FORM GK

SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549
Report of Foreign Private Issuer Pursuant to Rule 13a-16 or 15d-16 under the Securities Exchange Act of 1934

For the month of APRIL 2011
000-29880 (Commission File Number)
Virginia Mines Inc. 200-116 St-Pierre

Quebec City, QC, Canada G1K 4A7
(Address of principal executive offices)

Virginia Mines Inc.
(Registrant)

Date: 04/05/2011

By: Noella Lessard
Name: Noella Lessard
Title: Executive Secretary

Exhibit 1

Technical Report ON 2010 Drilling Program and Geochemical Soil Testing - Corvet Est Project, Quebec

Prepared by: Robert Oswald, P. Geo - Services Techniques Geonordic Inc.
8 paper copies

ITEM 1 TITLE PAGE

Form 43-101F1
Technical Report

Technical Report on 2010 Drilling Program and Geochemical Soil Testing Corvet Est Project, Quebec

VIRGINIA MINES INC.
GOLDCORP INC.
February 2011

Prepared by:

Robert Oswald, P.Geo.
Project Geologist
Geonordic Technical Services Inc.

ITEM 2 TABLE OF CONTENTS

ITEM 1 TITLE PAGE I
ITEM 2 TABLE OF CONTENTS II
ITEM 3 SUMMARY 1
ITEM 4 INTRODUCTION AND TERMS OF REFERENCE 3
ITEM 5 DISCLAIMER 3
ITEM 6 PROPERTY DESCRIPTION AND LOCATION 3
ITEM 7 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY 3
ITEM 8 HISTORY 4
8.1. Property ownership 4
8.2. Previous work 4
ITEM 9 GEOLOGICAL SETTING 6
9.1. Tonalitic basement 7
9.2. Volcano-sedimentary belt 7
9.3. Laguiche Group 9
ITEM 10 DEPOSIT TYPE 10
ITEM 11 MINERALIZATION 10
11.1. Gold Mineralization - Marco Zone 10
11.2. Gold Mineralization - Echo Zone 10
11.3. Gold Mineralization - Contact Zone 10
11.4. Gold Mineralization - Eade 1 11
11.5. Gold Mineralization - Eade 2 11
11.6. Copper Mineralization - Eade 3 11
11.7. Gold Mineralization - Eade 4 11
11.8. Gold Mineralization - Eade 5 12
11.9. Gold Mineralization - Eade 6 12
11.10. $\mathrm{Mo}-\mathrm{Cu}-\mathrm{Ag}-(\mathrm{Au})$ Porphyry Mineralization - Sao showing 12
11.11. Gold Mineralization - Eade 7 (2008) 12
11.12. Gold Mineralization - Eade 8 (2008) 12
11.13. Gold Mineralization - Eade 9 (2008) 13
11.14. Gold Mineralization - Eade 10 (2008) 13
11.15. Gold Mineralization - Matton (2009) 13
ITEM 12 EXPLORATION WORK 13
12.1. Geochemical survey 14
ITEM 13 DRILLING 14
13.1. Matton Zone 16
13.2. Marco Zone 16
13.3. Contact Zone 17
ITEM 14 SAMPLING METHODS AND APPROACH 18
ITEM 15 SAMPLE PREPARATION, ANALYSIS AND SECURITY 18
15.1. Sample security, storage and shipment 18
15.2. Sample preparation and assay procedures 18
ITEM 16 DATA VERIFICATION 19
ITEM 17 ADJACENT PROPERTIES 22
ITEM 18 MINERAL PROCESSING AND METALLURGICAL TESTING 22
ITEM 19 MINERAL RESOURCE, MINERAL RESERVE ESTIMATES 22
ITEM 20 OTHER RELEVANT DATA 22
ITEM 21 INTERPRETATION AND CONCLUSIONS 22
ITEM 22 RECOMMENDATIONS 24
ITEM 23 REFERENCES 25
ITEM 24 DATE AND SIGNATURE 27
ITEM 26 ILLUSTRATIONS 28

LIST OF TABLES, FIGURES, APPENDICES AND MAPS

TABLES

Table 1. Summary of the main activities carried out in the sector under study. 6
Table 2. General information, 2010 drilling campaign, Corvet Est property. 15
Table 3. Significant gold intervals 2010 drilling campaign, Corvet Est property.......................... 15
Table 4. Standard and blank of the 2010 drilling program. .. 20

FIGURES

Figure 1: Corvet Est property - Project location
Figure 2: Corvet Est property - Claim location
Figure 3: Corvet Est property - Regional geology
Figure 4: Corvet Est property - Contact Zone - Soil sampling 2010 Au (ppb)
Figure 5: Corvet Est property - Contact Zone - Soil sampling 2010 As (ppm)
Figure 6: Corvet Est property - Marco Zone - Soil sampling 2010 Au (ppb)
Figure 7: Corvet Est property - Marco Zone - Soil sampling 2010 As (ppm)
Figure 8: Corvet Est property - Geochemical survey proposal - Summer 2011

APPENDICES

Appendix 1: Claims list
Appendix 2: Légende générale de la carte géologique (extract of MB 96-28)
Appendix 3: Soil samples descriptions
Appendix 4: Drill logs
Appendix 5: Certificates of analysis - Soil samples
MAPS (POCKET)
Map 1: Corvet Est property - Property compilation map (1:50,000)
Map 2: Corvet Est property - Marco area compilation map (1:5,000)
Map 3: Longitudinal section Marco Zone with metal factor 2010
Map 4: Longitudinal section Marco Zone with arsenopyrite factor 2010
Map 5: Longitudinal section Marco Zone with dacite true thickness 2010
Map 6: Longitudinal section Contact Zone

DRILLHOLE CROSS-SECTIONS

Section E1000

Section E1400
Section E1975
Section E2000
Section E2025
Section E2050
Section E2300
Section E2550
Section E2575
Section E2600
Section E2625
Section E4300
Section E5100

ITEM 3 SUMMARY

During the summer of 2010, Virginia and Goldcorp conducted a drilling campaign on their Corvet Est property, James Bay, Quebec. The property covers 60 km of a volcano-sedimentary belt located at the contact between the La Grande and Opinaca subprovinces.

The property hosts two km-scale auriferous structures: 1- the Marco Zone is known over a 2-km strike length with a true width of 1.8 to 40 m . The mineralization is composed of disseminated arsenopyrite, pyrite and pyrrhotite associated with alternating units of highly deformed intermediate to felsic volcanic rocks; 2- the Contact Zone is located at the faulted contact between the volcano-sedimentary belt and migmatized paragneisses of the Laguiche Group. The mineralization is located mostly in mylonitized basalt and also in highly deformed paragneiss. Gold values are spread over a $5-\mathrm{km}$ strike along this structure and the width varies from $<1 \mathrm{~m}$ to 4.7 m .

Seven new drill holes were completed: three to test the Marco Zone at depth, three on the Contact Zone and one hole to test the Matton Zone, for a total of $3,361 \mathrm{~m}$.

The new drill holes in the Marco Zone confirmed our interpretation that the zone actually consists of two distinct ore shoots. The two ore shoots have a limited extent and are less than 300 m wide. The results of the drilling campaign were disappointing and grades were lower than expected. Among the best intersections, drill hole CE-10-76 graded $3.09 \mathrm{~g} / \mathrm{t}$ Au over $\mathbf{1 . 0 5} \mathrm{m}$ and drill hole
 hole CE-10-78, which was drilled between two previous drill holes.

The three drill holes in the Contact Zone were designed to test the prospective zone along the Guyer / Laguiche contact, on the main grid of the Corvet Est property. Drill hole CE-10-79 tested an area where anomalous gold values were obtained in mafic lavas in previous campaigns. A few zones with weak sulphide mineralization were intersected in mafic lavas, but no significant gold grades were obtained. An iron formation ($\mathbf{1 . 7 8} \mathbf{g} / \mathbf{t} \mathbf{A u}$ over $\mathbf{0 . 6 3} \mathbf{~ m}$) and a feldspar porphyry dyke ($3.19 \mathrm{~g} / \mathrm{t}$ Au over 1 m) did yield anomalous gold values. However, Laguiche metatexites intersected in the drill hole did not contain anomalous gold values.

Drill hole CE-10-80 tested a small gold-bearing zone exposed in trench TR-CE-04-029. A few minor zones of mineralization were observed and several anomalous gold values were obtained (0.89 to $10.53 \mathrm{~g} / \mathrm{t}$ Au over 1 m) in both mafic lavas and Laguiche metatexites.

Drill hole CE-10-81 was drilled to test the depth extension of the Contact Zone to the southeast of drill hole CE-04-14. Despite the presence of weak pyrite-pyrrhotite mineralization, the metatexites are anomalous in gold, with $\mathbf{2 3 6}$ ppb Au over $\mathbf{4 0} \mathbf{m}$, and two samples graded 1.03 and $1.54 \mathrm{~g} / \mathrm{t}$ Au over one metre. Despite its low gold content, the Contact Zone does indeed extend in this area and appears to have further potential.

Drill hole CE-10-75 tested the Matton Zone and made it possible to get a continuous sample across the entire area of interest. The mineralized zone on this showing turned out to be less important than originally thought, with $\mathbf{2 . 9 5} \mathbf{g} / \mathbf{t}$ Au over 0.95 m .

During the drilling campaign, we also carried out two sampling surveys, collecting close to 30 soil samples (B-horizon) on the Contact and Marco zones. Gold in these two zones occurs in association with arsenopyrite. Since arsenic is a very mobile element, we surveyed the most goldrich areas to determine if the gold-bearing zones could be delineated using arsenic, and of course gold, as a pathfinder.

Based on the results of the B-horizon geochemistry survey, we believe it would be worthwhile to extend the survey to cover parts of the grid where the Contact and Marco zones were mapped, as well as along their probable extensions. It would also be important to add several lines to the south of the contact, to test Laguiche rocks, and to the north, to cover as much of the property stratigraphy as possible.

We recommend a survey totalling 2,387 soil samples (B-horizon) to be analyzed for gold and the Scan-31 package. A preliminary budget of CA\$181,538 is estimated for a field survey of 13 days. We are not considering additional drilling targets for the moment; we believe it is best to wait for the geochemistry results before proposing further drilling.

ITEM 4 INTRODUCTION AND TERMS OF REFERENCE

Virginia Mines Inc. has been involved in mineral exploration on the Corvet Est property since 1997. In 2005, Goldcorp Inc. (then Placer Dome) joined Virginia to explore the property. Virginia remains operator of the exploration work. Since the beginning, the exploration efforts have been focused on a $90-\mathrm{km}$ stretch of a thin volcano-sedimentary belt and its faulted southern contact with sediments of the Laguiche Group. Numerous gold showings have been discovered so far and $\mathrm{Cu}-\mathrm{Ag}-\mathrm{Mo}-(\mathrm{Au})$ occurrences were also encountered.

The main objective of the 2010 summer exploration program was a drilling campaign of $3,361 \mathrm{~m}$ focusing on the Contact, Marco and Matton zones.

This report provides the status of current technical geological information relevant to Virginia Mines's exploration program on the Corvet Est property in Quebec and has been prepared accordance with the Form 43-101F1 Technical Report format outlined under NI-43-101. report also provides recommendations for future work.

ITEM 5 DISCLAIMER

The author Robert Oswald, professional geologist with a B.Sc. in Geology and Geonordic Technical Services project geologist, has been involved in fieldwork campaigns at Corvet Est in 2003, 2004, 2005, 2008 to 2010.

ITEM 6 PROPERTY DESCRIPTION AND LOCATION

The Corvet Est property is located on the James Bay territory in Quebec, Canada (Figure 1). The property is 380 km north of Chibougamau, 240 km east from Radisson and 50 km southwest of the LG-4 hydroelectric complex (NTS sheets $33 \mathrm{G} / 07,33 \mathrm{G} / 08,33 \mathrm{H} / 04$ and $33 \mathrm{H} / 05$). The Corvet Est campsite is located at latitude $53^{\circ} 19^{\prime}$ North and longitude $73^{\circ} 57^{\prime}$ West.

The Corvet Est project is made up 568 claims on three main blocks stretching on 29,106.21 hectares (Figure 2). The claims are 50/50 joint venture between Virginia Mines Inc. and Goldcorp Inc., they are listed in Appendix 1.

ITEM 7 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Corvet Est project is accessible by floatplane or helicopter from LG-4 located 50 km NE. Access to LG-4 is made by taking the James Bay Highway, via Matagami or Chibougamau, and then by the Transtaiga Road. This gravel road is open year-round, and leads to the Caniapiscau reservoir. There are two floatplane bases on Transtaiga Road: Cargair at Km 285, and Mirage Outfitter at Km 358. The Corvet Est campsite is situated 48 km south of Cargair and 87 km southwest of Mirage. It is also possible to charter a plane to LG-4 airport (at Km 300, Transtaiga Rd).

The property has a moderate topography with elevations varying from 300 to 450 m . Around the campsite there are an exceptionally large number of outcrops, and overburden is thinner than on the rest of the property, where glacial overburden dominates. The irregular, low-density forest cover is composed of black spruce and jack pine. Forest fires have damaged nearly 50% of the acreage in the central part of the area, but untouched the eastern and western ends of the property. From November to May the ground is usually covered with snow, and lakes are frozen.

ITEM 8 HISTORY

8.1. Property ownership

The Corvet Est property was originally 100% owned by Virginia Mines Inc. From 2005 to 2008, Goldcorp Inc. had an option to earn a 50% interest in the property in return of CA\$4 million in exploration expenditures and CA $\$ 90,000$ in cash payments. Goldcorp fulfilled these requirements during the 2008 drilling campaign so the property is now $50 / 50$ joint venture between Virginia and Goldcorp. Virginia is the operator of the project.

8.2. Previous work

The first activities carried out in the sector consisted of geological reconnaissance by the Geological Survey of Canada, scale $1: 1,000,000$ (Eade, 1966). Subsequently, the Ministère des Richesses naturelles Québec (Sharma, 1977a, b, 1978; Hocq, 1985) and the Geological Survey of Canada (Ciesielski, 1984) completed geological mapping campaigns in the vicinity, but outside, Corvet Est property.

In the seventies, exploration work consisted of uranium prospecting carried out by Groupe minier SES and the Société de Développement de la Baie James (Crevier, 1979; Otis, 1975; Larose, 1978, Gleeson, 1975). In the western area of the property, this work included lake-bottom geochemical sampling and follow up of anomalies generated thereby.

Virginia's prospectors found a zinc occurrence hosted by felsic blocky tuff in Corvet Est area in 1997. This discovery led to property acquisition, airborne Mag-EM survey and ground follow up. Due to negative results the property was let to lapse. The discovery of gold showings by the same Virginia's prospectors in the summer of 2002 has led to the restaking of a first 13 -claim block on Corvet Est property.

Follow-up activities in 2003 (Oswald, 2004) delineated the auriferous Contact Zone on a strike length of 1.2 km and also led to the discovery of the Marco Zone. As a result 75 claims were added to the property. A 69 line km grid was cut and covered by magnetometric and IP surveys (Simoneau and Tsimbalanga, 2004).

From March to April 2004, a 21 -hole diamond drilling campaign totalling 2,498.7 m was carried out on the Contact and Marco zones (Oswald, 2004).

Four outcrops and eight core samples were submitted for petrography (Tremblay, 2004a, b). In the summer and fall of 2004, an extensive exploration program was implemented on the Corvet Est property (Perry, 2005). The work consisted of basic prospecting, geological mapping, hand and mechanical trenching, channel sampling, line-cutting, geophysical surveying (magnetometric and induced polarization) and drilling (16 holes for $3,186 \mathrm{~m}$).

In 2004, Virginia acquired the Lac Eade (now included in the Corvet Est property) property by taking 383 claims covering the volcano-sedimentary unit on both sides of the Corvet Est property. The same year Virginia conducted a geological reconnaissance and prospecting survey on Lac Eade (Chénard, 2005).

In May 2005, Virginia hired GPR inc. to fly a 2,492 line km high-resolution heliborne MAG survey over Corvet Est property and to the west on a part of Lac Eade (Mouge et al., 2005).

In 2005, Virginia/Goldcorp performed a prospecting and drilling campaign on Corvet Est (Perry, 2006). Eight drill holes were added for a total of 1485 metres. Additional mapping and prospecting were made around the gold showings and on the underexplored outcropping area in order to complete the geological coverage. A limited till survey (24 samples) was carried out west of Corvette Lake.

In 2006, Virginia/Goldcorp conducted combined grass-root exploration, drilling and till survey on its Corvet Est property (Perry, 2007). Manual and mechanical trenches were dug on the Eade 1, Eade 5 and Eade 6 gold showings and on the western extension of a shallow-depth gold intersection from hole CE-05-43. Nine drill holes (2971 metres) were added in 2006. Seven drill holes targeted the Marco Zone and two remaining holes have tested the Contact and Echo zones. 204 tills samples were taken down-ice of the contact between the volcano-sedimentary belt and the Laguiche metasediments all over the property.

In 2007-2008, Virginia/Golcorp performed a 8482 m drilling campaign in two phases (Ouellette, 2008). The first phase was done from March to June 2007. 14 holes were drilled for a total of 4658 m . Two holes tested the Eade 5 Area and Eade-Till Area and the others tested the depth and lateral extensions of the Marco Zone. The second drilling phase occurred from February to April 2008.7 drill holes were done for a total of 3824 m . All these holes targeted the depth and lateral extensions of the Marco Zone.

In the summer of 2008, Virginia/Golcorp activities mainly consisted of mapping and prospecting in the extensions of the main showings and areas with limited information (Oswald, 2009). The area south of Corvette Lake was also an important target. Additional mapping and prospecting was done all over the property by numerous north-south traverses across the volcano-sedimentary belt. A total of 1169 samples were taken during prospecting work and sent to the laboratory for gold and 31 other elements (scan ICP-EOS). As a complement to the prospecting campaign and to complete the 2006 till survey, 76 till samples (15 kg) were taken in the western part of the property.

From June to July 2010, a 7-hole diamond drilling campaign totalling $3,361 \mathrm{~m}$ was carried out on the Contact, Marco and Matton zones (Oswald, 2010). Two geochemical soil testing surveys were done on the Marco and Contact zones.

Table 1. Summary of the main activities carried out in the sector under study.

