings we have also become aware of and engaged with several groups that are rapidly advancing the capacity to analyze those risks at high level of geographical and financial resolution. We have posted commentary on such developments, along with other information and statistical appendices for all of our research at: https://www.brookings.edu/product/markets-at-risk-how-the-physical-risks-of-climate-change-could-transform-what-we-know-and-value/

The second paper, Inviting Danger..., looks at how the federal government has responded to a variety of disasters, including events such as hurricanes and wildfires that will plausibly become more intense or frequent (or both) with climate change. This study shows that there is a large imbalance in current federal disaster, infrastructure and insurance policies—in effect, many of these policies allow (or encourage) risky behavior by insulating individuals, firms and subnational governments from the consequences of those risks. There is a long overdue national dialogue around the need to strike the right balance in disaster policy—some of that dialogue is just now under way, and our paper outlines some ways to make that dialogue more effective. One implication of this research is that markets would benefit from more information not just about the physical risks of climate change but also how policy choices could amplify (or dampen) those risks. Again, the capacity to provide that information has expanded rapidly. The above site includes additional commentary on these issues related to policy and market oversight.

Under separate cover, David Victor jointly with scholars from the Environmental Defense Fund, include a third report that looks at disclosures around the Texas power market. That report is also posted at the above site, along with commentary.

We thank the SEC for its consideration of these reports.

Respectfully,

/s/ Eric Gesick
Eric Gesick

/s/ David G. Victor
David G. Victor

Attachments

3 See letter from Michael Panfil, Stephanie H. Jones and Gabriel Malek (Environmental Defense Fund) and David G. Victor (UC San Diego and Brookings) dated 14 June 2021.
Flying Blind: What Do Investors Really Know About Climate Change Risks in the U.S. Equity and Municipal Debt Markets?

Parker Bolstad
Sadie Frank
Eric Gesick
David Victor*

ABSTRACT

We show how rising concerns about climate change are affecting disclosures to financial markets by looking systematically at 10-K filings from the 3000 largest U.S. publicly traded firms over the last 12 years and sampling of Official Statements from all U.S. municipal bonds. For equities, disclosure has risen sharply. Today, 60% of publicly traded firms reveal at least something about climate change, but the largest volumes of information are skewed heavily toward a few industries (e.g., electric utilities, oil & gas, mining) and concern valuation risks due to possible transition away from fossil fuels. By contrast, there is much less disclosure around the physical risks of climate change. In municipal finance, disclosure of physical risks is even weaker, although many municipalities are highly exposed to flood, fire, heat stress, and other perils that could both destroy infrastructure and undermine the tax and income bases essential to repayment of long duration bonds. Innovations in climate science over the last decade make it possible to assess these physical risks at fine geographical resolution (counties), but we find no relationship between such measures and municipal disclosure. Although policy makers and investor ESG frameworks have focused klieg lights on the financial risks that might accompany transitions away from fossil fuels, the real misnamed finance risks appear to lie with the raw physical risks of a changing climate. Remedies include infrastructure audits and new analytical capabilities that can help lower the cost and raise utility of meaningful disclosure along with stronger regulatory rules and industry norms. New practices at credit rating agencies and rethinking of liability rules could rapidly accelerate best practices. Details are presented in a “Supplemental Information” (SI) appendix.

*Parker Bolstad was a research assistant at the Brookings Institution and is now a U.S. Army officer. Sadie Frank is a research assistant at the Brookings Institution. Eric Gesick is a fellow at the Casualty Actuarial Society (FCAS) and a member of the Academy of Actuaries (MAAAA). David Victor (david.victor@ucsd.edu) is a professor of International Relations at the UCSD School of Global Policy and Strategy, an Adjunct Professor in Climate at the Scripps Institution of Oceanography, and the co-chair of the Cross-Brookings Initiative on Energy and Climate.

The authors would like to thank Thomas C. Ramey and Perrin Ireland for their support, as well as colleagues at the Hutchins Center (David Wessel and Stephanie Cencula) and participants in the authors' review conference including Adele Morris, Julie Gorte, Lisa Schroeder, Matt Kahn, Samantha Gross, and Tim Caffin. The authors benefited notably from discussions with Ceres including Steven Rothstein, Jim Coburn, and Jackie Cook (now at Morningstar), including access to their 10-K data. They extend their thanks to Marcus Painter for sharing his municipal bond data with us. Thanks to Mark Bolstad for support developing our algorithm, and to Tatyana Deryugina, Tom Doe, Chris Hartshorn, William Glasgall, David Phillips, and Billy Pizer for their valuable guidance. Thanks to Michael Wertz, Leonard Jones, and his colleagues at Moody's for discussions and reports. The authors thank Brent Poliquin and Roger Grenier for background conversations and colleagues from the University of Illinois for related discussions. Eric Gesick was the Chief Underwriting Officer for AXIS Capital, a global specialty insurer and reinsurer, until July 21, 2020. The authors did not receive financial support from any firm or person for this article or from any firm or person with a financial or political interest in this article. They are currently not an officer, director, or board member of any organization with an interest in this article.
Introduction

For more than three decades, there have been sustained, global diplomatic efforts to address the perils of climate change. Over that period, global emissions have risen by nearly two-thirds. That consistent failure in public policy has inspired a search for new solutions, including efforts by some activists, investors, and central bankers to improve disclosure about climate-related risks. Greater disclosure, in theory, could lead to investment and operational decisions that better reflect climate risks that investors and other market players could not, on their own, discover. In turn, better pricing of risks with appropriate reflection in asset valuations and credit rating could improve the ability of financial regulators to understand and respond to possible systemic disruptions that might arise if markets suddenly realize that investments previously thought to be highly valuable, such as in fossil fuel companies, are suddenly distressed or worthless (Carney, 2015). For investment managers, investors, and issuers of securities, better disclosure is about prudence and fiduciary responsibility. For central bankers and regulators, disclosure could be vital to the stability of the financial system. For credit rating agencies, disclosure could have a huge impact on what they know and how they evaluate risk. And, importantly, for the public and politicians, better disclosure could reveal the scale of vulnerabilities to climate change and, thus, focus policy solutions.

The disclosure movement has generated a massive amount of activity. Central bankers in several countries have proposed or conducted stress-tests of their financial sector to climate risk (Vermeulen et al, 2018). Rating agencies have threatened to downgrade municipalities if they do not prepare for climate change. Large institutional investors like BlackRock have threatened to take action, including voting against companies that do not disclose climate risks (Fink, 2019). It has been reported that more than 400 mandatory and voluntary disclosure frameworks currently exist, encompassing everything from NGO campaigns to ratings schemes to legal standards. The most influential include the Task Force on Climate-Related Financial Disclosures (TCFD), the Carbon Disclosure Project (CDP), the Global Reporting Initiative (GRI), and the Principles of Responsible Investment. Today, the TCFD framework for disclosure is supported by more than 1000 organizations with $12 trillion in capitalization (TCFD, 2020). The CDP has seen a 36-fold increase in the number of companies engaged with their disclosure surveys since 2003 (CDP, 2019). And climate-related disclosures have become a central part of the environmental, social, and governance (ESG) frameworks that have surged in popularity as the cornerstone to “responsible investing” and purportedly help explain the long-term financial performance of companies (Hayat and Orsagh 2015). Although there has been some convergence around a few prominent frameworks such as the TCFD and the CDP, this Cambrian explosion of reporting systems has generated enough variation in methods and data quality that it remains difficult for market participants to determine which frameworks and what information are most valuable.

This paper looks at whether these efforts are bearing fruit both in terms of the volume of disclosure and whether the information reflects the actual risks associated with climate change. While there is much

1. From (OECD, 2015). Included in this list are advocacy campaigns, platforms for registering sustainability commitments, guidance, policies, ratings schemes, laws, and tools for measurement.

2. The financial impacts of CSR/ESG investing strategies and the importance of non-shareholder stakeholder considerations are discussed further in this handful of papers: (Eccles et al, 2011), (Cerin and Belhaj, 2009), (Dhaliwal et al, 2011), (G&A, 2012), (Borgers, 2013), (El Ghoul, 2018), (Griffin, 2012), (Fulton, 2013), (Chang, 2018), and (QMA, 2018).
attention and many studies on the need for disclosure, very little existing research is rigorously empirical or focused on the key question: Has disclosure helped the markets learn anything that has inspired changes in behavior? While looking at every dimension of potential disclosure is difficult, this paper offers a down payment, outlines what is already apparent empirically, and suggests research and policy directions.

We look at two kinds of information that lie at the center of the disclosure movements. One is information about transition risks, the risks introduced by the shift away from carbon polluting activities in today’s economy to greener industries of the future. The other is information about the physical risks of climate change to assets such as roads, buildings, and public transport systems that could be damaged or to local tax bases eroded as climate impacts lead to migration. Empirically, we look at the U.S.-based investments in equities (the full Russell 3000 list of roughly 3000 exchange-traded stocks) and debt issuance (samples of municipal bonds). While this sampling strategy does not cover all U.S. financial instruments, they focus on the places where disclosure patterns should be most meaningful because easily tradable assets should, if markets are informed, most readily reflect climate risks. Municipal bonds, and corporate debt and equities account for one third of household net wealth in the United States and essentially all the readily tradeable wealth (Federal Reserve, 2019). Equities and municipal debt are where climate exposures are most material to personal wealth and financial stability, and also most visible.

Because disclosure practices are still fluid, and it is hard to pin down how the disclosure movement has affected the supply of useful information, we triangulate our empirical approach. First, we look at the rules and expectations around disclosure and the patterns of climate-related disclosure in equities and municipal debt. Second, we examine where and how credit rating agencies and other analytical organizations have used disclosure and other climate-related information to alter how they evaluate the creditworthiness of investments. Third, we briefly survey the existing literature that has looked empirically at whether climate-related information has altered market behavior.

We make two central arguments.

First, the quality of disclosures is highly uneven and generally lousy. There are some signs that while the volume of disclosure from corporate equities rose sharply over the last decade, anecdotal evidence suggests quality has gone down. More firms are disclosing more general information that is essentially of no utility to the marketplace. Moreover, outside of a few industries (e.g., insurance and agriculture), disclosure has disproportionately focused on transition risk. Yet most of the information being released through these disclosures on transition risk is already readily available to any sophisticated market participant. Disclosures of climate-related information for equities occur in risk sections of 10-Ks. Such disclosure occurs mainly through frameworks that companies use to tabulate and release information about environment, social, and governance (ESG) factors that affect their operations. Traditionally, the “G” in ESG has played an outsized role, as investors have learned how variation in governance quality can yield variation in valuations. Rising concerns about climate change are elevating the “E” element. (There is no agreement on how to measure many of the key elements of ESG—more about this below.) Meanwhile, in

3. For more general information on climate change risks and finance, see (Center for Climate and Energy Solutions, 2020), (The Economist Intelligence Unit, 2007), (Covington, 2015), and (Breitenstein, 2019).

4. We are mindful that there are at least two categories of concern that arise from improper disclosure and mispricing of risk from the marketplace. One set of concerns is systemic and related to overall market functioning. The other is particular to other trade instruments and whether they are properly valued. Obviously, these two types of risk interact, and while this paper is focused on the particular risks disclosed in public documents, we stress that focusing on these will plausibly make it easier to describe the systemic risks.
municipal finance, there appears to be almost no meaningful disclosure of climate-related risks. Using some of the latest science projecting spatially resolved potential climate impacts, we show that there is no detectable difference in the level of municipal disclosure between communities most at risk from climate change and those least exposed to physical impacts.

Second, it is possible to achieve much greater levels of useful disclosure around the physical risks of climate change by deploying new analytical tools, regulatory incentives, and business practices. While it has been argued widely that the failure to disclose more information about physical risk is due to analytical barriers, in fact a large number of tools already exist that make it possible to offer more useful information about potential climate exposures. These tools can lower the cost of analyzing and revealing potential exposures to and impacts from the physical risks of climate. A central challenge seems to be not analysis but imagination, because the scenarios by which climate impacts affect equities and municipalities involve complex chains of cause-and-effect. Obvious impacts, such as a hurricane slamming into Florida, are widely known (and there is some evidence that municipalities in coastal areas therefore reveal a bit more information about climate risks when compared with the heartland). More pernicious, however, are those that involve repeated impacts on communities—floods, heat waves, fires—that threaten to erode tax bases and could raise default risks. In conclusion, we identify some implications for corporate governance and investment management (e.g., on how firms assess compliance and disclosure to mitigate errors and omissions and director and officer liability), for policy (e.g., on the need for more serious attention to physical disclosure), and for analysts (e.g., on the value of demonstrating how physical risk impacts can be quantified to impact the valuation of assets and creditworthiness of issuers).

Patterns of Disclosure: Legal Requirements and Actual Practice

In principle, the legal authority to require climate-related disclosure already exists. Issuers of municipal bonds are required to release an Official Statement; all publicly traded companies must make an annual public disclosure to the Securities and Exchange Commission (SEC) known as a 10-K. Both of these are governed by the 1934 Securities Exchange Act, which requires issuers to report on their financial standing and health and disclose any "material" exposure to financial risks. Through practice and legal challenge, the materiality standard has come to mean any information that, if not widely visible, would create a “substantial likelihood” of altering the deliberations of a “reasonable shareholder” (Wasim, 2019). While the definition of materiality is left to issuers, its application in climate change has been litigated. Peabody in 2015, for instance, settled a lawsuit by the New York State Attorney General brought for failures to disclose the company’s exposure to climate policy in SEC filings (In the Matter of Investigation by Eric T. Schneiderman, Attorney General of the State of New York of Peabody Energy Corporation, 2015). Peabody, the world’s largest publicly traded coal company, was in a high emissions business, yet argued that they could not model the risks of climate change and public policy to their company, even though it did that modeling for internal decision-making processes. Since 2010, the SEC has published guidance on climate change risk disclosures, aimed at aligning with the general SEC approach of ensuring that disclosures are “consistent, reliable and comparable” (SEC, 2010; Lee, 2020).

5. Interesting work has been done on the impact of ESG materiality standards and stock price informativeness; for more, see (Grewal et al, 2020).
In practice, guidance for municipal issuance is less rigorous and precise than for equities, although the broad concept of materiality still applies. As a practical matter, one way the SEC applies its influence with municipal issuers, who are legally exempt from federal securities registration, is by regulating underwriters who bring bonds to market, and requiring these underwriters to obtain the Official Statements that we sample in this paper (SEC, 2018).

As attention to disclosure has risen, in particular, over the last 15 years, how have enterprises required to disclose responded? To answer this question, several organizations have sampled 10-K and other filings. For example, the TCFD used an AI algorithm to scrape the SEC filings and sustainability reports of roughly 1,000 companies; Ceres has sampled the SEC filings of S&P 500 firms for a few select years; C2ES has done the same for a few select companies; and the CDP has offered answers by sampling results of their independent disclosure framework. As a practical matter, one way the SEC applies its influence with municipal issuers, who are legally exempt from federal securities registration, is by regulating underwriters who bring bonds to market, and requiring these underwriters to obtain the Official Statements that we sample in this paper (SEC, 2018).

In assessing corporate disclosure practices, it is possible to do a lot better. For equities, all 10-Ks are public documents and readily searchable. Ceres, a leading sustainability nonprofit, has helpfully compiled those documents into a single database, searchable with a Ceres tool that we use for the full universe of significant publicly traded firms: the Russell 3000 list of equities. Because the Ceres tool is an intermediary, we are constrained by its methodology (keyword searching) and extent (2009 through 2020). With guidance from industry and climate experts, Ceres identified a set of climate-related keywords that power its search index. To offer the most expansive view of climate disclosure, we use the full set of Ceres keywords—an approach that is, of course, upwardly biased, because terms like “hurricane” and “flood” are included as a discussion of climate change even if in the context of prose that is unrelated to transition or physical risks of climate change. The results for all firms are shown, over time, in Figure 1; even with a method designed for upward bias, today 40% of firms say nothing about climate change (in the SI Appendix, we tabulate the data for this analysis broken down by risk-mention category). A logical next step for research of this type would be to machine-learn the searches so that context can be identified with greater precision and, perhaps, full text could be used to identify variations in quality.

6. For these reports, see (TCFD, 2019), (Center for Climate and Energy Solutions, 2020), and (Ceres, 2012).

7. We are aware that the general consensus among industry practitioners is that 10-Ks have limited efficacy to comprehensively capture risks, given the purposeful opaqueness of language to avoid litigation. However, as a practical matter, 10-Ks are the best available data source to assess market-wide equity disclosures at a large scale.

8. The Ceres’ SEC Sustainability Disclosure Search Tool was created in collaboration with Cook ESG Research, including Jackie Cook and University of Melbourne researchers Henk Berkman, Jonathan Jona, and Naomi Soderstrom, and is powered by Morningstar text analysis. This tool was a collaborative effort to compile a list of words deemed relevant to climate change. Other studies using different methods find broadly similar patterns with regard to which industries report the most about climate change in 10-K filings but find much different rates for overall disclosure because they mine the 10-Ks differently. For example, a blog by (Rozin, 2019) using a proprietary search tool finds that just 30% of the Russell 3000 companies discuss climate change as a risk, with only 3% of companies including that discussion in their management discussion and analysis of financial condition and results of operations (MD&A).
Figure 1. Share of Russell 3000 firms mentioning climate risk in their annual 10-K filings has increased since 2009

Note: The dataset for the figure above was generated by scraping a Ceres webpage thatcatalogues and performs a key-word analysis on SEC filings. Because the Ceres system is a keyword searcher and not using the context of the passage, words like "hurricane" and "drought" will be flagged as relevant to climate change even if the passage or entire document makes no mention of climate change directly. As such, the numbers above, if anything, are overly generous. Nonetheless, there has been a noticeable (78%) increase in the numbers of firms mentioning climate-related risks in their filings.
Source: Ceres/Cook/Morningstar 10-K Database (see footnote 9) and analysis by authors

Not only are more firms likely to say something in the later years, they are likely to say more than they did before. In 2009, the average firm mentioned climate-related risks 8.4 times in their 10-K. In 2020, that number was 19.1 times. An obvious question that arises from this fact is, what is driving the increase—is it more firms saying something, or a few vocal firms saying even more? One way to answer this question is to look at a distribution of risk mentions by amount for multiple years. We present such an analysis in Figure 2. From those plots it seems clear that the causal mechanism is the former—more firms saying something at all. This finding is further buttressed by breaking down the analysis of Figure 2 by sector. We present this sectoral analysis in the SI.
Figure 2. More companies mention climate-related risks more frequently over time

![Percentage of Companies](chart)

Number of Risk Mentions

<table>
<thead>
<tr>
<th>Number of Mentions</th>
<th>2009</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65%</td>
<td>40%</td>
</tr>
<tr>
<td>1-10</td>
<td>21%</td>
<td>15%</td>
</tr>
<tr>
<td>11-25</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>26-50</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>51-100</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>101-250</td>
<td>0.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>251+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For each histogram, the buckets are the number of risk mentions in a 10-K. So, for instance, the figure above says that nearly 65% of firms in 2009 say nothing regarding climate change in their 10-K. It is clear from the above figure that the increase in total mentions between 2009 and 2019 is not being driven by a few firms saying even more. The average is primarily being brought up by many quiet firms being more vocal.

Source: Ceres/Cook/Morningstar 10-K Database and analysis by authors

We then refine the analysis in two ways. First, we match each firm to its industrial sector and to its market capitalization in 2019. Second, we identify the types of disclosure—whether “transition,” “physical,” or general “non-specific”. Whereas in Figure 1 the unit of analysis was the firm, with a binary determination of whether the firm discloses anything about climate change at all, for this next analysis the unit of analysis is the individual disclosure. Thus, we will be counting types of disclosures (physical, transition, general) and showing averages by sector. (In the SI, we show more data on the distribution of the sample.)

Figure 3 shows these data (in the SI, we tabulate this data) for the start and end of our time series (i.e., 2009 and 2019). Not surprisingly, firms in the four industries related to extracting and using fossil fuel energy talk the most about climate change: oil and gas, power utilities, coal mining, and other mining. Nearly all the disclosure from these firms relates to transition risk and to general climate change issues (in the SI, we show the full breakdown of risk-mention categories for all 12 years). Indeed, across those four industries, only 15% of disclosures in 2019 were related to the physical impacts of climate change. Additionally, the four industries mentioned above constitute only 8% of the Russell 3000 (by count), but 58% of all mentions of climate-related risks in 2019. Other industries with high levels of exposure—real estate, insurance, and water utilities—are noticeably quieter, accounting for 13% of the firms on the Russell 3000 and an identical portion of all climate risk disclosures. The industries that account for the bottom two-thirds of Figure 2 say almost nothing about climate change, although in a few industries at least two-thirds of firms say at least something (and usually that something is about physical risk):

...
Entertainment and Recreation (67%), Food and Beverage (84%), Retail (72%), Apparel and Textiles (77%). What may bind these industries together are strong brand identities for the largest and most visible firms. Brand-sensitive firms are among the most highly engaged with ESG reporting systems and corporate governance. Similarly, big firms also do a lot more reporting. In 2019, the largest 10% of firms by market capitalization (>$20 billion - $1.6 trillion) were 36% more likely to mention climate change-related risk at least once in their disclosures and, on average, mentioned the risks 38% more times than the smallest 10% of firms (less than $120 million in valuation). Figure 4, below, visualizes how skewed the total set of risk mentions is to just a few firms and sectors.

