EX-99.1 2 d882672dex991.htm EX-99.1 EX-99.1

Exhibit 99.1

 

LOGO

Q1 ABS

Technical Due Diligence Report

Palmetto Clean Technology

Document No.: 10558187-HOU-R-01

Issue: E, Status: Final

Date: 1 April 2025

 

LOGO

SAFER, SMARTER, GREENER


LOGO

 

IMPORTANT NOTICE AND DISCLAIMER

 

  1.

This document is intended for the sole use of the Customer as detailed on page iii of this document to whom the document is addressed and who has entered into a written agreement with the DNV entity issuing this document (“DNV”). To the extent permitted by law, neither DNV nor any group company (the “Group”) assumes any responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Customer), and no company in the Group other than DNV shall be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by DNV, the Group or any of its or their servants, subcontractors or agents. This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.

 

  2.

This document is protected by copyright and may only be reproduced and circulated in accordance with the confidentiality conditions stipulated and/or in DNV’s written agreement with the Customer. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of DNV. Consent to redistribute this document shall not thereby imply that DNV has any liability to any recipient other than the Customer.

 

  3.

This document has been produced from information relating to dates and periods referred to in this document. This document does not imply that any information is not subject to change. Except and to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, DNV shall not be responsible in any way in connection with erroneous information or data provided to it by the Customer or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.

 

  4.

Any estimates or predictions are subject to factors not all of which are within the scope of this document and nothing in this document guarantees any particular performance or output.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page i


LOGO

 

Project name:   

Q1 ABS

Technical Due Diligence Report

Palmetto Clean Technology

997 Morrison Drive, Suite 200 Charleston, SC 29403

   DNV Energy Systems
Report title:   

Renewables & Power Grids

155 Grand Avenue, Suite 600

Oakland, CA 94612

Tel: +1 510-891-0446

Customer:

 

Contact person:    David Fairbank
Date of issue:    1 April 2025
Proposal reference:    OPP-00405425-HOU-P-01-A Palmetto H1 2025 ABS   
Document No.:    10558187-HOU-R-01-C   

 

 

Task and objective:

The Report describes DNV’s technical due diligence review, in its capacity as Independent Engineer, for a residential, third- party owned portfolio.

 

Prepared by:

 

Rebecca Ambresh, Project Manager

    

Approved by:

 

Ben Dodge, Team Lead

LOGO      LOGO

 

Distribution outside of DNV:

☐ PUBLISHED  

Available for information only to the general public

(subject to the above Important Notice and Disclaimer).

 

☒ CUSTOMER’S DISCRETION  

Distribution for information only at the discretion of the Customer

(subject to the above Important Notice and Disclaimer and the terms

of DNV’s written agreement with the Customer).

 

☐ CONFIDENTIAL  

Not to be disclosed outside the Customer’s organization.

 

☐ NONE   Not to be disclosed outside of DNV.

© 2025 DNV Energy USA Inc. All rights reserved.

Reference to part of this report which may lead to misinterpretation is not permissible.

 

Issue

  

Date

  

Status

  

Reason for Issue

  

Prepared by

  

Verified by

  

Approved by

A    07 March 2025    DRAFT    Preliminary Report   

B. Dodge

 

A. Quattrone

 

  

R. Ambresh

 

C. Hayes

   S. Heller
B    12 March 2025    DRAFT   

Updates to Equipment Replacement modeling

 

   B. Dodge       G. Panikkar
C    12 March 2025    DRAFT   

Update to Table 2-12

 

   B. Dodge       G. Panikkar
D    21 March 2025    DRAFT   

Addition of BESS unit cost table

 

   R. Ambresh       B. Dodge
E    1 April 2025    Final    Correction on Table 2-5    R. Ambresh       B. Dodge

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page ii


LOGO

 

Table of contents

 

1

  ENERGY ANALYSIS AND PERFORMANCE GUARANTEE FORECASTING      3  
  1.1    Description of the data set      3  
  1.2    Weather correction      3  
  1.3    Accuracy of Sponsor’s energy production forecasts      4  
  1.4    Forecasting      5  
  1.5    Degradation      7  
  1.6    Performance guarantee payout modeling      8  