Company	Year	Author	Work carried out
GSC	1966	Eade	Geological reconnaissance (1:1 000 000).
SDBJ	1975	Otis	Lake geochemistry.
SDBJ	1975	Gleeson	Lake geochemistry.
MRN	1977	Sharma	Geological mapping (1: 100 000).
SDBJ	1978	Larose	Lake geochemistry.
SDBJ	1979	Crevier	Geological surveys and lake geochemistry.
GSC	1984	Ciesielski	Geological mapping (1: 100 000).
MRN	1985	Hocq	Geological mapping (1:100 000).
MRN	1997	Gauthier et al.	Geological compilation, reconnaissance.
SIAL	1998	St-Hilaire	Heliborne Mag-Em.
Virginia	$2003-2004$	Oswald	Prospecting and drilling.
Geosig	2004	Simoneau et al.	Geophysical surveys.
IOS	2004	Tremblay	Petrography.
Geosig	2004	Tsimbalanga	Geophysical surveys.
Virginia	2004	Chénard	Geological reconnaissance.
Virginia	2004	Perry	Prospecting, trenching and drilling.
GPR	2005	Mouge	Heliborne Mag survey.
Virginia	2005	Perry	Prospecting and drilling.
Virginia	2006	Perry	Prospecting, till survey, trenching and drilling.
Virginia	$2007-2008$	Ouellette	Drilling.
Virginia	2008	Oswald	Mapping, prospecting, trenching and survey.
Virginia	2009	Oswald	Mapping, prospecting, trenching and survey.
Virginia	2010	Oswald	Drilling and geochemical soil testing.

ITEM 9 GEOLOGICAL SETTING

The rocks of the region are of Archean age and part of the Superior Province (Eade, 1966; Sharma, 1977). The property follows the contact between the La Grande and Opinaca subprovinces (Figure 3). A large portion of the property is occupied by a volcano-sedimentary sequence interpreted as a branch of the Guyer Lake greenstone belt. It is composed of metabasalts interlayered with felsic volcanic rocks and thin metasedimentary bands. This unit is in
faulted contact to the south with the metasediments of the Laguiche Group. North of the volcanosedimentary sequence is the tonalitic basement.

According to Gauthier et al. (1997), the contact between the Opinaca and La Grande subprovinces lies between the Laguiche sediments and the tonalitic basement or sometimes the Guyer Lake greenstone belt. Age determination revealed that the rocks are dated at 2811 Ma for the tonalite, 2749 Ma for the Guyer Belt and $<2698 \mathrm{Ma}$ for the Laguiche Group (Ciesielski, 1984). The orientation of the units varies from E-W west of Corvette Lake, to WNW at the centre of the Corvet Est property and finally north-south at its eastern end. The units dip steeply towards the north or the east depending of the orientation. The metamorphic grade is amphibolite.

9.1. Tonalitic basement

The tonalitic basement is located in the northern part of the sector under investigation.
Tonalite IID - In general the basement consists of tonalite, though its composition may vary slightly (granite, granodiorite, tonalite, monzonite and quartz monzonite). It is fine-grained, and its patina grey-white, sometimes pinkish. Where freshly broken the rock turns from salt and pepper to white-pink. The tonalitic phase shows a biotite content of 5 to 15% in a feldspar-quartz matrix. The granitic phases contain quartz (20 to 25%), feldspar (70 to 75%), and potassic feldspar (2 to 5%). Microcline (often in positive relief) and magnetite sometimes occur. In general this unit is foliated. Usually it is in contact with the volcano-sedimentary belt, and, though to a lesser extent, with the Laguiche sediments (south).

9.2. Volcano-sedimentary belt

The volcanic belt is generally mafic in composition and is amphibolitized. Along the belt, we observed a series of intrusions, and their compositions vary from felsic to ultramafic. Sediments often contain narrow iron formations.

West of Corvette Lake, the belt is mostly composed of sedimentary rocks with less than 5\% volcanic rocks. Near the lake, we observed numerous felsic intrusions. The link between the western and eastern parts of the belt is located south of Corvette Lake in an area devoid of outcrop. There we have an information gap of 6 km .

The eastern part of the belt is mainly composed of mafic volcanics with few layers of sedimentary rocks. Marco gold Zone rocks are different with a thick sequence of mafic to felsic volcanics. The thickness of the volcano-sedimentary belt varies from 1 to 4.5 km .

Rocks observed on the property are:
Basaltic flow V3B - It is the dominant unit of the volcanic package. Color varies from dark grayish to blackish. It has a very fine grain size. The rock is chiefly composed of blackish amphiboles and to a lesser extent feldspar. Foliation is generally well developed. Primary textures
like pillowed basalts and flow breccias are rarely preserved. Traces of fine disseminated pyrite are commonly found in that unit.

Wacke S3-These sediments occur in the form of quartz-feldspar-biotite gneiss. They are similar to the Laguiche sediments, but are finer grained and contain little, if any, pegmatitic phases. The rock has a grayish beige patina that often has a rusty aspect due to the presence of micas. The sediments are usually fine-grained and equigranular, and at times have a granoblastic texture. We noted 5 to 30% biotite content in the feldspar-quartz matrix, and sometimes the presence of garnet. Its well-developed foliation is emphasized by the alignment of biotites. Mineralization rarely occurs and if any, it is limited to traces of fine disseminated pyrite.

Andesitic flow V2J - These units are chiefly located at the centre the property. The patina varies from grey to whitish grey, and greenish grey to light grey where freshly broken. These units are fine-grained with about 70% plagioclase and 30% amphibole. Biotite, muscovite and garnet occur in many areas (from traces to 5%).

Intermediate flow and tuff V2/V2e, c, 1-This unit is an important component of the belt in the area around the Marco Zone. The intermediate volcanic rocks are composed of feldspar and mafic minerals (up to 25%). The colour is medium gray in patina and on fracture as well. Generally they have a porphyritic texture with $1-3 \mathrm{~mm}$ feldspar phenocrysts (up to 5%). Homogeneity is what differentiates them from ash and crystal tuffs; these show banding due to variations in composition. The lapilli and blocky tuffs have a polymict composition with microgranular and intermediate felsic fragments containing feldspar phenocrysts.

Dacitic flow V1D - These flows are located mostly in the area around the Marco Zone. They have a grayish beige patina that turns medium grey where freshly broken. These rocks show a subconchoidal fracture and are very fine grained to aphanitic. They are composed of feldspar and $10-20 \%$ mafic minerals (biotite, amphibole) embedded in a micro-granular felsic matrix. Traces of garnet are also noted. They are foliated with a laminated aspect.

Rhyolitic flow V1B - The rhyolite is associated with the dacitic unit principally in the Echo Zone. It is light grey on the altered surface and the same when freshly broken. It has a very thin alteration crust and a conchoidal (shell-like) fracture. It contains 20% quartz, 15% feldspar, less than 5% mafic mineral and 1% muscovite in a siliceous matrix.

Iron formations S9B - Iron formations belong to the silicate facies and oxide facies and are heavily corrugated. In general they contain sulphides, from traces to 2%, but with local concentration up to 30%. The thickness varies from 1 to 40 metres. They are usually tightly folded.

Felsic dyke Il - Several small felsic dykes were noted during the mapping survey. In general they are thin (less than 1 m thick), whitish and fine-grained. They contain occasionally traces of pyrite and arsenopyrite. Only those injected at the contact between the belt and the Laguiche Group returned occasionally some gold grades.

Pegmatite I1G - Pegmatite occurrences in the volcano-sedimentary bands usually take the form of dykes of decimetric to hundred metre sizes. In general they are whitish, medium-grained, with
well-developed feldspar crystals (65\%), quartz crystals (25-30\%), muscovite, tourmaline, and accessory garnet, biotite, beryl ($<25 \mathrm{~cm}$) and apatite (mm). This unit is rarely affected by the deformation.

Gabbro I3A - The gabbro form concordant layers that seem co-genetic with the basalt. They are medium-grained and composed evenly of amphibole and plagioclase. The patina is dark gray that turn black when freshly broken. They are not magnetic, except for the gabbroic body located between the tonalitic intrusions near the center of the Corvet Est property.

Diabase (I3B) - Diabase are oddly observed. They are late stage non-distorted dyke that crosscut the others units. The rock is very fine-grained and magnetic. Its patina is orange-beige and bluish grey where freshly broken. They show an aphanitic chill margin at the contacts. Traces of pyrite are noted.

Ultramafic flows (V4) and intrusions (I4) - Ultramafic rocks are spotted in several places along the belt but are rarely followed for more than 100 m . The largest intrusion was found in the eastern part of the property, 30 km southeast of Corvette Lake. It shows a compositional zonation over a distance of some 20 metres: at the contact the composition consists of a gabbro that has an ophitic to subophitic texture; the next composition is a non-magnetic, tremolite-rich ultramafic rock, greenish in colour; the following composition is magnetic ultramafic rock with a chocolate brown patina turning bluish black where freshly broken, with an elephant skin surface texture. This intrusion is at least 80 metres thick and is followed over a distance exceeding 250 metres. Farther to the southeast, a zoned intrusion, more or less oriented north south, is followed over 2 km . The composition varies from gabbroic to ultramafic.

Polygenic conglomerate (S4D) - Conglomerates occur principally in the western part of the property and 2 km west of Marco Zone. These are polygenic conglomerates that contain roundshaped fragments of tonalite, granite and, locally, amphibolite and leucogabbro.

9.3. Laguiche Group

The main unit that forms the Laguiche Group consists of feldspar-quartz-biotite paragneiss and migmatite. It is often intersected by pegmatites.

Feldspar-quartz-biotite paragneiss M4(M22) - This unit is found in the eastern area of the property, south and west of the volcano-sedimentary belt, where it occurs more frequently than the other units. The rock has a grayish-beige patina and a rusty aspect due to the presence of micas. This unit is usually fine-grained and equigranular, and sometimes has a saccharoidal texture. We noted 5 to 30% biotite content in the feldspar-quartz matrix, and sometimes the presence of garnet. Its well-developed foliation is emphasized by the alignment of biotites. Mineralization rarely occurs and if any, it is limited to traces of fine disseminated pyrite. The paragneiss contains up to 25% of felsic mobilisates (leucosome) that represent in-situ partial melting (migmatization).

Pegmatite I1G - This area shows omnipresence of pegmatite intrusions. They generally consist of whitish, well-developed, medium sized grains of feldspar (65\%) and quartz (25-30\%) crystals with muscovite, tourmaline and accessory garnet, biotite and apatite. The unit is not distorted and rarely mineralized.

ITEM 10 DEPOSIT TYPE

Two types of deposits were discovered on the property:

1) Auriferous deposit associated with deformation zones in volcanic rocks or associated sediments; and
2) Porphyry type $\mathrm{Mo}-\mathrm{Cu}-(\mathrm{Au})$ mineralization.

ITEM 11 MINERALIZATION

This section briefly describes all the significant mineralized zones discovered on Corvet Est property since 2003 to 2008 (Map 1, in pocket).

11.1. Gold Mineralization - Marco Zone

The Marco Zone is associated with a significantly deformed and altered dacitic unit. It consists of less than 15% fine pyrite, pyrrhotite and disseminated arsenopyrite needles forming irregular layers. Mineralizations are parallel to the schistosity planes and are affected by drag folds. The alteration paragenesis is composed of microcline, amphibole, garnet, tourmaline, and magnetite. However, the mineralized horizons are magnetite-free.

The deepest hole intersects the Marco Zone at a vertical depth of 550 m (CE-08-74: $\mathbf{1 . 0 7} \mathbf{g} / \mathrm{t} \mathrm{Au}$ over 27.0 m). The best gold interval obtained so far is from hole CE-05-44, on section $18+50 \mathrm{E}$
 between $11+00 \mathrm{E}$ and $30+00 \mathrm{E}$, thus extending the total length to 2 km .

11.2. Gold Mineralization - Echo Zone

The Echo Zone is located 150 m south of the Marco Zone. It is also associated with a dacitic unit, but with much less hydrothermal alteration. The mineralization, hardly abundant, is pyrite dominant. The best channel returned $2.57 \mathrm{~g} / \mathrm{t}$ Au over 1.0 m .

11.3. Gold Mineralization - Contact Zone

The Contact Zone is associated with a deformation corridor at the contact between the basalts and the metasediments of the Laguiche Group. This regional fault runs across the entire property but the mineralized segment known to date is located east of Corvette Lake. The mineralization is
composed of sulphides (5 to 15% : arsenopyrite, pyrrhotite and pyrite) disseminated or, to a lesser extent, in stringer. The highest-grade surface intersections were obtained in the western part of the Contact Zone: $\mathbf{6 . 7 4} \mathbf{g} / \mathbf{t}$ Au over $2 \mathbf{m}$ (TR-03-01) and $\mathbf{1 3 . 0 5} \mathbf{g} / \mathbf{t}$ Au over 1.35 m (TR-03-03).

When affected by shear zone the metasediments of the Laguiche Group host m-thick pyritic horizon. Pyrite occurs in thin layers along biotite cleavages. The gold grade of the metasediments remains low. Most samples graded less than 50 ppb Au , and where values ranged between 100 and 350 ppb very few neared $1 \mathrm{~g} / \mathrm{t}$. QFP dykes occur frequently in the deformation zone are sometimes mineralized in arsenopyrite and pyrrhotite ($1-5 \%$). The best intersections were $4.46 \mathrm{~g} / \mathrm{t}$ Au over $\mathbf{0 . 4} \mathbf{m}$ (TR-CE-04-35). In drilling, the hole CE-04-14 has a wider intersect than usual: $11.82 \mathrm{~g} / \mathrm{t}$ Au over $\mathbf{4 . 7} \mathbf{~ m}$ (Basalt + Laguiche Group).

11.4. Gold Mineralization - Eade 1

This showing is located at some 8 km west of Corvette Lake. Best channel sample is $\mathbf{1 . 4 0} \mathbf{~ g / t ~ A u}$ over 2.7 m . The mineralized zone is composed of semi-massive to massive sulphides (pyrrhotite and pyrite) with graphite. It is located at the contact between basalts and andesites. The mineralization is linked to a Beep-Mat (electromagnetic) conductor that was followed over a distance exceeding 400 metres laterally.

11.5. Gold Mineralization - Eade 2

This showing is located 1.2 km south of the Eade-1 showing. Two grab samples taken 250 m apart returned grades of 2.95 and $1.15 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Unfortunately the best channel sample grade only $0.13 \mathrm{~g} / \mathrm{t}$ Au over 1.0 m . Mineralized zones (often rusty) occur frequently. They are mostly composed of pyrite, arsenopyrite and pyrrhotite associated with sheared basalts.

11.6. Copper Mineralization - Eade 3

This copper showing graded $3.1 \% \mathrm{Cu}$. It is situated 950 m west of the Eade- 2 showing, along the same hill slope. The showing is made up a quartz vein in a fractured and silicified paragneiss. A porphyritic dyke (quartz-feldspar porphyry) was also noted. The mineralization consists of chalcopyrite (5 to 10%). It also contains traces of pyrite, malachite and possible covellite.

11.7. Gold Mineralization - Eade 4

This showing is situated 35 km southeast of Corvette Lake. A grab sample from a felsic dyke returned $3.67 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. However the best channel sample returned only 25 ppb Au over 1.0 m . The sector shows a cluster of felsic dykes that develop in the basalt, near the contact with the Laguiche paragneiss. The dykes are 50 cm to 1 metre thick, and more or less parallel to the Laguiche/volcanics contact, which in that area is roughly oriented north south. We noted the presence of those felsic dykes along the contact, over a distance of nearly 600 m .

11.8. Gold Mineralization - Eade 5

This showing is located some 3.5 km south-south-east of Brune Lake. It is composed of three grab samples values of $3.33,5.18$ and $7.41 \mathrm{~g} / \mathrm{t}$ Au taken over a distance of 100 m . They are located at the sheared contact between basalt and fine-grained sediment. The gold values have been obtained in both lithologies which contain disseminated pyrrhotite and pyrite, or arsenopyrite.

11.9. Gold Mineralization - Eade 6

This showing is located near the western limit of the property. It is bearing a single value of 11.45 $\mathrm{g} / \mathrm{t} \mathrm{Au}$ obtained in an iron formation with 3% arsenopyrite and pyrite. The others samples taken in the area on basalts, sediments and similar layers of iron formation were barren.

11.10. Mo-Cu-Ag-(Au) Porphyry Mineralization - Sao showing

The mineralization is located 3.4 km northeast of Marco Zone in an area of $0.7 \mathrm{~km} \times 3 \mathrm{~km}$, along the southwestern limit of a tonalitic intrusion. This tonalite is part of a multiphase intrusive mass, $4 \mathrm{~km} \times 5 \mathrm{~km}$, where the eastern part contains granite to granodiorite facies. The mineralization is associated with randomly oriented veins and fractures. The mineralization is composed of molybdenite ($\mathrm{tr}-15 \%$), chalcopyrite ($\mathrm{tr}-3 \%$), pyrite ($\mathrm{tr}-1 \%$) and malachite ($\mathrm{tr}-2 \%$). Traces of chalcocite and native copper occur locally. At the surface ferrimolybdenite occurs frequently. The best channel intersection is $\mathbf{1 . 0 6 \%} \mathrm{Mo}, \mathbf{0 . 2 4 \%} \mathbf{C u}, 23.5 \mathrm{~g} / \mathrm{t} \mathbf{A g}$ and 72 ppb Au over 1 m (Trench TR-CE-04-46).

11.11. Gold Mineralization - Eade 7 (2008)

Located 400 m southwest of Eade 6 in an iron formation, this showing is bearing a single value of $1.1 \mathrm{~g} / \mathrm{t}$ (\#179981) with 3% of pyrrhotite, pyrite and arsenopyrite in traces. The others samples taken in the area on basalts, sediments and similar layers of iron formation were barren.

11.12. Gold Mineralization - Eade 8 (2008)

The Eade 8, located 15.4 km west of Corvette Lake, is a 2 -m-thick shear zone in a silicified wacke with several quartz veinlets. Mineralization is composed of 5% disseminated arsenopyrite. An assay returned $1.47 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ ($\# 144771$). North of the shear zone, we found a metric iron formation (1-2 m) without any significant gold grade.

11.13. Gold Mineralization - Eade 9 (2008)

The Eade 9 showing is located 4.5 kilometres west of Corvette Lake. It is a folded iron formation less than 1 metre thick. One sampled graded $1.10 \mathrm{~g} / \mathrm{t}$ (\#242363) and the other eleven (11) grab samples gave 17 to 324 ppb Au .

11.14. Gold Mineralization - Eade 10 (2008)

The Eade 10 is located 750 metres southeast of Eade 9. It is an altered sediment located at the base of a 10 metres cliff. The best grab sample graded $0.93 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (\#181435). Mineralization is not visible because the zone is too altered ($2 \times 3 \mathrm{~m}$).

11.15. Gold Mineralization - Matton (2009)

This showing was discovered in 2004 by Guillaume Matton (geologist). It is located 2.3 km southeast of the Marco Zone in an intermediate volcanic rock. Best results in 2008 are two grab samples with 2.02 (\#179950) and 3.70 (\#179873) g/t Au taken 40 m apart. In 2009, a channel sample on the main discovery outcrop returned $745 \mathrm{ppb} \mathrm{Au} / 4.5 \mathrm{~m}$ including $1.49 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 2.0 \mathrm{~m}$. Mineralization is composed of less than 8% pyrrhotite, 5% pyrite and 2% arsenopyrite. The mineralization was observed over a thickness of 4.5 metres but it is difficult to follow on other outcrops. The showing was drill-tested this summer (2010) and graded $2.95 \mathrm{~g} / \mathrm{t}$ Au over $\mathbf{0 . 9 5} \mathbf{~ m}$.