Figure 3. Climate risk discussion is dominated by three industries that primarily discuss transition risk

<table>
<thead>
<tr>
<th>Industry</th>
<th>Mention Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power & Gas Utilities</td>
<td>(97%)</td>
</tr>
<tr>
<td>Coal Mining</td>
<td>(100%)</td>
</tr>
<tr>
<td>Oil & Gas</td>
<td>(94%)</td>
</tr>
<tr>
<td>Mining</td>
<td>(89%)</td>
</tr>
<tr>
<td>Insurance Services</td>
<td>(63%)</td>
</tr>
<tr>
<td>Water Utility/Services</td>
<td>(86%)</td>
</tr>
<tr>
<td>Waste Management</td>
<td>(86%)</td>
</tr>
<tr>
<td>Chemicals</td>
<td>(68%)</td>
</tr>
<tr>
<td>Automotive</td>
<td>(50%)</td>
</tr>
<tr>
<td>Hospitality</td>
<td>(82%)</td>
</tr>
<tr>
<td>Transportation</td>
<td>(85%)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>(100%)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>(50%)</td>
</tr>
<tr>
<td>Aerospace & Defense</td>
<td>(44%)</td>
</tr>
<tr>
<td>Entertainment & Recreation</td>
<td>(67%)</td>
</tr>
<tr>
<td>Real Estate</td>
<td>(65%)</td>
</tr>
<tr>
<td>Food and Beverage</td>
<td>(84%)</td>
</tr>
<tr>
<td>Electronics</td>
<td>(37%)</td>
</tr>
<tr>
<td>Services - Other</td>
<td>(40%)</td>
</tr>
<tr>
<td>Wholesale</td>
<td>(63%)</td>
</tr>
<tr>
<td>Retail</td>
<td>(72%)</td>
</tr>
<tr>
<td>Consumer Goods</td>
<td>(49%)</td>
</tr>
<tr>
<td>Apparel & Textiles</td>
<td>(77%)</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>(29%)</td>
</tr>
<tr>
<td>Information Technology</td>
<td>(22%)</td>
</tr>
<tr>
<td>Services - Business-Related</td>
<td>(23%)</td>
</tr>
<tr>
<td>Media</td>
<td>(50%)</td>
</tr>
<tr>
<td>Banks & Financial Services</td>
<td>(25%)</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>(20%)</td>
</tr>
<tr>
<td>Medical Equipment</td>
<td>(17%)</td>
</tr>
<tr>
<td>Services - Educational</td>
<td>(18%)</td>
</tr>
</tbody>
</table>

Note: The graph above was produced by using the Ceres tool mentioned in Figure 1. Ceres groups language in the 10-Ks that they determine is germane to climate change into four categories: non-specific language, regulatory risk, clean and renewable energy, and physical risk. For the purposes of this analysis, clean energy and regulatory risk were lumped together into the category of transition risk. The percentage next to each sector is the percent of firms in that sector that at least mentioned climate-related risk one time in their 2019 SEC filing. Two things stand out from the above figure: (1) transition risk dominates the discussion of most industries, and (2) the top four industries constitute more than the preponderance of all risk discussion.

Source: Ceres/Cook/Morningstar 10-K Database and analysis by authors
Figure 4. A relatively small number of sectors and firms account for most mentions of climate risk

Allocation of Risk Mentions

Allocation of Companies

Note: On the left side of the figure, the bars represent all climate risk mentions and the percentage that comes from each sector. On the right side of the figure, the bars represent the totality of firms in the Russell 3000 that year and the percentage each sector makes up. As can be seen in the yellow-shift from the left to the right, the vast majority of risk discussion is dominated by 3-4 sectors that make up a tiny proportion of the number of companies in the Russell 3000. Oil & Gas and Electric Power & Gas Utilities, for instance, make up more than 50% of all risk discussion between 2009 and 2017, while accounting for roughly only 6-7% of the Russell 3000 in those same years.

Source: Ceres/Cook/Morningstar 10-K Database and analysis by authors
Measuring the quality of disclosure is very difficult, and to date there have been few attempts to study that question. Some academic work suggests that disclosure is symbolic and not aimed at quality; the TCFD has attempted to assess quality, but that remains a work in progress (Michelon, 2015). While this report does not fill that analytical gap, it does offer suggestive answers from three perspectives. First, we can look at types of disclosure over time (Figure 5). Over this period (2009–2020), about half of firms said at least something about climate change. Half of all the mentions about climate change relate to transition risk (top line of Figure 5). From 2009 there was a huge surge, lasting a year, in reporting on transition risk; since then, reporting levels have hardly changed for climate risks of any type. The big surge in transition risk reporting from 2009 is plausibly due to Congressional effort that year (the first year of the Obama presidency, with Democrats in power in the House, the Senate, and the White House), where climate change and health care were the top two legislative priorities once a massive economic stimulus was passed early in the year. (Climate change efforts failed, but health care succeeded.) That visible effort, along with others, such as a 2018 lawsuit by the New York Attorney General against two energy firms (AES and Xcel) charging they failed to disclose transition risks, may have made the dangers of non-disclosure palpable.

Figure 5. Transition risk has historically and continues to dominate risk discussion in 10-K filings

![Diagram showing transition risk has historically and continues to dominate risk discussion in 10-K filings](image)

Note: The methodology for gathering this data is explained in Figure 1 and Figure 3. The figure above looks at the average number of risk mentions by category in one 10-K per company by year. It is clear from the chart above that transition risk has historically and continues to dominate climate risk discussion. There is an open question about why the amount of disclosure spiked between 2009 and 2010. It is possible that the 2008 New York AG lawsuits against Xcel and AES played a role. It seems probable that the TCFD report in 2017 spurred the inflection seen in the graph for the years 2017-2020.

Source: Ceres/Cook/Morningstar 10-K Database and analysis by authors
A puzzle that needs further investigation is why reporting about climate exposure is so heavily weighted to transition risk. As shown in our analysis of disclosure from traded corporate equities, transition risk gets double the mentions of physical risk. It is hard to believe that physical risks are, indeed, only half as important as transition risks. While it is true that legislation and litigation over the last decade have drawn attention to transition risks, many destructive events should have had similar effects in focusing attention on physical risk. Such events include heatwaves (every year during the past decade in the U.S., except 2015), Category 5 hurricanes that had U.S. landfall (2016, 2017, 2018, and 2019), lesser hurricanes and storms that caused exceptional damage (e.g., Sandy, which hit NYC metro area in 2012, and Harvey, which hit Houston in 2017), and wildfires (e.g., the Camp Fire in California in 2018, the biggest and deadliest in state history). All plausibly could have had the same salience and impact as transition risk disclosure, but they didn’t. All these perils are expected to become more common with climate change; a growing field of research has demonstrated the improving ability to attribute such events to climate change itself. Economic analysis of transition costs and impacts provide no evidence that transition will be more onerous than physical damage—most, in fact, arrive at the opposite conclusion (Stern, 2007). While more work is needed on this topic, plausible explanations are rooted in how the investor community has been talking about climate change, and the fact that investors have been talking about transition risks at least since the Kyoto Protocol (1997), whereas discussion of physical impacts has followed along later. Disclosure began with a few industries that, indeed, were highly exposed to transition risk (the top four mentioned earlier), and today most investor discussion of climate risks and disclosures occurs through ESG frameworks. Those frameworks have almost exclusively focused on emissions (i.e., transition risk).

A second perspective on reporting quality comes from varied efforts to look more granularly at what companies report. Here the literature is all over the map and consists mainly of semi-systematic anecdotes. For example, a 2017 KPMG study found 130 of the world’s largest 250 firms acknowledge the financial risks of climate change (a finding exactly in line with the results reported in our study), but only five quantify the risks, and 3% (roughly eight firms) discuss if or how they use scenario analysis to model risk (KPMG, 2017). By 2020 even a task as straightforward as computing emissions has, for the most part, been ignored by a large portion of firms. A study by The Economist in 2020 found 33% of S&P 500 companies and 21% of Euro Stoxx companies do not disclose emissions from their own operations, known as “scope one” emissions (Economist Briefing, 2020). A higher proportion, 60% and 50% respectively, do not disclose emissions that arise after customers purchase their product—for example, the emissions from jet fuel sold to an airline that burns the fuel (known as “scope three” emissions). Perhaps most disturbing is that the firms that self-select into engagement with the TCFD—those most likely to take climate change seriously—do not disclose how they integrate climate change into their risk management strategy. Only 17% of these firms actually discuss their integration strategy, and 9% discuss the resilience of their business models to climate change (TCFD, 2019). Anecdotally, firms that are highly exposed to transition risks rooted in the behavior of fossil fuel markets have been castigated for reliance upon models that have a long history of poorly representing those markets (Carbon Tracker Initiative, 2016; 2018).

A third way to examine the quality of disclosure is to look, company by company, at what is said and whether that information was already available to the market. Here, Peabody’s 10-Ks are instructive because the firm has already been sued for nondisclosure. Here is how Peabody frames the risks in its latest (December 2019) 10-K:

\[\ldots\]

10. For more on event attribution, see (Diffenbaugh, 2020).
"The enactment of future laws or the passage of regulations regarding emissions from the use of coal by the U.S., some of its states or other countries, or other actions to limit such emissions, could result in electricity generators switching from coal to other fuel sources. Further, policies limiting available financing for the development of new coal mines or coal-fueled power stations could adversely impact the global supply and demand for coal. The potential financial impact on us of such future laws, regulations or other policies will depend upon the degree to which any such laws or regulations force electricity generators to diminish their reliance on coal as a fuel source. That, in turn, will depend on a number of factors, including the specific requirements imposed by any such laws, regulations or other policies, the time periods over which those laws, regulations or other policies would be phased in, the state of development and deployment of CCUS [Carbon Capture, Utilization, and Storage] technologies as well as acceptance of CCUS technologies to meet regulations and the alternative uses for coal."

While the 195-page 10-K offers more detail on particular initiatives, none of what is revealed extends beyond what any person reasonably knowledgeable about energy policy would already know. Indeed, while ESG frameworks offer a lot of detail around how to disclose emissions, estimating those emissions is not particularly challenging. Other studies that utilize independent sources of information are already revealing that information (Griffin, 2017); (Climate Action 100, 2020). Disclosure offers more detail from the perspective of the firm itself, but no investor would be surprised to learn that oil and gas companies have large emissions from their operations and even larger emissions linked to the sale of their products. Meanwhile, private investors and corporations are largely unaware of the looming costs needed to adapt to climate change—costs that will accrue both to private firms and municipalities (Goldstein et al, 2019).

Turning now to municipal finance, the materiality standards outlined above to guide disclosure are similar, but the practice of disclosure is much worse. While smaller than the corporate equity market, municipal debt—with a valuation of roughly $3.9 trillion (MSRB, 2019)—is incredibly important to some individual investors and mutual funds. Municipal bonds have historically very low default rates and offer notable tax advantages.11 For our purposes, this market is particularly important because, in principle, it should be a place where the physical effects of climate change are most evident. Much of what municipalities do with funds raised from these bonds (e.g., infrastructure) is vulnerable to physical impacts; looking to the future, even more infrastructure spending (e.g., sea walls) will be needed to ameliorate climate impacts, and localities will be expected to pay for some of that. Moreover, the revenue supplied to assure bond repayment (e.g., property, sales, and income tax) is itself potentially vulnerable to climate change if repeated climate-related events (e.g., floods, fires, and heat waves) lead to outward migration and loss of local appeal and wealth (Deese, 2019).

Municipal finance comes mainly in two kinds. General Obligation (“GO”) bonds, or bonds that are backed by the full taxation power of a governmental entity whose tax base may be threatened by climate change. The other is revenue bonds—instruments tied to specific projects that may face losses from perils such as flooding, sea-level rise, or wildfires. Small changes in damages could have big effects on historically low (near zero) default risks that are the bedrock assumption for the whole municipal finance market. Indeed, analysis and risk modeling by BlackRock and the Rhodium Group concludes that under a scenario where emissions of warming gases are not controlled, "within a decade, more than 15% of the

11. Between 1970 and 2016, the default rate of investment-grade municipal bonds was 0.18%—nearly ten times less than the default rate of investment-grade corporate bonds of 1.74% (MSRB, 2019).
current S&P National Municipal Bond Index (by market value) would be issued by MSAs [metropolitan statistical areas] suffering likely average annualized economic losses of up to 0.5% to 1% of GDP [from climate change]” (Deese, 2019). Over longer time horizons those damages could be significant, and while there are substantial uncertainties in climate impacts, the risks are large enough that they should, in principle, be reflected in prices of GO and especially revenue bonds.

On the municipal bond side, there is no publicly available equivalent to the Ceres keyword search. All municipal bonds are available on a centralized site ("EMMA," maintained by the Municipal Standards Rulemaking Board [MSRB]) but they must be pulled one at a time with no search index pre-processing. Worse, there is no widely agreed-upon method for identifying which municipalities are at risk. (That lack of agreement is the root of a common refrain in the industry that even where concerns about climate change may exist, it is not possible to quantify them. We will show that is incorrect.) With large systematic data sets hard to obtain and methods for assessing risk in flux (at best), much of the discussion about how climate impacts affect municipal finance has been anecdotal yet illuminating. Some of the most at-risk municipalities in the country—New Orleans, Los Angeles, Charleston, SC, and Mobile, AL, among them—do not mention the term "climate change" once in their most recent bond offerings. 12

There is some evidence that municipalities simply don’t pay attention to climate change when it comes to their financial offerings even when they are focused on dangers of climate in other areas of policy. Oakland, for example, has organized a common law nuisance lawsuit against BP (because the oil giant’s emissions are linked to climate change), claiming big impacts to the city from climate change, yet at the same time raising funds in the municipal debt market with disclosures silent about climate change. 13 In the lawsuit (City of Oakland vs. BP, 2020), Oakland states:

"Storms with their attendant surges and flooding occur on top of and super imposed on sea level rise, causing storm surges to be greater, extend farther inland, and cause more extensive damage—including greater inundation and flooding of public and private property in Oakland. A 100-year flood event is, an event that—without global warming—normally has a 1% chance of happening every year. But by 2050, a '100-year flood' in the Oakland vicinity is expected to occur on average once every 2.3 years and by 2100 to occur 44 times per year—or almost once per week. Similarly, the 500-year storm surge flood would occur 13 times per year by 2100."

Yet in their 2020 general obligation bond (which borrows out to 2042) Official Statement, the City maintains a different stance:

“The City is unable to predict whether sea level rise or any other impacts of climate change will occur, the extent to which they will occur, when they may occur, and, if any such events occur, [and] whether they will have a material adverse effect on the financial condition of the City and the local economy.” (City of Oakland General Obligation Bond, 2020)

12. We include links to these recent bond offering Official Statements in the references.

13. For more on municipal rebuttals to legal challenges in these lawsuits stating they intentionally did not disclose climate impacts, see (Rhodes and Magrini, 2019). Cities held that not every risk may be material to each bond offering, that not every risk is fully understood at the time of offering, and that mitigation efforts may prevent damages.
While it is hard to obtain systematic data on climate impacts and link that to bond issuance, it is possible to do better than pretending the task is impossible. We use a widely cited study of climate impacts that offers estimates at fine geographical resolution—down to the levels of counties in the U.S. This study from the Climate Impact Lab (CIL), a consortium of researchers working with leading-edge data techniques to quantify physical risks, estimates damages for eight major perils: crop yields, mortality, changes to low-risk labor, changes to high-risk labor, property crime, violent crime, energy expenditures, and coastal damage. These different perils are modeled for the time period 2080 to 2099 and then converted into common currency (discounted U.S. dollars), with results as presented in Figure 6. From the perspective of economics, two effects dominate the results: in parts of the Atlantic and Gulf coasts, strong cyclonic storms; across all the hot parts of the country, the effects of additional heat. Nationwide, heat stress—which affects worker productivity and mortality—has the largest economic effect. Most of the plausible scenarios that run from climate change to municipal distress involve physically damaging climate impacts, although in some communities (e.g., in coal-dominated municipalities such as Gillette, WY, or across Appalachia) there are impacts that run from lost tax revenues and real estate valuation, due to abandonment of high carbon fuels, to municipal distress (Morris, 2019).

Figure 6. Projected 2080 income loss from climate change by U.S. county

![Image showing projected income loss by U.S. county](image)

Note: This figure shows projected climate impacts measured by county level income change as a share of 2012 income by 2080. Regions of the south are heavily impacted, with income losses up to 27.9%, while regions of the Pacific Northwest and Northeast show net increases in county income. The data behind this figure, which also form the basis for our analysis of municipal bonds, is from the Climate Impacts Lab, and demonstrates that high degrees of geographic specificity are possible in evaluating climate impacts.

Source: Climate Impact Lab and analysis by Mark Muro, David G. Victor, and Jacob Whiton (2019)
Using the CIL data, we rank all 590 U.S. counties with populations over 100,000 by climate exposure, from least to most exposed.14 For “exposure,” we use CIL’s county-level estimate of net economic damages due to climate change, for the period 2080-2099, under a scenario that assumes emissions are not much affected by global policy. We are mindful that impacts in 2080 are not material to many bond issuances in 2020, especially those with short maturity. Using a 2017 sample of 350,000 bonds collected by Marcus Painter of Saint Louis University, we calculate that the average maturity of outstanding bonds is 13 years; however, given that 41\% of bonds have a maturity of 15 or more years and 23\% have maturities of 20 years or more, the CIL county-level estimates are highly likely to be correlated in both direction and magnitude with nearer-term impacts. For instance, the places most likely to suffer extreme heat stress in 2080 are also, relative to other counties, more likely to suffer that peril earlier. Moreover, the CIL estimates are medians, and given the uncertainties in climate warming (e.g., warming is already happening faster than the IPCC estimated two years ago), the tail effects are likely to be important by the 2050s or earlier. Other work has argued that those effects, in much of the country, will be apparent over the next decade (Rhodium Group, 2019). As such, our use of the CIL 2080 median estimates should not be viewed as a prediction for distress in the bond market but rather as a method for identifying at-risk counties. Having ranked these counties, we then sample recent bond issuances and the corresponding Official Statements looking for language about climate change. For 590 studied counties, we looked at the Official Statements of bonds from 2010 to the present. For larger counties with hundreds of bonds in that range, we selected 15-20 bonds to stay consistent with the smaller counties, and chose the most recent bonds where Official Statements were accessible. For each bond, we looked to see if the Official Statement mentioned (1) climate change; (2) plans for adaptation; (3) a discussion of reports or modeling techniques used to understand exposure; and (4) a quantification of their risk. (The SI reports the full data set and the types of bonds sampled.) This leads to a matrix that crosses these two variables—climate exposure and engagement with climate disclosure—as shown in Figure 7.

14 This method of looking at counties over a threshold population may introduce a minor bias into our results as the full set of less populated counties has a slightly higher exposure to climate impacts. (For more details, which suggest there is no meaningful bias, see SI.)
Figure 7. There is no significant difference in reporting quantity or quality between high-risk and low-risk municipalities.

Note: The data above was gathered from sampling 590 counties and nearly 1,500 municipal bonds. These bonds were made up of general obligation (GO) and revenue bonds from the most at risk and least at risk municipalities with populations > 100,000, using risk rankings from the Climate Impact Lab, which measure predicted county income loss as share of 2012 income by 2080. This figure shows no relationship between predicted income loss and the percent of a county’s bonds that mention climate change. Outliers include large coastal counties, which may face well-understood risks from sea level rise, or have large affluent or liberal populations. The number and types of bonds called out in the above figure are the bonds for that municipality that mentioned climate change, not the total number of bonds checked for that municipality.

Source: Climate Impact Lab, Municipal Securities Rulemaking Board, and analysis by authors.

The data on Figure 7 show essentially no relationship between economy at risk (as assessed by CIL) and engagement of climate change (as reported by municipalities in their bond disclosures). In the SI, we report these data aggregated; we also, as a robustness check, used the same method but with estimates of climate impacts derived from 427, a company now owned by Moody’s. (The results, with a smaller sample than reported here, are aligned.) Additionally, in the SI we explore the relationship between climate risk exposure, bond maturity length, and disclosure. Again, we find no relationship between the three variables.

At the extremes (see the left-most and right-most bins on Figure 7), there are modest differences in reporting on climate change. That effect appears to be dominated by counties in coastal states—in Florida...
and the Carolinas (where the CIL data show substantial impacts due to hurricanes) and California. (In the SI, we report geographical patterns at the state level.)

Further research should assess multivariate relationships between plausible causal factors (e.g., objective exposure, partisan identification, income, and other factors that prior research has shown to form attitudes about climate change and thus plausibly may form attitudes about reporting on climate change). One pattern that is apparent is the difference between GO bonds (42% of our sample) and revenue bonds (57%). Because GO bonds have general backing from a municipality, they are plausibly less at risk, which is consistent with the patterns we observe: 10.5% of revenue bonds include a mention of climate change, but that same mention is present in just 3.8% of GO bonds. In the SI, we include a table that breaks down—among low and high-risk counties—the number of bonds and counties checked, the percent of GO and revenue bonds that mention climate change, and a quantification of the overrepresentation of coastal communities in climate disclosure. The credit stress from the physical impacts of climate change is yet another factor that amplifies default risk factors that investors are already aware of, such as underfunded pension liabilities.