2

  TECHNICAL INPUTS TO FINANCIAL MODEL      11  
  2.1    PV equipment replacement modeling      11  
  2.1    BESS equipment replacement modeling      20  
  2.2    Financial model conclusion      24  

3

  REFERENCES      25  

 

List of tables

  

Table 1-1 Palmetto Portfolio Summary

   1

Table 1-1 Regional PI of the Production Sample

   4

Table 1-2 PTO PI of the Production Sample

   5

Table 1-3 Forecast Sample distribution

   5

Table 1-4 Future uncertainty by region

   6

Table 1-5 Portfolio exceedance values considering IAV only

   7

Table 1-6 Portfolio degradation rates

   8

Table 1-7 Performance guarantee Correction Factors and standard deviation

   9

Table 1-8 Performance guarantee payout forecasts for the Portfolio

   10

Table 2-1 Portfolio inverter OEM

   11

Table 2-2 Portfolio module OEM

   11

Table 2-3 Inverter equipment replacement costs

   14

Table 2-4 Module equipment replacement costs

   15

Table 2-5 Meter replacement costs

   17

Table 2-6 Annual equipment replacement cost forecast for the Portfolio

   19

Table 2-7 Annual equipment replacement cost forecast for the Portfolio

   20

Table 2-8 Portfolio BESS Breakdown

   20

Table 2-9 Portfolio BESS Breakdown

   21

Table 2-10 DNV generic BESS failure curve

   21

Table 2-11 Annual BESS equipment replacement cost forecast for the Portfolio

   22

Table 2-12 Annual BESS equipment replacement cost forecast for the Portfolio per unit

   23

Table 2-13 Portfolio equipment replacement model summary

   24

List of figures

  

Figure 2-1 Total Portfolio O&M cost

   13

Figure 2-2 DNV primary residential inverter and optimizer failure rates

   15

Figure 2-3 DNV primary module failure rates

   16

Figure 2-4 Meter failure rates

   18

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page iii


LOGO

 

INTRODUCTION

At the request of Palmetto Clean Technology (“Palmetto”, the “Customer” or the “Sponsor”), DNV has performed a technical due diligence review of the Sponsor’s portfolio of residential PV and PV + battery energy storage systems (BESS) projects (the “Portfolio”) in support of an anticipated securitization.

The purpose of this Report is to summarize DNV’s review of the Sponsor’s capabilities and the documentation received; to evaluate technical risks and mitigation measures relative to typical industry practice; and to advise on the status of any issues that appear technically incorrect and inconsistent with documentation or that remain unresolved at the time of the preparation of this Report.

Per the datatape DNV received, a summary of the Portfolio attributes is provided in Table 1-1.

Table 1-1 Palmetto Portfolio Summary

 

Region

   Number of systems      Capacity
(MWdc)
 

AR

     1        13  

AZ

     2561        23421  

CA

     3075        21461  

CO

     601        4155  

CT

     277        2741  

FL

     3369        36453  

GA

     382        3379  

IL

     497        5211  

KS

     80        631  

MA

     484        4372  

MD

     54        531  

ME

     32        294  

MI

     44        350  

NC

     150        1363  

ND

     1        6  

NH

     31        273  

NJ

     65        629  

NM

     109        717  

NV

     526        4716  

NY

     1        15  

OH

     275        2473  

OK

     212        1916  

PA

     408        3299  

RI

     12        105  

TX

     1560        16529  

WA

     1        14  
  

 

 

    

 

 

 

Total

     14,808        135,067  
  

 

 

    

 

 

 

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 1


LOGO

 

Scope of work

The DNV scope of work is defined in the Short Form Agreement (“Agreement”) OPP-00405425-HOU-P-01-A Palmetto H1 2025 ABS, dated 04 March 2025 and between Palmetto and DNV Energy USA Inc. This technical due diligence report (the “Report”) is provided pursuant to the terms and conditions of the Agreement, and disclosure of the Report to other potential investors and/or lenders is subject to provisions of the referenced terms and conditions and the disclaimer at the front of this Report.

The DNV scope of work includes the following:

 

   

Energy and performance guarantee forecasting

 

   

Technical inputs to the financial model

 

   

Equipment replacement modeling

Result tables presented herein are also presented in the attached spreadsheet deliverable 1055XXXX-HOU-XL-01-A Palmetto Q1 ABS TDD.