ITEM 12 EXPLORATION WORK

During the drilling campaign, we completed two B-horizon geochemistry surveys, collecting nearly 30 samples on each of the Contact and Marco zones. These two gold zones contain pyrite, pyrrhotite and arsenopyrite mineralization. Given that arsenic is a very mobile element, we carried out surveys in the most gold-rich areas to see if we could delineate gold-bearing zones using arsenic as a pathfinder. Our objective was to orient future investigations based on a largerscale geochemistry survey.

Samples were collected by Robert Oswald, head geologist for the Corvet Est project. The samples were shipped to Laboratoire Expert in Rouyn-Noranda to be analyzed for gold and the Scan-31 package, then shipped to Activation Laboratories Ltd in Ontario.

A total of 56 samples were collected over the two survey areas. Samples were spaced 25 m apart along three lines. Each line was 225 m long and spaced 100 m from the next line. We used the existing cut-line grid on the property to perform the surveys.

12.1. Geochemical survey

The geochemistry survey on the Contact Zone took place on a plateau atop a large ridge. Analytical results for gold (Figure 4) and arsenic (Figure 5) clearly outline the known zone. Two well-defined, parallel and overlapping anomalies are observed, about 100 metres wide or more, directly or slightly south of the Contact Zone in Laguiche migmatites. The highest gold value was 375 ppb Au and 1320 ppm As, obtained in two separate samples spaced 25 m apart along the same line. The results of this survey clearly demonstrate that the survey could be extended along the Guyer / Laguiche border zone to delineate new gold occurrences.

The geochemistry survey on the Marco Zone was established in the west part of Boomerang Lake, an area where gold mineralization is exposed in several trenches. This area is characterized by rugged topography. A depression with large linear outcrops surrounded by mossy ground is observed, as well as a hill to the south. After completing the survey, we realized this location was not the best choice. The Marco Zone occurs within a depression, such that glacial erosion was not as effective and thus sampled sediments contained less material derived from the Marco Zone. The hill to the south turned out to be richer in mossy material than in overburden. Analytical results for gold (Figure 6) and arsenic (Figure 7) show no clearly-defined anomalies south of the Marco gold Zone. There is however a slight increase in As values to the north of Marco. This may be explained by thin arsenopyrite zones observed in certain drill holes to the north of the zone. Unfortunately, these occurrences are generally weakly gold-bearing. Results in this area were not conclusive. But since the topography is quite variable along the Marco Zone, we believe it may be justified to extend the survey along the Marco Zone, and especially along its extensions, where very little information is available.

ITEM 13 DRILLING

We completed seven new drill holes on the Corvet Est property in the summer of 2010: three to test the depth extension of the Marco Zone, three on the Contact Zone and one on the Matton Zone, for a total of $3,361 \mathrm{~m}$ (see Table 2 for general information). All drill logs, sections and maps pertaining to the new drilling campaign are provided in appendix.

The drilling campaign began on June 5 and ended on July 27, 2010. Drilling work was carried out by Chibougamau Drilling using a helicopter-portable hydraulic drill rig. All personnel movements and transportation of the various parts of the drill rig in the field were assured by Abitibi Helicopters Ltd, using an AS 350 FX2 helicopter. Almost all the equipment and personnel were moved in from the Cargair outfitters camp to the Corvet Est camp using an Otter-type aircraft equipped with floats.

Members of the Geonordic field crew working on this project were: Robert Oswald (project geologist), Pierre Poisson (consulting geologist), Paul Sawyer (technician), Jérémy Tremblay (technician/coop student), Leonard Coon (assistant technician), Ghislain Guillemette (temporary cook) and Lisette Côté (cook).

Table 2. General information, 2010 drilling campaign, Corvet Est property.

Hole ID	UtmE	UtmN	Line	Station	Azimuth	Dip	Length (m)	Zone Z
CE-10-75	573800	5905917	L51+00E	St9+70N	N210	-50	139	Matton
CE-10-76	571486	5908076	L19+75E	St15+50N	N207	-66	873	Marco
CE-10-77	571979	5907754	L25+61E	St15+41N	N212	-70	924	Marco
CE-10-78	571761	5907911	L23+00E	St15+50N	N218	-70	939	Marco
CE-10-79	573035	5906176	L43+09E	St7+80N	N210	-50	132	Contact
CE-10-80	569820	5907286	L10+07E	St0+32S	N212	-60	132	Contact
CE-10-81	570228	5907190	L14+00E	St1+13N	N213	-50	222	Contact

Table 3 lists all samples with gold values above $0.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ obtained during the new drilling campaign. Two samples were reanalyzed by metallic sieve due to erratic gold results attributable to a nugget effect. For one sample, we even decided to start over completely (quarter split) to make sure the problem was due to coarse gold and not a result of contamination (CE-10-80). All gold results greater than 500 ppb Au were reanalyzed by gravimetric method.

Table 3. Significant gold intervals 2010 drilling campaign, Corvet Est property.

Hole ID	From	To	Aug/t	Over (m)	Lithology	Mineralization
CE-10-075	27.95	28.9	2.95	0.95	S or V2 Si+ (Matton)	$\mathrm{PY}+\mathrm{AS} \mathrm{PO}<5 \%$
CE-10-075	58.3	58.9	0.51	0.6	Il FP dyke	2\% PYASPO
CE-10-075	58.9	59.4	0.58	0.5	Footwall M16(V3B)	SU?
CE-10-076	547	548	2.3	1	V3B	SU?
CE-10-076	705	707	1.48	2	V1 TY (MARCO)	VN QZ and fold
CE-10-076	711	712	1.51	1	V1 TY (MARCO)	4\% ASPOPY
CE-10-076	716.45	717.5	3.09	1.05	V1 TY (MARCO)	4\% ASPOPY
CE-10-076	727	728	0.55	1	V1 TY (MARCO)	SU?
CE-10-077	805	806	1.95	1	V1 TY (MARCO)	SU?
CE-10-077	808.35	808.75	0.55	0.4	V1 TY (MARCO)	2\% PYASPO
CE-10-077	815.75	816.3	2.43	0.55	V1 TY (MARCO)	5\% ASPYPO
CE-10-077	826.65	833	1.2	6.35	V1 TY (MARCO)	5\% ASPOPY
CE-10-077	829	829.6	5.11	0.6	V1 TY (MARCO)	5\% ASPOPY
CE-10-077	832.1	833	2.26	0.9	V1 TY (MARCO)	4\% ASPOPY
CE-10-077	897	898	$7.42(0.26)^{1}$	1	V3-V2	SU?
CE-10-078	505	506	0.51	1	V3B	PO PY $<1 \%$
CE-10-078	795	796	0.43	1	V1 TY (MARCO)	PY PO<1\%
CE-10-079	37.37	38	1.78	0.63	S9	40\% PYPO 4\%AS
CE-10-079	102	103	3.19	1	I1FP dyke	PY tr

CE-10-80	18	19	$\mathbf{5 1 . 7 2}(\mathbf{1 4 . 5 2})^{\mathbf{1}}(\mathbf{1 0 . 5 3})^{\mathbf{2}}$	$\mathbf{1}$	V 3 B	$\mathrm{POPYCP}<1 \% / \mathrm{lcm}$
CE-10-80	38	39	4.01	1	V 3 B	$2 \% \mathrm{PYPOAS} / 55 \mathrm{~cm}$
CE-10-80	86	87	1.65	1	V 3 B	SU tr
CE-10-80	112	113	0.89	1	$\mathrm{M}(\mathrm{S})$	CP trace
CE-10-80	126	127	1.34	1	M 21	PY
CE-10-81	122	123	0.75	1	$\mathrm{~V} 3-\mathrm{V} 2 \mathrm{CK}$	$4 \% \mathrm{PYPO} / 25 \mathrm{~cm}$
CE-10-81	186	187	1.54	1	M 21	PYPO tr
CE-10-81	200	201	1.03	1	M 21	2% PY
CE-10-81	204	205	0.69	1	M 21	$\mathrm{PY} ?$
CE-10-81	214	215	0.58	1	M 21	$\mathrm{PY} ?$

1- Analyzed by metallic sieve method.
2- Quarter split analyzed by gravimetric method.

13.1. Matton Zone

Drill hole CE-10-75 (139 m) was drilled to assess the gold potential of the Matton showing discovered in 2004. Encountered lithologies include intermediate tuffs, mafic lavas, sediments (S3, S6A, S GP+++ and S9B), felsic dykes (with AS-PY), ending in Laguiche metatexites. This drill hole also provided an explanation for the IP anomaly associated with the Matton showing, in the form of a strongly graphitic sedimentary layer (50 cm) and an oxide-facies iron formation $(1.10 \mathrm{~m})$. The Matton Zone in drill hole consisted in a silicified zone with 5% AS-PY-PO that graded $2.95 \mathrm{~g} / \mathbf{t}$ Au over $\mathbf{0 . 9 5} \mathbf{~ m}$. On surface and in drill hole, feldspar porphyry dykes (I1 FP) are commonly anomalous in gold, as shown by a grade of $0.51 \mathrm{~g} / \mathrm{t}$ Au over 0.6 m in the dyke and $0.58 \mathrm{~g} / \mathrm{t}$ over 0.5 m in the dyke footwall.

13.2. Marco Zone

Drill holes CE-10-76 (873 m) and CE-10-77 (924 m) were drilled to test the depth continuity of ore shoots in the Marco Zone (see Longitudinal section of the Marco Zone). We intersected a pile of mafic and intermediate lavas, intermediate and felsic tuffs, before reaching the Marco unit: a felsic lapilli and block tuff ranging from 75 to 93 m true thickness (see Longitudinal section of the Marco Zone / Dacite true thickness). This tuff unit is generally deformed, and in the most strongly deformed areas (mylonitized) is where gold mineralization is observed.

The Marco Zone is characterized by several small discontinuous mineralized zones occasionally reaching up to thirty metres wide, with barren intervals over several metres. In drill hole CE-1076, we observed several intervals with 4% AS-PO-PY mineralization. Analytical results subsequently revealed several other gold-bearing zones that were not readily apparent during core logging. These gold-bearing zones range from one to two metres in thickness, with several metres of barren rock separating each zone. The best interval graded $3.09 \mathrm{~g} / \mathrm{t}$ Au over 1.05 m ; all highlights are listed in Table 3.

In drill hole CE-10-77, almost all of the gold-bearing zones, save one, were described and identified with up to 8% AS-PY-PO. We obtained an interval grading $1.2 \mathrm{~g} / \mathrm{t}$ Au over 6.35 m
including $5.11 \mathrm{~g} / \mathrm{t}$ Au over 0.6 m and $2.26 \mathrm{~g} / \mathrm{t}$ Au over 0.9 m . Visually, during core logging, the various gold-bearing mineralized zones that make up the Marco Zone appeared more promising than analytical results revealed in the end. All highlights are listed in Table 3.

It appears that spatially, the mineralized interval is not always in the same location. In drill hole CE-10-76 (see Section E2025), the mineralization is located near the lower contact, in the tuff unit, whereas in drill hole CE-10-77 (see Section E2600), the mineralization is located in the centre of the tuff unit, indicating the need for systematic sampling in the Marco unit.

Drill hole CE-10-78 (939 m) was collared between drill holes CE-10-76 and CE-10-77. Our objective was to test the Marco Zone at depth, between the two ore shoots (see Longitudinal section of the Marco Zone). We wanted to investigate the possibility that the two ore shoots may eventually merge. The Marco Zone was intersected between 754.2 and 798.2 m . The lower contact is uncertain, but features typical of the unmineralized Marco Zone are clearly distinguished within this interval. Sulphides (PY-PO) are generally present in trace amounts. We obtained a weakly anomalous gold grade of $\mathbf{0 . 4 3} \mathbf{g} / \mathbf{t}$ Au over 1 m , located near the lower contact (see Section E2300). Mineralization is composed of $<1 \%$ PY-PO, with no visible arsenopyrite within the tuff. In this location, the tuff has a minimum true thickness of 37 m , since the location of the lower contact is uncertain. Analytical results for gold indicate the two ore shoots are still clearly distinct at a depth of -290 m (ASL).

We did obtain a few gold-bearing intervals outside of the felsic lapilli and block tuff in the three drill holes, but we do not believe the latter justify further work in a future drilling campaign (see Table 3). In drill hole CE-10-77, one sample initially yielded a grade of $7.42 \mathrm{~g} / \mathrm{t}$ Au over 1 m in an intermediate lava. A second analysis by metallic sieve was completed on the same sample, yielding a grade of $0.26 \mathrm{~g} / \mathrm{t}$ Au over $\mathbf{1 ~ m}$, which considerably reduced our interest in this interval.

13.3. Contact Zone

Drill hole CE-10-79 (132 m) was drilled to investigate an area where mafic lavas yielded anomalous gold values, with several surface grab samples grading 2.12 to $9.63 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ in previous work programs. The drill hole began in mafic lavas, followed by iron formation with highly variable amounts of PO, PY, and AS. Then came sediments, followed by mafic lavas, up to the contact (at 105.6 m) with Laguiche metatexites. We did observe a few intervals with weak sulphide mineralization in the mafic lavas, but with no significant gold values. An iron formation ($\mathbf{1 . 7 8} \mathrm{g} / \mathrm{t}$ Au over 0.63 m) and a feldspar porphyry dyke ($3.19 \mathrm{~g} / \mathrm{t}$ Au over 1 m) yielded anomalous gold values (Table 3).

Drill hole CE-10-80 (132 m) tested a small gold-bearing zone exposed in trench TR-CE-04-029. In this drill hole, we mainly observed mafic lavas with minor sediments and intermediate tuffs. The Guyer / Laguiche contact was crossed at 92.33 m . A few weakly mineralized zones were intersected and we obtained several results with anomalous gold (0.89 to $51.72 \mathrm{~g} / \mathrm{t}$ Au over 1 m) in both mafic lavas and Laguiche metatexites (Table 3). The sample that graded $51.72 \mathrm{~g} / \mathrm{t}$ Au was reanalyzed by metallic sieve, yielding a grade of $14.52 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Suspecting the possibility of contamination, we prepared a second sample by quarter split. Gravimetric analysis yielded a
grade of $10.53 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ for the same interval. What we believed to be contamination was in fact the result of a nugget effect.

Drill hole CE-10-81 (222 m) was drilled to test if the Contact Zone extended at depth, to the southeast of drill hole CE-04-14. We mainly observed mafic to intermediate lavas with minor sediments and possibly intermediate tuffs. PY and PO mineralization was overall very weak. The contact with Laguiche metatexites was crossed at 177.9 m . The metatexites are anomalous in gold, with 236 ppb Au over 40 m , and two samples graded 1.03 and $1.54 \mathrm{~g} / \mathrm{t}$ Au over 1 m (Table 3). Pyrite (tr-4\%) occurs as coatings on biotite. Despite its low gold content, the Contact Zone does indeed extend in this area and appears to have further potential.

ITEM 14 SAMPLING METHODS AND APPROACH

Core from drilling and geochemical samples collected during the 2010 program were sent for quantitative elemental concentration assay to Laboratoire Expert Inc., Rouyn-Noranda (Quebec) and Activation Laboratories Ltd, Ancaster (Ontario). Soils samples have been collected with a soil auger and located with the use of a GPS instrument.

All samples were placed in individual bags with their appropriate tag number and the bags were sealed with fibreglass tape. Individual bagged samples were then placed in shipping bags. The authors are not aware of any sampling or recovery factors that would impact the reliability of the samples.

ITEM 15 SAMPLE PREPARATION, ANALYSIS AND SECURITY

15.1. Sample security, storage and shipment

Samples were collected and processed by the personnel of Geonordic Technical Services. They were immediately placed in plastic sample bags, tagged and recorded with unique sample numbers. Sealed samples were placed in shipping bags, which in turn were sealed with plastic tie straps or fibreglass tape. Bags remained sealed until the Laboratoire Expert Inc. (Rouyn-Noranda, Quebec) opened them.

All samples were initially stored at the campsite. Samples were not secured in locked facilities, this precaution deemed unnecessary due to the remote location of the camp. Samples were then shipped by airplane to Cargair then loaded on pick-up truck for transport to Rouyn-Noranda where the Geonordic Technical Services personnel delivered them to the Laboratoire Expert Inc. sample preparation facility.

15.2. Sample preparation and assay procedures

After logging in, the samples were crushed in their entirety at the Laboratoire Expert Inc. preparation laboratory in Rouyn-Noranda to $>70 \%$ passing 2 mm . A 200 to $250-\mathrm{g}$ sub-sample was obtained after splitting the finer material ($<2 \mathrm{~mm}$). The split portion derived from the
crushing process is pulverized using a ring mill to $>85 \%$ passing $75 \mu \mathrm{~m}$ (200 mesh). From each such pulp, a $100-\mathrm{g}$ sub-sample was obtained for assay. The remainder of the pulp (nominally 100 to 150 g) and the rejects are held at the processing lab for future reference. Most of the sample were analysed for gold only by fire assay using 30 grams of pulp, with a detection limit of 5 ppb . All values over 500 ppb were re-assayed by fire assay and gravimetric finish.

The samples taken at surface during the prospection were analyzed for gold by the same method and for 31 other elements, including Ag, Cu and Mo , by plasma (scan ICP-EOS) following an extraction by aqua regia. Some samples were taken for whole rock assays by plasma (ICP 4B) to confirm their composition and lithological name. The pulp of the samples analysed by plasma were send by Laboratoire Expert Inc. to Activation Laboratories Ltd, who performed those assays at their Ancaster (Ontario) facilities.

The WRC (Whole-Rock) package was selected for samples having only low content in sulphides. These samples have been analyzed for $\mathrm{Si}, \mathrm{Al}, \mathrm{Fe}^{3+}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{K}, \mathrm{Cr}, \mathrm{Ti}, \mathrm{Mn}, \mathrm{P}, \mathrm{Sr}$ and Ba , reported as oxides, and for $\mathrm{Y}, \mathrm{Zr}, \mathrm{Zn}, \mathrm{Cu}$ and Au . Major elements, Y and Zr were assayed using the ME-XRF06 method which consists in a lithium meta or tetra borate fusion followed by XRF. Cu and Zn from this package were obtained using AAS, following aqua regia digestion, according to the AA45 Procedure. Au was determined by the AA23 Procedure, a 30-g fire assay followed by AAS. Loss on ignition was calculated by the gravimetry method applied after heating at $1000^{\circ} \mathrm{C}$.

ITEM 16 DATA VERIFICATION

Since 2004 Virginia has set up an Analytical Quality Assurance Program to control and assure the analytical quality of assays in its gold exploration works. This program includes the addition of blank samples and certified standards sent for analysis. Blank samples are used to check for possible contamination in laboratories while certified standards determine the analytical accuracy.

Neither contamination nor analytical accuracy problems have been detected in the assays performed on blanks and standards of the Corvet Est property in 2010 (Table 4).

If we compare the average value obtained for certified standards from our laboratory and the grade indicated by the manufacturer, our lab results are generally 1% lower. This is not sufficient to raise doubts about the analytical accuracy of Laboratoire Expert Inc.