The failure to say much about climate change in municipal finance, even as public debate about climate impacts was soaring over the last decade and disclosure practices in equities embraced the climate agenda, is puzzling. We see three interrelated explanations rooted in a) analytical tools; b) imagination; and c) terrible policy that allows self-interest (avoiding disclosure that might drive up borrowing costs) to outweigh market needs, alongside policies that create moral hazards by inviting communities to risk exposures that the federal government will backstop. In the conclusion, we elaborate on these in more detail, since they apply, as well, to other topics that we address in the next sections.

Credit Rating Agencies and Other Analytical Organizations

Whether poor disclosure is material to market behavior depends not simply on what companies and municipalities say about climate risks but also how pivotal actors in the markets aggregate and assess information (including information from disclosures, but typically a lot more). Disclosure could be terrible, yet markets could still price risks appropriately if large traders, credit rating agencies, and others found alternative ways to incorporate climate-related information. As a practical matter, some very large investors do their own assessments of risk. Thus, the question of disclosure may be of paramount importance for segments of the investor community that include smaller retail investors and those that rely heavily on opinions, notably from the credit rating agencies. How these agencies form their assessments is the subject of this section, and whether the markets care about that information and disclosure is addressed in the next section.

Looking to global financial institutions, the data are not encouraging. A 2019 Oliver Wyman survey of 45 global financial institutions—including Capital One, Goldman Sachs, JPMorgan Chase, and Wells Fargo—found that just two explicitly factor climate change into their credit risk-assessments. One third do not consider it at all.15 A growing number of investment groups claim they are focusing on climate change in their risk assessments and in redlining certain areas against investment (e.g., coal production). But that work nearly always looks at “climate” through an ESG framework. All ESG frameworks that include climate change include a focus on transition risk, and the most important ESG frameworks have increasingly detailed standards for emissions reporting and assessment of transition risk. The major ESG...

15. Oliver Wyman did not identify which two institutions addressed climate explicitly. For more, see (Colas et al, 2019).
frameworks also include, in principal, attention to physical risks, but systematic methods for assessing those risks remain elusive. Thus, in practice, climate disclosure through the utilization of ESG frameworks has meant focus on transition risk.

A few central banks appear to be doing better, but as of this writing, that progress is hard to fully assess. Notable are efforts to apply stress tests that can gauge the resilience of banks and other institutions to large systemic shocks, and model impacts on capital reserves, credit availability, and other indicators during near-term events like recessions (Adrian et al., 2020). There have been several efforts to begin stress testing climate-related factors—transition and physical risks—particularly through EU banks and several other jurisdictions (Cadman, 2020), and the Commodity Futures Trading Commission (CFTC) has called on U.S. regulators and banks to undertake similar stress test efforts (CFTC, 2020). The Bank of England has undertaken a comprehensive climate stress test of their holdings, including both physical and transition risks, but has postponed releasing the results due to coronavirus.16

The actors who play a pivotal role in managing complex risks are the credit rating agencies. Fitch, Moody’s, and S&P account for nearly 95% of the global market share for credit rating (Ronsberg, 2011), and thus we focus on them. (In some industries, other credit rating agencies also play key roles, such as A.M. Best and Kroll for the insurance industry. We see no evidence that the patterns of engagement around climate change for those more specialized agencies are much different from what we will summarize for the big three here.) In recent years, all three agencies have invested in analytical capabilities and issued reports on the matter.17 Our interest, though, is in materiality—have climate risks affected what the credit rating agencies do?

We answer this question from two perspectives. First, we look, where possible, at the actual work of the credit rating agencies: ratings. This is difficult because the credit rating process remains a difficult one for outside analysts to peer inside and understand from a practical perspective of replicating outcomes and results. (Whether this is a good practice or whether the agencies should be subjected to more extensive regulation and disclosure requirements is beyond the scope of this paper [Rivlin and Soroushian, 2017]. In subsequent research, we will look directly at that topic with regard to physical impacts of climate change.)

There are encouraging signs from the credit rating agencies that efforts are emerging to incorporate climate risk into their credit considerations, although the transparency of these efforts varies.

Moody’s has published regular overview reports on both their ESG methodology, and in particular, how they address environmental risks, including climate change (see Moody’s 2016, 2017a, 2018, 2019b and 2020a). Their approach sees climate-related risks arising over different time horizons and includes transition and physical risks. With regard to physical risks:

“Direct environmental trends such as those arising from climate change (for example, rising temperatures) are typically incremental, developing over very long time frames, with diffuse

16. While the results are unreleased, physical variables proposed included heat stress and increased storm severity, among others. Transition risk variables proposed included carbon pricing, renewables development, and changing consumer preferences. See (Bank of England, 2019).

17. Moody’s acquired 427 and Vigeo Eiris, and S&P recently acquired RobecoSAM—groups whose analytical capabilities are oriented around climate change. Collectively, the three big credit rating agencies have released over 1000 pages of documents discussing climate change (usually in the context of ESG) and appear to have substantially more material for clients (behind paywalls) on these topics. These materials vary in what they say about how climate change—either as a source of systemic change, or its impact on particular events that might distress municipalities—is factored into their decision-making processes.
consequences and *limited immediate impact on ratings*. High impact environmental hazards such as hurricanes or cyclones, wildfires or floods are episodic; they can be severe, concentrated in their impact and can sometimes have an immediate impact on ratings” (Moody’s 2019b, page 7, emphasis added).

In 2020 Moody’s added more detail on how they utilize scenario analysis for both transition and physical climate risk. That study emphasized the evolving methods for assessing physical risk:

“As climate-related hazards increase in severity and frequency, we expect them to have more adverse economic and social ramifications for issuers, such as impaired asset values, costs to repair and rebuild infrastructure, lost economic opportunity, business disruption, health and safety risks, food insecurity and population displacement. These all have the potential to hurt credit outcomes, although the actual impact will vary significantly across regions” (Moody’s 2020a, page 9).

There is anecdotal evidence that points to varied impacts of these analytical approaches on ratings themselves. Recently Moody’s downgraded a municipal utility district in northern California due to wildfire risk—a risk that recent wildfire events made tangible—and also downgraded multiple Texas municipalities after Hurricane Harvey revealed greater vulnerabilities to flooding (Moody’s, 2019c; Moody’s, 2017b). As suggested above in the quote from its 2019 framework, these actions were justified by specific events that revealed the hazard, rather than ex ante evaluation of the long-term, cumulative, and diffuse possible effects of warming.

As a practical matter, the Moody’s attention to climate (reflecting the broader market, as we discuss above) is more concentrated on transition risk than physical risk. Two-thirds of their 2020 scenario analysis report concentrates on the former, with more detailed analytical frameworks, compared with just one-third on the latter. A major challenge for any rating agency when it assesses government issuance, in particular, is the need to evaluate the interplay of two factors: a) whether there is a public sector backstop on losses that might be incurred (see our discussion of FEMA below, for example); b) whether jurisdictions can minimize any risk of default through continued strong economic fundamentals (e.g., tax base) and adaptation strategies (see Moody’s, 2016 page 1; Moody’s, 2019b page 7).

While there are good reasons for credit rating agencies not to fully reveal their methods—so that issuers won’t game the system and competitor agencies won’t gain undue commercial advantage—at present there is no way for external stakeholders to ascertain the materiality of climate change on ratings. That makes it harder for issuers, especially those where risks may be greatest, to know how to behave. It makes it hard for investors to understand how different methods or expectations might cause different material impacts on an asset, which is important because climate models do not agree in detail on some of the most important projections for local harm. It also makes it hard for people and political leaders living in a municipality to understand how to balance their own investments in adapting to climate risks.

18. This is based on a page count of the Moody’s (2020a) analysis covering transition and physical risks, from pages 4-12. The discussion of transition risk includes, for example, assessments of exposure for 20 automakers along with links to numerous Moody’s reports on particular aspects of transition risk (many of which are behind subscriber walls). The discussion of physical risks, understandably, looks broadly at possible impacts and points to ongoing development of “approaches and frameworks to assess the ways in which such physical risks will transmit into credit implications…” Those approaches appear to be most advanced for U.S. electric utilities and for sovereign risks related to sea level rise (Moody’s 2020a, p.12).
Development of the methods for obtaining the relevant information and making rating assessments is at early stages.

The other two agencies, S&P and Fitch, have also begun articulating more fully their approach to climate change impacts, although their information points to essentially the same conclusion: climate change, for ratings purposes, is currently mostly immaterial to ratings decisions. In both cases, like Moody’s, the agencies lump climate change concerns with other factors such as ESG—an act that may, inadvertently, lead the agencies to focus on emissions and transition risk even though, for municipal finance, the bigger risks may be physical. In 2017, S&P retroactively looked over their 9,000 corporate credit rating updates and issuance from 2015 to 2017 and found that in only 106 (or 1.2%) of all their decisions were climate and environmental factors (E&C) a key driver of their decision (S&P Global, 2017).20 Of those 106, only 43 were downgrades (only 0.5% of all decisions). In 2019, Fitch did their own retrospective evaluation of whether climate change affected (over an unstated period) ratings related to public finance and infrastructure projects.21 Even given the broadness of the ESG category, Fitch found that such factors were only relevant to about 5% of all rating decisions regarding infrastructure projects and public finance. Only one-quarter of that 5% concerned environmental factors at all. Of that tiny portion, climate change was the relevant environmental factor in only one third of the cases. Thus, looking across the entire Fitch sample, the agency determined that any aspect of climate change was material to a rating just 0.03% of the time (Fitch, 2019).

Figure 8 shows what these two agencies learned from their retrospective analyses. Where possible, we have tried to apply the same categorical concepts across the two agencies (reflected in colors on the chart). Among many of the differences, the two agencies apply screens in different ways. For the S&P analysis, the question of whether an environment-related factor was determinative of a rating was applied early in the sample (the second, yellow pie) with the ultimate aim of explaining whether the screen would affect a rating upward or downward. By contrast, for Fitch, the determinative screen was applied at the end of the analysis, and no information is supplied on whether the ratings went up or down.22

19. Indeed, even in places that have binding requirements for such assessments along with strong public and government support, actual practice lags behind. In France, a binding law has not been met with required disclosure (see Evain, 2018).

20. In 717 cases, E&C factors were considered an important consideration. But in a separate blog post, S&P refers to those 717 cases as examples where E&C factors were just “relevant” to their decision.

21. Methodologically, however, it lumped all of climate change within the ESG category—indicating that it considers it germane to corporate social responsibility. It thus paired climate change with energy management, waste management, and hazardous waste management considerations—in practice, topics related to emissions and pollution, not physical risk.

22. It appears that Moody’s has done a similar materiality analysis, available behind a paywall and reported on publicly to examine the materiality of ESG in general. The public release notes that 88% of ESG mentions are about governance; 16% cite environmental issues. Looking across all of 2500 rating actions where it found ESG to be material, in 19% of cases the impact was negative, 12% positive, and 69% neutral (Moody’s 2020b).
Figure 8a. Climate change is rarely material to the decisions of major rating agencies

Note: The data for the above figure was pulled from the publicly available reports by S&P. It is clear from the figures that climate change is almost never materially relevant to their decision. Only 0.5% of all decisions by S&P were a rating downgrade because of climate change.

Source: Standard and Poor’s
Figure 8b. Climate change is rarely material to the decisions of major rating agencies

Note: The data for the above figure was pulled from the publicly available reports by Fitch. It is clear from the figures that climate change is almost never materially relevant to their decision. In only 0.03% of all infrastructure and public finance decisions by Fitch was climate change a determining factor in their decision.

Source: Fitch Ratings
One could conclude that the rating agencies have determined, so far, that climate does not have a material impact on ratings. However, whether that observation is robust is hard for anyone outside those agencies to assess. The methods they have used to evaluate their own ratings process rely heavily on ESG-like criteria that might focus attention on emissions rather than physical risk.

Since the perspective of asking credit ratings agencies to report on how climate affects their work is necessarily incomplete, we take a second perspective that is much more anecdotal. We look at two cases—one corporate, one public finance—where perils were, for any knowledgeable expert, clearly within the scope of climate-related impacts, but were ignored until after the peril was manifest and the impacts were clear. We suggest that in both these cases the failures to reflect climate perils reflect a failure of imagination. As climate change unfolds, its impacts may not be readily computed just by looking, for example, at assets at risk. Will a hurricane wipe out a bridge, for example? Instead, the pernicious impacts of climate change require more imagination. For example, a shift in the probability of a peril can interact with corporate behavior in ways that magnify the risk—as evident with wildfires in California where climate-related drying of biomass (along with poor forest management and other factors) interacted with an aging power grid infrastructure managed by the utility PG&E.23 Similarly, better imagination will be needed to see that, perhaps, the big physical risks from climate change for municipal finance lie with erosion of the tax base—not simply destruction of uninsured publicly funded property or the need to build new infrastructures to protect a municipality from storm surges or other perils. These systematic impacts create cascading effects, that, while hard to measure, we can grasp in the same way we triangulate municipal exposures—through the extremes.

One such example is PG&E. Not one of Moody’s PG&E credit rating decisions before the 2017 fires mentioned climate change as a relevant risk factor to the utility. Yet almost every single rating decision after the fires mentioned climate change, as heightened wildfire risk alongside California’s inverse condemnation laws that hold utilities liable for wildfire damage regardless of negligence could lead to long term credit impairment (Moody’s, 2020c). PG&E, in vastly underestimating its climate exposure, is an instructive bellwether of potential future extreme events. After the 2017 and 2018 fires PG&E entered bankruptcy filings and began an extensive restructuring of its debt with California state oversight. The utility has paid out billions in subrogation claims to insurers and had trouble obtaining insurance for continued operation. It will exit bankruptcy still deeply indebted with a bond package rated Baa3 by Moody’s and BBB- by (Wiltermuth, 2020).

Another extreme example is Puerto Rico—perhaps the most dire American example of how climate change (extreme cyclonic storms and flooding) can interact with the tax base to alter repayment risks. Puerto Rico was already deeply economically distressed before the climate-linked hurricane made landfall. It is an indicative story of how climate change risks may have their greatest impacts on society—not as single blockbuster events that arrive overnight but as a stressor, often repeated, that undermines communities already in financial distress. In Figure 9, we show the progression of ratings (Moody’s) for Puerto Rico’s GO bonds along with one revenue bond: for Puerto Rico’s Aqueduct and Sewer Authority (PRASA).24 We begin in October 2013 with a fresh downgrade, inspired by a slowing economy (but no

23. The combined impacts of climate change on increasing frequency and severity of wildfires is well documented. For a summary, see Wildfires and Climate Change (Center for Climate and Energy Solutions). In a recent statement, PG&E admitted that its electrical equipment caused the 2018 Camp Fire (Cal Fire, 2020).

24. While there are multiple credit rating agencies, we use the Moody’s assessment because of its transparency in how ratings progress with material events, which are published on their public website.
concerns about climate change or climate-related perils). Both bond types then go through a series of five downgrades—each time rooted in macroeconomic concerns (including debt levels). Then Hurricane Maria hits in September 2017; the next month Moody’s downgrades the PRASA revenue bond out of revenue concerns but still makes no mention of climate change affecting the probability of Maria-like events in the future. Yet assessing any additional stress from future hurricanes must be done with an eye to the deeper fundamentals; between 2013 and 2017 Moody’s lowered Puerto Rico debt six notches—five for fundamental economic reasons (e.g., debt and fixed costs) and one for Maria herself.

Figure 9. Between 2013 and 2020, Moody’s never mentioned climate change as relevant to their bond ratings of Puerto Rico, even after Hurricane Maria

Note: Between 2013 and September 2017, Moody’s only discussed a slowing economy and worsening debt for their reasons to downgrade general obligation and revenue bonds from Puerto Rico. Even after Hurricane Maria hit, Moody’s analysis focused on the implications of that particular storm, not the risk of similar storms in the future. Source: Moody’s

Why have the credit rating agencies done so little to reflect climate change in their work? We can speculate about five overlapping answers:

1. The agencies may see little impact from climate change on what they are asked to evaluate, which is typically repayment risks. Except in extreme cases, climate is viewed as a chronic background problem that is less material than immediate economic fundamentals and seemingly rare climate-related events such as a wildfire or hurricane.

2. Many agencies appear to view climate change as an ESG issue. Because the “E” tranche of ESG issues is highly expansive—it includes waste management, pollution, and emissions—this perspective is often in the realm of transition risk. All the major ESG frameworks increasingly call for inclusion of physical risks from climate, but methods for assessing those are still immature (see below). Moreover, in some cases it appears that the “S” and “G” tranches have reliably driven ratings action more so than environmental concerns (Fitch, 2019; Vartholomaios et al, 2019).
3. There seems to be a widespread belief that physical risks can’t be estimated reliably at sufficiently fine geographic, temporal, and peril level resolutions. Two of the major credit rating agencies have invested in firms that could address those challenges, although it is hard for outsiders to assess how fine-resolution information on perils and assets at risk trace into the core work of the credit rating agencies. The third firm, Fitch, seems to be using a historically calibrated risk model. Better tools are a big step forward, and the agencies in different ways are taking that step. In the climate modeling community, when tools of this type are developed, there are detailed and public intercomparisons of models aimed at figuring out the root causes of discrepancies and understanding which tools perform best under different circumstances. We expect that if systematic, careful, and open comparisons of different methods were to unfold in the analyst community, they (and investors) would learn that uncertainties and methodological challenges are even more troubling than they imagine right now. Variation in model performance will be a challenge, since downscaling of global circulation models has always been challenging; moreover, these models are only part of the story. Understanding assets at risk is a start, but understanding the damage functions relevant to each asset—and the damage functions relevant to each element of the tax base that is the source of debt repayment—is the next frontier.

4. The world of physical impacts of climate change, especially on public infrastructure, is filled with moral hazards. In extreme cases, federal disaster aid policy, flood insurance, and other interventions after calamity strikes mean that physical losses to exposures of local communities and firms may be less financially severe for municipalities and firms in practice (Miller, 2018). Credit rating agencies can account for the presence of these programs to backstop losses, restoring bonds to their original credit-worthiness post-disaster. Indeed, in the municipal finance market, huge federal programs—most prominently, the national flood insurance program (NFIP) administered through the Federal Emergency Management Agency (FEMA)—can cover between 75 to 90% of rebuilding cost and cause credit distortions by providing a "put option" on issuances (Lee and Wessel, 2017). Looking recently at this situation, one market analyst found that the combination of "FEMA aid, receipt of insurance proceeds, and the pick-up in economic activity that occurs with rebuilding have been instrumental in maintaining credit quality in many municipalities that have experienced natural disasters" (Healy, 2019).

5. Connecting all these factors requires a lot of imagination and, frankly, uncomfortable speculation. What matters is how transitions from climate pollution and the impacts of climate change could interact in ways that affect both the costs of climate change and the ability of firms (in the case of corporate finance) and communities (for public finance) to repay. There is some evidence that the credit rating agencies are trying to develop the in-house ability to assess these dangers, and all of the major agencies are publicly saying more things about climate change, but the practical implications of all this are still elusive because it is hard to connect the dots rigorously and reliably.

25. For more, see (Gaul, 2019).

26. For instance, S&P has put out a variety of public information related to ESG scores and municipalities, as well as information on how the agency is measuring and understanding physical risk on their public website. Moody’s has also published an environmental heatmap and other analysis, available on their ESG division website. For these links and reports, see reference list.
Have Disclosures Affected Market Behavior?

Given the highly uneven practices of disclosing information about climate-related risks, it is hardly surprising that there isn’t much analytical literature on whether disclosures affect market operations. What literature does exist focuses entirely on transition risks and finds weak and mixed impacts. Most studies suggest that increased disclosure leads to positive market outcomes. One notable study finds no impact. What remains particularly elusive are the causal mechanisms. Disclosure may reflect management attention and thus, relative to peers in the sector, engender greater investor confidence that management will be efficiently responsive to new policy, political, and technological risks and opportunities. Causation may also run in the opposite direction, with well-governed firms (and, as we found above, larger firms) more likely to offer more detailed, informative disclosures—with higher valuations flowing due to governance skills, rather than disclosure itself. One of the central statistical challenges in this research is identifying the effect of disclosure signals amid many other factors that influence valuations; moreover, there may be a bias in this literature towards demonstrating the positive impacts of ESG disclosures because many ESG firms participate directly in the research itself.

Why isn’t there more evidence that disclosure affects the pricing of financial instruments? In the area of transition risk, nearly every firm that faces significant transition risk is engaged in activities that the markets already are able to observe. Volumes of coal and oil production, for example, are already known at the firm level, and emissions associated with those industrial activities (scope 1 and 2 emissions) and

27. Indeed, the financial impacts of transition risk in ESG—in particular, issues of “stranded assets,” or those assets that may be rendered unusable due to future climate policy—have been explored in (Sen, 2020), (Delis, 2020), (Atanasova and Shwartz, 2020), and (Ilhan et al. 2020). Where evaluated, transition risk exposure is shown to have generally negative impacts on valuation.