Methodology and assumptions

This Independent Engineering (IE) Report is a high-level technical due diligence review intended for financial institutions, customers, and project developers. DNV is well qualified to conduct this study, with extensive experience in solar independent engineering and technology due diligence work.

This Report summarizes DNV’s assessment of the Fleet and relies on the accuracy of the information provided. All those supplying product information have been open and forthcoming in providing the data that DNV has requested. This Report is based on some information not within the control of DNV. DNV believes that the information provided by others is true and correct and reasonable for the purposes of this Report. DNV has not been requested to make an independent analysis or verification of the validity of such information. DNV does not guarantee the accuracy of the data, information, or opinions provided by others. In preparing this Report and the opinions presented herein, DNV has made certain assumptions with respect to conditions that may exist or events that may occur in the future. DNV believes that these assumptions are reasonable for purposes of this Report, but actual events or conditions may cause results to differ materially from forward- looking statements.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 2


LOGO

 

1

ENERGY ANALYSIS AND PERFORMANCE GUARANTEE FORECASTING

DNV analyzed production data from Palmetto’s Fleet of deployed systems to assess the accuracy of Palmetto’s energy production estimates with the goal of establishing expectations for future production risks going forward for the Portfolio. DNV notes that many of the systems for which DNV was provided production data are cash and loan systems, not TPO systems, which is a distinction worth mentioning as cash and loan systems and TPO systems typically have different levels of operational oversight.

 

1.1

Description of the data set

DNV received a production data file in August 2024 (“H2 2024 data set”) with production estimates, actual production, and metadata for 19,946 systems through the end of July 2024 [1]. DNV used this production data for energy and performance guarantee payout forecasting for the Portfolio. DNV receive a separate datatape of system attributes [2] which was used to create Portfolio concentrations in this energy analysis and the equipment replacement forecasting analysis.

DNV analyzed Palmetto’s operational data from the Production Data File using the following steps:

 

   

Clean the data to remove erroneous and excludable values;

 

   

Adjust the production data to long-term average behavior with regard to irradiance;

 

   

Calculate system performance indices based on the accuracy of Palmetto’s forecasts;

 

   

Apply uncertainties to the future Portfolio;

 

   

Forecast future production.

Of the 19,946 systems, 17,006 systems had sufficient production and metadata with which to perform a historical production analysis (the Production Sample). These systems represent systems with data until July 2024. DNV notes that systems with lifetime historical performance indices below 50% and greater than 150% are not included in the Production Sample.

 

1.2

Weather correction

DNV calculated the extent to which over/under production in a region can be attributed to differences between the irradiance during the operational period relative to the reference irradiation for that region. The analysis compared monthly global horizontal irradiation (GHI) over the operational period to the long-term reference GHI. DNV procured monthly GHI data from DNV Solcast, a web-based service that provides gridded satellite-based irradiance data with global coverage. Solcast’s global solar dataset is based on over a decade of high-resolution visible satellite imagery via the broadband visible wavelength channel. This data has been processed using a combination of peer-reviewed, industry standard techniques and processing algorithms developed in-house, including a cloud-index algorithm that produces consistent results when used with the large number of satellites that must be combined to construct a global dataset. The resulting time series of cloudiness (or cloud index) is then combined with other information to model the amount of solar radiation at the Earth’s surface. The outcome is a 17+ year dataset that provides hourly and sub-hourly estimates of surface irradiance (GHI, DNI, and DIF) for all the Earth’s land mass at a spatial resolution of approximately 3 km (2 arc minutes).

DNV mapped each system in the Residential Production Sample in order to run a clustering algorithm that selects irradiance tile locations based on the geographic distribution and climactic regime of each of the systems in the Residential Production Sample. A total of 79 tile locations were selected. The actual production of each system in the Residential Production Sample is adjusted according to the irradiance adjustment factor during the measurement period from the nearest irradiance tile. The irradiance adjustment factor is the ratio of the annual long-term average compared to the period of record of each system.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 3


LOGO

 

1.3

Accuracy of Sponsor’s energy production forecasts

For each system, DNV computed the mean actual and expected monthly production for each of the twelve (12) calendar months. A Performance Index (PI) was then computed for each system by dividing the sum of monthly means for the actual production by the sum of monthly means for the expected production.