Only a few samples containing coarse gold were analyzed by metallic sieve or by gravimetric method, to accurately determine their gold content. We believe gold results for the 2010 drilling campaign are reliable.

Table 4. Standard and blank of the 2010 drilling program.

Samples	$\begin{aligned} & \text { Blanle } \\ & (5 \mathrm{Sph}) \end{aligned}$	$\begin{gathered} \mathrm{SF} 45 \\ (0.848 \mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \text { SH441 } \\ (1.344 \mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \text { SL46 } \\ (5.867 \mathrm{~g} / t) \end{gathered}$	SP37 (18.14 g/t)
163542	<5				
163543			1.336		
163589	<5				
163590		0.848			
163610	<5				
163611		0.849			
163685	<5				
163686					17.93
163745	<5				
163746				5.786	
163790				5.772	
163844	<5				
163845		0.859			
163894	<5				
163895			1.323		
163950				5.784	
163992					18.27
164542		0.851			
164563	<5				
164564			1.256		
164646	<5				
164647				5.821	
164695					18.21
164729	<5				
164730		0.850			
164751		0.852			
164805			1.302		
164851				5.783	
164928	<5				
164929					17.93
164991		0.847			
165047			1.322		
165081	<5				
165082					18.15
165143		0.858			
165194	<5				
165195			1.314		
165241	<5				

165242					18.05
165298			1.329		
165326	5				
165327		0.851			
165394				5.749	
165425	<5				
165426					18.03
165478	<5				
165479		0.855			
213550			1.322		
213596	<5				
213597				5.780	
213646		0.850			
213699	<5				
213700			1.355		
213751				5.901	
213787	<5				
213834		0.857			
213836	<5				
213870			1.346		
213889	<				
213920					18.24
213940	<				
213960				5.838	
213990	<5				
214010		0.848			
214040	<5				
214060			1.325		
214090	<5				
214110					17.73
214130	<5				
214140	<5				
214160				6.113	
214190	<5				
214210		0.843			
214238	<5				
214260			1.377		
214284	<5				
214311					17.73
214344	< 5				
214368				5.846	

214384	<5				
214410		0.855			
214442	<5				
214463			1.376		
Average	<5	0.852	1.329	5.834	18.02

ITEM 17 ADJACENT PROPERTIES

This section is not applicable to this report.

ITEM 18 MINERAL PROCESSING AND METALLURGICAL TESTING

This section is not applicable to this report.

ITEM 19 MINERAL RESOURCE, MINERAL RESERVE ESTIMATES

This section is not applicable to this report.

ITEM 20 OTHER RELEVANT DATA

This section is not applicable to this report.

ITEM 21 INTERPRETATION AND CONCLUSIONS

The bedrock on the Corvet Est property consists in a volcano-sedimentary belt thrust onto the Laguiche Group (migmatized paragneiss). The belt is generally composed of basalt and wacke with minor iron formations, ultramafic dykes and conglomerate. The exception is in the area southeast of Corvette Lake where we have an important quantity of felsic to intermediate tuffs and flows. It was also in this area where we found our two principal gold-bearing structures: the Contact and Marco zones. Several minor showings where also discovered along Corvet Est project.

The mineralization of the Marco Zone has been followed on outcrops, trenches and in drill holes over a strike length at least of 4 km , over a true width of 1.8 to 40 m , with grades from 1 to $10 \mathrm{~g} / \mathrm{t}$ Au. In the eastern part, the mineralization and alteration are fading in outcrops (DT-CE-08-135 and CP-05-090). Samples returned no significant grades for gold. In the western part, the Marco Zone does not outcrop west of trench TR-CE-04-018 but we found in 2008 six boulders down-ice that are suggesting a western extension. Boulder samples graded up to $4.22 \mathrm{~g} / \mathrm{t}$. The dacitic unit has been traced from Line 13E to Line 52E.

To date, overall drill results on the Marco Zone can be used to build a realistic model of its geometry. The new drill holes confirmed the interpretation that two distinct ore shoots are indeed present (see Longitudinal section of the Marco Zone). These two ore shoots have a limited extent, with less than 300 m in width and ranging from a few metres up to forty metres in thickness (CE-10-23) with a vertical plunge. To refine the model, new drill holes could be drilled to fill remaining gaps. However, the results of this latest campaign (Table 3) were disappointing. Gold values were lower than expected.

Best results include, in drill hole CE-10-76, a grade of $3.09 \mathrm{~g} / \mathrm{t}$ Au over 1.05 m and in drill hole CE-10-77, a grade of $\mathbf{1 . 2} \mathbf{g} / \mathbf{t}$ Au over 6.35 m . No significant results were obtained in drill hole CE-10-78. Merging of the two ore shoots may occur, but at greater depth than we initially thought. Since it was discovered in 2003, this zone has been tested over less than $2-\mathrm{km}$ strike length, and lateral extensions have yet to be investigated.

The Contact Zone is located at the faulted contact between the volcano-sedimentary belt and migmatized paragneisses of the Laguiche Group. The mineralization is located mostly in mylonitized basalt and occasionally in the highly deformed paragneiss. Interesting gold values have been obtained all along this contact, which is exposed for about 5 km , but the width is often just about 1 m . The new drilling campaign investigated the Contact Zone in various locations along the Guyer / Laguiche contact. We obtained anomalous gold values. A few areas with minor mineralization were observed and several anomalous gold values were obtained ($\mathbf{0 . 8 9}$ to $10.53 \mathrm{~g} / \mathrm{t}$ Au over $1 \mathbf{m}$) in both mafic lavas and Laguiche metatexites (Table 3). Despite the presence of some interesting gold values, the thickness of mineralized zones remains uneconomic for the moment. In drill hole CE-10-81, metatexites are anomalous in gold, with 236 ppb Au over 40 m and two samples graded 1.03 and $1.54 \mathrm{~g} / \mathrm{t} \mathbf{A u}$ over one metre each (Table 3). To date, the Contact Zone has mostly been drill-tested along the western segment (see Longitudinal section of the Contact Zone), but we believe it also has potential across the entire main grid and possibly beyond, along its extensions. Investigations should be continued along the contact.

The Matton showing is located 2.3 km southeast of the Marco Zone in intermediate sedimentary rocks. The showing was channel sampled over 4.5 m length; samples graded $745 \mathrm{ppb} \mathrm{Au} / 4.5 \mathrm{~m}$, including $1490 \mathrm{ppb} \mathrm{Au} / 2.0 \mathrm{~m}$. Gold is associated with subhorizontal quartz stockworks that host up to 15% sulphides. This showing is associated with a strong IP anomaly in mafic to sedimentary rocks that follow the contact with migmatized Laguiche sediments. The new drill hole, CE-10-75, made it possible to get a continuous sample across the entire area of interest. Gold mineralization at the Matton showing turned out to be minor, with $\mathbf{2 . 9 5} \mathrm{g} / \mathbf{t}$ Au over 0.95 m . We do not recommend further drilling on this showing and its immediate surroundings for the moment.

Overall, prospecting and mapping work has successfully uncovered most of the mineralized outcrops on the property, but a large part of the property is covered with overburden. Areas left to prospect are becoming scarce over the years, and new exposed mineralization is becoming more and more difficult to find using traditional methods. Based on this, we proposed last year to perform geochemical surveys by collecting soil samples in the B-horizon, in the best areas along the Marco and Contact zones.

Results indicate (see 12.1 Geochemical survey) that the Contact Zone could be easily delineated by following gold and arsenic anomalies. In the Marco Zone however, it appears that the selected testing area was inappropriate. We are still confident however in the potential value of extending this survey to cover areas where very little information is available. Analytical results for base metals did not yield significant values for the two zones, but may prove useful in other underexplored areas of the property.

ITEM 22 RECOMMENDATIONS

Since the discovery in 2003 of the Contact and Marco zones, we have performed numerous field campaigns using various exploration methods on the Corvet Est project. A total of 3,600 samples from outcrops, trenches, and float were collected over the entire property. To date, the Contact and Marco Zones represent the two most important areas that contain the largest number of goldbearing samples. In recent years, despite sustained efforts, we have not found a new gold target that would enable us to refocus the project on a third zone.

We know that many areas, such as to the south of Corvette Lake or south of the Eade-Till grid, have no outcrops due to a thick cover of unconsolidated deposits and in these areas, traditional prospecting methods are ineffective. At this time, we do not recommend further reconnaissance work for the coming summer.

Based on the results of work carried out in 2010, we believe it would be worthwhile to extend the B-horizon geochemistry survey (Figure 8) to cover parts of the grid where the Contact and Marco zones were mapped, as well as along their extensions. We also recommend the addition of several lines to the south of the contact, to test Laguiche rocks, and to the north to cover as much of the property stratigraphy as possible.

We are proposing a geochemistry survey whereby 2,387 soil samples (B-horizon) will be collected and analyzed for gold and the Scan-31 package. A preliminary budget of CA $\$ 181,538$ is estimated for a field survey of 13 days. We are not considering additional drilling targets at this time; we believe it would be preferable to wait for the results of the geochemistry survey before proposing further drilling.

Budget CE 2011	Geology
Salaries	$\$ 36,685$
Transportation	$\$ 39,520$
Lodging and food	$\$ 12,240$
Contract	$\$ 0$
Field expenditures	$\$ 3,300$
Assays	$\$ 53,614$
Permit renewal	$\$ 28,248$
Contingency	$\$ 7,931$
	CA $\$ 181,538$

ITEM 23 REFERENCES

Chénard D., 2005 - Lac Eade : Summer 2004 geological reconnaissance. Virginia Gold Mines Inc. 16 pages.

Ciesielski, A., 1984 - Géologie de La Grande Rivière (Chisasibi - LG-3), sous-province de la Baie James, Québec. Geological Survey of Canada, Open File Map 379.

Crevier M., 1979 - Levés géologiques, géochimique et radiométrique, projet 701-1378-41. Société de Développement de la Baie James; GM-38183, 36 pages.

Eade K.E., 1966 - Fort George River and Kaniapiskau River (west half) map-areas, New Québec. Geological Survey of Canada; paper 339, 120 pages.

Gauthier M., Larocque M. and Chartrand F., 1997 - Cadre géologique, style et répartition des minéralisations métalliques du bassin de La Grande Rivière, Territoire de la Baie James. Ministère des Ressources naturelles; MB 97-30, 65 pages.

Gleeson C.F., 1975 - Report on Lake Sediments Geochemical Survey - 1975 Areas "A" and "B". Société de Développement de la Baie James.

Hocq M., 1985 - Géologie de la région des lacs Campan et Cadieux, territoire du NouveauQuébec. Ministère de l'Énergie et des Ressources; ET 83-05, 178 pages.

Larose P.Y., 1978 - Projet : Vérification d'anomalies géochimiques Permis SDBJ \# 3. Société de Développement de la Baie James.

Mouge P., Paul R., 2005 - Levé de gradiométrie magnétique héliportée «Helimager» sur la propriété du Lac Eade (Baie James, Québec, Canada). 13 pages.

Oswald R., 2004 - Technical report and recommendations, 2003 work campaign and winter 2004 drilling program, Corvet Est property, Quebec. Virginia Gold Mines Inc.

Oswald R., 2009 - Technical Report on Summer 2008 FieldWork, Corvet Est project, Quebec. Virginia Gold Mines Inc - Goldcorp inc, february 2009, 53 pages.

Oswald R., 2010 - Technical Report on Summer 2009 FieldWork, Corvet Est project, Quebec. Virginia Gold Mines Inc - Goldcorp inc, january 2010, 50 pages.

Otis M., 1975 - Projet de géochimie de lacs (lacVillage). Société de Développement de la Baie James.

Ouellette J-F., 2008 - Technical Report on 2007-2008 Drilling Program, Corvet Est Project, Quebec. Virginia Mines Inc. 27 pages.

Perry C., 2005 - Technical report and recommendations, summer-autumn 2004 exploration program, Corvet Est property, Quebec. Virginia Gold Mines Inc. 32 pages.

Perry C., 2006 - Technical Report on Summer 2005 Reconnaissance and Drilling Program, Corvet Est and Lac Eade Projects, Québec. Virginia Gold Mines Inc. 28 pages.

Perry C., 2007 - Technical Report on Summer 2006 Reconnaissance and Drilling Program, Corvet Est Project, Québec. Virginia Mines Inc. 34 pages.

St-Hilaire C., 1998 - Levé électromagnétique et magnétique héliporté, Bloc lac Corvet Est,Région de La Grande Rivière, 19 pages.

Savard M., 2004 - Propriété Corvet Est, "Sao Porphyry'", Note de service octobre 2004. Mines d'Or Virginia, 3 pages.

Sharma K.N.M., 1977a - Région de la Grande Rivière. Ministère des Richesses Naturelles; RG-184, 75 pages.

Sharma K.N.M., 1977b - La Grande Rivière area (projet 1976 project). Ministère des Richesses naturelles; DPV-493, 18 pages.

Sharma K.N.M., 1978 - La Grande Rivière area (projet 1977 project). Ministère des Richesses naturelles; DPV-558, 32 pages.

Sharma K.N.M., 1996 - Légende générale de la carte géologique. Ministère des Richesses naturelles, Sigéom; MB-96-28, 89 pages.

Simoneau P., Tsimbalanga S., 2004 - Levé de magnétométrie et de polarisation provoquée effectués sur la Propriété Corvet Est, région de La Grande-4, SNRC 33H/05. Géosig Inc, 8 pages.

Tsimbalanga S., 2004 - Levé de magnétométrie et de polarisation provoquée effectués sur la Propriété Corvet Est, région de La Grande-4, SNRC 33H/05. Géosig Inc, 9 pages.

ITEM 24 DATE AND SIGNATURE

CERTIFICATE OF QUALIFICATIONS

I, Robert Oswald, reside at 914,28 th avenue Montreal (Quebec), H1A 4M5, and hereby certify that:

I am currently a project geologist of Services Techniques Geonordic Inc. (STG), 1045 Larivière, Rouyn-Noranda (Québec), J9X 6V5.

I graduated from the Université de Montréal in Montreal with a B.Sc. in Geology in 1987.
I have been working as a professional geologist in 1987 to 1997 and since 2003 for Geonordic.
I am a Professional in Geology and registered member of the Ordre des Géologues du Québec, permit number 493.

I am a Qualified Person with respect to the Corvet Est in accordance with section 1.2 of National Instrument 43-101.

I am involved in the Corvet Est project between 2003-2005, 2008 to 2010.
I participated in the summer drilling program 2010. I wrote and supervised the preparation and edited all maps of this report utilizing proprietary exploration data generated by STG for Virginia Mines Inc. and information from various authors and sources as summarized in the reference section of this report.

I am not aware of any missing information or changes, which would cause this report to be misleading.

I do not fulfil the requirements set out in section 1.5 of National Instrument 43-101 for an "independent qualified person" relative to the issuer, being part of the stock option plan of Virginia Mines Inc.

I have read and used National Instrument 43-101 and Form 43-101F1 to prepare this report in accordance with its specifications and terminology.

Dated in Montreal, Qc, this 28 $8^{\text {th }}$ day of February 2011.
Robert Oswald, B.Sc., P. Geo.

VIRGINIA MINES INC. / GOLDCORP INC. CORVET EST PROPERTY

FIGURE 1

VIRGINIA MINES INC. / GOLDCORP INC. CORVET EST PROPERTY
 Claim location

FIGURE 2

VIRGINIA MINES INC. / GOLDCORP INC.
 CORVET EST PROPERTY Regional geology

For ithologicel codes see appendix 2
FIGURE 3

For lithological codes see anpendix 2

For lithologicat codes see appendix 2

For ithologicel codes see eppendix 2

For ithological codes see appendix 2

VIRGINIA MINES INC. / GOLDCORP INC.

CORVET EST PROPERTY

Geochemical survey proposal -Summer 2011

Appendix 1 : Claims list

List of claims						
CDC - Corvet Est						
Mines Virginia inc. (50\%) \&						
Goldcorp inc. (50\%)						
Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
1104758	$33 \mathrm{H} / 05$	51.49	7	7	20021107	20121106
1104759	$33 \mathrm{H} / 05$	51.49	7	8	20021107	20121106
1104760	$33 \mathrm{H} / 05$	51.49	7	9	20021107	20121106
1104761	$33 \mathrm{H} / 05$	51.49	7	10	20021107	20121106
1104762	$33 \mathrm{H} / 05$	51.48	8	5	20021107	20121106
1104763	$33 \mathrm{H} / 05$	51.48	8	6	20021107	20121106
1104764	$33 \mathrm{H} / 05$	51.48	8	7	20021107	20121106
1104765	$33 \mathrm{H} / 05$	51.48	8	8	20021107	20121106
1104766	$33 \mathrm{H} / 05$	51.48	8	9	20021107	20121106
1104767	$33 \mathrm{H} / 05$	51.47	9	3	20021107	20121106
1104768	$33 \mathrm{H} / 05$	51.47	9	4	20021107	20121106
1104769	$33 \mathrm{H} / 05$	51.47	9	5	20021107	20121106
1104770	$33 \mathrm{H} / 05$	51.47	9	6	20021107	20121106
12823	$33 \mathrm{H} / 05$	51.51	5	15	20040130	20120129
12824	$33 \mathrm{H} / 05$	51.51	5	16	20040130	20120129
12825	$33 \mathrm{H} / 05$	51.51	5	17	20040130	20120129
12826	$33 \mathrm{H} / 05$	51.50	6	10	20040130	20120129
12827	$33 \mathrm{H} / 05$	51.50	6	11	20040130	20120129
12828	$33 \mathrm{H} / 05$	51.50	6	12	20040130	20120129
12829	$33 \mathrm{H} / 05$	51.50	6	13	20040130	20120129
12830	$33 \mathrm{H} / 05$	51.50	6	14	20040130	20120129
12831	$33 \mathrm{H} / 05$	51.50	6	15	20040130	20120129
12832	$33 \mathrm{H} / 05$	51.50	6	16	20040130	20120129
12833	$33 \mathrm{H} / 05$	51.50	6	17	20040130	20120129
12834	$33 \mathrm{H} / 05$	51.49	7	4	20040130	20120129
12835	$33 \mathrm{H} / 05$	51.49	7	5	20040130	20120129
12836	$33 \mathrm{H} / 05$	51.49	7	6	20040130	20120129
12837	$33 \mathrm{H} / 05$	51.49	7	15	20040130	20120129
12838	$33 \mathrm{H} / 05$	51.49	7	16	20040130	20120129
12839	$33 \mathrm{H} / 05$	51.49	7	17	20040130	20120129
12840	$33 \mathrm{H} / 05$	51.48	8	1	20040130	20120129
12841	$33 \mathrm{H} / 05$	51.48	8	2	20040130	20120129
12842	$33 \mathrm{H} / 05$	51.48	8	3	20040130	20120129
12843	$33 \mathrm{H} / 05$	51.48	8	4	20040130	20120129
12844	$33 \mathrm{H} / 05$	51.48	8	15	20040130	20120129
12845	$33 \mathrm{H} / 05$	51.48	8	16	20040130	20120129
12846	$33 \mathrm{H} / 05$	51.48	8	17	20040130	20120129
12847	$33 \mathrm{H} / 05$	51.47	9	1	20040130	20120129
12848	$33 \mathrm{H} / 05$	51.47	9	2	20040130	20120129
12849	$33 \mathrm{H} / 05$	51.47	9	15	20040130	20120129
12850	$33 \mathrm{H} / 05$	51.47	9	16	20040130	20120129
12851	$33 \mathrm{H} / 05$	51.46	10	1	20040130	20120129
12852	$33 \mathrm{H} / 05$	51.46	10	2	20040130	20120129
12853	$33 \mathrm{H} / 05$	51.46	10	3	20040130	20120129
12854	$33 \mathrm{H} / 05$	51.46	10	4	20040130	20120129
12855	33 H/05	51.46	10	5	20040130	20120129
12856	$33 \mathrm{H} / 05$	51.46	10	6	20040130	20120129
12857	$33 \mathrm{H} / 05$	51.46	10	7	20040130	20120129
12858	$33 \mathrm{H} / 05$	51.46	10	8	20040130	20120129