28. One study looked at 1,000 Japanese firms and found that while higher levels of carbon emissions were linked to decreased corporate valuations, disclosure of those emissions was linked to increased corporate valuations (Saka and Oshika, 2014). This was confirmed by two more studies that find, first, “markets penalize all firms for their carbon emissions, but a further penalty is imposed on firms that do not disclose emissions information” (Matsumura, 2014), and second, that across 4,655 firms-year observations from 34 countries, firms were rewarded in cost of capital for disclosure (Bui et al, 2020). At the portfolio level, one recent European-based modeling study finds the existence of a negative climate “greenium,” rewarding investment portfolios weighted to firms that disclose more frequently and penalizing those that do not (Lucia, 2019). These positive valuation impacts are also confirmed by (Keugler, 2015).

29. This study of 379 Korean firms found that voluntary disclosure of greenhouse gas emissions had no measurable impact on the cost of equity capital for those firms (Kim et al. 2015). To the extent valuation is uncorrelated or negatively correlated with disclosure then raises the odds that the market is heading for a Minsky moment, as markets realize that energy transformations are taking hold—rapidly devaluing high carbon incumbents and valuing firms of the new clean economy (Bond, 2020).

30. We note the body of literature that does exist on climate change responses in finance and estimating climate impacts on valuation (exclusive of disclosure). This literature often deals with portfolio construction models and hedging strategies, among others. For more, see (Oyenihyi and Tortorillo, 2019), (Cheema-Fox et al, 2019), (Andersson et el, 2014), (Young In et al, 2017), (Ginglinger and Moreau, 2019), (Engle, 2019).

31. Investors have been shown to reward firms that are more responsive to climate risk concerns. A well-cited study regarding the impacts of shareholder activism on firm disclosure finds that “companies that voluntarily disclose climate change risks following environmental shareholder activism achieve a higher valuation, suggesting that investors value transparency with respect to climate change risks” (Flammer et al, 2019).

32. For example, see (CSSP/South Pole Group, 2016), (Khan, 2013), (Innovest, 2007).
with usage of those products (scope 3 emissions) are readily estimated. Transition risk is highly concentrated in heavily industrialized sectors, mainly on a few hundred traded firms, for which there is an abundance of information. Indeed, researchers completely independent of the sector have been able to produce detailed analysis of total emissions without any self-reporting of data from firms (Heede, 2014). Of course, details vary by sector and firm, in particular when it comes those emissions that occur from using a firm’s products (scope 3 emissions).\(^{33}\)

Moreover, there are big questions about just how quickly “transition” will occur—and therefore how investors should price financial instruments exposed to disruption from decarbonization. The most active emissions disclosure programs, such as CDP, have also benchmarked firms against widely discussed goals, such as stopping global warming at 1.5°C (CDP, 2020). Meeting that goal would require about 8% annual reduction in emissions—a heroic change (UNEP, 2019). For comparison, the annual drop in emissions during 2020 due to the economic depression stemming from the pandemic will be about 8% (Hanna et al, 2020).\(^{34}\) Yet in the real world, no major economy is adopting policies aligned with that trajectory. Thus, the disclosure industry is steeped in observations about imminent disruption, while real firms and investors are not seeing that disruption occur—aspiration has eclipsed real changes in policy and market conditions. Or, as Exxon has stated bluntly in its own public disclosures around transition risk, the firm’s balance sheet is dominated by near term assets (e.g., booked oil assets underground) that will long be sold to market before actual deep decarbonization occurs.\(^{35}\) European-based firms are in a different political environment—their host governments and societies are expecting more rapid change—and thus they are, not surprisingly, doing a lot more on decarbonization.\(^{36}\) Still, formal disclosures have not revealed much additional information about that behavior to the markets.

For physical risk, the lack of any market response to information may be even more worrisome, and could be a true market failure. It appears that the market does not know the actual exposure of key financial

\(^{33}\) For instance, depending on what kind of industry and sector emissions occur within, the risks may be more or less existential in nature. Only in energy is transition risk truly existential, as in the case of coal. For the other most carbon-intensive sectors (utilities, materials, and industrials), there are existing low carbon alternatives. Transitions to a low carbon economy will therefore have different magnitudes of impact even among those sectors most exposed. Our thanks to Julie Gorte from IMPAX Asset Management for helping us think through this issue in greater depth.

\(^{34}\) For more, see (International Energy Agency, 2020).

\(^{35}\) Such blunt statements were made in 2018, but looking at Exxon’s disclosures from today’s vantage point it is actually very difficult to pin down, based on external facing information, what the company thinks. The Exxon sustainability report is very general in nature (ExxonMobil, 2018). Looking to the latest (2020) “Energy and Carbon Summary” there is more detail, revealing that the firm expects that governments will honor their Paris pledges, but those pledges do not add up to stopping warming at 2°C. When looking at the actions needed to achieve 2°C, Exxon underscores that there are many different pathways and that technology will affect the impacts on particular firms. A key statement, with reference to the value of the firm’s proved reserves (a key driver of the valuation of the upstream activities in an oil and gas firm, and for Exxon the biggest component of the firm) is: “Based on currently anticipated production schedules, we estimate that by 2040 a substantial majority of our year-end 2018 proved reserves will have been produced. Since the 2°C scenarios average implies significant use of oil and natural gas through the middle of the century, we believe these reserves face little risk from declining demand” (page 14). Put bluntly, what governments promised in Paris won’t actually meet the Paris goal of stopping warming well below 2°C. And even if that goal is taken seriously, it is not material to the firm’s core operations. See full report: (ExxonMobil, 2020).

\(^{36}\) There are firms who have written down assets in a manner that some analysts say is consistent with climate change impacts, although whether or not those write downs are due to imprudent financial decisions or the presence of transition risk is hard to determine.
A few large investors, sympathetic to the argument that physical risks are mis-priced, have offered suggestive but highly anecdotal studies—which have not attracted much attention, probably because the findings are so cursory. Charles Schwab (Cooper, 2019) and Barron’s (Norton, 2019) both assessed whether municipal bond prices reflect physical risk. But they both only look at two bonds for their analysis. BlackRock’s analysis also examined, visibly, just two bonds—although the firm suggested that it has more data looking behind the scenes (Deese, 2019). The Government Accountability Institute, a private think tank, published a study focused on 200 municipal bonds (GAI, 2019). Yet these studies fail to grapple with a key statistical problem: If the market has very little information about physical risk, then much larger samples will be needed to detect a significant impact on yields or default rates.37 This situation may change quickly with new research tools—along with companies that apply them—that are estimating plausible impacts at relevant spatial resolution, including the CIL research we use in this paper.38 That such tools have not been applied widely and that market participants have not sought such information may plausibly be why there is little documented relationship between physical risk and pricing of instruments.

Where climate impacts align well with mental models of how climate change will affect public infrastructure, there is weak evidence that there has been some market response. For storm surge and sea-level rise, both areas where market participants can imagine near-term impacts, we see some very weak evidence in large sample studies that the markets are responding. One study looking at 59,000 bonds found a small but statistically significant price difference between school district bonds in areas with a high risk of sea-level rise and areas with a low risk (Goldsmith-Pinkham et al, 2019). Another, looking at 37,000 bonds, found a similar result generic to all bonds, and not just bonds linked to school funding (Painter, 2018). This work resonates with studies that have looked at other markets that are exposed to climate impacts yet are outside the scope of the present study—for example, real estate, where academic literature on housing prices in sea-level-exposed Miami-Dade may reflect a theory of “Climate Gentrification”, with higher elevation property prices appreciating more than lower elevation properties (Keenan et al, 2018).39 Other studies find the opposite—no impact of sea level on real estate values (Murfin and Spiegel, 2020). (The confounds are legendarily difficult to address because people, for the most part, want to live next to the ocean, even if the ocean might one day be in their living room.) One study has looked at the intermediaries in pricing mortgage risks—banks—and found large national banks had a much weaker understanding of the risks posed to a community than the local community’s banks (Keenan and Bradt, 2020).

For the municipal finance industry, the paucity of climate risk disclosure is perhaps easy to understand from the vantage of the incentives at work in the industry. Municipalities are intrinsically...
place-specific and have taxation and budget authorities that have, at least traditionally, allowed issuers of municipal debt to operate on the assumption that default risks will remain nearly zero. Given the paramount interest of issuers to raise funds for essential municipal operations, there are powerful incentives to downplay long-term factors that will not immediately affect repayment ability. Analogous situations—for example, the sudden awareness of municipal debt investors regarding the problem of underfunded pensions—suggest that awareness of climate risk could unfold quickly. A second explanation is that municipalities themselves—except the very largest—do not have on staff risk officers and other arms of government specifically charged with understanding climate risk. Much of the responsibility for disclosure around climate risk accrues to underwriters and arises only at the time of issuance and after material events (unlike ongoing disclosure practices, akin to 10-K filings by listed equities), and they, if not otherwise informed by municipalities themselves, have little access to information (nor much incentive to look deeper) with regard to these risks. Third, and perhaps most importantly, municipal bonds typically offer tax preferences that are enormously valuable to many investors, as the supply of these tax preferential investments is limited.\footnote{40}

Conclusions: Improving Disclosure of Physical Risk

Over the last two decades, the financial sector has radically increased its discussion of how climate change might affect asset valuation and market behavior. The impact of those discussions on what issuers of tradeable financial instruments reveal about risk, however, has been highly uneven. In equities, disclosure about transition risk in a few sectors has risen sharply; across most of the market, however, there is much less information—indeed, information about how firms are possibly exposed to the physical risks of climate change. Notably, in only two industries, agriculture and insurance, U.S. traded equities have focused disclosure on physical impacts of climate change.\footnote{41} Even worse are municipal debt markets where issuers reveal almost nothing about exposure.

First, this pattern of disclosure reflects a lack of imagination. The latest science about climate change shows the system changing rapidly, with synergistic impacts that will have substantial and growing impacts on physical assets and public welfare, including the economic viability of communities on the front lines. These impacts are no longer abstract or decades into the future, and extensions of the latest climate science suggests that plausible tail risks are even larger and more immediate. The problem of disclosure reflects a problem of imagination, with the mental models used to assess much of the risk around climate change focused in the areas that are easier to measure and imagine (transition risk), whereas the real need for imagination is around physical risk. Many of the elements needed for better imagination are present, but what is missing is synthesis—in particular, by the actors who have a system-wide view of how failures and incompleteness in individual disclosures could affect the markets and social welfare overall: market regulators and credit rating agencies.

Second, a strategy to rectify this problem requires action on many fronts, but many of the key elements can already be envisioned:

\ldots

\footnote{40. We note that, internationally, very recent research has indicated the markets do price climate shocks to sovereign bonds. See (Cevik, 2020).}

\footnote{41. Other industries with physical risk focused disclosures include Apparel, Entertainment, Food and Bev, Media, Pharma, Retail, and Water Utility.}
• Issuers, in particular for municipal debt, may find it too challenging to assess on their own the exposure of critical infrastructures (which are often funded by municipal borrowing) to climate impacts. This problem could be addressed through investment in national infrastructure audits—the building of databases of critical infrastructure and its exposure to damage from different perils. For insured assets, the incentives to build such databases exist already, and several private firms have done that, but there is no analog for public infrastructure. Work in key municipalities and by scientists have already demonstrated how this can be done in particular locales (Fourth National Climate Assessment, 2018), (Gardoni, 2019).42

• Issuers, as well, find it challenging to utilize climate models at the level of geographical resolution needed for evaluation of physical impacts. Some models have evolved in this direction already, and extension of existing research support—such as from NSF—could strengthen this foundation of public knowledge. Indeed, the climate modeling community already engages in many intercomparisons of models for their forecasting skill; such model intercomparisons could be focused more sharply on local downscaling and timing of expected impacts, tail risks, and identification of which modeling platforms are best suited for assessment of different types of physical perils from climate change.

• The best approaches are, today, unknown—and there are few good models (especially for municipal debt) for useful physical risk disclosure. Large issuers and investors most keen on gaining information about climate exposure should encourage experimentation and identification of best practices so that the industry, as a whole, learns how to engage in more effective disclosure. Regulators in the states that are most concerned about climate impacts, such as Florida and California, could guide this process with experimental disclosure and standard-setting programs in the jurisdictions that are most vulnerable and also most able to do the needed analysis.

• In equities, the stewards of the largest ESG programs could run a series of similar experimental demonstrations aimed at learning more rapidly about the kinds of physical disclosure that would be feasible to assess systematically—leading to improved methods and, crucially, demonstration models.

In effect, the activities above can create a foundation for better disclosure around physical risk. Recent proposed legislation such as the Climate Change Financial Risk Act could help address the problem, but that bill has limited sponsorship and is unlikely to pass (Casten, 2019). However, essentially all the legislative authority needed for action is already in place. Existing advisory organizations like the TCFD should refocus their efforts on the full scope of all risks and place more emphasis on improving the disclosure regarding physical risks.

The Financial Accounting Standards Board (FASB), the Public Company Accounting Oversight Board (PCAOB), and the Fed, under existing authorities, should do the same, following best practice recommendations from leading organizations like Ceres (Ceres, 2020). The problem with physical risk disclosure is not lack of jurisdiction, but lack of imagination and models for how this disclosure could work practically. These organizations should launch, in effect, an experimental regulatory program—

42. For instance, developing public inventories that catalog the locations and exposure of critical infrastructure such as nuclear power plants. For more see (Moody’s, 2020d).
investing in (or requiring) a variety of approaches and then testing them against experience and learning, across markets, to determine which actually work.

Third, any program for improving disclosure, and ultimately management, of physical climate impacts will require not just imagination and better demonstration of disclosure frameworks—incentives must also be aligned better.

Particularly problematic are the practices at FEMA and with flood insurance—including some state programs that pool flood and wind exposure. These programs have invited moral hazard, which is amplifying risk and also undercutting incentives for issuers to disclose those risks because they have historically assumed that real physical risks from climate change will be absorbed by government. A variety of partial reforms are beginning to change that. There is new attention being paid to the uncertain future of federal disaster funds, due to budgeting issues, the increasing occurrence of natural disasters, and political headwinds (St. Peter, 2020). In some cases, private experimental insurance schemes traditionally used in developing countries are being proposed to fill disaster coverage gaps (Colman, 2020). Those efforts should continue. Even where a longstanding practice of socializing risk can’t be abandoned completely for political reasons, policy makers should continue to raise doubts about the long-term viability of these schemes. The greater the level of doubt, the greater the demand from the markets for real information about physical risk.

Attention to incentives must include, as well, a focus on fiduciary responsibility. That includes liability rules that apply to executives, directors, investment managers, issuers, and others, including the errors and omissions (E&O) and directors and officers (D&O) liabilities that arise from poor disclosure. Quite apart from the evolution of fiduciary and liability rules, standard disclosure practices could change quickly with guidance from regulators, professional and standard setting bodies (e.g. FASB and PCAOB), and the credit rating agencies. If these organizations take bigger steps to integrate physical risk into their standards and evaluations of issuers, companies, and securities due to increased knowledge of the exposure and the materiality of the risk, it will quickly alter behavior. There is a history of analogies for such circumstances where the knowledge regarding materiality and risk evolves over years until the point that the risk is clearly known and material, such as what happened with exposure to subprime assets, asbestos, unfunded pensions, and smoking. Once the depth of the issue and the materiality on valuations were broadly understood, information was demanded by market participants, rating agencies, and regulatory bodies that quickly altered market practices and pricing of financial assets and the legal environment regarding disclosure of those with fiduciary responsibility (which for some risks extended broadly to many firms and market participants). As we have documented, several of the firms have indicated they know such steps are needed, but a new form of standard practices—transparent enough to issuers to alter behavior—has not emerged.

Fourth, activists and analysts must recognize that they are fighting the wrong fight. The extraordinary attention to transition risk aligns with most mental models of how financial assets might be affected by climate policy. In the extreme, rapid revaluation of those assets might create financial instability (Carney, 2015). But the markets are already aware of regulatory risks for emission-intensive industries. The real push for better disclosure should be on physical impacts—they may prove more consequential to revaluation of financial instruments, and they are the area where the markets know the least. Where investors think they know something about climate impacts—for example, on sea level rise or impacts that have recently been demonstrated as credible (e.g., wildfires)—investors respond, but the responses are...

43. Recent SEC petition efforts have been made to mandate that companies report physical location information. See here: https://www.sec.gov/rules/petitions/2020/petn4-763.pdf.
weak and short lived. The activist and analyst communities should consider doing more, with sympathetic
investors and credit rating agencies, to test a variety of methods that might reveal more useful
information about physical risk. In this space, as well, there are opportunities for new firms that can
synthesize varied information about physical risk and attach it to particular financial instruments and
improved pricing systems. There are real opportunities for the private sector, without regulatory
prompting, to improve investor intelligence and capital allocation through disclosure based upon a widely
accepted framework for evaluating and pricing climate physical risk into asset valuations.

Climate change will alter exposures to risk in ways that can’t be revealed simply by looking harder and
in more clever ways to the past. New tools will be needed, along with new imagination. Everyone involved
will need, as well, to articulate better what they don’t know—to help guide efforts to fill in the gaps and to
help markets understand that silence doesn’t mean we have confidence that risks do not loom.
REFERENCES

Differenbaugh, Noah. 2020. Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events. Science advances, 6(12) https://doi.org/10.1126/sciadv.aba2368

Hanna, Ryan, Yangyang Xu and David Victor. 2020. After COVID19, green investment must deliver jobs to get political traction. *Nature*. Accessed from: https://www.nature.com/articles/d41586-020-01682-1

Moody’s. 2016. How Moody’s Assesses the Physical Effects of Climate Change on Sovereign Issuers. (subscription required)

Moody’s. 2017a. Evaluating the impact of climate change on U.S. state and local issuers. (subscription required)

Moody’s. 2020a. Sector In-Depth. Climate scenarios vital to assess credit impact of carbon transition, physical risks. (subscription required)

Moody’s. 2020b. Research Announcement. Moody’s - ESG risks material in 33% of Moody’s 2019 private-sector issuer rating actions. (subscription required)

Municipal Securities Rulemaking Board. 2019. *Municipal Market by the Numbers*. Accessed from:

The mission of the Hutchins Center on Fiscal and Monetary Policy is to improve the quality and efficacy of fiscal and monetary policies and public understanding of them.

Questions about the research? Email communications@brookings.edu. Be sure to include the title of this paper in your inquiry.
INVITING DANGER

How federal disaster, insurance and infrastructure policies are magnifying the harm of climate change

March 2021

SADIE FRANK | ERIC GESICK | DAVID G. VICTOR

BROOKINGS
About the Authors

Sadie Frank is a research assistant at the Brookings Institution.

Eric Gesick is a visiting scholar at the Institute on the Environment, University of Minnesota and has a consulting engagement with AIR Worldwide. Neither he nor AIR received any financial contribution for this research or production of this research, which was strictly undertaken for public, academic purposes.

David Victor (david.victor@ucsd.edu) is a professor of international relations at the University of California San Diego School of Global Policy and Strategy, an adjunct professor in climate at the Scripps Institution of Oceanography, and nonresident senior fellow with the Brookings Institution.

Acknowledgments

The authors would like to thank Thomas C. Ramey and Perrin Ireland for their support, as well as our colleagues, Shalini Vajjhala, Serhan Cevic, Tom Doe, Richard Moss, Michael Newman, Roy Wright, Michael Panfil, Morgan Bazilian, Mekala Krishnan, Sanjay Patnaik, Tom Ramey, Adele Morris, Siddhi Doshi, and Cayli Baker who participated in the review for this paper and offered their generous guidance. A special thanks to Ted Gayer for guidance during review and revision. The authors also thank Romany M. Webb from the Columbia Sabin Center for Climate Change Law, Michael Panfil from the Environmental Defense Fund, Mekala Krishnan, Dickon Pinner, Hamid Samandari and Jonathan Woetzel at McKinsey and Richard Mattison at Trucost for their very helpful conversations along the way. The authors benefitted notably from discussions with the GAO, including Joseph Thompson, Mick Ray, Kathryn Godfrey and Christopher Currie, along with seminar participants at the SEC and San Francisco Federal Reserve. Additionally, the authors thank Roger Grenier and Brent Poliquin at AIR Worldwide for their contribution to this paper's analysis and extensive ongoing discussions.
EXECUTIVE SUMMARY

Many government policies create incentives for people to make economically detrimental decisions, including settling and building on land exposed to hurricanes, floods, and wildfires. These policies already cost taxpayers tens of billions of dollars annually and may cost a lot more by distorting the allocation of trillions of dollars of capital into danger-prone areas. Market forces that are normally powerful arbiters of risk are blunted by the assumption that losses, if they happen, will be repaid by government. Worse, where these policies amplify dangers that effect is likely to become more severe due to the impacts of global warming.

We introduce a framework for analyzing how federal spending patterns under current and possible future policies may shield or remove individuals, firms and local governments from some of the financial harm created by decisions they take—what economists often call “moral hazard.” Whereas these actors are often in a good position to make decisions that reduce exposure and damage from natural perils, in the presence of moral hazard they could make different decisions that, in effect, shift the cost of their choices.