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
12859	$33 \mathrm{H} / 05$	51.46	10	11	20040130	20120129
12860	$33 \mathrm{H} / 05$	51.46	10	12	20040130	20120129
12861	$33 \mathrm{H} / 05$	51.46	10	13	20040130	20120129
12862	$33 \mathrm{H} / 05$	51.46	10	14	20040130	20120129
12863	$33 \mathrm{H} / 05$	51.46	10	15	20040130	20120129
12864	$33 \mathrm{H} / 05$	51.46	10	16	20040130	20120129
12865	$33 \mathrm{H} / 05$	51.45	11	6	20040130	20120129
12866	$33 \mathrm{H} / 05$	51.45	11	7	20040130	20120129
12867	$33 \mathrm{H} / 05$	51.45	11	8	20040130	20120129
12868	$33 \mathrm{H} / 05$	51.45	11	9	20040130	20120129
12869	$33 \mathrm{H} / 05$	51.45	11	10	20040130	20120129
12870	$33 \mathrm{H} / 05$	51.45	11	11	20040130	20120129
12871	$33 \mathrm{H} / 05$	51.45	11	12	20040130	20120129
12872	$33 \mathrm{H} / 05$	51.45	11	13	20040130	20120129
12873	$33 \mathrm{H} / 05$	51.45	11	14	20040130	20120129
12874	$33 \mathrm{H} / 05$	51.44	12	8	20040130	20120129
12875	33 H/05	51.44	12	9	20040130	20120129
12876	$33 \mathrm{H} / 05$	51.44	12	10	20040130	20120129
12877	$33 \mathrm{H} / 05$	51.44	12	11	20040130	20120129
12878	$33 \mathrm{H} / 05$	51.44	12	12	20040130	20120129
25912	$33 \mathrm{H} / 05$	51.51	5	18	20040708	20120707
25913	$33 \mathrm{H} / 05$	51.51	5	19	20040708	20120707
25914	$33 \mathrm{H} / 05$	51.51	5	20	20040708	20120707
25915	$33 \mathrm{H} / 05$	51.50	6	18	20040708	20120707
25916	$33 \mathrm{H} / 05$	51.50	6	19	20040708	20120707
25917	$33 \mathrm{H} / 05$	51.50	6	20	20040708	20120707
25918	$33 \mathrm{H} / 05$	51.45	11	1	20040708	20120707
25919	$33 \mathrm{H} / 05$	51.45	11	2	20040708	20120707
25920	$33 \mathrm{H} / 05$	51.45	11	3	20040708	20120707
25921	$33 \mathrm{H} / 05$	51.45	11	4	20040708	20120707
25922	$33 \mathrm{H} / 05$	51.45	11	5	20040708	20120707
25923	$33 \mathrm{H} / 05$	51.44	12	1	20040708	20120707
25924	$33 \mathrm{H} / 05$	51.44	12	2	20040708	20120707
25925	$33 \mathrm{H} / 05$	51.44	12	3	20040708	20120707
25926	$33 \mathrm{H} / 05$	51.44	12	4	20040708	20120707
25927	$33 \mathrm{H} / 05$	51.44	12	5	20040708	20120707
25928	$33 \mathrm{H} / 05$	51.44	12	6	20040708	20120707
25929	$33 \mathrm{H} / 05$	51.44	12	7	20040708	20120707
25930	$33 \mathrm{G} / 08$	51.43	12	24	20040707	20120706
25931	$33 \mathrm{G} / 08$	51.43	12	25	20040707	20120706
25932	$33 \mathrm{G} / 08$	51.43	12	26	20040707	20120706
25933	$33 \mathrm{G} / 08$	51.43	12	27	20040707	20120706
25934	$33 \mathrm{G} / 08$	51.42	13	1	20040707	20120706
25935	$33 \mathrm{G} / 08$	51.42	13	2	20040707	20120706
25936	$33 \mathrm{G} / 08$	51.42	13	3	20040707	20120706
25937	$33 \mathrm{G} / 08$	51.42	13	4	20040707	20120706
25938	$33 \mathrm{G} / 08$	51.42	13	5	20040707	20120706
25939	$33 \mathrm{G} / 08$	51.42	13	6	20040707	20120706
25940	$33 \mathrm{G} / 08$	51.42	13	7	20040707	20120706
25941	$33 \mathrm{G} / 08$	51.42	13	23	20040707	20120706
25942	$33 \mathrm{G} / 08$	51.42	13	24	20040707	20120706
25943	$33 \mathrm{G} / 08$	51.42	13	25	20040707	20120706
25944	$33 \mathrm{G} / 08$	51.42	13	26	20040707	20120706
25945	$33 \mathrm{G} / 08$	51.42	13	27	20040707	20120706
25946	$33 \mathrm{G} / 08$	51.42	13	28	20040707	20120706

Claim No	NTS	Surface (ha)	R Row	Column	Recording Date	Expiration Date
25947	33 G/08	51.42	13	29	20040707	20120706
25948	$33 \mathrm{G} / 08$	51.42	13	30	20040707	20120706
25949	33 G/08	51.41	14	1	20040707	20120706
25950	$33 \mathrm{G} / 08$	51.41	14	2	20040707	20120706
25951	$33 \mathrm{G} / 08$	51.41	14	3	20040707	20120706
25952	$33 \mathrm{G} / 08$	51.41	14	4	20040707	20120706
25953	33 G/08	51.41	14	5	20040707	20120706
25954	$33 \mathrm{G} / 08$	51.41	14	6	20040707	20120706
25955	$33 \mathrm{G} / 08$	51.41	14	7	20040707	20120706
25956	33 G/08	51.41	14	27	20040707	20120706
25957	$33 \mathrm{G} / 08$	51.41	14	28	20040707	20120706
25958	33 G/08	51.41	14	29	20040707	20120706
25959	33 G/08	51.41	14	30	20040707	20120706
25960	33 G/08	51.42	13	31	20040707	20120706
25961	33 G/08	51.42	13	32	20040707	20120706
25962	33 G/08	51.41	14	31	20040707	20120706
25963	33 G/08	51.41	14	32	20040707	20120706
25964	$33 \mathrm{G} / 08$	51.41	14	33	20040707	20120706
25965	$33 \mathrm{G} / 08$	51.41	14	34	20040707	20120706
25966	$33 \mathrm{G} / 08$	51.41	14	35	20040707	20120706
25967	33 G/08	51.42	14	36	20040707	20120706
25968	33 G/08	51.42	14	37	20040707	20120706
25969	33 G/08	51.40	15	35	20040707	20120706
25970	$33 \mathrm{G} / 08$	51.41	15	36	20040707	20120706
25971	33 G/08	51.41	15	37	20040707	20120706
25972	$33 \mathrm{G} / 07$	51.43	12	45	20040707	20120706
25973	33 G/07	51.43	12	46	20040707	20120706
25974	33 G/07	51.43	12	47	20040707	20120706
25975	33 G/07	51.43	12	48	20040707	20120706
25976	$33 \mathrm{G} / 07$	51.43	12	49	20040707	20120706
25977	$33 \mathrm{G} / 07$	51.43	12	50	20040707	20120706
25978	$33 \mathrm{G} / 07$	51.43	12	51	20040707	20120706
25979	$33 \mathrm{G} / 07$	51.43	12	52	20040707	20120706
25980	$33 \mathrm{G} / 07$	51.43	12	53	20040707	20120706
25981	33 G/07	51.43	12	54	20040707	20120706
25982	33 G/07	51.43	12	55	20040707	20120706
25983	$33 \mathrm{G} / 07$	51.43	12	56	20040707	20120706
25984	33 G/07	51.43	12	57	20040707	20120706
25985	$33 \mathrm{G} / 07$	51.43	12	58	20040707	20120706
25986	$33 \mathrm{G} / 07$	51.43	12	59	20040707	20120706
25987	$33 \mathrm{G} / 07$	51.42	13	45	20040707	20120706
25988	$33 \mathrm{G} / 07$	51.42	13	46	20040707	20120706
25989	$33 \mathrm{G} / 07$	51.42	13	47	20040707	20120706
25990	$33 . \mathrm{G} / 07$	51.42	13	48	20040707	20120706
25991	$33 \mathrm{G} / 07$	51.42	13	49	20040707	20120706
25992	$33 \mathrm{G} / 07$	51.42	13	50	20040707	20120706
25993	$33 \mathrm{G} / 07$	51.42	13	51	20040707	20120706
25994	$33 \mathrm{G} / 07$	51.42	13	52	20040707	20120706
25995	$33 \mathrm{G} / 07$	51.42	13	53	20040707	20120706
25996	$33 \mathrm{G} / 07$	51.42	13	54	20040707	20120706
25997	$33 \mathrm{G} / 07$	51.42	13	55	20040707	20120706
25998	$33 \mathrm{G} / 07$	51.42	13	56	20040707	20120706
25999	$33 \mathrm{G} / 07$	51.42	13	57	20040707	20120706
26000	$33 \mathrm{G} / 07$	51.42	13	58	20040707	20120706
26001	$33 \mathrm{G} / 07$	51.42	13	59	20040707	20120706

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
26002	$33 \mathrm{G} / 07$	51.42	13	60	20040707	20120706
26003	$33 \mathrm{G} / 07$	51.41	14	52	20040707	20120706
26004	$33 \mathrm{G} / 07$	51.41	14	53	20040707	20120706
26005	$33 \mathrm{G} / 07$	51.41	14	54	20040707	20120706
26006	$33 \mathrm{G} / 07$	51.41	14	55	20040707	20120706
26007	$33 \mathrm{G} / 07$	51.41	14	56	20040707	20120706
26008	$33 \mathrm{G} / 07$	51.41	14	57	20040707	20120706
26009	$33 \mathrm{G} / 07$	51.41	14	58	20040707	20120706
26010	$33 \mathrm{G} / 07$	51.41	14	59	20040707	20120706
26011	$33 \mathrm{G} / 07$	51.41	14	60	20040707	20120706
26012	$33 \mathrm{G} / 07$	51.40	15	55	20040707	20120706
26013	$33 \mathrm{G} / 07$	51.40	15	56	20040707	20120706
26014	$33 \mathrm{G} / 07$	51.40	15	57	20040707	20120706
26015	$33 \mathrm{G} / 07$	51.40	15	58	20040707	20120706
27583	$33 \mathrm{H} / 05$	51.51	5	12	20040716	20120715
27584	$33 \mathrm{H} / 05$	51.51	5	13	20040716	20120715
27585	$33 \mathrm{H} / 05$	51.51	5	14	20040716	20120715
27596	$33 \mathrm{H} / 05$	51.50	6	8	20040716	20120715
27597	$33 \mathrm{H} / 05$	51.50	6	9	20040716	20120715
27664	$33 \mathrm{G} / 08$	51.43	12	28	20040715	20120714
27665	$33 \mathrm{G} / 08$	51.43	12	29	20040715	20120714
27666	$33 \mathrm{G} / 08$	51.43	12	30	20040715	20120714
27667	$33 \mathrm{G} / 08$	51.42	13	8	20040715	20120714
27668	$33 \mathrm{G} / 08$	51.42	13	9	20040715	20120714
27669	$33 \mathrm{G} / 08$	51.42	13	10	20040715	20120714
27670	$33 \mathrm{G} / 08$	51.42	13	11	20040715	20120714
27671	$33 \mathrm{G} / 08$	51.42	13	12	20040715	20120714
27672	33 G/08	51.42	13	13	20040715	20120714
27673	$33 \mathrm{G} / 08$	51.42	13	14	20040715	20120714
27674	$33 \mathrm{G} / 08$	51.42	13	15	20040715	20120714
27675	$33 \mathrm{G} / 08$	51.42	13	16	20040715	20120714
27676	$33 \mathrm{G} / 08$	51.42	13	17	20040715	20120714
27677	$33 \mathrm{G} / 08$	51.42	13	18	20040715	20120714
27678	$33 \mathrm{G} / 08$	51.42	13	19	20040715	20120714
27679	$33 \mathrm{G} / 08$	51.42	13	20	20040715	20120714
27680	$33 \mathrm{G} / 08$	51.42	13	21	20040715	20120714
27681	$33 \mathrm{G} / 08$	51.42	13	22	20040715	20120714
27682	$33 \mathrm{G} / 08$	51.41	14	8	20040715	20120714
27683	$33 \mathrm{G} / 08$	51.41	14	9	20040715	20120714
27684	$33 \mathrm{G} / 08$	51.41	14	10	20040715	20120714
27685	$33 \mathrm{G} / 08$	51.41	14	11	20040715	20120714
27686	$33 \mathrm{G} / 08$	51.41	14	12	20040715	20120714
27687	$33 \mathrm{G} / 08$	51.41	14	13	20040715	20120714
27688	$33 \mathrm{G} / 08$	51.41	14	14	20040715	20120714
27689	$33 \mathrm{G} / 08$	51.41	14	15	20040715	20120714
27690	$33 \mathrm{G} / 08$	51.41	14	16	20040715	20120714
27691	$33 \mathrm{G} / 08$	51.41	14	17	20040715	20120714
27692	$33 \mathrm{G} / 08$	51.41	14	18	20040715	20120714
27693	$33 \mathrm{G} / 08$	51.41	14	19	20040715	20120714
27694	$33 \mathrm{G} / 08$	51.41	14	20	20040715	20120714
27695	$33 \mathrm{G} / 08$	51.41	14	21	20040715	20120714
27696	$33 \mathrm{G} / 08$	51.41	14	22	20040715	20120714
27697	$33 \mathrm{G} / 08$	51.41	14	23	20040715	20120714
27698	$33 \mathrm{G} / 08$	51.41	14	24	20040715	20120714
27699	$33 \mathrm{G} / 08$	51.41	14	25	20040715	20120714

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
27700	33 G/08	51.41	14	26	20040715	20120714
27701	$33 \mathrm{G} / 08$	51.40	15	1	20040715	20120714
27702	33 G/08	51.40	15	2	20040715	20120714
27703	$33 \mathrm{G} / 08$	51.40	15	3	20040715	20120714
27704	$33 \mathrm{G} / 08$	51.40	15	4	20040715	20120714
27705	$33 \mathrm{G} / 08$	51.40	15	5	20040715	20120714
27706	$33 \mathrm{G} / 08$	51.40	15	13	20040715	20120714
27707	$33 \mathrm{G} / 08$.	51.40	15	14	20040715	20120714
27708	$33 \mathrm{G} / 08$	51.40	15	15	20040715	20120714
27709	$33 \mathrm{G} / 08$	51.40	15	16	20040715	20120714
27710	33 G/08	51.40	15	17	20040715	20120714
27711	$33 \mathrm{G} / 08$	51.40	15	18	20040715	20120714
27712	33 G/08	51.40	15	19	20040715	20120714
27713	$33 \mathrm{G} / 08$	51.40	15	20	20040715	20120714
27714	$33 \mathrm{G} / 08$	51.40	15	21	20040715	20120714
27715	$33 \mathrm{G} / 08$	51.40	15	22	20040715	20120714
27716	33 G/08	51.40	15	23	20040715	20120714
27717	$33 \mathrm{G} / 08$	51.40	15	24	20040715	20120714
27718	$33 \mathrm{G} / 08$	51.40	15	25	20040715	20120714
27719	33 G/08	51.40	15	26	20040715	20120714
27720	$33 \mathrm{G} / 08$	51.40	15	27	20040715	20120714
27721	33 G/08	51.40	15	28	20040715	20120714
27722	$33 \mathrm{G} / 08$	51.40	15	29	20040715	20120714
27723	$33 \mathrm{G} / 08$	51.40	15	30	20040715	20120714
27724	33 G/08	51.47	9	60	20040715	20120714
27725	$33 \mathrm{G} / 08$	51.46	10	56	20040715	20120714
27726	$33 \mathrm{G} / 08$	51.46	10	57	20040715	20120714
27727	$33 \mathrm{G} / 08$	51.46	10	58	20040715	20120714
27728	$33 \mathrm{G} / 08$	51.46	10	59	20040715	20120714
27729	$33 \mathrm{G} / 08$	51.46	10	60	20040715	20120714
27730	$33 \mathrm{G} / 08$	51.45	11	45	20040715	20120714
27731	$33 \mathrm{G} / 08$	51.45	11	46	20040715	20120714
27732	33 G/08	51.45	11	47	20040715	20120714
27733	$33 \mathrm{G} / 08$	51.45	11	48	20040715	20120714
27734	33 G/08	51.45	11	49	20040715	20120714
27735	$33 \mathrm{G} / 08$	51.45	11	50	20040715	20120714
27736	33 G/08	51.45	11	51	20040715	20120714
27737	33 G/08	51.45	11	52	20040715	20120714
27738	$33 \mathrm{G} / 08$	51.45	11	53	20040715	20120714
27739	33 G/08	51.45	11	54	20040715	20120714
27740	33 G/08	51.45	11	55	20040715	20120714
27741	$33 \mathrm{G} / 08$	51.45	11	56	20040715	20120714
27742	$33 \mathrm{G} / 08$	51.45	11	57	20040715	20120714
27743	33 G/08	51.45	11	58	20040715	20120714
27744	33 G/08	51.45	11	59	20040715	20120714
27745	33 G/08	51.45	11	60	20040715	20120714
27746	33 G/08	51.43	12	31	20040715	20120714
27747	33 G/08	51.43	12	32	20040715	20120714
27748	$33 \mathrm{G} / 08$	51.43	12	33	20040715	20120714
27749	$33 \mathrm{G} / 08$	51.43	12	34	20040715	20120714
27750	$33 \mathrm{G} / 08$	51.43	12	35	20040715	20120714
27751	33 G/08	51.43	12	36	20040715	20120714
27752	33 G/08	51.44	12	37	20040715	20120714
27753	$33 \mathrm{G} / 08$	51.44	12	38	20040715	20120714
27754	$33 \mathrm{G} / 08$	51.44	12	39	20040715	20120714

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
27755	33 G/08	51.44	12	40	20040715	20120714
27756	$33 \mathrm{G} / 08$	51.44	12	41	20040715	20120714
27757	$33 \mathrm{G} / 08$	51.44	12	42	20040715	20120714
27758	$33 \mathrm{G} / 08$	51.44	12	43	20040715	20120714
27759	33 G/08	51.44	12	44	20040715	20120714
27760	33 G/08	51.44	12	45	20040715	20120714
27761	33 G/08	51.44	12	46	20040715	20120714
27762	33 G/08	51.44	12	47	20040715	20120714
27763	$33 \mathrm{G} / 08$	51.44	12	48	20040715	20120714
27764	$33 \mathrm{G} / 08$	51.44	12	49	20040715	20120714
27765	$33 \mathrm{G} / 08$	51.44	12	50	20040715	20120714
27766	$33 \mathrm{G} / 08$	51.44	12	51	20040715	20120714
27767	$33 \mathrm{G} / 08$	51.44	12	52	20040715	20120714
27768	$33 \mathrm{G} / 08$	51.44	12	53	20040715	20120714
27769	33 G/08	51.44	12	54	20040715	20120714
27770	$33 \mathrm{G} / 08$	51.44	12	55	20040715	20120714
27771	33 G/08	51.44	12	56	20040715	20120714
27772	$33 \mathrm{G} / 08$	51.44	12	57	20040715	20120714
27773	33 G/08	51.44	12	58	20040715	20120714
27774	$33 \mathrm{G} / 08$	51.44	12	59	20040715	20120714
27775	$33 \mathrm{G} / 08$	51.44	12	60	20040715	20120714
27776	$33 \mathrm{G} / 08$	51.42	13	33	20040715	20120714
27777	$33 \mathrm{G} / 08$	51.42	13	34	20040715	20120714
27778	$33 \mathrm{G} / 08$	51.42	13	35	20040715	20120714
27779	$33 \mathrm{G} / 08$	51.43	13	36	20040715	20120714
27780	33 G/08	51.42	13	37	20040715	20120714
27781	$33 \mathrm{G} / 08$	51.43	13	38	20040715	20120714
27782	$33 \mathrm{G} / 08$	51.43	13	39	20040715	20120714
27783	33 G/08	51.43	13	40	20040715	20120714
27784	$33 \mathrm{G} / 08$	51.43	13	41	20040715	20120714
27785	$33 \mathrm{G} / 08$	51.43	13	42	20040715	20120714
27786	$33 \mathrm{G} / 08$	51.43	13	43	20040715	20120714
27787	$33 \mathrm{G} / 08$	51.43	13	44	20040715	20120714
27788	$33 \mathrm{G} / 08$	51.43	13	45	20040715	20120714
27789	$33 \mathrm{G} / 08$	51.43	13	46	20040715	20120714
27790	$33 \mathrm{G} / 08$	51.43	13	47	20040715	20120714
27791	$33 \mathrm{G} / 08$	51.43	13	48	20040715	20120714
27792	$33 \mathrm{G} / 08$	51.43	13	49	20040715	20120714
27793	$33 \mathrm{G} / 08$	51.43	13	50	20040715	20120714
27794	$33 \mathrm{G} / 08$	51.43	13	51	20040715	20120714
27795	$33 \mathrm{G} / 08$	51.43	13	52	20040715	20120714
27796	$33 \mathrm{G} / 08$	51.43	13	53	20040715	20120714
27797	$33 \mathrm{G} / 08$	51.43	13	54	20040715	20120714
27798	$33 \mathrm{G} / 08$	51.43	13	55	20040715	20120714
27799	$33 \mathrm{G} / 08$	51.43	13	56	20040715	20120714
27800	$33 \mathrm{G} / 08$	51.43	13	57	20040715	20120714
27801	$33 \mathrm{G} / 08$	51.43	13	58	20040715	20120714
27802	$33 \mathrm{G} / 08$	51.42	14	38	20040715	20120714
27803	$33 \mathrm{G} / 08$	51.42	14	39	20040715	20120714
27804	$33 \mathrm{G} / 08$	51.42	14	40	20040715	20120714
27805	$33 \mathrm{G} / 08$	51.42	14	41	20040715	20120714
27806	$33 \mathrm{G} / 08$	51.42	14	42	20040715	20120714
27807	$33 \mathrm{G} / 08$	51.42	14	43	20040715	20120714
27808	$33 \mathrm{G} / 08$	51.42	14	44	20040715	20120714
27809	$33 \mathrm{G} / 08$	51.41	15	38	20040715	20120714

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
27810	$33 \mathrm{G} / 08$	51.41	15	39	20040715	20120714
27811	$33 \mathrm{G} / 08$	51.41	15	40	20040715	20120714
27962	$33 \mathrm{G} / 07$	51.43	12	40	20040721	20120720
27963	$33 \mathrm{G} / 07$	51.43	12	41	20040721	20120720
27964	$33 \mathrm{G} / 07$	51.43	12	42	20040721	20120720
27965	$33 \mathrm{G} / 07$	51.43	12	43	20040721	20120720
27966	$33 \mathrm{G} / 07$	51.43	12	44	20040721	20120720
27969	$33 \mathrm{G} / 07$	32.77	13	40	20040721	20120720
27970	$33 \mathrm{G} / 07$	51.42	13	41	20040721	20120720
27971	$33 \mathrm{G} / 07$	51.42	13	42	20040721	20120720
27972	$33 \mathrm{G} / 07$	51.42	13	43	20040721	20120720
27973	$33 \mathrm{G} / 07$	51.42	13	44	20040721	20120720
27974	$33 \mathrm{G} / 07$	38.64	14	36	20040721	20120720
27975	$33 \mathrm{G} / 07$	33.60	14	37	20040721	20120720
27976	$33 \mathrm{G} / 07$	28.56	14	38	20040721	20120720
27977	$33 \mathrm{G} / 07$	23.52	14	39	20040721	20120720
27978	$33 \mathrm{G} / 07$	46.65	14	40	20040721	20120720
27979	$33 \mathrm{G} / 07$	51.41	14	41	20040721	20120720
27980	$33 \mathrm{G} / 07$	51.41	14	42	20040721	20120720
27981	$33 \mathrm{G} / 07$	51.41	14	43	20040721	20120720
27982	$33 \mathrm{G} / 07$	51.41	14	44	20040721	20120720
27983	$33 \mathrm{G} / 07$	51.41	14	45	20040721	20120720
27984	$33 \mathrm{G} / 07$	51.41	14	46	20040721	20120720
27985	$33 \mathrm{G} / 07$	51.41	14	47	20040721	20120720
27986	$33 \mathrm{G} / 07$	51.41	14	48	20040721	20120720
27987	$33 \mathrm{G} / 07$	51.41	14	49	20040721	20120720
27988	$33 \mathrm{G} / 07$	51.41	14	50	20040721	20120720
27989	33 G/07	51.41	14	51	20040721	20120720
27990	$33 \mathrm{G} / 07$	51.40	15	36	20040721	20120720
27991	$33 \mathrm{G} / 07$	51.40	15	37	20040721	20120720
27992	$33 \mathrm{G} / 07$	51.40	15	38	20040721	20120720
27993	$33 \mathrm{G} / 07$	51.40	15	49	20040721	20120720
27994	$33 \mathrm{G} / 07$	51.40	15	50	20040721	20120720
27995	$33 \mathrm{G} / 07$	51.40	15	51	20040721	20120720
27996	33 G/07	51.40	15	52	20040721	20120720
27997	$33 \mathrm{G} / 07$	51.40	15	53	20040721	20120720
27998	$33 \mathrm{G} / 07$	51.40	15	54	20040721	20120720
27999	$33 \mathrm{G} / 07$	51.40	15	59	20040721	20120720
28000	$33 \mathrm{G} / 07$	51.40	15	60	20040721	20120720
45158	$33 \mathrm{H} / 05$	51.49	7	18	20041109	20121108
45159	$33 \mathrm{H} / 05$	51.49	7	19	20041109	20121108
45160	$33 \mathrm{H} / 05$	51.48	8	18	20041109	20121108
45161	$33 \mathrm{H} / 05$	51.48	8	19	20041109	20121108
45162	$33 \mathrm{H} / 05$	51.47	9	17	20041109	20121108
45163	$33 \mathrm{H} / 05$	51.47	9	18	20041109	20121108
45164	$33 \mathrm{H} / 05$	51.47	9	19	20041109	20121108
45165	$33 \mathrm{H} / 05$	51.46	10	17	20041109	20121108
45166	$33 \mathrm{H} / 05$	51.46	10	18	20041109	20121108
45167	$33 \mathrm{H} / 05$	51.46	10	19	20041109	20121108
45168	$33 \mathrm{H} / 05$	51.45	11	15	20041109	20121108
45169	$33 \mathrm{H} / 05$	51.45	11	16	20041109	20121108
45170	$33 \mathrm{H} / 05$	51.45	11	17	20041109	20121108
45171	$33 \mathrm{H} / 05$	51.45	11	18	20041109	20121108
45172	$33 \mathrm{H} / 05$	51.45	11	19	20041109	20121108
59152	$33 \mathrm{G} / 08$	51.40	15	31	20050314	20130313

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
59153	$33 \mathrm{G} / 08$	51.40	15	32	20050314	20130313
59154	$33 \mathrm{G} / 08$	51.40	15	33	20050314	20130313
59155	$33 \mathrm{G} / 08$	51.40	15	34	20050314	20130313
59156	$33 \mathrm{G} / 08$	51.39	16	28	20050314	20130313
59157	$33 \mathrm{G} / 08$	51.39	16	29	20050314	20130313
59158	$33 \mathrm{G} / 08$	51.39	16	30	20050314	20130313
59159	$33 \mathrm{G} / 08$	51.39	16	31	20050314	20130313
59160	$33 \mathrm{G} / 08$	51.39	16	32	20050314	20130313
59161	33 G/08	51.39	16	33	20050314	20130313
59162	$33 \mathrm{G} / 08$	51.39	16	34	20050314	20130313
59163	$33 \mathrm{G} / 08$	51.40	16	35	20050314	20130313
59164	$33 \mathrm{G} / 08$	51.40	16	36	20050314	20130313
59165	$33 \mathrm{G} / 08$	51.40	16	37	20050314	20130313
59166	$33 \mathrm{G} / 08$	51.40	16	38	20050314	20130313
59167	$33 \mathrm{G} / 08$	51.40	16	39	20050314	20130313
59168	$33 \mathrm{G} / 08$	51.40	16	40	20050314	20130313
59169	$33 \mathrm{G} / 07$	51.40	15	46	20050314	20130313
59170	$33 \mathrm{G} / 07$	51.40	15	47	20050314	20130313
59171	$33 \mathrm{G} / 07$	51.40	15	48	20050314	20130313
59172	$33 \mathrm{G} / 07$	51.39	16	46	20050314	20130313
59173	$33 \mathrm{G} / 07$	51.39	16	47	20050314	20130313
59174	$33 \mathrm{G} / 07$	51.39	16	48	20050314	20130313
59175	$33 \mathrm{G} / 07$	51.39	16	49	20050314	20130313
59176	$33 \mathrm{G} / 07$	51.39	16	50	20050314	20130313
59177	$33 \mathrm{G} / 07$	51.39	16	51	20050314	20130313
59178	$33 \mathrm{G} / 07$	51.39	16	52	20050314	20130313
59179	$33 \mathrm{G} / 07$	51.39	16	53	20050314	20130313
59180	$33 \mathrm{G} / 07$	51.39	16	54	20050314	20130313
59181	$33 \mathrm{G} / 07$	51.39	16	55	20050314	20130313
59182	$33 \mathrm{G} / 07$	51.39	16	56	20050314	20130313
59183	$33 \mathrm{G} / 07$	51.39	16	57	20050314	20130313
7958	$33 \mathrm{H} / 05$	51.49	7	11	20031201	20111130
7959	$33 \mathrm{H} / 05$	51.49	7	12	20031201	20111130
7960	$33 \mathrm{H} / 05$	51.49	7	13	20031201	20111130
7961	$33 \mathrm{H} / 05$	51.49	7	14	20031201	20111130
7962	$33 \mathrm{H} / 05$	51.48	8	10	20031201	20111130
7963	$33 \mathrm{H} / 05$	51.48	8	11	20031201	20111130
7964	$33 \mathrm{H} / 05$	51.48	8	12	20031201	20111130
7965	$33 \mathrm{H} / 05$	51.48	8	13	20031201	20111130
79655	$33 \mathrm{G} / 07$	51.40	15	39	20050623	20110622
79656	$33 \mathrm{G} / 07$	51.40	15	40	20050623	20110622
79657	33 G/07	51.40	15	41	20050623	20110622
79658	$33 \mathrm{G} / 07$	51.40	15	42	20050623	20110622
79659	33 G/07	51.40	15	43	20050623	20110622
7966	$33 \mathrm{H} / 05$	51.48	8	14	20031201	20111130
79660	$33 \mathrm{G} / 07$	51.40	15	44	20050623	20110622
79661	$33 \mathrm{G} / 07$	51.40	15	45	20050623	20110622
79662	$33 \mathrm{G} / 07$	51.39	16	36	20050623	20110622
79663	$33 \mathrm{G} / 07$	51.39	16	37	20050623	20110622
79664	$33 \mathrm{G} / 07$	51.39	16	38	20050623	20110622
79665	$33 \mathrm{G} / 07$	51.39	16	39	20050623	20110622
79666	$33 \mathrm{G} / 07$	51.39	16	40	20050623	20110622
79667	$33 \mathrm{G} / 07$	51.39	16	41	20050623	20110622
79668	$33 \mathrm{G} / 07$	51.39	16	42	20050623	20110622
79669	$33 \mathrm{G} / 07$	51.39	16	43	20050623	20110622

Claim No	NTS	Surface (ha)	R Row	Column	Recording Date	Expiration Date
7967	$33 \mathrm{H} / 05$	51.47	9	7	20031201	20111130
79670	$33 \mathrm{G} / 07$	51.39	16	44	20050623	20110622
79671	$33 \mathrm{G} / 07$	51.39	16	45	20050623	20110622
79672	$33 \mathrm{G} / 07$	51.39	16	58	20050623	20110622
79673	33 G/07	51.39	16	59	20050623	20110622
79674	$33 \mathrm{G} / 07$	51.39	16	60	20050623	20110622
79679	33 G/08	51.48	8	45	20050623	20110622
7968	$33 \mathrm{H} / 05$	51.47	9	8	20031201	20111130
79680	$33 \mathrm{G} / 08$	51.48	8	46	20050623	20110622
79681	$33 \mathrm{G} / 08$	51.48	8	47	20050623	20110622
79682	$33 \mathrm{G} / 08$	51.48	8	48	20050623	20110622
79683	$33 \mathrm{G} / 08$	51.48	8	49	20050623	20110622
7969	$33 \mathrm{H} / 05$	51.47	9	9	20031201	20111130
79690	$33 \mathrm{G} / 08$	51.47	9	45	20050623	20110622
79691	$33 \mathrm{G} / 08$	51.47	9	46	20050623	20110622
79692	$33 \mathrm{G} / 08$	51.47	9	47	20050623	20110622
79693	$33 \mathrm{G} / 08$	51.47	9	48	20050623	20110622
79694	$33 \mathrm{G} / 08$	51.47	9	49	20050623	20110622
79695	$33 \mathrm{G} / 08$	51.47	9	50	20050623	20110622
79696	$33 \mathrm{G} / 08$	51.47	9	51	20050623	20110622
79697	$33 \mathrm{G} / 08$	51.47	9	52	20050623	20110622
79698	$33 \mathrm{G} / 08$	51.47	9	53	20050623	20110622
7970	$33 \mathrm{H} / 05$	51.47	9	10	20031201	20111130
79701	$33 \mathrm{G} / 08$	51.46	10	45	20050623	20110622
79702	$33 \mathrm{G} / 08$	51.46	10	46	20050623	20110622
79703	$33 \mathrm{G} / 08$	51.46	10	47	20050623	20110622
79704	$33 \mathrm{G} / 08$	51.46	10	48	20050623	20110622
79705	$33 \mathrm{G} / 08$	51.46	10	49	20050623	20110622
79706	$33 \mathrm{G} / 08$	51.46	10	50	20050623	20110622
79707	$33 \mathrm{G} / 08$	51.46	10	51	20050623	20110622
79708	$33 \mathrm{G} / 08$	51.46	10	52	20050623	20110622
79709	$33 \mathrm{G} / 08$	51.46	10	53	20050623	20110622
7971	$33 \mathrm{H} / 05$	51.47	9	11	20031201	20111130
79710	33 G/08	51.46	10	54	20050623	20110622
79711	33 G/08	51.46	10	55	20050623	20110622
79712	$33 \mathrm{G} / 08$	51.42	14	45	20050623	20110622
79713	$33 \mathrm{G} / 08$	51.42	14	46	20050623	20110622
79714	33 G/08	51.42	14	47	20050623	20110622
79715	$33 \mathrm{G} / 08$	51.42	14	48	20050623	20110622
79716	$33 \mathrm{G} / 08$	51.42	14	49	20050623	20110622
79717	$33 \mathrm{G} / 08$	51.42	14	50	20050623	20110622
79718	$33 \mathrm{G} / 08$	51.42	14	51	20050623	20110622
79719	$33 \mathrm{G} / 08$	51.41	15	41	20050623	20110622
7972	$33 \mathrm{H} / 05$	51.47	9	12	20031201	20111130
79720	$33 \mathrm{G} / 08$	51.41	15	42	20050623	20110622
79721	33 G/08	51.41	15	43	20050623	20110622
79722	$33 \mathrm{G} / 08$	51.41	15	44	20050623	20110622
79723	$33 \mathrm{G} / 08$	51.41	15	45	20050623	20110622
79724	$33 \mathrm{G} / 08$	51.41	15	46	20050623	20110622
79725	$33 \mathrm{G} / 08$	51.41	15	47	20050623	20110622
79726	$33 \mathrm{G} / 08$	51.41	15	48	20050623	20110622
79727	$33 \mathrm{G} / 08$	51.41	15	49	20050623	20110622
79728	$33 \mathrm{G} / 08$	51.41	15	50	20050623	20110622
79729	$33 \mathrm{G} / 08$	51.41	15	51	20050623	20110622
7973	$33 \mathrm{H} / 05$	51.47	9	13	20031201	20111130