What’s new in this paper is a framework for looking at individual policies and government programs according to how they affect the damages associated with natural disasters. We focus on the subset of those disasters that could be affected by climate change and thus exclude earthquakes, tsunamis and others whose incidence is unlikely to change in a warmer world. We distinguish between those that merely aim for simple recovery after peril hits—thus prone to create moral hazard if they discourage efforts to reduce dangers—and policy programs that aim to improve resilience against future perils. While there are many diverse domains of federal policy, we focus on policy programs in three areas: a) disaster response, b) building and maintenance of infrastructure; and c) subsidization of insurance for perils such as flood and crop losses.

Such a framework is essential because these policies are often highly complex, with varied goals that implicate agency action that are diffused across the whole of the federal government. For example, even within a single agency implementing a common core set of statutes—the Federal Emergency Management Agency (FEMA)—some programs aim at resilience while most focus only on recovery. In FEMA’s case, we find that just 14 percent of the 81 billion dollars in total disaster grant funding spent since 2005 have gone to programs that aim to advance resilience to climate related disasters—smart building and rebuilding. Outside that tiny fraction, most of FEMA spending has gone into activities, such as rebuilding, that have the unintended effect of encouraging risky siting decisions and other behaviors that may discourage those best prepared to address these risks from being fully responsible for adverse outcomes. Loans and grants managed by Housing and Urban Development (HUD) also exhibit funding differences that can propagate behavior that could invite risk rather than build resilience. Flood and crop insurance programs can create similar incentives that insulate homeowners, farmers, and businesses from the consequences of risky behavior. Federal infrastructure investments also, for the most part, focus on recovery and response to today’s patterns of disasters rather than planning for the changing climate of the future.

The value of a framework is the ability to look across the entirety of the federal government. Quantifying the exact impact of the misallocation of risk costs, or moral hazard aspects of these programs is very difficult not just because they are diffused across government but also because the programs that create these adverse incentives co-mingle worthy policy goals (e.g., protecting vulnerable populations that are living on the edge already) with unintended consequences that can
create moral hazard and shift the costs of that hazard to the federal government. Assessing how spending affects behavior—ultimately by individual homeowners and others—is outside the scope of this paper. Our purpose is to take the first step in such a full blown analysis, understanding the allocation of policy effort, that can create the conditions for moral hazard.

A central finding from applying this framework is that there is currently a 7:1 ratio of disaster recovery to resilience funding across the federal government. While there is substantial evidence that resilience funding generates large social returns, in practice federal spending on climate-related disasters appears to be heavily weighted away from resilience. We find this ratio can be as high as 40:1 depending on the accounting system used. The exact size of this cost differential is hard to pin down, but a central estimate today suggests that the federal government currently spends at least about $46 billion per year responding to and recovering from large natural disasters, and only $6 to 7 billion on resilience towards future perils. However, that number does not account for the full federal backstop—the implicit promises of assistance that are widely assumed to exist when massive losses, such as extreme hurricane seasons, arrive. That backstop has been tested periodically—for example, by superstorm Sandy—and found robust (and thus valuable and costly but hard to measure).

The practice of focusing federal disaster policy on recovery reflects many political forces, including support for important humanitarian goals. However, there are three reasons to expect that the cost will grow and, plausibly, become unsustainable politically and also more distortionary economically. First, population migration already trends toward dangerous areas—such as hurricane-beset Florida and Texas. Second, property values rise as these more crowded populations get wealthier. These two factors alone explain the majority of the rise in extreme storm losses over the last 3 decades, and that trend is likely to continue. The third factor—climate change—is newer and will magnify these effects. By mid-century, it is plausible that the flow of annual federal expenditures on climate related disasters will need to rise significantly, and by later in the century the increases due to climate change will exceed the effects from population and economic growth. We compare current average annual payments for FEMA declared disasters over the last decade against the expected economic loss in 2012 if the climate conditions projected for last decades of the century existed in 2012 and find the latter to be 1000 times greater on average, with lots of variation across the country. The Congressional Budget Office (CBO), Government Accountability Office (GAO) and other agencies, along with some academics and many state policy makers and experts in the corporate sector, have begun to look closely at this because it is so fundamental to public finance and to expectations for the size and character of future natural hazard policies.

Policy reform will be challenging. At present, federal policies are shrouded in deep layers of political defense, which is why these widely known problems with the current arrangements have not led to much durable reform. There are many encouraging pilot efforts to re-align incentives and reduce moral hazard—for example, FEMA’s efforts to buy out properties that suffer repeated losses rather than simply funding rebuilding that leads to repeated cycles of loss. Such efforts, overall, have only small effects on overall expenditure and many come unglued politically when they operate as intended. Reforms to raise flood insurance premiums in 2012, a good idea, came unglued politically when homeowners and the real estate industry balked; Congress rolled the premiums back just two years later.

Mindful of the political challenges, it is essential to pursue policy reforms in advance of accelerating impacts of climate change. We explore scenarios that could open a window of opportunity for reform. A massive event is one such scenario, for such shocks allow for a reordering of political forces. This happened briefly after superstorm Sandy when special Congressional appropriations allocated between one-third and one half of funding for smart rebuilding—a share much larger than normal disaster recovery programs. The probability of such an event is rising, and the country needs to
recalibrate and plan for how it might respond not just immediately but in terms of larger disaster policy reforms. When Hurricane Andrew hit Florida in 1992 it caused $26.5 billion in total economic damages; the same event today, with more people and value at risk, would be $80-100 billion. And it’s not just large events that can create a crisis. Other scenarios see multiple small and medium size events over a short period of time that ripple through the insurance markets and create cascading financial stress. Florida, even with one of the most sophisticated private-public frameworks for funding disasters in the U.S., is primed for such an unravelling. With its $2.6 trillion of exposed insured residential values through public and private insurers, the Florida economy would be dependent on the viability of post event financing and assessments of policyholders and taxpayers to recover financially from an unusually severe hurricane season.

We outline reforms, with an emphasis on the value of tracking the difference of recovery vs. resilience spending so that the full picture (and its potential imbalances) can be understood. Such improved situational awareness will require more action in Congress to account for spending along with more analysis of how moral hazard may be amplifying the nation’s exposure to natural disasters. No regular government accounting activity tabulates the full extent of programs that may create moral hazard through federal policy. We also see a role for the US National Climate Assessment, a regular analysis of the possible impacts of climate change on the country, as one of the places where better understanding of how federal and state policies are affecting behavior could alter the actual damages the country suffers from climate change and the response strategies that might reduce those damages. In addition to better awareness of the effects of these federal policies, we identify ways for the whole of the federal government to operate more strategically in this domain.

Finally, we suggest that major reforms of disaster assistance, while politically challenging, would benefit from more explicit political design so they contain interlocking elements that are likely to be more durable. A policy commission, similar to the commissions that help design policies for closure of military bases (a politically fraught topic with many of the zero sum dynamics that make disaster reform difficult) could be helpful. We also suggest that reforms are most likely in the context of crisis, and thus there is a need for realism about when reforms can be accomplished—laying the foundation of more situational awareness and more politically savvy reform packages will lay the groundwork for change when the opportunity arises.

Over the last few cycles of executive control, it has become apparent that neither political party has a strategy for realigning disaster assistance in ways that make it more financially sustainable nor create the right incentives to make society more resilient in the face of climate change. Most policies have focused on “building back the same,” and the public for the most part has been supportive. While that might have been tolerable in an era of modest impacts from natural disasters, that era is ending. An urgent national priority is creating the right incentives so that private and public sector investments reduce the future damages from climate change and make the country more resilient.
INTRODUCTION

For thirty years diplomats have been holding regular negotiations on climate change and have forged three global agreements on the problem—the latest in Paris in 2015. Meanwhile, emissions have risen one-third over that period. While many firms and governments are now engaged in more serious efforts to cut warming pollution and the Paris Agreement is auspicious, momentum in the system all but assures that the climate will keep changing apace and goals to keep warming in check at just 2 degrees will tumble as impractical.¹ As such, the world is in for a lot of climate change.

For years, among climate activists and many governments, there was a taboo on talking about adaptation to climate impacts for fear that that a focus on preparing for the harms of a warmer planet would signal the defeat of emissions mitigation efforts and weaken political pressure to cut the drivers of global warming (Pielke et al, 2007). Whether that theory of politics was ever sound is debatable—many armchair theories of politics are based on little real analysis. But the taboo was harmful, and only about a decade ago political debates expanded to include sustained attention to the many ways that society must brace for a lot of climate change. In a few places this shift is on display already: in Miami, where climate impacts are embedded into urban planning, and in California, where the powerful Coastal Commission vets building permits with an eye to possible extreme rises in sea levels.² At the federal level, a regular National Climate Assessment (NCA) now looks, every 4 years, at the potential impacts of warming and, to a lesser degree, adaptation strategies.³ The federal government itself manages $1.2 trillion dollars worth of military real estate around the world and 650 million acres of climate exposed land domestically (GAO, 2019a; GAO, 2013). It has also begun to factor climate impacts and adaptation into its work—although only one agency (the Pentagon) has done this systematically and extensively (Office of the Under Secretary of Defense for Acquisition and Sustainment, 2019). Four out of five of the largest federal natural resource management agencies, including the Forest Service, the National Fish and Wildfire Service, the National Oceanic and Atmospheric Administration, and the National Park Service also have strategic plans in place for climate adaptation (GAO, 2013).

The taboo is eroding, but not fast enough. The next frontier for climate policy must involve breaking another taboo: moral hazard.

For decades analysts have known that many federal and state policies don’t just ignore the need for adaptation to the impacts of climate change. They make those impacts bigger by shielding investors from the consequences of doing dangerous things, such as building hotels on fragile barrier islands. The federal government has built infrastructure to make it easier to do such dangerous things; many
state investment and regulatory policies have had similar effects, including through insurance subsidies and implicit promises to backstop risks (Flavelle, 2018). While these problems have been known to analysts and a few brave political administrative leaders have attempted reforms, most reform efforts have failed.

In principle there are very compelling social needs for a federal backstop when it comes to the impacts of natural disasters. For example, the deadliest and most destructive regular disasters are hurricanes (Office of Coastal Management, n.d.). Over the last few decades, typically only about 40 percent of the losses from hurricane events are covered through non-governmental sources such as private insurance (GAO, 2020a). The rest of those losses are a combination of uninsured private assets and damages to a variety of public assets such as infrastructure.

These federal backstops can create what economists call moral hazard because they incentivize people take on risks they otherwise would not because they do not bear the full cost of those risks. It is a kind of subsidy. And for that reason, politicians treat this topic as a third rail of policy reform—intriguing to talk about, important for the nation, and yet politically dangerous to address seriously.

We note that there is a wide body of literature that exists today on both the problem of moral hazard in disaster assistance, and on disaster policy reform more generally. The Wharton Risk Management and Decision Process Center at the University of Pennsylvania in particular has provided valuable scholarship on disaster policy and reform efforts at all level of government. Much of the academic literature is focused on specific programs or sectors such flood insurance and the National Flood Insurance Program (NFIP)—a particularly important program because of its breadth of coverage and the fact that homeowners are often compelled to purchase NFIP policies. Other studies look at how federal programs interact with each other, such as how receipt of disaster assistance from FEMA affects future behavior of homeowners in flood insurance markets.

Further research has documented both the conceptual phenomenon, and supporting empirical evidence, around how federal disaster policies invite risky behavior that can create moral hazard. Research has focused on moral hazard conceptually, as a governance or political economy problem, and examined the institutional forces that shape drivers of moral hazard. Empirical work has looked at, and found, evidence of risk invitation in specific federal programs that address distinct climate hazards, including wildfire and flood.

Beyond academic research, key federal agencies are also focused on risk invitation and disaster policy reform. The GAO and CBO have both looked closely at the large costs incurred to the government from hurricanes and opportunities to reform programs that incur these costs (GAO 2020a: CBO, 2016). The NCA as well, while not focused specifically on moral hazard, does comprehensively look at drivers of climate risk to communities across the United States (USGCRP, 2018).

This paper is about the size of the potential moral hazard problem in climate-related federal and state policies today. We are mindful that there are other moral hazards in federal policies that intersect with nature (e.g., regarding earthquakes), but the climate-facing portion is of special importance as the size of the problem will soon get much bigger at an accelerating pace. We find that there are large differences in the allocation of current spending between recovery versus resilience. Triangulating the available evidence, we suggest this difference creates a potential imbalance that overweights “building back the same” and underweights known cost-effective strategies for making society more resilient. This difference represents a plausible imbalance because there are well documented cost savings captured from resilience investments, along with the rapidly emerging impacts of climate change will plausibly grow in the coming decades. We focus on the federal level, because thanks to its sheer size and its ability to spend in deficit, federal spending is much larger than at the state levels. Additionally, much of what occurs in Washington sets the frame for the states.
We proceed in three steps. First, we assess the difference in federal spending for response versus resilience, and use this to suggest the creation of possible distortionary incentives, offering a new framework for analysis and applying that framework to the federal budget. Second, we project forward how today’s policies, weighted towards recovery instead of resilience, could get much costlier in the future. Third, we look at reform—at the kinds of mega-events that could trigger the need for reform and, depending on the ability and motivation of reformers, what could be done to fix the system. In light of the long history of failed reforms, we are not optimistic, which is why particular care is needed to craft politically viable strategies that address the ever-growing problem.

PART I: HOW BIG IS THE PROBLEM OF POTENTIAL CLIMATE-RELATED MORAL HAZARD?

One of the central challenges in assessing the size of the moral hazard problem is that there is no federal office of moral hazards—no single agency whose budget sits ready for audit and where policies, if found faulty, can be changed. Instead, actions are diffused widely across government. Moreover, while it is possible to observe spending—which, in this paper, is our central contribution—it is much harder to observe the relationship between spending on diverse federal programs and human behavior, which is what’s needed for a full blown assessment of moral hazard. Conceptually, our goal then is to identify those policies (and their associated costs) that could have the effect (intended or otherwise) of encouraging behavior through which people and firms incur risks whose costs are accrued to the government. This is, of course, difficult to do because it requires a degree of counterfactual thinking, as one must identify what actions individuals would take in absence of a federal program and compare it with real world behavior. Additionally, many federal programs actively seek to achieve important distributional goals for they, by design, benefit populations that do not, on their own, have the resources to protect against all natural hazards. Those worthy goals of policy must be kept in mind alongside the more pernicious effects, those that may change the behavior of individuals, communities, or firms who have the ability to make different decisions but choose not to because of federal backstops.

To get a first fix on the size of the problem we will focus on existing policy strategies and the agencies that are oriented around likely impacts of climate change—especially the extremes. These impacts often take the form of natural disasters and can be mitigated by disaster preparedness. They also include possible failures to crops and harm to public lands. With that perspective, the following agencies and programs are most important:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Programs</th>
<th>Brief Description, and issues to consider in analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Federal Emergency Management Agency</td>
<td>Disaster assistance and mitigation programs</td>
<td>The largest source of programs responsible for disaster relief provision in the US.</td>
</tr>
<tr>
<td>State emergency agencies</td>
<td>Local level disaster assistance programs</td>
<td>Vary widely depending on state context.</td>
</tr>
<tr>
<td>Agency</td>
<td>Program/Action</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Federal Crop Insurance Corporation</td>
<td>National annual crop insurance provision</td>
<td>The nation's primary source of federal crop insurance. The FCIC reported a negative $7.3 billion balance sheet as of 2018 and is estimated to cost the federal government $8 billion annually through the end of this decade (GAO, 2019c).</td>
</tr>
<tr>
<td>The Department of Defense</td>
<td>The Army Corps of Engineers</td>
<td>The largest federal builder of public infrastructure. There are, in addition, other federal sources of disaster recovery infrastructure funding such as the Department of Transportation's (DOT) grants provided through the Federal Highway Administration (FHA).</td>
</tr>
<tr>
<td>The Department of Housing and Urban Development</td>
<td>Community Development Block Grant programs</td>
<td>Manages several multi-billion-dollar funds supporting underserved communities post disaster and has provided up to $16 billion in disaster relief after events such as Sandy and Harvey (Department of Housing and Urban Development, n.d.).</td>
</tr>
<tr>
<td>The Small Business Association</td>
<td>Direct relief programs and loans for households and businesses</td>
<td>Offers millions of dollars in disaster recovery loans to households and businesses and can be the primary source of rebuilding funds to individuals besides insurance (FEMA, 2020).</td>
</tr>
<tr>
<td>State sponsored insurance pools</td>
<td>Wind, fire, and other hazards</td>
<td>Operates with different forms of subsidy, including implicit or explicit backstops if available state and private insurance mechanisms fail.</td>
</tr>
</tbody>
</table>

In terms of total budget, federal funding for disaster assistance (mainly FEMA) is the most visible and costly. All told, from 2005 to 2018, total federal funding for disaster related spending was $430 billion—concentrated on perils such as hurricanes, flooding and wildfires that are all emblematic of impacts that will get worse in a warming world (GAO, 2019d). In addition to these on-budget disaster expenses, careful research that looks more widely beyond FEMA finds between five to seven times the federal costs are paid to communities hit by disaster, such as through unemployment claims and medical expenses (Deryugina, 2016).

While FEMA is the dominant agency in federal disaster-related spending, its exact role is hard to pin down. Measuring the exact share of the total costs of these disasters paid through FEMA is complex and varied, but a typical share is between half and two thirds.\(^{11}\) For example, from 2005-2015, the CBO reports that the Federal government (mainly FEMA) paid on average 62 percent of hurricane damages (CBO, 2016). Of course, not all this funding results from moral hazard. The moral and political needs for disaster support are clear enough. Ironically, the accounting for costs that create moral hazard is compounded in difficulty. Often when disaster strikes, the local economy, in the immediate aftermath of the disaster sees a surge in economic benefits such as higher sales tax revenues and employment due to rebuilding (South Texas Economic Development Center, 2018).

Because of these accounting difficulties, it is very difficult to measure the real extent of moral hazard. At best, we can triangulate at answers. To help in that triangulation, we have adopted a conceptual framework shown in Table 1. Along the rows we show the two major routes by which federal policy strategies, expressed through programs, may affect behavior. First is how these federal programs affect response and recovery during the immediate response to a climate-related disaster. Second is how existing programs affect investments before a climate-related disaster hits that could lead to reductions in future damages through actively building resilience to the kinds of hazards expected as climate change advances.\(^{12}\) Put differently, the first is about whether individual owners of assets or communities think they will be kept whole (or partly whole) in the face of disaster. The second is whether they help these individuals and communities prepare...
TABLE 1
Federal Programs that Increase Moral Hazard

<table>
<thead>
<tr>
<th>Policy Strategy</th>
<th>Federal Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disaster Response</td>
</tr>
<tr>
<td></td>
<td>Infrastructure Building and Maintenance</td>
</tr>
<tr>
<td></td>
<td>Subsidized Insurance</td>
</tr>
<tr>
<td>Recovery (financial recovery and physical recovery)</td>
<td></td>
</tr>
<tr>
<td>Resilience (financial risk resilience and physical risk resilience)</td>
<td></td>
</tr>
</tbody>
</table>

better for those disasters by hardening against exposure or moving away altogether.

The presence of federal and state policy strategies, funneled through agencies and programs that affect beliefs about repayment and decisions on where to invest, can in turn, alter the incentives for firms, households and communities to take risks they otherwise would not. They can alter, as well, what the “market” thinks about those risks—for example, the decisions that credit ratings agencies (CRAs) make about whether a climate-exposed community that is raising debt for infrastructure will repay its bonds if climate-related disasters strike (Bolstad et al, 2020). It is ultimately the totality of these effects—disaster response, resilience, and broader market responses—that determine whether federal policies are amplifying or dampening climate dangers. And the broader market effects are probably the most important, for they are seen in investments that will be measured in trillions of dollars whereas the annual costs of relevant federal policies will be in the tens of billions.

In Table 1, the columns are the three major areas of federal programs that affects these outcomes. These include programs supporting disaster assistance and disaster response directly. The programs largely fall under FEMA but also include other relevant agencies and actions such as the use of the Department of Agriculture (USDA) for temporary food benefits. In the second column are policies around infrastructure spending, which are sprawling and include infrastructure trust funds for roads and airports, spending on federal rail lines, and the varied activities of the Army Corps of Engineers. In the last column are subsidized insurance provisions—at the federal level the most important instantiation being flood insurance followed by crop insurance. 13

What follows is an effort, with this framework in mind, to triangulate some answers about the size of the climate-related moral hazard problem today. As we will see, any conceptual framework is very difficult to apply to the actual federal budget because so many programs come into different functions. For example, in 2016 the GAO did a big survey of all disaster assistance in an attempt to organize the entire federal budget into a common framework (GAO, 2016). That effort proved difficult at the time and has not been replicated since. One of the many challenges is the large number of judgement calls needed around the purpose of different federal programs. An additional challenge is language, because the concept of “disaster assistance” can mean just the narrow responses to actual disasters or a larger set of programs to prepare for disasters plus long-term spending after disasters to make rebuilding more effective. These difficulties are a reminder that any attempt to assess the totality of federal intervention around climate related perils must examine them from many different perspectives.
Triangulation part 1: What we observe in the Federal Budget

In terms of fiscal cost, we can look at total expenditures on climate-related disasters across all agencies, which is shown in Figure 1. Tracking expenditures across the entire Federal budget is difficult, given the separate departmental mandates and functions of each agency involved in the disaster resilience and response process.

Given this inherent complexity, The National Disaster Recovery Framework (NDRF) was first introduced through FEMA in 2011 as the nation’s primary framework for identifying the mission areas and core capabilities needed to mobilize a collaborative response effort across federal, state, local, and tribal jurisdictions (DOHS, 2016). Fortuitously for our purposes, the Recovery Support Function Leadership Group (RSFLG) a multi-agency coalition made up of the key players involved in the NDRF’s six Recovery Support Functions (community

FIGURE 1
Federal disaster response funding by agency (2017–2019)

Figure 1 analysis by authors. This data is sourced from the Recovery Support Function Leadership Group, a federal multi-agency disaster response coalition, and is maintained by the Federal Emergency Management Agency (FEMA). The main pie chart shows percentage breakdown by agency appropriations from 2017-2019, while the secondary pie chart shows the breakout in obligations for the largest source of federal appropriations, which is FEMA itself. While the majority of FEMA funds are appropriated into the Disaster Relief Fund (DRF), FEMA also maintains a loan program to support the continuation of community services in the wake of a disaster (the Disaster Assistance Direct Loan Program).
planning and capacity building, economic recovery, health and social service, housing, infrastructure systems and natural and cultural resources) has been publicly tracking large disaster spending since 2017 (FEMA, n.da). RSFLG’s strategic focus is on better agency collaboration and transparency, and thus it also compiles the most complete set of budgetary data across the federal government. Using that data, we have accessed federal appropriations and obligations by department, agency, and program for the over $159 billion provided by Congress in the last three years for disasters including the devastating 2017-2018 hurricane and wildfire season.

What is clear from Figure 1 is that while federal disaster support is provided by a broad group of agencies, FEMA makes up the largest single source of federal disaster funding, with 44 percent of overall federal appropriations going towards the agency’s operations and main relief programs. Other agencies involved in disaster response include the Department of Housing and Urban Development (HUD), the Army Corp of Engineers (DOT-USACE), the Department of Agriculture (USDA), the Department of Defense (DOD), the Department of Transportation (DOT), the Small Business Association (SBA), the Education Department (ED), the Department of Commerce (DOC), the Department of Health and Human Services (HHS), and the Department of the Interior (DOI).

Given FEMA’s outsized role in the federal disaster budget, in Figure 2 we focus there. We show the main source of funding for FEMA’s disaster response and recovery programs, the Disaster Relief Fund (DRF) appropriations since 1989. Although called “relief” in fact the DRF is the funding vehicle for the vast majority of FEMA activities that implicate relief or preparedness. Annual DRF appropriations through the normal budgeting process are small (a few billion dollars per year, although the most recent federal budget included a $19.4 billion-dollar funding request) (DOHS, 2020). Thanks to the political gridlock in Washington and the unpredictable nature of big disasters, nearly all DRF funds come from supplemental appropriations, for instance, the three supplemental assistance bills signed into law by President Trump to address the damage of the 2017 hurricane season provided nearly $50 billion in funding for the DRF (CRS, 2018). Such appropriations rarely face much opposition and typically proceed without the need for offsets to keep them below the quaint concept of an agreed budget cap. A more orderly budget process would be politically challenging because it is hard to undertake the politically difficult process of appropriating funds when big disasters are abstract but relatively straightforward to do the same thing once families are flooded.

Once appropriated through the DRF, where have FEMA funds primarily gone? The answer is that nearly all go to paying the immediate costs of disasters, including rebuilding and disaster response management. Figure 3 below shows that from 2005-2017, about 46 percent of the agency’s total grant funding went into Public Assistance (PA) and Individual Assistance (IA) grants (FEMA, n.db.). FEMA’s largest program, Public Assistance, provides recovery dollars for debris removal, and state and county level repairs of public utilities and public infrastructure. Individual Assistance, making up 1 percent of grants, provides direct support to households and individuals in the form of home repairs and immediate housing needs. Fire and Preparedness grants, which made up an additional 40 percent of total FEMA grant funding, are utilized for capacity building and emergency management response, such as procuring equipment for first responders, and enhancing state and local emergency preparedness systems. This is reflective of FEMA’s broad disaster response mandates, for instance, FEMA is heavily involved in COVID19 response, and a majority (7/8) of the FEMA preparedness grants are focused on terrorism. In contrast to those grants supporting response and rebuilding in the wake of a disaster, FEMA’s hazard resilience (termed mitigation) grants, including the Hazard Mitigation Grants program, Flood Mitigation Assistance program, and Pre-Disaster Mitigation program, all of which target climate related hazards such as hurricanes and floods, made up only 14 percent of overall grant funding during that 13 year period. Put differently, there is a historical 6:1 difference between FEMA spending on the
immediate response and consequences of disaster and funding that goes towards mitigating future risks from natural hazards to communities.

Does the difference between resilience and response revealed in the FEMA budget hold when looking across the whole of federal spending? That question is much harder to answer because federal spending is dispersed and the fact that resilience data is limited and not tracked systematically across the federal government, with the most complete data coming from FEMA itself (Pew, 2018).

The conceptual framework we offered in Table 1 can help answer this question. Using the same list of agencies and programs as shown in Figure 1, and additional sources where needed, particularly for the federal insurance programs, we allocated all the spending that the RSFLG tabulated across the conceptual recovery and resilience categories in Table 1. That complex process is detailed in an accompanying supplemental index and summarized below in Table 2 which shows where we think each federal program belongs in the framework.

In terms of expenditure, from 2017 to 2019 total funding for recovery from disasters was about $137 billion dollars. By contrast, total resilience spending—all of which is devoted in various ways to reducing hazards for the future—totaled about $20 billion. That also suggests a difference of 7:1 across the totality of federal funding, a finding roughly in line with the historical FEMA grant data we report above. The imbalance in this ratio matters because as we discuss below, there is strong evidence that investments in resilience can provide large cost savings benefits, and cost reductions. Table 2 shows how we allocated each program into our conceptual framework, while Table 3 reports the total funding for each category organized into the same conceptual framework. While there are hundreds of grants that FEMA identifies as relevant for disaster recovery resources, from agencies as different as the National Endowment for the Humanities and NASA, here we show just the agencies and their respective programs that
account for the largest spending categories (>1 percent of total) as reported by the RSFLG, and the major federal insurance programs.19

It is very hard to pin down the exact level of difference, because most programs have multiple functions. For the tabulation in Table 2 we assigned programs based on their primary purpose and function identified through publicly available information. Changing the accounting methods, which we explore in more detail in the appendix, will change the ratios. Narrowing the accounting focus, for example, to just the permanently authorized risk resilience programs at USDA and FEMA would lift the ratio as high as 40:1. In other scenarios, when looking very broadly at resilience (e.g. including one off’s like the HUD-MIT program and more generic flood damage reduction funds specified in individual legislation), alternative accounting methods can yield a ratio as low as 3:1. For more on each specific accounting method, see the supplemental information posted online with this paper.

This difference has huge implications for the nation’s resilience to disasters—even before we begin to worry about climate change. A widely cited report, funded by HUD and sponsored by FEMA yet written by the National Institute of Building Sciences—a highly credible multisector NGO authorized by Congress since 1974—found that federal mitigation grants exhibit a 6:1 benefit cost savings ratio (National Institute for Building Science, 2018). Despite this, the HUD-CDBG-MIT program, which was announced in 2018 to fund resilience
and mitigation actions for disasters from 2015, 2016, and 2017, is the only multi-billion-dollar fund that has been specifically earmarked for resilience building (Department of Housing and Urban Development, n.d.).

Triangulation part 2: How private markets respond to these signals

It is very hard to measure how moral hazard affects what ultimately matters: levels of investment and economic activity in harm’s way. The level of federal spending is one way to take the pulse of potential incentives that enable moral hazard, and one of the core contributions of this paper is a new framework and tabulation of that expenditure.

Before looking to the future—at the possible

TABLE 2
Federal programs allocated into our Conceptual Framework

<table>
<thead>
<tr>
<th>Policy Strategy</th>
<th>Federal Programs</th>
<th>Subsidized Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaster Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>Individual Assistance (FEMA)</td>
<td>Public Assistance (FEMA)</td>
</tr>
<tr>
<td></td>
<td>Disaster Recovery Loans (SBA)</td>
<td>Emergency Relief (FHA/DOH)</td>
</tr>
<tr>
<td></td>
<td>Wildfire and Hurricane Indemnity Program (USDA)</td>
<td>Public Transportation</td>
</tr>
<tr>
<td></td>
<td>Commodity Assistance (USDA)</td>
<td>Emergency Relief (FTA/DOH)</td>
</tr>
<tr>
<td></td>
<td>Emergency Conservation Program (USDA)</td>
<td>Community Development Block Grant-Disaster Relief (HUD)</td>
</tr>
<tr>
<td></td>
<td>Supplemental Nutritional Assistance Program (USDA)</td>
<td>Economic Development Disaster Assistance (DOE)</td>
</tr>
<tr>
<td></td>
<td>Emergency Forest Restoration Program (USDA)</td>
<td>Army Corp of Engineers (USACE)</td>
</tr>
<tr>
<td></td>
<td>Disaster Education Recovery (ED)</td>
<td>Rural Development Grants-Community Facilities and Water and Waste Disposal (USDA)</td>
</tr>
<tr>
<td></td>
<td>College Housing and Academic Facilities Loan Program (ED)</td>
<td>Airport Trust-fund (DOT)</td>
</tr>
<tr>
<td></td>
<td>Military Construction (DOD)</td>
<td>Economic Development Fisheries Assistance (DOC)</td>
</tr>
<tr>
<td></td>
<td>Health Resources and Support Programs (HHS)</td>
<td>Construction and Resource Support Programs (DoI)</td>
</tr>
<tr>
<td></td>
<td>Community Disaster Loans (FEMA)</td>
<td></td>
</tr>
<tr>
<td>Resilience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Disaster Mitigation Grants (FEMA)</td>
<td>Community Development Block Grant-MIT (HUD)</td>
</tr>
<tr>
<td></td>
<td>Watershed and Flood Prevention Operations (USDA)</td>
<td>Building Resilient Infrastructure and Communities (FEMA, replaced the Pre-disaster Mitigation Grants in 2020)</td>
</tr>
<tr>
<td></td>
<td>Hazard Mitigation Grants (FEMA)</td>
<td></td>
</tr>
</tbody>
</table>

This tabulation represents the exhaustive list we utilize for our analysis. This list is inclusive of all reported HHS/LG agency appropriations making up >1% of total funding and the federal insurance programs, excluding funds for wildfire forest fighting, and those designated operations, maintenance, and administration ext. In practice, as we elaborate on in footnote 7, many of these programs do have the ability to fund resilience in addition to recovery activities. However, the difference in policy strategy is salient regardless of accounting methods utilized.
TABLE 3
Federal funding organized into our conceptual framework

<table>
<thead>
<tr>
<th>Policy Strategy</th>
<th>Federal Programs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disaster Response</td>
<td>Infrastructure Building and Maintenance</td>
</tr>
<tr>
<td>Recovery</td>
<td>$18.4b</td>
<td>$69.6b</td>
</tr>
<tr>
<td>Resilience</td>
<td>$2.7b</td>
<td>$16.5b</td>
</tr>
<tr>
<td>Funding Ratio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cases in which data was sourced beyond the 2017 RISFLG dataset are FEMA’s individual mitigation programs for which we use data reported by the Government Accountability Office from 2014-2016, and several newer programs, such as the Department of Housing and Urban Development (HUD) Community Development Block Grant (CDBG) MIT program, and FEMA’s Building Resilient Infrastructure and Communities (BRIC) program, both of which were launched after 2017. HUD’s grants are also not identified specifically in the RISFLG dataset and we report the data sources for both the MIT and CDBG-DR program separately in the appendix. The major federal insurance programs are accounted for according to the deficit covered by each program from 2017 to 2019. In the case of NFIP we use money borrowed from the Treasury plus deficit. For the FICO, we use total yearly subsidies for existing policies. Where possible, for most of the programs, federal appropriations were used, however due to reporting limitations, in some cases obligations and allocations were utilized. The differences in knowledge between appropriations and obligations, whereby the political nature of appropriations leads to greater funding announcements than actual obligations mean this analysis may exhibit an upwards bias (as larger programs are biased towards larger appropriations).

Impacts of climate change (Part II) and policy responses (Part III) we must pause, briefly, to examine how the presence of large federal programs could create moral hazards that cause profligate behavior by state and local entities that are one of the major beneficiaries of federal disaster-related spending. Similarly, that literature suggests that the behavior of private entities—such as homeowners and financial investors—also do not reflect adequately the real nature of the risks they face such as from floods and wildfires.

The central result from this literature is that it is often hard to find the signal of climate-related disasters in private market behavior. This has been studied most closely in mortgage markets. For example, one study using a large data set from the real estate site Zillow found that houses exposed to sea level rise are now trading at prices 7 percent lower than those that aren’t (Bernstein et al., 2018).\(^{20}\) Yet other studies suggest the effects are harder to observe. For example, recent academic research finds no impact of sea-level rise on home prices (Murfin and Speigel, 2020). The implications of the mixed evidence on market signals regarding climate impacts have been studied as well. One important new paper finds that existing climate risk information asymmetries between local private banks and federal institutions Fannie Mae and Freddie Mac result in public risk offloading through mortgage securitization (Keenan and Bradt, 2020).

In extreme cases effects can be seen for some perils. For example, careful work looking at the effects of multiple fires separated by many years in southern California suggests that the first fire cuts home prices about 10 percent and a second fire cuts prices 23 percent (Mueller et al, 2009). So far, no study has yet identified the “right” level of market response if, for instance, insurance costs were actuarially fair and the people most able to manage exposures to extreme events—homeowners and investors—were fully exposed to the consequences.

The muted impacts on public and private sector behavior plausibly reflect three factors at work—all consistent with a substantial moral hazard that could be created by existing federal policy. First, as shown in our earlier research, prices and allocation of capital in financial markets, overall, do not signal concerns about the physical impacts of climate change (Bolstad et al., 2020). The picture for U.S. municipal debt, we found, is particularly important
because municipalities, as a whole, are often on the front lines of climate-related weather hazards. In that portion of the market there is zero relationship between the level of potential exposure to climate impacts by communities and the information they disclose to the markets about actual risks (Bolstad et al, 2020). Other, much smaller studies find similar results (Government Accountability Institute, 2019; Deese et al 2019, Cooper 2019; Norton, 2019). By this logic, hazard-inviting policies can create additional risk because the markets don't have the information needed to discourage such behavior. Such earlier work suggests that markets for equities also have little reliable information about the physical impacts of climate change on traded equities, and reviews of the relevant literatures show, indeed, prices and capital allocation do not seem to reflect concerns about impacts of climate change (Bolstad et al., 2020).

Second, there is substantial and growing evidence that credit rating agencies (CRAs) are not taking more credit-related actions due to dangers of climate-related perils. In our earlier research we found that they are developing some of the tools that might be useful for identifying these dangers but they also, for the most part, continue to believe that extreme risks will be compensated by FEMA and other agencies (Bolstad et al, 2020). This phenomenon, known as the “FEMA put” has also been documented by a variety of analysts from large firms like BlackRock to local market players in exposed geographies like Sarasota, Florida (Deese et al, 2019; Healy, 2019). So long as that belief system prevails then the most powerful market forces affecting municipalities—the cost of borrowing—will be nonresponsive. That reality, rooted in today’s federal policies and the assumption that the politics of reforming those policies are intractable, is one of the reasons we wrote the present paper. Indeed, recent work shows that these assumptions are already softening (Jerch et al, 2021). The strong interlocking political forces that have prevented meaningful reform of disaster response strategies—the presence of those forces can give the CRAs confidence that their assumptions around full repayment and lack of reform are robust.

Third, a contributing factor that amplifies the first two is that while disaster causes many harms—the generation of anxiety and loss of life and livelihoods among them—when the assumption of a “FEMA put” holds true it is also likely that disasters yield substantial boosts to local revenues during the rebuilding process. Numerous studies have documented these effects, such that some of the actors that might be expected to invest heavily to avoid the harms of disaster have a weaker incentive to do so. Looking at New Orleans after Katrina, for example, found that sales taxes in every parish rose during the worst period of the disaster (The rising effect was greatest in the parish hit hardest and needing the most rebuilding) (Hildreth, 2009). While the immediate effect of the disaster was to raise questions about the ability of New Orleans to honor its debt service—a point bolstered by local analysts stating the need to allow the already economically fragile city to declare bankruptcy—within two years the size of economic aid provided by outside agencies was so substantial that New Orleans debt was upgraded out of junk status by Moody’s.

In Houston after Hurricane Harvey brought massive flooding to the city, overall economic activity nearly everywhere had rebounded within one quarter (South Texas Economic Development Center, 2018). Because money floods into disaster areas in many different ways—loans, grants, special loan conditions and other programs spread across federal and state and other programs—it can be hard to track all the effects. One careful study done in the aftermath of Harvey did that, showing that not only did relief funds contribute to substantial economic activity—not just repairs but also purchasing of many new vehicles and other capital equipment—but that many households used these infusions of support to reduce debt as well (Hartley et al, 2019).

PART II: HOW BIG WILL IT GET?

A core finding from the previous section is that the US federal government currently spends approximately $46 billion per year (as a central
estimate) on large disaster response and just one-seventh that amount (∼ $7 billion/yr) to develop resilience to the next disaster. Those are big numbers for the federal government and the communities on the front lines, but they are plausibly quite small compared with how they might grow over time and with mounting climate change. This second section looks at the potential rise in climate-related damages in the coming decades.

It is hard to offer any precision on how big the US exposure to climate-related disasters could get because disaster size is the result of several compounding forces: rising population and migration; incomes, which drive up the cost and price of the built environment and thus the value of assets at risk; and climate change. In this section we assume no adjustment in the policy framework—a proposition that will become increasingly untenable in the face of plausibly massive disaster assistance needs—and in the next section we look at policy reform.

Population and migration

People like warmth and good weather, Florida and the west in particular. In 1800 the mean center of the US population, as counted by the Census, was 18 miles west of Baltimore. By 1900 it has moved to Indiana, and in the 2000s the center of the US population has been walking southwest across Missouri (United States Census Bureau, n.d.a)

Figure 4 shows this migration with more granular county-level data. Over the period 1970-2010 the center of the country has been emptying out and the coasts have been getting more populous. Florida, Texas, and most of the urban West have grown, while a few established urban footholds in the rest of the country have swelled in size as well (e.g., the Washington DC area). Texas and Florida, among the most highly climate exposed states in the nation, continue to be two of the fastest growing states in the US, and have grown in population at 15 percent and 14 percent since 2010, respectively (World Population Review, 2020) (United States Census Bureau, n.d.b).

This migration, by itself, is extremely important in bringing people closer to danger. For example, under contract to FEMA and the Federal Insurance and Mitigation Administration (FIMA), the research arm of AECOM (a large and credible engineering firm) did a thorough study analyzing the twin impacts of population growth and climate change on the National Flood Insurance Program through the end of the century (AECOM, 2013). That study looked just at climate and flooding dangers along rivers and coastal geographies when interacted with projected population changes. Climate change, by itself, contributed 70 percent of the rising danger; while population growth added 30 percent.

Rising incomes and values at risk

In addition to migration there are income effects. Overall, US national income has been rising for the last fifty years despite periodic recessions— for instance the growth rate of US household income dropped from a three decade long average of 1.2 percent annually to 0.3 percent from 2000 - 2018, however since 2015 that rate has climbed back to 2.1 percent (Horowitz et al, 2020). Those averages, however, obscure huge disparities that affect climate dangers. As a general rule, income growth has favored urban and migratory segments of the population and disfavored rural places. Some of the nation’s most valuable and exposed properties are in coastal areas, and as more people with higher incomes flood into those areas that remain geographically fixed in size (notwithstanding Miami condo high-rises) property values rise as well.

These trends are stark. From 2012-2018, AIR, a leading catastrophe modeling firm reports that the value of coastal exposures in the US grew 27 percent (Grenier et al, 2020). Catastrophe modeling tools allow us to quantify both the size of hazard exposures, and the likelihood of a hazard occurring. This roughly decadal increase in exposure value translates into a compound annual growth rate (CAGR) of about 4 percent and makes up the largest contributing factor to increasing hurricane risk across the country. In some of the most exposed...
FIGURE 4
US coastal population change from 1970-2020

NOAA National Coastal Population Report, 2020

geographies, like Florida, this trend is even more pronounced. In the period leading up to the housing market crash from 2002 to 2009, the Florida residential property insurance market (private and public insurer Citizens), saw an increase in values insured by a 12 percent CAGR. While the values insured remained practically unchanged until 2017, the insured values started increasing again at a CAGR of 4 percent from 2017 to Q1 2020 producing a CAGR of 5 percent over the 18-year period.23

Impacts on the costs of disasters

The confluence of these two factors—population and income—are already having a very large impact on the cost of disasters. As the cost of the disasters goes up, so does the cost of federal policies and the degree of concern about moral hazard and risk invitation. This can be seen in two ways.