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
79730	$33 \mathrm{G} / 08$	51.39	16	1	20050623	20110622
79731	$33 \mathrm{G} / 08$	51.39	16	2	20050623	20110622
79732	$33 \mathrm{G} / 08$	51.39	16	3	20050623	20110622
79733	$33 \mathrm{G} / 08$	51.39	16	4	20050623	20110622
79734	$33 \mathrm{G} / 08$	51.39	16	5	20050623	20110622
79735	$33 \mathrm{G} / 08$	51.39	16	6	20050623	20110622
79736	33 G/08	51.39	16	7	20050623	20110622
79737	$33 \mathrm{G} / 08$	51.39	16	8	20050623	20110622
79738	$33 \mathrm{G} / 08$	51.39	16	9	20050623	20110622
79739	$33 \mathrm{G} / 08$	51.39	16	10	20050623	20110622
7974	$33 \mathrm{H} / 05$	51.47	9	14	20031201	20111130
79740	$33 \mathrm{G} / 08$	51.39	16	11	20050623	20110622
79741	$33 \mathrm{G} / 08$	51.39	16	12	20050623	20110622
79742	$33 \mathrm{G} / 08$	51.39	16	13	20050623	20110622
79743	$33 \mathrm{G} / 08$	51.39	16	14	20050623	20110622
79744	$33 \mathrm{G} / 08$	51.39	16	15	20050623	20110622
79745	$33 \mathrm{G} / 08$	51.39	16	16	20050623	20110622
79746	$33 \mathrm{G} / 08$	51.39	16	17	20050623	20110622
79747	$33 \mathrm{G} / 08$	51.39	16	18	20050623	20110622
79748	$33 \mathrm{G} / 08$	51.39	16	19	20050623	20110622
79749	$33 \mathrm{G} / 08$	51.39	16	20	20050623	20110622
7975	$33 \mathrm{H} / 05$	51.46	10	9	20031201	20111130
79750	$33 \mathrm{G} / 08$	51.39	16	21	20050623	20110622
79751	$33 \mathrm{G} / 08$	51.39	16	22	20050623	20110622
79752	33 G/08	51.39	16	23	20050623	20110622
79753	33 G/08	51.39	16	24	20050623	20110622
79754	$33 \mathrm{G} / 08$	51.39	16	25	20050623	20110622
79755	$33 \mathrm{G} / 08$	51.39	16	26	20050623	20110622
79756	$33 \mathrm{G} / 08$	51.39	16	27	20050623	20110622
7976	$33 \mathrm{H} / 05$	51.46	10	10	20031201	20111130
79762	$33 \mathrm{G} / 08$	51.40	16	41	20050623	20110622
79763	$33 \mathrm{G} / 08$	51.40	16	42	20050623	20110622
79764	$33 \mathrm{G} / 08$	51.40	16	43	20050623	20110622
79765	$33 \mathrm{G} / 08$	51.40	16	44	20050623	20110622
79766	$33 \mathrm{G} / 08$	51.40	16	45	20050623	20110622
79767	$33 \mathrm{G} / 08$	51.40	16	46	20050623	20110622
79768	$33 \mathrm{G} / 08$	51.40	16	47	20050623	20110622
79769	$33 \mathrm{G} / 08$	51.40	16	48	20050623	20110622
79770	$33 \mathrm{G} / 08$	51.40	16	49	20050623	20110622
79771	$33 \mathrm{G} / 08$	51.40	16	50	20050623	20110622
79772	$33 \mathrm{G} / 08$	51.40	16	51	20050623	20110622
79773	$33 \mathrm{G} / 08$	51.39	17	41	20050623	20110622
79774	$33 \mathrm{G} / 08$	51.39	17	42	20050623	20110622
79775	$33 \mathrm{G} / 08$	51.39	17	43	20050623	20110622
79776	$33 \mathrm{G} / 08$	51.39	17	44	20050623	20110622
79777	33 G/08	51.39	17	45	20050623	20110622
79778	$33 \mathrm{G} / 08$	51.39	17	46	20050623	20110622
79779	$33 \mathrm{G} / 08$	51.39	17	47	20050623	20110622
79780	$33 \mathrm{G} / 08$	51.39	17	48	20050623	20110622
79781	$33 \mathrm{G} / 08$	51.39	17	49	20050623	20110622
79782	$33 \mathrm{G} / 08$	51.39	17	50	20050623	20110622
79783	$33 \mathrm{G} / 08$	51.39	17	51	20050623	20110622
79791	$33 \mathrm{G} / 08$	51.40	15	6	20050623	20110622
79792	$33 \mathrm{G} / 08$	51.40	15	7	20050623	20110622
79793	$33 \mathrm{G} / 08$	51.40	15	8	20050623	20110622

Claim No	NTS	Surface (ha)	Row	Column	Recording Date	Expiration Date
79794	$33 \mathrm{G} / 08$	51.40	15	9	20050623	20110622
79795	$33 \mathrm{G} / 08$	51.40	15	10	20050623	20110622
79796	$33 \mathrm{G} / 08$	51.40	15	11	20050623	20110622
79797	$33 \mathrm{G} / 08$	51.40	15	12	20050623	20110622
99100	$33 \mathrm{G} / 08$	51.38	17	14	20051020	20111019
99101	$33 \mathrm{G} / 08$	51.38	17	15	20051020	20111019
99102	$33 \mathrm{G} / 08$	51.38	17	16	20051020	20111019
99103	$33 \mathrm{G} / 08$	51.38	17	17	20051020	20111019
99104	$33 \mathrm{G} / 08$	51.38	17	18	20051020	20111019
99105	33 G/08	51.38	17	19	20051020	20111019
99106	$33 \mathrm{G} / 08$	51.38	17	20	20051020	20111019
99107	$33 \mathrm{G} / 08$	51.38	17	21	20051020	20111019
99108	$33 \mathrm{G} / 08$	51.38	17	22	20051020	20111019
99109	$33 \mathrm{G} / 08$	51.38	17	23	20051020	20111019
99110	33 G/08	51.38	17	24	20051020	20111019
99111	$33 \mathrm{G} / 08$	51.38	17	25	20051020	20111019
99112	$33 \mathrm{G} / 08$	51.38	17	26	20051020	20111019
99113	$33 \mathrm{G} / 08$	51.38	17	27	20051020	20111019
99114	33 G/08	51.38	17	28	20051020	20111019
99115	$33 \mathrm{G} / 08$	51.38	17	29	20051020	20111019
99116	$33 \mathrm{G} / 08$	51.38	17	30	20051020	20111019
99117	$33 \mathrm{G} / 08$	51.38	17	31	20051020	20111019
99118	$33 \mathrm{G} / 08$	51.38	17	32	20051020	20111019
99119	$33 \mathrm{G} / 08$	51.38	17	33	20051020	20111019

Appendix 2 : Légende générale de la carte géologique (extract of MB96-28)

Gouvernement du Québec
Ministère des Ressources naturelles
Direction de la géologie

Légende générale de la carte géologique
 - Édition revue et augmentée -

Kamal N.M. Sharma coordonnateur

SÉRIE DES MANUSCRITS BRUTS

Tableau 5 - Roches felsiques / acides

I1 ROCHES INTRUSIVES FELSIQUES	ROCHES VOLCANIQUES FELSIQUES	V1
11A Granite à feldspath alcalin I1B Granite I1C Granodiorite I1D Tonalite I1E Trondhjémite I1F Aplite I1G Pegmatite (granitique) 11H Granophyre I1I Granitoïde riche en quartz I1J Quartzolite (silexite) I1K Alaskite I1L Syéno-granite I1M Monzo-granite IIN Filon / veine de quartz I1O Granite à feldspath alcalin avec hypersthène (charnockite à feldspath alcalin) I1P Granite à hypersthène (charnockite) I1Q Syéno-granite à hypersthène I1R Monzo-granite à hypersthène (farsundite) I1S Granodiorite à hypersthène (opdalite ou charnoenderbite I1T Tonalite à hypersthène (enderbite)	\rightarrow Rhyolite à feldspath alcalin \rightarrow Rhyolite \rightarrow Rhyodacite \rightarrow Dacite Rhyolite comenditique Rhyolite pantelléritique Trachydacite	$\begin{gathered} \text { V1A } \\ \text { V1B } \\ \text { V1C } \\ \text { V1D } \\ \text { V1BC } \\ \text { V1BP } \\ \text { V1E } \end{gathered}$

\longleftrightarrow indique les termes intrusifs et volcaniques équivalents

Tableau 6 - Roches intermédiaires

12 ROCHES INTRUSIVES INTERMÉDIAIRES	ROCHES VOLCANIQUES INTERMÉDIAIRES V2
12A Syénite quartzifère à feldspath alcalin \leftarrow	\rightarrow Trachyte quartzifère à feldspath alcalin \quad V2A
12B Syénite à feldspath alcalin \leftarrow	\rightarrow Trachyte à feldspath alcalin \quad V2B
I2C Syénite quartzifëre \leftarrow	\rightarrow Trachyte quartzifere \quad V2C
12D Syénite \leftarrow	\rightarrow Trachyte V2D
L2E Monzonite quartzifère \leftarrow	\rightarrow Latite quartzifère \quad V2E
12F Monzonite \leftarrow	\rightarrow Latite \quad V2FL
I2G Monzodiorite quartzifère \leftarrow	\rightarrow (Andésite) (V2J)
I2H Monzodiorite	\rightarrow (Andésite) (V2J)
12I Diorite quartzifère \leftarrow	\rightarrow (Andésite) \quad (V2J)
12J Diorite \leftarrow	\rightarrow Andésite \quad V2J
I2K Monzosyénite	Icelandite V2JI
I2BR Syénite foildifere à feldspath alcalin	Trachyte foïdifere à feldspath alcalin \quad V2BR
I2DR Syénite foïdifère	Trachyte foïdifêre \quad V2DR
I2DF Syénite foĩdique	Phonolite V2G
12KF Monzosyénite foildique	Phonolite téphritique V2GT
L2FR Monzonite foidifêre	Latite foidifềre V2LR
12HR Monzodiorite foidifere	Trachyandesite ${ }^{\text {V2F }}$
I2HF Monzodiorite foidique	Benmoreìte V2FB
L2JR Diorite foidifêre	Trachyte comenditique \quad V2DC
I2JF Diorite foïdique	Trachyte pantelléritique V2DP
I2M Syénite à feldspath alcalin avec hypersthène	
I2N Syénite à hypersthène	
120 Monzonite à hypersthène (mangérite)	
12P Monzodiorite à hypersthène (jotunite)	
I2Q Diorite à hypersthène	

\longleftrightarrow indique les termes intrusifs et volcaniques équivalents
Foïdifère: Feldspathoïdifère
Foïdique : Feldspathoïdique

Tableau 7 - Roches mafiques / basiques

13	ROCHES INTRUSIVES MAFIQUES	ROCHES VOLCANIQUES MAFIQUES V3	
13A	Gabbro	Basalte andésitique/Andésite basaltique	V3A
13B	Diabase	Icelandite basaltique	v3AI
13C	Monzogabbro	Basalte	V3B
13D	Ferrogabbro	Basalte à quartz	V3C
13E	Gabbro à quartz	Trachybasalte	V3D
13F	Diabase à quartz	Hawaiite	V3DH
I3G	Anorthosite	Trachybasalte potassique	V3DK
13H	Anorthosite gabbroĭque	Basalte à olivine	V3E
I3I	Gabbro anorthositique	Basalte magnésien (> $9 \% \mathrm{MgO}$)	V3F
13J	Norite	Trachyandésite basaltique	V3G
13P	Leuconorite	Mugéarite	V3GM
13K	Gabbro à olivine	Shoshonite	V3GS
13L	Norite à olivine	Basanite	V3H
13M	Diabase à olivine	Basanite phonolitique	V3HP
13N	Troctolite	Téphrite	V3I
130	Lamprophyre mafique	Téphrite phonolitique	V3IP
130M	Minette	Boninite	V3J
130K	Kersantite		
130V	Vogesite		
I30S	Spessartite		
I3CQ	Monzogabbro quartzifere		
I3CR	Monzogabbro foïdifère		
L3CF	Monzogabbro foildique		
I3AR	Gabbro foìdifère		
I3AF	Gabbro foildique		
I3GQ	Anorthosite quartzifere		
I3GR	Anorthosite foidifere		
13Q	Gabbronorite		
I3R	Gabbronorite à olivine		
13 S	Monzonorite		
13T	Anorthosite à hypersthène		

Tableau 8 - Roches ultramafiques et ultrabasiques

< 10% de plagioclase (PG) est toléré dans les roches ultramafiques. Lorsque observé, indiquer sa présence par «PG».

Tableau 9 - Volcanites explosives

VOLCANITES EXPLOSIVES		
∇	Pyroclastites/tuf - indifférenciés	TU
$\nabla \times$	Tuf à cristaux	TX
7	Tuf lithique	TI
$\nabla 1$	Tuf à lapilli	TL
∇ is	Lapillistone	TO
$\nabla{ }_{\text {b }}$	Tuf à blocs	TM
$\nabla 10$	Tuf à lapilli et à blocs	TY
∇	Tuf à blocs et à lapilli	TZ
∇ e	Tuf à cendres	TD
∇	Tuf cherteux	TC
∇_{0}	Tuf graphiteux	TG
∇ s	Tuf soudé	TS
\%	Hyalotuf (Vitric tuff)	TH
\bullet	Brèche pyroclastique	BP
∇	Volcanoclastites*	VC
	etc.	

Fragments

- Polygéniques

Exemples :

V27xPG
V27bo
VIDVo
$V \mathrm{~V}$
$\vee \nabla$

Tuf intermédiaire, à cristaux de PG
Tuf intermédiaire, à lapilli et à blocs, monogénique
Tuf dacitique, à blocs, monogénique
Tuf cherteux
Tuf indifférencié

* Il est recommandé de limiter l'utilisation du terme «volcanoclastite», autant que possible.

Tableau 15 - Codification lithologique des sédiments
S SÉDIMENTS (roches sédimentaires indéterminées)
S1 GRĖS (terme général comprenant les arénites et les wackes)
S1A Grès quartzitique
S1B Grès feldspathique
S1C Arkose
S1D Grès arkosique
S1E Grès lithique
S1F Grès lithique subfeldspathique
S2 ARÉNITE
S2A Arénite quartzitique
S2B Subarkose
S2C Arkose
S2D Arénite arkosique
S2E Arénite lithique
S2F Sublitharénite

S3 WACKE

S3A Wacke quartzitique
S3C Wacke arkosique
S3D Wacke feldspathique
S3E Wacke lithique

S4 CONGLOMÉRAT

S4A Conglomérat monogénique
S4B Conglomérat monogénique «clast-supported»
S4C Conglomérat monogénique «matrix-supported»
S4D Conglomérat polygénique
S4E Conglomérat polygénique «clast-supported»
S4F Conglomérat polygénique «matrix-supported»
S4G Conglomérat intraformationnel
S4H Conglomérat intraformationnel «clast-supported»
S4I Conglomérat intraformationnel «matrix-supported»
S4J Tillite
N.B. - Il est recommandé de limiter l'utilisation des termes de la série S1. Ces termes généraux ne sont utilisés que lorsqu'il n'est pas possible d'être plus précis, notamment lors de la compilation de données anciennes.

S5 BRĖCHE

S5A Brèche monogénique
S5B Brèche monogénique «clast-supported»
S5C Brèche monogénique «matrix-supported»
S5D Brèche polygénique
S5E Brèche polygénique «clast-supported»
S5F Brèche polygénique «matrix-supported»
S5G Brèche intraformationnel
S5H Brèche intraformationnel «clast-supported»
S5I Brèche intraformationnel «matrix-supported»

S6 MUDROCK

S6A Siltstone	S6D Mudstone	S6G Claystone
S6B Siltshale	S6E Mudshale	S6H Clayshale
S6C Siltslate	S6F Mudslate	S6I Clayslate
S7 CALCAIRE		
S7A Calcilutite	S7E Mudstone	S7I Boundstone
S7B Calcisiltite	S7F Wackestone	S7J Bafflestone
S7C Calcarénite	S7G Packstone	S7K Rudstone
S7D Calcirudite	S7H Grainstone	

S8 DOLOMIE

S8A Dololutite
S8B Dolosiltite
S8C Dolarénite
S8D Dolorudite

S9 FORMATION DE FER

S9A Formation de fer indéterminée
S9B Formation de fer oxydée
S9C Formation de fer carbonatée
S9D Formation de fer silicatée
S9E Formation de fer sulfurée

S10 CHERT

S10A Chert oxydé
S10B Chert carbonaté
S10C Chert silicaté
S10D Chert sulfuré
S10E Chert graphiteux/carboné
S10F Chert ferrugineux
SIOJ Jaspe (Jaspilite)

S11 EXHALITE

S12 ÉVAPORITE

S12A Halite
S12B Sylvite
S12C Anhydrite
S12D Gypse
S12E Sulfate

S13 PHOSPHORITE

SYMBOLES POUR ROCHES SÉDIMENTAIRES

Une liste des symboles pour les structures et textures des roches sédimentaires est présentée dans le tableau 16. Pour se bien familiariser avec l'utilisation de ces symboles, et pour d'autres symboles utilisés pour les roches sédimentaires, se référer à Bouma (1962) et Tassé, Lajoie et Dimroth (1978).

Tableau 17A - Roches métamorphiques et tectoniques

* Utiliser plutôt les codes de tectonites (T). Ces codes ont été utilisés avant l'introduction de la classe des tectonites.