First, as documented extensively in prior research, disasters are costing more over time.24 Figure 5 below shows the total cost of weather-related disasters and the frequency of those disasters since 2000. Often this chart and others like it are used to make the case that disasters are becoming more frequent and more costly. In fact, these data show neither. Discerning a trend in frequency in noisy phenomena is difficult, especially when incentives to report disasters (and the clumping of reports) vary with time. Careful research suggests that essentially all that trend, possibly until recently when California wildfires will be added, is due to rising values at risk, not climate change (Weinkle et al, 2018). Some efforts to detrend these data and suggest a climate-related signal are fraught with difficulty—for example, removing trends in the consumer price index (CPI), which is one measure of rising costs, leave a trend. But the CPI is the wrong metric for detrending because it measures costs from the vantage point of consumers whereas what matters for most natural disaster costs are the trends in property values and public infrastructure costs at risk, not the CPI.25

Second, we can examine what would happen if
events from the past were to happen today (or in the future). Table 4, drawn from an authoritative study of the largest hurricanes to hit the US, illustrates what’s at stake. What’s striking is that the insured losses alone from events with probability on the scale of 1 in 30 years far exceed anything in recent memory. For instance, Hurricane Andrew struck in 1992 causing unprecedented losses in Florida at the time, rendering 11 insurers insolvent, and helped trigger major reforms in the Florida insurance market. If Hurricane Andrew repeated itself today it would cost $50-60 billion in insured losses alone and between $80-100 billion in total economic losses (three times the $26.5 billion total economic losses suffered in 1992) (Swiss Re, 2017). Even with reforms, the Florida insurance market is still not robust against stress tests that simulate the impact of giant hurricane events. (Nicholson et al, 2018) (Bailey, 1999). Indeed, recent modeling of hurricanes shows that events of the $100 billion dollars in scale are becoming more probable (Grenier et al, 2020).

In addition to the much higher exposure today, what’s also interesting is how the details of a storm track affect damages. If the 2017 Hurricane Irma had hit downtown Miami, as forecast for a period, the damages would have been about $180 billion in insured losses. Combined with uninsured losses, which are often equal or larger in size, total damages would have exceeded $300 billion. If Hurricane Andrew had followed a track just 20 miles further north insured damages would have been $60 billion instead of $15 billion (Nicholson, 2018).

What’s surprising in all this is the modern rarity of $100 billion plus events in the US (roughly $50 billion of insured plus $50 billion of non-insured losses). The historical record over the past 120 years suggests that the frequency of events of this magnitude for Atlantic basin hurricanes, once new values in population growth are factored in, are at least once every 15 years (9 times in the past 120 years). 26

Looking into the future, even absent climate change, the impact of population and income on overall hazard risk is expected to continue to be salient. The compounding effects from increasing climate change and increasing exposure values only ramp up overall risk. For instance, one study looking at the interaction of coastal development (defined as

FIGURE 5
Weather related disasters cost more over time

[Graph showing the cost of weather-related disasters from 2000 to 2019.]

Maplecroft, 2019
population plus income) and climate change on future US hurricane risk found that total hurricane damages are projected to increase at a rate greater than the entire US economy, with 54 percent of the overall $120 billion increase in average expected hurricane damages coming just from population and income factors (Dinan, 2017). Looking forward, the chances of not having at least a $100 billion event over the next 15 years is nearly zero.

Adding climate change

Now we add an additional level of unknown: climate change. When looking backwards in time at actual weather-related disasters—events that may become more common or more intense with a changing climate—one observes the stochastic processes of weather. Miami may be at severe risk, but when big hurricanes come at the US, only a few actually hit Miami. By contrast, when looking forward over long time horizons the climate models, for the most part, don’t represent individual climate-related events stochastically. Instead, they estimate mean damages. Some new modeling work is filling in this gap but modeling stochastic events (e.g., a hurricane track) using catalogs of possibilities selected with an eye to how climate change will make certain types of events more likely or more intense or both (Greiner et al, 2020). Such work remains rare, however.

We approach this question from two angles and rely on estimates of plausible future damages from climate change as outlined by the Climate Impacts Lab (CIL). CIL reports estimates on the full range of impacts of climate change—including sector level damages such as impacts on worker productivity, death from heat stress, and violence (Hsiang et al, 2017). We will focus on a subset of those perils most aligned with the area where federal programs have the largest impacts on moral hazard as listed on table 2: CIL defines those perils as “coastal damages.” In effect, we will treat the CIL analysis as a picture of what is likely to happen with climate change.

TABLE 4
Estimated insured losses from the top 10 largest hurricanes in US history selected on basis of current exposures

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Name</th>
<th>Category</th>
<th>2017 Insured Loss*</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 18, 1926</td>
<td>Great Miami Hurricane</td>
<td>4</td>
<td>USD 128 billion</td>
</tr>
<tr>
<td>September 17, 1928</td>
<td>Great Ckeechobee Hurricane</td>
<td>4</td>
<td>USD 78 billion</td>
</tr>
<tr>
<td>August 29, 2005</td>
<td>Hurricane Katrina</td>
<td>3**</td>
<td>USD 64 billion</td>
</tr>
<tr>
<td>September 17, 1947</td>
<td>1947 Fort Lauderdale Hurricane</td>
<td>4</td>
<td>USD 62 billion</td>
</tr>
<tr>
<td>September 9, 1965</td>
<td>Hurricane Betsy</td>
<td>4***</td>
<td>USD 57 billion</td>
</tr>
<tr>
<td>August 24, 1992</td>
<td>Hurricane Andrew</td>
<td>5</td>
<td>USD 56 billion</td>
</tr>
<tr>
<td>September 10, 1960</td>
<td>Hurricane Donna</td>
<td>4</td>
<td>USD 50 billion</td>
</tr>
<tr>
<td>September 21, 1938</td>
<td>The Great New England Hurricane</td>
<td>3</td>
<td>USD 50 billion</td>
</tr>
<tr>
<td>September 9, 1900</td>
<td>Galvesto Hurricane of 1900</td>
<td>4</td>
<td>USD 49 billion</td>
</tr>
<tr>
<td>August 17, 1915</td>
<td>Galveston Hurricane of 1915</td>
<td>3</td>
<td>USD 25 billion</td>
</tr>
</tbody>
</table>

AIR, 2017

*Modeled loss to onshore property, contents, and business interruption and additional living expenses for residential, mobile home, commercial, and auto exposures as of December 31, 2016, using the indexed take up rates provided in the 2017 CATRADER® release. Losses include demand surge and account for storm surge.

**This refers to Katrina’s strength at second landfall in Louisiana.

***This refers to Betsy’s strength at second landfall in Louisiana.
change and then see how actual climate-related disasters might unfold in light of that.

One way to look at the data is spatially. What are the spatial relationships between the places where FEMA already spends large resources on disasters and where costly climate impacts are likely to occur in the future? Figure 6 shows the FEMA data for 2010-2020, and the same counties but from the perspective of coastal climate losses at the end of the century. Mindful that we are measuring two different things—for FEMA we are measuring federal share of actual obligated payouts for coastal storm related disasters, and for CIL we are estimating projected county-level losses in income due to flooding and wind, the patterns are similar. This suggests that FEMA is already a good early warning indicator of the places where, with climate change, these same kinds of perils are more likely to occur. One implication of that insight, important for policy (the subject of the next section) is that FEMA processes that identify properties for resilience through observed losses could be a good screening mechanism for future resilience investments—especially if other mechanisms like modeling and mapping are too fraught with political or technical difficulties. The other implication is that if we could develop a function to describe how damages could rise from current to future levels as a result of climate change then we could apply that function to observed FEMA data to understand that rate at which FEMA-covered losses could rise. While that particular analysis is beyond the scope of this paper, the mathematical function, as reported by the CIL and visible in a figure we include in the appendix, is quadratic, indicating that damages actually accelerate over time periods.

A second angle aims to estimate the total level of climate-related damages. This is extremely difficult to do. One way to get a fix is to look at the relationship between FEMA spending on coastal hazards today (average annual over the last 10 years) and then compare it with the magnitude of likely damages from wind and flood as estimated by CIL. Again, we are measuring two different things: FEMA is actual losses, but the CIL data are estimates of expected losses to whole counties if projected end-of-century climate conditions occurred today (data for 2012). These are illustrative measures of impact although not directly comparable for a variety of reasons. For example, FEMA spending is contingent on being a declared disaster for the Public Assistance program, while the CIL estimates are total economic losses whether or not they take the particular form of a disaster. A lucky county could have a high median estimated loss and then suffer few declared disasters—although with a loudly ticking clock each disaster season. Among other things, the multiple orders-of-magnitude differences between the two measures suggests that modest shifts in events that are disaster-worthy (either by impact or definition of “disaster”) could have massive impacts on FEMA cost exposure.

That comparison is shown in Figure 7, with annual average FEMA payouts over the past ten years. Today, there isn’t much relationship between the two. While the earlier Figure 6 suggested that there would be a broad geographical relationship between the places that have disasters and those that will suffer similar perils under climate change, this figure shows that numerically there will be lots of variation. Not only are disasters themselves stochastic events (the vertical axis) but the level of total damage to communities from climate change in the future also varies enormously. The outliers make sense—New York is most at risk in total cost because the built environment in that dense urban core is so costly (and thanks to Sandy it has had big payouts). Motley, Texas, a remote town far from the seashore and flooding dangers is the opposite.

Perhaps most important from Figure 7 is that the orders of magnitude in FEMA payouts are much lower than total exposure from climate change. Looking to the rough center of the cloud of data, the damages already being paid to communities, as a whole, are a factor of 1000 lower than the full economic cost of the likely damages that will come end century to those same communities as a whole.

There is hope that these challenges can be reformed via state level apparatuses, however, when we look closely, we see that even the best efforts
FIGURE 6
Geographic distribution of existing FEMA funding and projected future coastal economic damage

Committed FEMA payments to communities from 2010–2020

Sum of FEMA Obligations
USD
- $0
- $<100,000
- $100,000 - 1,000,000
- $1,000,000 - 10,000,000
- $10,000,000 - 100,000,000
- $100,000,000 - 1,000,000,000
- $1,000,000,000 - 10,000,000,000

Absolute median projected coastal damages as estimated by the CIL

Absolute Coastal Damage - 2080 to 2089
USD
- $<100,000
- $100,000 - 1,000,000
- $1,000,000 - 10,000,000
- $10,000,000 - 100,000,000
- $100,000,000 - 1,000,000,000
- $1,000,000,000 - 10,000,000,000
- $10,000,000,000 - 100,000,000,000
- $100,000,000,000 - 1,000,000,000,000
- $> 1,000,000,000,000

Figure 6 data by authors, and imaging provided by AIR Worldwide. This data is sourced from FEMA’s Public Assistance dataset, and includes the sum of the federal share obligated for all county level projects resulting from damages that most closely match the CIL hazards, including damages from hurricanes, coastal storms, severe storms, and floods between 2010-2020. As noted above, projected economic damage data is sourced from the Climate Impacts Lab (CIL) sector level damages dataset and represents expected economic loss by county if climate conditions projected for end-of-century existed in 2012.
to enact changes at the subnational level don’t alter the underlying mechanisms. For example, Florida, a highly exposed state with a long history of hurricanes is in many ways an indicative vanguard when it comes to spreading natural hazard risk between the private and public sector. The state has several large public funds for pooling catastrophic risk, including Citizens Property Insurance Corporation and the Florida Hurricane Catastrophe Fund (FHCF) which both rely on post event funding to continue operations through policyholder assessments and raising debt, and the need to access these post event funds has occurred in the past. In addition, the Florida residential market relies on thinly capitalized local firms, which are ultimately backed by taxpayers for capital shortfalls post event through the state guaranty fund, The Florida Insurance Guaranty Association (FIGA). However, this public-private innovation does not alter the facts: a whopping $2.6 trillion residential insured value (Citizens Property Insurance Corporation, 2020) as of today still stands in the way of a number of scenarios that create at least a $50 billion insured event (which has occurred several times over the last 100 years once exposures are adjusted to current values with increasing chances once climate change is factored in) that could result in insufficient funds pre-event to pay those claims and have enough assets left over to prepare for future years without raising additional funds. The Florida solution merely shifts the risk burden of sufficiently large events to future tax payers and consumers, leaving them and their future economic wealth directly in the path of large hurricanes.

PART III: HOW TO FIX IT?

Nearly everyone deeply involved in federal disaster assistance knows that the system is broken and must be reformed. The level of spending is not sustainable—as revealed, among other places, by the periodic need for emergency appropriations

FIGURE 7
Projected coastal county damages and existing committed average annual FEMA payments to communities

![Graph showing expected economic loss by county if projected 2080-2099 climate conditions existed in 2012.]

Figure 7 analysis by authors. This data is sourced from the same CIF sector level damages dataset and FEMA’s Public Assistance dataset utilized above. We note that a line of best fit run through this data suggests roughly a factor of 1000 between the two variables, with lots of variation present.
to FEMA and the ongoing large deficit at NFIP that would be much larger if not for recent loan forgiveness. Worse, the system creates unintended consequences through incentives that magnify the dangers of weather-related perils in the US already today and will further magnify those dangers as climate change makes storms, flooding and wildfires worse in the future.

Yet the politics of reform are fraught with difficulty. Good polling studies show that people are averse to having government tell them what to do, especially when it involves costly changes in personal behavior and assets such as the location of a family home or upgrades in building codes (MacInnis and Krosnick, 2020). Instead of mandates, they favor positive incentives to help reduce dangers. (Who doesn’t favor something when the cost can be shifted to the government?) But incentives can be expensive for the public purse and benefit groups that are not well organized politically. Yet, at the same time, those polls also show that people strongly favor helping localities when disaster strikes. This simple alignment of political forces helps explain the huge difference in natural disaster policies today, with the vast majority of the funds devoted to programs that help people when harmed rather than build resilience to disaster in the first place.

These differences in what people want and the incidence of the costs helps to explain the politics of reform. Major reform episodes tend to occur during crisis—when the system can’t withstand more spending or has failed patently (Kingdon, 1984). Absent such a crisis the only kinds of reforms adopted are those that are politically “easy,” relatively speaking. Yet what is easy isn’t relevant to solving the underlying problem. And what’s relevant isn’t easy.

Here we look at this problem from two angles. First, we document what has been tried so far in terms of reforms and show how some of the most promising reforms are later reversed when they work as intended—and thus create political backlashes that are predictable. Second, we outline reform packages that could work, if adopted during the right window of opportunity. We don’t know when that opportunity opens—it seems more likely to accompany a major disaster than the publication of this paper—so our purpose is to chart how the opportunity can be used to effect change.

What has been tried?

Because the problem of moral hazard creation in disaster policy is so well known, there are many ideas for reform and, to a more limited degree, actual episodes of reforms over history. In terms of cost, the most expensive reform activities have not been aimed at addressing moral hazard at all—instead, these have been costs that arise when disaster assistance programs run out of money and, politically, there is no real option but to provide more funds. This is most evident in the history of NFIP which ran roughly in balance until faced with a major event—Katrina and Rita that hit New Orleans and swelled NFIP’s debt from about zero to $20 billion (figure 8). Within six months the GAO put NFIP on its list of high-risk programs that need careful ongoing scrutiny—a place it has occupied ever since. More big events follow—among them Sandy (2012), Matthew (2016) and a string of events in 2017 (Harvey, Irma, Maria) that compounded to a doubling of NFIP’s debt. When long-term authorization for the program ran out in September 2017, coincidentally about a month after Harvey ran in to Houston, Congress cancelled half the debt, bringing NFIP back to its $20 billion average (GAO, 2020b). Among other things, this history shows that the really big reforms are triggered by big budget holes, not a serious grappling with the micro-level incentives and distortions created by the program and that $20 billion of NFIP-covered damage is roughly the scale of a reform triggering event. If so, events on that scale should become quite commonplace based on population and income effects alone—let alone climate change—as we suggested earlier.

The reforms that could matter are those that alter incentives and cause the misallocation of risk costs. These kinds of reforms, in turn, could affect the total cost of disaster assistance and the exposure of the US population and its built environment to weather- and climate-related hazards.
Recalling the conceptual framework in Table 1, our interest in examining reforms is to understand where and how those reforms have led to more emphasis on resilience across all three of the programmatic buckets that make up the identified recovery and resilience policy strategies—disaster response, insurance and infrastructure. We are also interested in where, if at all, reforms might alter the types of payouts that follow extreme events—so as to send a more credible signal for the future that any and all damages will not be compensated.

To reduce selection bias—that is, the tendency to talk about reforms that are most visible, which tends to mean those that get enacted by Congress and thus those that are pre-selected for their political feasibility—we sample a cluster of reforms that have been enacted and a cluster (necessarily less well specified) that have been proposed but not enacted. Table 5 shows those real and imagined reforms organized according to the framework used in this paper.

Perhaps more interestingly, Figure 9 shows them on a two-dimensional space with our assessments of the political feasibility of the reforms (horizontal axis) and impact on moral hazard (vertical axis). For completeness, we also include here the 2014 rollback of the Biggert-Waters reforms, which we discuss below.

What is useful to recognize about many of these reforms is that they have, in several important ways, tried to take real steps towards reducing the problem of moral hazard. Notable are the reform measures in the top left, those “low hanging fruit” that exhibit low levels of overall moral hazard impact and low levels of political difficulty. FEMA’s Flood Mitigation Assistance program, which seeks to mitigate the presence of repetitive loss, and severe repetitive loss properties or SRL’s (the worst offenders in the disastrous and costly cycle of flood, rebuild, flood again two years later) is an example of successful recognition of these entrenched moral hazards, and attempts to correct them. While that program has been identified by a recent audit as ineffectively administered, and recent studies show that the number SRL’s on FEMA’s books are actually increasing, it at least exists (GAO, 2020c)(Office of Inspector General, 2020). Just this year as well, FEMA announced funding for the Building Resilient Infrastructure and Communities (BRIC) program,
which has been hailed as critical step forward in resilience efforts, as this program allows for the allocation of up to 6 percent of annual disaster funding to be set aside for resilience building (Federal Register, 2020b).

Beyond individual programs, the most recent, and most instructive example of an attempt to tackle moral hazard comprehensively was the 2012 Biggert-Waters Flood Insurance Reform Act. This act (uncontroversial at the time) passed with bipartisan support and the goal of reforming NFIP to reflect actuarial risk through gradually increasing premiums and reducing subsidies for policy holders. Yet just two years later, in the wake of Hurricane Sandy, this effort was significantly hamstrung by the 2014 Homeowner Flood Insurance Affordability Act, which was passed after strong push-back against the resulting premium hikes from policy holders and the real estate industry (Wriggins, 2014). Sandy made highly visible the adverse consequences for individual homeowners of Biggert-Waters’ reforms, and thus they were no longer politically sustainable. While many key parts of the original bill have stuck, including the gradual phase out of subsidies on SRL’s and second homes, other subsidies, such as those for “grandfathered” properties (those homes that find themselves in a new risk designation after an updated flood map process) were reinstated, and many policy holders actually refunded. Additionally, the original desire to improve flood mapping through best available science in order to reduce political influence in the mapping process was perhaps blunted by the 2014 Act’s increased Congressional oversight and affordability consideration requirements.

Why is there widespread awareness of the problems

| TABLE 5 |
| Real and contemplated policy responses intended to reduce moral hazard |

Recovery	Real: Buy-cuts of severe repetitive loss properties[^31]
	Real: No federal funding in certain coastal zones[^31]
	Contemplated: Phase out of subsidies for grandfathered properties and others[^31]
	Real: post-Sandy requirements for infrastructure hardening and planning[^4]
	Real: Flexible use of FEMA Public Assistance funding for updated codes through the 2018 Disaster Recovery Reform Act (triggered in part by 2017 hurricane season).[^26]
	Real: Army Corp levee rebuilding post Katrina[^8]
	Contemplated: Permanently authorizing the Department of Housing and Urban Development’s Community Development Block Grant funding[^9]
	Real: NFIP’s increased cost of compliance program[^38]
	Contemplated: Lowering the severe damage trigger for bringing structures up to code[^38]
	Contemplated: Updating flood maps to reflect climate change[^43]

Resilience	Real: Enhancements in FEMA mitigation grants, e.g wildfire prevention through the 2018 Disaster Recovery Reform Act (triggered in part by the 2017 wildfire season)^[41]
	Contemplated: Cost sharing requirement shift between state and federal level[^45]
	Real: Whole town relocation programs[^3]
	Real: Department of Housing and Urban Development-MIT grants[^44]
	Real: FEMA’s Building Resilient Infrastructure and Communities program[^45]
	Real: Pentagon climate screening[^6]
	Contemplated: FEMA State level disaster deductible[^7]
	Real: Biggert-Waters premium reforms[^8]
	Real: National Flood Insurance Program community rating system[^9]
	Real: Biggert-Waters update of flood maps, including ongoing advisory committee[^45]
	Contemplated: Phase out of NFIP[^41]
	Contemplated: Incentivizing climate smart agriculture practices at the Federal Crop Insurance Program[^42]
Here we show each policy response placed along two axes: political difficulty and level of moral hazard. This is a conceptual map based on authors' judgment and is not intended to reflect a rigorous quantitative analysis of cost or benefit. The degree of distance between each reform effort is not indicative of any specific distance increment. Given the temporal aspects of policy reform, we consider political difficulty as ex post for real reforms and ex ante for contemplated reform (i.e., the level of political difficulty required to pass). Likewise for potential moral hazard, we consider each policy by the degree to which it creates risk invitation, again using our own judgment regarding the effectiveness of the program, and overall scale of the program itself. As such, moral hazard is only conceptualized after a policy (real or contemplated) has been implemented. To illustrate, looking at the extremes, phasing out NFIP displays very high degrees of political difficulty, yet would completely eliminate invitation of unwarranted risk—it would leave homeowners exposed to the full costs of their choices. At the opposing end, FEMA’s efforts at whole town relocation demonstrate low levels of political difficulty (if your town is underwater, it’s easy drum up support for someone paying you to move) and high levels of risk invitation/low levels of risk reduction, given the very small scale the programs have operated on (~700 people to date). We set the reform environment at the median level of political difficulty, or in a normalized governance process.
with current federal disaster policies and yet persistent failure to reform? The central challenges for reform lie with tensions between three key facts. One, is that disaster assistance policy almost intrinsically shifts the costs of risky behavior at least partly away from the parties that should be in the best position to control that risk. A second tension is that those parties are citizens who, in the middle of disasters, are suffering enormous pain and it is both politically and morally impractical to impose yet more distress onto them. And a third is that when the market ‘sees’ these mechanisms operate, the markets on their own do not reveal accurate information about the costs of insurance and other financial instruments that could be used to both measure and manage these risks better.