Tableau 17B - Tectonites

TECTONITES T	
T1 T1A T1B T1C T1D T1E T1F T1G	Cataclasite Brèche de faille Microbrèche de faille Gouge de faille Pseudotachylite Mylolisthénite Brèche d'impact Impactite
$\begin{gathered} \text { T2 } \\ \text { T2A } \\ \text { T2B } \\ \text { T2C } \\ \text { T2D } \\ \text { T2E } \end{gathered}$	Mylonite Protomylonite Orthomylonite Ultramylonite Phyllonite Blastomylonite
$\begin{gathered} \text { T3A } \\ \text { T3B } \\ \text { T3C } \\ \text { T3D } \end{gathered}$	Gneiss droit («Straight gneiss») Gneiss porphyroclastique Gneiss régulier Gneiss irrégulier
$\begin{gathered} \text { T4 } \\ \text { T4A } \\ \text { T4B } \end{gathered}$	Brèche tectonique Mélange tectonique Brèche tectonique à matrice de marbre («Marble tectonic breccia»)

Tableau 18 - Codes mnémoniques des minéraux et des fossiles, et divers

CODES MNÉMONIQUES DES MINÉRAUX ET DES FOSSILES, ET DIVERS

CODES MNEMONOUES DES MINERAUX ET DES FOSSILES						GRAMULOMETRAE
Acanthite AV	Chondrodite MR	Greenockite GK	Mindraux radioactits MR	Serpentina ST		... <0.001 mm 9
Actimote AC	Chromite CM	Grenat GR	Molybdénita MO	Sideribe(siderose) .. SD	Eractiopoden YB	A, $0.001-0.01 \mathrm{~mm}$.
	Chrysocolle CY	Grenal-dimandin . . . GA	Molybdite(dine) MB	Siderrail SI	Bryozosires YZ	$\ldots<0.01 \mathrm{~mm} \ldots . .2$
Apate AE	Chrysotile CS	Grenat-andratith ... GD	Monazite MZ	Sillimanite........ SM	Cephalapodes VC	B. $0.01-0.05 \mathrm{~mm}$. 3
Alvinte BP	Clevelandite Cl	Grenat-grosalaie . GG	Muscovite MV	SmakitaSmatine . . TW	Conulaires YA	C. . $0.05-0.1 \mathrm{~mm} \ldots 3$
Abite AB	Cinopyrowene CX	Grenatpyrope GY	Nbohbline NP	Samarkitat...... SK	Coraux YX	$\text { D. } 0.1-0.2 \mathrm{~mm} \ldots .3$
Alanite AL	Cinozoisite CZ	Grerat eppessartine. GS	Oligocises OG	Sminsomite zo	Crinoldes \ldots. , YR	... $<0.2 \mathrm{~mm} \ldots . . .4$
Atafto TP	Cobatrita $\ldots \ldots$. CE	Gremat-uvarovite ... GU	Olvine OV	Sodalite S5	Echinodermea YD	E . $0.2 .0 .5 \mathrm{~mm} \ldots .5$
Amazonite Al	ColumbiteNicbile .. NB	Gunerite GN	Or natit (vatiole) ... Au	Sprcularite HS	Eponges YE	F.. $0.5-1.0 \mathrm{~mm} \ldots .5$
Ametryde AH	Columbo-matalite .. TO	Gurmite GB	Orthoclase (orthose) OR	Sphaterite SP	Gastercpoces VT $^{\text {c }}$	G... 1-2 mmn 6
Amiante (Asbestos) AO	Cordierne CD	Gunningtre Gi	Ormopyroxene OX	SphoneTTitante ... SN	Graptoltea YG	H... $2.5 \mathrm{~mm} \ldots \ldots .6$
Amphtole AM	Corindon CN	Gypee GE	Otrelite O	Spinelle sl	Oastacdes YO	J... 0.5-1 cm 7
Andialousite AD	Cosalite PI	Halite HL	Oxycte de fer OF	Spodument 50	Pêdecipodes YP	$\mathrm{K} . .1$ 1-3 cm 7
Andotine A A	Covelits CV	Heaziewoodite.... HZ	Oxytombiende	Staurotida SU	Plantes YN	... $>3 \mathrm{~cm}$....... 8
Anlydrite AY	Cubanit CF	Hedenbergite HG	(harnblende brune). OH	Stsative Ts	Poiseona YK	L 3-10 cm
Arkérite AK	Cuivere natit (visible) Cu	Hématite Hm	Paragotito PE	Stubin/Stionite S8	Stromataldes Y Y	M 10.30 cm
Annabergite NG	Cummixxtonise CG	Hercyile HC	Pectibiende PB	Stubita(Heulandive). HD	Stumatoporoldes ... YI	$\mathrm{N} \ldots . . .3$ 30-100 cm
Arorthite AN	Cuprite CU	Holmquistite thK	Penviniteplonnine .. PT	Stipnomelane SE	Traces foseiles VF	P 1 m
Anthophylite AT	Dipenite DG	Homblende HB	Pentlandite PD	Sutures SF	Triobitas $\ldots \ldots . .$. Y	O $\ldots{ }^{\text {1-2 m }}$
Arxigaike AR	Diopeide. DP	Hypersithene HP	Perowskite PK	Sywanite SV		
Apatite AP	Disthernekyante . . . KN	ldoingsite IG	Perthite PR	Szomolnokite sz	Divers	S 46 m
Angent natif (wistio) Ag	Dolomite DM	Immenite $\mathrm{MM}^{\text {d }}$	Petzite PZ	Talc TC	Bicclames \times x	T $\ldots \ldots . .6$ 6-10 m
Assencopyite AS	Dravite TG	Jade J JA	Phenacta/Phenakite PA	Tantalita 7 T	Ciment XC	U $\ldots{ }^{10} \mathrm{~m}$
Augite AG	Dravite-Scherilio ... DS	Jagpe J JP	Pricgupite P4	Tekurobismutilo .. TB	Hydrocartures XH	$\checkmark \ldots . . .{ }^{\text {c }}$. $10-20 \mathrm{~m}$
Ausunite AU	Electum EM	Kadirine KL	Pratactive PC	Ternantite ${ }^{\text {Tr }}$	Liant \times x.	W 20.50 m
Awatrite NF	Enargite EG	Klokmannita KK	Pragioctase PG	Tetradymite TD	Lithodaster XR	
Avinite AX AX	Enstabio ES	Komerupine KP	Pollucite ZP	Totrahedrite TH	Matière orpanique . . XG	$z \ldots \ldots . . .100 \mathrm{~m}$
Azunit AZ AZ	Epidote EP	Kremnerite KR	PTêndis PN	Thorianite TR	Matrice XM	X Autres
Baryine BR Batmaesite BA	Eudialyto....... EU	Labradorite Lawsonte 48	Pumpelyite PP Prite PY			
	Euxionte - (M..... . Ex	Lawsonte LS	Prite PY Pyrchiore PM	Topaze \mathbf{T}	Ootites XO X Poults XP	
Biotite 80	Feldspath veritrun. FV	Loucho. LC	Pyrousite PS	Toumaline TL		
Bismuthinite BM	Feldispath FP	Lescoxine ix	Pyrophyllite PL.	Tourmaine zincitere TA	Autres ${ }^{\text {dx }}$	
Bismutita BS	Felcispath noir PN	Limonite LM	Proxène PX	Trémolie TM		
Bomite EN	Feldepath porassique FK	Magntaste MN	Pymotie(Pymotine) PO	Uraninite UR		
Boutangeme BG	Felcapathoide FD	Magneite MG	Ouarz O2	Urancphane UP		
Brochanitite EH	Fergusanite FS	Malachith MC	Quartz bleu Q8 $^{\text {d }}$	Uranothoite U UT		
Bructe BC	Fibroits FB	Marcasite MS	Priebockite R日	Vallerito Vh		
Bytownite 8T	Fluatie (lucine) . . . FL	Mariposite MT	Pocenite RZ	Vemiculita VR		
Caiaverte CA	Forsterits FO	M6tllte ME	Ruatle RL	veawiante \mathbf{w}		
Calcita CC	Frankinitas FR	Mesopertite MP	Samarckito-M UL	Vidarite vo		
Camonate CB	Freibergite FG	Mica M M	Saridine SA	Willemite WM		
Chaberite (Chabaste) 28	Fuchent FC	Microcine ML	Sepphtrine SH	Witeonts Ws		
Chalcocte(ne) CT	Gatmite GH	Millerte NS	Scapolina SC	Woltrarsito WF		
Chalcopyrite CP	Galorna GL	Mindmux argileux . . MA	Scheolite SW	Wollastonite WL		
Chert CH	Gécrite GT	Mineraux decoratits . MD	Schorfiter(Scherl) ... TF	Wulferite WN		
Chloantite CO	Glaucoohane GC	Minerruxx lourde . . . MX	Stienito SG			
Chionite Cl	Goothite GO	Mineraux mafiques. MF	Stuerium Se	Zincite ZN		
Chioritorde CR	Graphtite GP	Minéraux cosques. OP	Sérictu SR	Zincon $\ldots \ldots . .$. ZC Zolsite \ldots. ZS		

Tableau 19 - Codes mnémoniques - Structures, textures et autres

CODES MNÉMONIQUES - STRUCTURES, TEXTURES ET AUTRES

STRUCTURES, TEXTURES ET AUTRES						
Ackulaire , AC	Coulbe CL	Fertes de	Granoclassement inversa			
AdCumutal AD	Coulte coussinge al	dessication FD	suivi de nomal Gd \qquad	Liss lanticulaires LD	$\begin{aligned} & \text { «Rill mank(s)* RM } \\ & \text { «Rip-up clastis)* } \end{aligned}$	Tif a cisisuux TX
Affevrement caractrised	noyaux	Fe	Granoctassement nor	Lits minces ($1-10 \mathrm{~cm}$) LM	Ruban de quatz . . . RO	Tut a lapilin Th
parat te plisserment ... AA	cauceuritieas NC	retridissement FM	suivi diliverse GK	Lobe LB	Ruband(a) RU	Tuf à capilli ot
Agmatitiqua	Coulte tragmentibe . . FZ	$\text { Fitreux (sa) } \ldots \ldots \text {. } \boldsymbol{F}$	Granoclassement	Massit(ve) MA	Rubanement	a blocs 7 T
Alaskitique AL	Coulée mastive CK	Fbroblasique FB	nomal GN	Mbgacoussins (a) .. MC	concentique RA	Tul cherteux TC
Altert AE	Coullé mastive à noyaux	Filonien FN	Granoclastique GO	M Megaporphyrique . . MP	Rubanemem de diftusion	Tuf graphiteux TG
Amas arrondis	saussuntises NM	Firc	Granophymique GY	MSlanocrate MX	(aLiesegang rimpsn) . Lل	Tut thicua TI
(olobulaines) AO	Coulee mastive a surtaca	cogenetiques	Granules (a)	Mélanosorne MS	Pubanement	Tuf soude TS
Amas inégutiera Al	coussinfe CZ	(symolcaniques) FH	(2-4 mm) GU	Mbescrate MK	symbtique RS	Tutach TU
Amicoidal(e) AB	Coulees	Flammes FE	Graphique GP	Mssocurnulat MF	Rubsenement	Turbidite (voir guide
Amypdalaire AM	grenues evou parties	wflasers FS	Grition GV	Mbtamerphise ME	tectonique RT	des getiches) TB
Anastomoed AN	basales grenues de	Flued, par fluage	*Hartisico HA	Miarolituo M M	Seccaroidale	Varbolitique VA
Antrapakivi AR	coulee........ CW	fruidal PL	Holictique HE	Micrstiqua MT	(granoblastique)ss	Veine(t) VN
Aphanitique AP	Coussint	Furdata)	Hettractumulat ... HU	Micrctereche Mm	Schistoux SC	Vemicaulaire VE
Arborescent AS	(covesins) $\ldots c 0$	(atasuciue) FL	Heteroclastique HB	Microlitique M1	"Schlieren" SH	Vitreux(se) Vi
Autocdastique AU	Coussins allonge .. XP	Filte detrorme par	Hétrogine HK	Microperphyrique ... MR	Scoriade(e) SR	Vokcarique vo vo
Bancs (en) BA	Coussins aplatis FP	surcharpe FX	Heterogranulaire ... HG	Minicoussins (a) MU	"Shattere cone SV	Volcanoclastibss ... VC
Bandes de	Coussins on	Fiste (wfiltecastr) ... FT	Molocristalim(e) . . . HC	Mobilisar MZ	"Siump* SL	Xénotiastique X X
cimentation....... 日M	modaire MD	Folief(e) FO	Helohyalin(e) HHH	Monogenique	Sormmital(e) SM	Xennomorphe XM
Basal(e) BS	Couseins	Fossilitre FF	Hoidencocrate HL	*Nonomictic: MM	Soheneroiticue SP	Autres XX
Birds eyer BE	tragmentes CF	Fractur()(e) FA	Holomflancorate .. HMM	Mosaliqua MO	Somillex (a) Sx	
Bliseau Bl	Counsins isolés Cl	Frectures raciales dans	HomAoblastique ... HO	Mylonitique \qquad MN	Stockwerk SW	
Bhocs (a) BL	Coussins jomintits CJ	les coussins FC	Homogene \qquad	Myrmedisique M M	Strautications	
Borcureflimite	Crescumudat CT	Fragmente(e) FG	Hornotaxtique HT	Nêbulitque NB	entrecrcistes	SECUENCE : O...
de counte BU	Cristallodastique . . . CR	Freqments allonges	Hyaloclasites HY	Nematoblastique NE	de tosse SF	Staunnce
Bothryoidal BV	Cristaux (en) CX	*monorricticol	Hyaloclastites	Néosome \qquad NS	Stratifications:	
Boudinage B0	Cryptaloaire CP	moncoéniques FW	remanies HR	Noculaire NO	laminations ctbiques	Suite desor. de couches
Breche à coussins	Curmulat (a) CU	Fragmerts allonges	HyalopilitiquaMP	Noyaux NY	plaraires SN	d'épaisseur
	Curnulite CM	upolymicticol	Hyalotif TH	Ocollaive OC	Stralification	inconstantio. OA
Breche à coussint peu serres BG	Cupules (ndish stixc.-) DS	polyoéniques ... Fragments aplatis	Hypidiomophe HD Hypocristallin(e) \qquad		laminations obliques tangentienles \qquad 50	Suite debor. de couches d'épaisseur
Breche à mega-cousins	Cyctique CY	-potymictice/	Vdiomophe ID	Ooltique 00	Stratifié(e) ${ }_{\text {ST }}$	constanta OB
	Denditique DT	polppéniques FK	Imbrication de calloux,	Ophitque OP	"Strsekyn maliques	Aythrue reguliex de
Brectey è mini-cousseins isoles 88	Destagreǵssbrises. DG Drabasique DO	Fragments aplatis	blocs ${ }_{\text {m }}^{\text {m }}$	Otbiculaire OR	en trait SG	couches defpaisseln
Brectre de coulbe/ breche	Diablastique DB	monogéniques FO	Impregnation $\ldots . .$. intergranulaire K K	Orthocumulat OU Paldosorme PS	(. ST	inconstante \propto Aythme regulier de
de lave BO	Diaclase \qquad DC	Frambolidal RB	Intersertale is	Palédsurtice	Stratoide	couches d'Epaisseur
Breche de coussins	Direction d'ecoliement de	Fites ("pencil structure)	Intradastes(a) , IT	d'ércsion \qquad PE	(*stratabound*) SJ	constante OD
désagreqessoristes ... BH	coldé DE	(en crayona) FR	Intratormationnel(10) . IR	Panidiomorphe PA		
Breche de coussins tragmentes BK	Direction de courant \qquad DR	Gaets (a) $\text { (} 64-256 \mathrm{~mm} \text {) }$	Inturitiva) miection IU	Patron dinteriterence . PV Pegmatiticue PG	$\begin{aligned} & \text { «Stromatice SK } \\ & \text { Stromatolitioug SU } \end{aligned}$	couches d'tpaisseur
Breche dintrusion... BN	Discordance DD	Ceode GE GE		Pegmatitique PG Pellets (a)...... PL	Stromatolitique SU Structure de percement	inconstante OE Aythme infegulier de
Brecte	Dissemine DI	Giomeroblastique .. GB	lisolds IL	Petholdes PD	("piercemento) ET	couches d'épasseen
prroclastique BP	Drusique DK	Glomeroclastique .. GC	Joints en colonnes . . JC	Percibque PT	Sincture	constante OF
Brectiquebréche ... BR	Dunes DU		Karstique KR	Peu mernts (whosely	"Dunchbewegung* . DW	Cydes oomplets. . . QG
Breche tectorique BT	Echappement	cristalin(a) GX	Labradorescence ... LU	packed - LR	Stucture en cocarda	Cyctes incomplets. . OH
Broyage BY Ceviloux alignes upectle	(structure oft) SB	Glomero-	Laminaine (lamind) . . LA	Phanéritiqua PH	(cruastifeation binns	Autre QX
Cailoux aignes upeocle stringers: PK	Echarde	porphyrique GH	Laminations	Prienocristique Pl $\mathrm{Pl}^{\text {a }}$	breche, -cockadem). PY	
Calloux $468 \mathrm{~mm} .$. CA	(structure d)	cray		tyomatiques ... PZ	Stucture en peigne	
Cannolure ${ }^{\text {CN }}$	Eftonchernent	(*straight gneiss-). GD	cryptalgaines CP	Poscilitiqua PC	("comben) PW Stylitites SY	RELATION AVEC LE
Cataclastioue CO	(structure d) EF	Gnelssique GS	Laminations	Poecilloblastioue PE	Subophtique ${ }^{\text {a }}$ SO	CORPS GEOLOGIRUE
Concres (a) CE			ondutantes Lo	Payperniqual	Surtace d'erosion ... SE	ADJACENT:
Centre volcanianue	carnehures EL	densimbtrique GW	Laminations ondukantes	"Potymictic- PM	Tabuaire TA	o丸9
facies proximal VP	Empreinte de charge	Gradation	senticulairse LL	Ponce PN	Talus (de) TT	
Cheminfor d'alimentation	(miond cast-) EC	granulometriqua ... VG	Laminatons pobliques L0	Porphyre Pp	Tectonique TE	
(dyke noumider) ... DN	Emproime dimpact . . El	Grains fins (a)	Laminations parsile Les	Porphyrique PO	Tectonite en L YL	Intercilitation avec ...0,
Cheminto	Enclave EN	-roches igndes	Lapillistore TO	Porphyroblasique . . PO	Tecturite en LS . . . Y Y	
volcaniqueCV	Encrounement	< 1 mm......... GF	Lapill (a) 4	Porphyroclastioue ... PJ	Tectonite en S YS	Sous-jacent 2
Chenal CH	(Herustification-) ... EM	Grains grosciers (${ }^{\text {a }}$ -		Prismatique PX	Tectonite	En contact net avec . . 3
Chenalise CG	En dechelon EE	roches igntes	Levalcoulbe de lave. LV	Protoclastique PF	hetreroclastique YH	En contact ditus avec. 4
Chenal	En festons ES	> $5 \mathrm{~mm} \ldots . .$. . 66	Lave en blocs LK	Pyroclastiqua PR	Tectorite	En contact trans. avec 5
d'érosion (a) CD	En apcohyse AY	Grains moyens (a)	Lenticulaire LE	Radeaux (en) RO	homociastiqua YM	En contact discor. avec 6
Cisallele) CS	Epiclastique EP	roches lynees	Lepdablastique LF	Rapakiviqua RK	Traces tossiles	$\text { \| motrusif dans } 7$
Callotorme OL	Equigramulaire EO	$1.5 \mathrm{~mm}$. GM	Levcocrato LX	Aemanié(9) PN	(trous de vers, etc.) . . TF	
Columnaire/(fints	Excrocssancos ER	Grains tres fins \qquad	Leucosome	Remplacement RL	Trachytiquel	$\begin{array}{\|l\|} \text { En enciave dans } \\ \text { Autre } ~ \end{array}$
en colonnes)Jc	Extruail (ve) Ex	Grains tres grossiers GO	Linc(0), stratite(e) ... SA	Renitorme RF	trachinoide \qquad TR	
Concretion(a)	Falle infra-	Granobldastique GR	Uts amatoames ... AG	Reticute (0) RE	Trempe (de) \qquad	
nodules CC	formationnele FJ	Grancciassemem	Lits d'epaissour	Rides de	Tuf a blocs TM	
Convolutions (a) CB Corontione \qquad KO	Falle	inverse \qquad	moyenne	courant RC	Tuf a blocs et	

Appendix 3 : Soil samples descriptions

Appendix 3 : Soil samples descriptions

Appendix 4: Drill logs

Appendix 5 : Certificates of analysis - Soil samples

Appendix 5: Certificates of analysis

Soil samples description
Drill logs
Certificates of analysis - soil samples
Are available upon request to :
Virginia Mines Inc.
Email : mines@virginia.qc.ca
Phone : (418) 694-9832
Toll Free : (800) 476-1853