What can we learn from history?

The past suggests at least five sets of political insights that can help guide a future program.

First, when reforms focus principally around tangible costs and abstract benefits, they are prone to fail. One of the strengths of Biggert-Waters was its bipartisan nature. But the practical effect of the legislation was to generate perceived harm for the roughly 20 percent of homeowners whose rates were subsidized—a harm that was not offset by any benefit that generated a powerful political force that would counteract those harmed. Bipartisanship was abstract; the impacts of rising rates, even as those rate increases were delayed, motivated political opposition.

Second, directionally correct reforms have been possible when Congress is focused on a larger tangible problem. After iconic disasters, more attention has been paid to enshrining resiliency requirements during recovery. For example, after Hurricane Sandy, HUD’s $15.2 billion in Community Development Block Grant (CDBG) funds, which target under resourced urban communities (and was the largest single program appropriation), came with requirements for infrastructure hardening assessment in consideration of future sea level rise (Gurian, 2013). This money, along with Congressional resiliency funding mandates for the public transportation and flood reduction projects of the Department of Transportation ($5.5 billion) and Army Corp ($5 billion, of which the largest amount went to risk reduction) made up over 1/3, but still less than ½ of the total $58 billion in federal disaster relief (Gurian, 2013). In addition, the huge disasters associated with Hurricane Katrina forced changes in federal policy, particularly with regard to preparedness planning, and the recent wildfires will have similar affects.

Third, even for people who follow these issues closely it is extremely difficult to take the pulse of the overall suite of programs oriented around weather- and climate-related disasters. The GAO is now focused regularly on these issues, but its evaluations tend to focus on key programs rather than the system as a whole. The National Academy of Sciences has never been asked to look at disaster assistance as a whole. In the past it has looked, at the request of Congress at some challenges in FEMA flood maps, and has looked recently at supply chains following major hurricanes (a topic that intersects with FEMA), the reliability of the electric grid (including after major storms), and at related topics on climate change impacts (National Research Council, 2009; National Academies of Sciences, Engineering, and Medicine, 2017). But, as with GAO, it has not been asked to look at the system as a whole. This lack of situational awareness may help explain, at least in part, where reforms tend to be piecemeal and focused on programs.

Fourth is the matter of social justice. While it has proved possible to adopt some reforms to disaster assistance when substantial new resources are being appropriated—for example, the special legislation in the aftermath of Sandy—a central challenge for any reform is that the public very strongly supports assistance to communities in need (MacInnis and Kronick, 2020). Indeed, poorer communities and families are much less well insulated from economic shocks, less likely to have insurance, and more likely to live in vulnerable areas (Krauss and Reeves, 2017). This central role for disaster assistance as a matter of social policy—a role that is fitting and proper—needs
to be disentangled from the other functions that FEMA could perform such as resilience planning. Commingling them means they often compete for the same budgetary resources—a political arrangement that almost guarantees failure, as revealed for example in the caps on allowable co-spending of FEMA funds on resilience.

The fifth political insight is that meaningful solutions require engaging with government as it is actually organized. Much of the current disaster related response at the federal level is organized in line with Presidential Policy Directive 8 (PPD-8), an Obama era issuance that established a National Preparedness Goal and a resulting system architecture in support of that goal (Department of Homeland Security, n.d.). Since 2011, PPD-8 and its mandated annual report has tracked the five mission areas that span this National Preparedness System, which include Prevention, Protection, Mitigation, Response and Recovery. These five mission areas provide the organizational framework for governmental response to risks such as chemical spills, terrorism, and natural disasters (Department of Homeland Security, 2019). The reforms discussed here need to be channeled through this existing framework. Assessing the balance of resources and current capabilities across these five mission areas, with the purpose of channeling more effort towards mitigation, prevention and protection is a good first step. There is a need as well to update PPD-8 and put climate change squarely in conversation with the existing federal organizational architecture it established.

It is hard to summarize the full political history of disaster program creation and reform, but those five lessons from the past are helpful guides for what might be done in the future. And if the argument in the previous section is compelling, the opportunities for future reform will be growing as the number of large events—with total costs at $100 billion or above, and with NFIP-only costs of $20 billion or above—will rise, offering more opportunities for reform if used properly. It is possible that even smaller events could have precipitating effects—for example, an event with insured Florida losses of $50 billion or less might trigger a cascading set of failures that would require federal and state action that could open the door for larger reforms.

Toward a plan that could work

Given the long history of failed and marginal attempts at policy reform, some realism is needed about just what can be achieved and exactly how it can be achieved. Rather than sketch out a detailed plan for policy reform only to see that plan founder when it makes contact with political reality, we instead outline three major clusters of activities that can help prepare the ground for reform—activities that can help open the door to successful reform efforts and, more importantly, ensure that when a political shock, such as an extreme storm, does occur that the elements of good reform are present and ready for adoption.

First, it is vitally important to improve situational awareness. We have benefitted in this paper from the ability to draw data and analysis from numerous federal institutions—notably GAO, CBO and FEMA. Each, in different ways, has documented the scale and allocation of federal spending and programs that affect moral hazard. Congress should encourage continuation of these efforts, with specific funding and requests where needed. In particular, it would be helpful for such accounting efforts to identify expenses according to purpose—building on and refining the framework we offer here so that the nation can obtain much more systematic information about the balance of investment between recovery and resilience and also comparisons between costs and social returns for investments in each category. Such a program would notably build on the capabilities already developed at the GAO, which is looking, regularly, at some of the biggest programs that create moral hazard (e.g., NFIP and other FEMA programs). Within the executive branch this would build on the budgeting tool that FEMA maintains through the Recovery Support Function Leadership Group (RSFLG) but would organize that information not just programmatically but also according to function—resilience versus recovery response. FEMA has already sponsored important studies
that evaluate, periodically, the efficacy of different resilience programs; these need more regular and systematic evaluation because, at present, it isn’t known which kinds of resilience efforts will perform best and experiments to learn quickly are needed.

An additional element of situational awareness is much better understanding of how federal policies might be affecting the nation’s actual exposure to climate impacts. The place where this could be done is the National Climate Assessment (NCA)—an activity that occurs every four years, managed by the federal government, to evaluate the nation’s exposures to climate change. At present the NCA, on matters of disasters, focuses heavily on the disasters themselves and not on how the nation’s exposure to and impacts from disasters are, themselves, a function of federal policy. The next NCA should do that explicitly and should opine on how disaster assistance affects the nation’s resiliency to the impact of climate change; within the limits of the NCA’s authority, the Assessment should also explore how revisions to disaster assistance might improve how the nation readiness itself for climate change. In many areas of climate policy there has been close attention to “win-win” policies that are likely to be politically more durable; improved disaster strategies could be one such area. A partial model for this closer look at disaster policy may be efforts at some of the states—ranging from California to North Carolina—that are showing how science about climate impacts can be combined with more situational awareness of which policy levers—including policy levers that implicate moral hazard (North Carolina Department of Environment Quality, 2020). In California, for example, the state’s exposure to wildfires is not merely a matter of climate change but also the ways that state land use, insurance and planning policies have amplified some fire dangers (Syphard et al, 2019).

Second, the federal government would benefit from the capacity to approach climate-related disasters in a more strategic “whole of government” approach. In this regard, there is already encouraging news with a greater government emphasis on preparedness for disasters. Much of that framework has been developed and advanced with respect to terrorism, but FEMA has led a whole-of-government effort to improve preparedness to natural (including climate-related) disasters that is encouraging (FEMA, 2019). Making this approach effective will require the capacity to commission needed supplies of information and assessment. For example, in our earlier research looking at how climate change might affect municipalities we found that the nation would benefit from more extensive infrastructure audits to allow a more systematic assessment of how climate-related disasters may affect national infrastructure. Such information could help allocate effort within a whole-of-government approach to climate change impacts.

Much of climate science is a centralized activity oriented around scientific elites. More attention to climate impacts and preparedness will require more systematic engagement with local practitioners who are on the front lines—a point that is true for government-wide efforts to address climate-related disasters as well as impact assessment activities such as the NCA. To this end, federal assessors and responders to climate-related disasters would benefit from more focus on local practitioners as partners—such as floodplain managers, local water managers, land managers, and local officials responsible for infrastructure.

Third, while the exact moment of opening for reform is hard to predict, the contours of a federal reform strategy can be shaped already—in part with the five lessons from prior reform efforts, discussed above, in mind.

Federal disaster policy, while special in its own ways, is hardly unique in the history of policy reform challenges where the politics are mis-aligned with needs—where there are large collective gains from a better policy but many narrow interests that prevent reform. One area where this problem has been addressed somewhat successfully is the closure of excess military bases—for example, at the end of the cold war. A Base Realignment and Closure (BRAC) process helped the government plan five rounds of base closures that totaled about 350 installations and save, now, $12 billion annually (Historical Office of National Defense, n.d).
rebuilding rather than building resilience to disasters. This difference, already, creates severe distortions in the society. As the effects of climate change become more apparent those distortions could grow substantially, along with the cost of responding to climate-related disasters. On the cusp of huge changes in climate the nation should be investing in resilience and adaptiveness; policies that may create moral hazard provide the opposite incentive.

One contribution of this paper is a theoretical framework for thinking about how different types of policies create moral hazard, along with a first application of that framework to the federal budget. While we have tried to emphasize the “knowns” in this paper, what is perhaps most striking are the profound unknowns. As a matter of accounting, it is hard to assign different programs to the correct categories. Even harder is learning how the incentives from these programs affect behavior and thus risk. The policy reforms we have offered begin, first and foremost, with a more regularized program to map the adverse impacts of federal disaster policies and to understand how that mapping may shift and magnify with climate change.

Politically, the prospects for reform of these programs are, during normal times, bleak. That suggests a strategy for reform that is grounded in political realism. It should be a strategy that takes advantage of political windows of opportunity, which open periodically. And it should focus more on policy reforms that are directionally correct and build upon each other. And it must be a strategy that raises awareness in key interest groups—insurance companies, infrastructure companies, homeowners, and organizations that focus on fiscal probity—by documenting the level of spending, the rise in exposure, and the potential imbalance that leads the nation to under-invest in resilience despite huge social returns from such investments. Such a strategy, while long overdue, must not wait longer.

CONCLUSION

A wide array of federal government policies has resulted in unintended consequences—incentives that can create moral hazard—that have raised the exposure of the U.S. to weather-related disaster. We have suggested that there is already a huge difference in disaster policy weighted toward
ENDNOTES

1 For the auspicious nature of Paris see (Victor, 2015). For more on why 2 degrees is an impractical goal see (Peters, 2017).

2 Miami-Dade County has invested in a comprehensive and ongoing sea-level rise resilience and adaptation process. For more see (Miami Dade, n.d.). For the California Coastal Commission’s 2018 sea-level rise policy guidance document see (California Coastal Commission, 2018). Of course, the success of investments in resilience are dependent on local context – for instance, investments in sea walls in places like Miami may not ultimately protect due to the specifics of sea-floor geography.

3 This is a reporting requirement under the UNFCCC and was signed into law by Congress in the Global Change Research Act of 1990 (USGCRP, n.d.)

4 For example, see notably (Kousky et al, 2020; Kunreuther, 2018; Kunreuther et al, 2013).

5 Research has looked behaviorally at individual decision making (one reason NFIP policies are mandated is because people tend to not voluntarily buy them) and found that external factors such as consumption of FEMA flood maps, past storms and perceived risks play a significant role in the decision to purchase flood insurance (Shao et al, 2017).

6 One important paper found that receiving non-insurance federal disaster assistance such as FEMA grants led to lower amounts of flood insurance purchased, though there was no reported impact on insurance take up rates (Kousky et al, 2018).

7 For example see (Burby, 2006; Nickerson and Husted, 2014). We note that (Burby, 2006) distances himself from the term moral hazard and refers to the risk invitation issue as the “safe development paradox” whereby the federal government, in seeking to make hazardous areas safe, actually make them more dangerous.

8 Two recent empirical studies show that the presence of federal disaster programs increases risk exposure. The first study, currently published as a seminar paper, focuses on NFIP and suggests that flood insurance availability increases population in flood-prone counties by 5 percent for every one standard deviation in flood risk (Peralta and Scott, 2019). The second paper looks closely at federal wildland fighting expenditures and residential development, and finds, among other more granular metrics, that the majority of wildland fighting funds goes towards protecting private homes, sometimes incurring net present values greater than 10% of the actual transaction value of the home itself (Baylis and Boonhouver, 2019).

9 Through it’s high-risk list, which is produced every two years, the GAO regularly assess the fiscal threat of climate change to the federal government from disaster aid and poorly designed federal insurance programs, among others.

10 We note that in addition to federal funding patterns that can increase risk, there are numerous implementation challenges in federal disaster mitigation assistance related to state level cost share that are outside the scope of this paper. These challenges can result in mitigation dollars remaining unspent even when allocated, creating additional barriers to communities in need and further complicating the tracking of disaster spending on a granular level. For more see (Frank, 2021).

11 This is a general estimate that encompasses both individual program cost shares and overall disaster cost shares. We note that each individual disaster declaration and grant program can have distinct and variable cost share requirements that change over time. For instance, the CBDR reports that overall government spending on hurricanes can range from 9% – 80%, while FEMA’s public assistance program federal assistance share is “not less than 75 percent of the eligible cost” (CBDR, 2016; FEMA, n.d).

12 While the term of art used in many of these programs is mitigation, we define the second policy investment strategy as resilience in order to draw a semantic distinction with emissions mitigation, and also to capture the important need to build with a sustainable future in mind, not just prevent future damages.

13 We note that there are other important federal policies programs that can create moral hazard beyond disaster assistance. This includes, for instance, government sponsored mortgage agencies that do not require earthquake insurance when taking on a mortgage.

14 Federal appropriations are the primary method through which Congress announces disaster funding, and in many ways are essentially political statements, while obligations are the less glamorous legally binding spending commitments. The distinction between obligations and appropriations can change the overall picture depending how each is assessed. For instance, in the appendix we report this same data by obligation, where the difference between the USACE’s 20 billion dollar appropriation and only 3 billion dollars in obligation causes its overall percentage to shrink to 5 percent from 13 percent. HUD follows a similar pattern, while in contrast, the SBA’s share of overall funding expands to 13 percent from 1 percent when viewed by obligations.

15 FEMA’s Public Assistance program is the largest single disaster relief program in the entire federal budget when measured by obligations, where it makes up % of committed federal obligations since 2017.

16 For more on these grants see: (Barnosky, 2015).
17 In appropriations, unless otherwise noted. For more on appropriations versus obligations, see footnote 3. In the appendix, we provide a data key for understanding when different units were used.

18 The years covered by this analysis were all big disaster years, including the 2017 flood and 2018 wildfire season. Thus, these numbers may be upwardly biased when viewed over longer historical time horizons. However, the fact that recent history displays such historically expensive costs is already indicative of the trends and future climate impacts that are the focus of this paper.

19 Many of these programs, such as FEMA’s PA program, HUD’s Community Development Block Grants (CDBG) the USACE, and the SBA, have discretionary ability to fund mitigation and resilience projects on a smaller scale in addition to their core mandates that focus on recovery. For example, FEMA’s PA program was reported to fund up to 2 billion dollars in mitigation related projects after Superstorm Sandy (Pew, 2018). However these projects are not tracked comprehensively or systematically, making it difficult for analysts to track spending fluctuations inside existing programs. As such, we categorize them analytically according to their primary function as determined by name and public information on prima facia purpose, which we assess through program title and description.

20 Recent reporting has also examined the growing visibility of the threat that climate-related disasters pose to home mortgages (Flavelle, 2020).

21 A fuller analysis would need to accommodate the reality that after extreme events, often there is outmigration from people seeking to avoid a repeat. For more see (Boustan et al, 2017)

22 Other findings include vulnerable flood areas swelling by 45 percent in riverine floodplains and 55 percent in coastal floodplains, particularly increasing vulnerability for the Atlantic and Gulf Coasts. In turn, the AECOM report finds that NFIP policies could grow by 80-130 percent depending on shoreline management, and rates would need to adjust between 40-70 percent to accommodate the increasing vulnerability.

23 Calculations are authors own using historical data from (Citizens Property Insurance Corporation, 2020).

24 We note that there is a large body of literature on estimating the costs of disasters and thank Adede Morris for her comments. For more see (Bakkensen et al, 2017; Kousky et al, 2019; Eckhardt, 2019)

25 For more on CPI deflating see (Smith, 2019).

26 This estimate is based on data reported in (Nicholson et al, 2018)

27 The CIL coastal damages are calculated from the interaction of wind and storm surge modelling with sea level rise, mapped onto a property database maintained by Risk Management Solutions. The CIL coastal damages are reported in log base 10 percent of median 2012 county level per-capita income. Our analysis relies on transformation of this data from log to aggregate county level income from reported 2012 population. As such, this analysis is intended to be used as an illustration and not as a rigorous modelling exercise.

28 Going further back in time this data could also extend to the 2005 hurricane season (Rita, Wilma and Katrina), which would plausibly create new outliers in terms of FEMA expenditure, though not change the geographical distribution.

29 Among the many examples of this, states have the ability to report their public housing infrastructure as “self-insured” against flood risks.

30 Historical events restated to 2017 values from (AIR, 2017).

31 See GAO, 2020b

32 See Coastal Barriers Resources Act, n.d.

33 See CBO, 2017

34 See Gurian, 2013

35 See FEMA, n.d.

36 See Army Corp of Engineers New Orleans District website, n.d.

37 See H.R. 3702

38 See FEMA, n.d.d

39 See Adler and Scata, 2017
U.S. House of Representative Committee on Science, Space, and Technology, 2020

See FEMA, n.d.

See Conrad and Thomas, 2013

See GAO, 2020c

See HUD, n.d.

See Frank, 2020

See Office of the Under Secretary of Defense for Acquisition and Sustainment, 2019

See Scata, 2017

See FEMA, 2013

See U.S. Climate Resilience Toolkit, n.d

See Federal Register, 2020a

See Office of the Under Secretary of Defense for Acquisition and Sustainment, 2019

See NRDC, n.d.

These properties also engender a disproportionate share of costs, accounting for 1 percent of total policies and around 1/3 of claims. See (Pew, 2016).

Other examples of positive reform efforts, small scale though they may be, can be found in the 2019 National Preparedness Report, which we include in the references.

The 2013 AECOM study on climate change and NFIP found that these grandfathered properties would contribute the largest source of exposure by 2100.

The battle over NFIP rates is very much alive today. As of this writing, FEMA’s long awaited Risk Rating 2.0, which would update the methodology used for calculating NFIP premiums, has already been delayed and is expected to be an ongoing source of contention.

Beyond designating funds or setting in place requirements, actual enforcement and implementation of mitigation efforts is often very hard to ascertain. For instance, federally sponsored rebuilding projects often takes years to complete, and there is no systematic way to track whether or not mitigation requirements were reflected in actual project implementation. Instead efforts often rely on audits or one-off project assessment, for example see (Office of Inspector General, 2020).

For more see (Vajhala, 2017)

This idea would build on the concept of a ‘sustained climate assessment’ discussed in (Moss et al, 2019).

REFERENCES

Swiss Re (2017). Hurricane Andrew: The 20 miles that saved Miami. Accessed from: https://www.swissre.com/Library/hurricane-andrew-the-20-miles-that-saved-miami0.html#:~:text=Roughly percent2060 percent25 percent20of percent20Andrew%27s%20economic,percent20agriculture percent20percent20beaches percent20and percent20marinas

The Brookings Institution is a nonprofit organization devoted to independent research and policy solutions. Its mission is to conduct high-quality, independent research and, based on that research, to provide innovative, practical recommendations for policymakers and the public. The conclusions and recommendations of any Brookings publication are solely those of its author(s), and do not reflect the views of the Institution, its management, or its other scholars.