The Production Sample consists of 17,006 systems and the distribution of the performance indices in the Production Sample by region is displayed in the table below.

Table 1-1 Regional PI of the Production Sample

 

Region

   System count      Total capacity
(kWdc)
     Irradiance adjusted
PI
 

AZ

     170        1,609        1.04  

CA

     417        2,913        0.98  

CO

     158        1,127        0.94  

CT

     207        1,741        0.96  

DC

     11        83        0.92  

FL

     1,939        20,695        0.95  

GA

     1,173        10,296        0.96  

IL

     956        7,221        0.92  

MA

     2,033        17,420        0.95  

MD

     205        1,826        0.95  

MI

     422        3,004        0.90  

MO

     40        329        0.95  

NC

     1,545        12,717        0.96  

NJ

     304        2,417        0.95  

NM

     59        386        1.01  

NV

     856        7,180        0.98  

NY

     1        14        0.97  

OH

     523        4,572        0.95  

PA

     2,798        25,543        0.94  

RI

     508        3,575        0.95  

SC

     1,329        10,892        0.94  

TX

     1,077        10,717        0.93  

UT

     18        130        0.98  

VA

     233        2,295        0.92  

WI

     24        182        0.95  
  

 

 

    

 

 

    

 

 

 

Total

     17,006        148,884        0.95  
  

 

 

    

 

 

    

 

 

 

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 4


LOGO

 

The distribution of the performance indices in the Production Sample by PTO is displayed in the table below.

Table 1-2 PTO PI of the Production Sample

 

PTO year

   System count      Total capacity (kWdc)      Irradiance adjusted PI  

2017

     2        11        0.90  

2018

     386        2,967        0.93  

2019

     1,126        8,771        0.93  

2020

     1,952        16,211        0.96  

2021

     3,524        31,271        0.95  

2022

     6,739        60,967        0.95  

2023

     3,277        28,687        0.95  
  

 

 

    

 

 

    

 

 

 

Total

     17,006        148,884        0.95  
  

 

 

    

 

 

    

 

 

 

 

1.4

Forecasting

A representative sample of systems from the Production Sample were used to forecast for the Portfolio with a total capacity of 135,250 kWdc as shown in the table below (the “Forecast Sample”) which is intended to mirror the geographic and capacity distribution of the Portfolio. Systems in the Production Sample were randomly selected from the corresponding regions to achieve the capacity for each region in the Forecast Sample. As shown in the Forecast Sample, the capacity of the Forecast Sample is 135,250 kWdc and the target capacity of the Portfolio is 135,096 kWdc.

Table 1-3 Forecast Sample distribution

 

Region

   Anticipated
number of
systems
     Anticipated
capacity
(kWdc)
     Forecast
Sample
systems
     Forecast
Sample
capacity
(kWdc)
 

AR

     1        13        2        19  

AZ

     2,561        23,421        2,480        23,428  

CA

     3,075        21,453        3,076        21,454  

CO

     601        4,155        576        4,158  

CT

     277        2,741        319        2,754  

FL

     3,369        36,464        3,404        36,472  

GA

     382        3,379        372        3,386  

IL

     497        5,211        689        5,214  

KS

     80        631        83        638  

MA

     484        4,372        533        4,375  

MD

     54        531        61        534  

ME

     32        294        37        306  

MI

     44        350        54        354  

NC

     150        1,363        170        1,370  

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 5


LOGO

 

Region

   Anticipated
number of
systems
     Anticipated
capacity
(kWdc)
     Forecast
Sample
systems
     Forecast
Sample
capacity
(kWdc)
 

ND

     1        6        2        17  

NH

     31        273        30        278  

NJ

     65        629        75        632  

NM

     109        717        118        718  

NV

     526        4,716        615        4,716  

NY

     1        15        2        29  

OH

     275        2,473        283        2,484  

OK

     212        1,916        200        1,917  

PA

     408        3,325        364        3,335  

RI

     12        105        15        110  

TX

     1,560        16,529        1,649        16,536  

WA

     1        14        2        16  
  

 

 

    

 

 

    

 

 

    

 

 

 

Totals / Average

     14,808        135,096        15,211        135,250  
  

 

 

    

 

 

    

 

 

    

 

 

 

 

1.4.1

Irradiance uncertainty

DNV calculated the uncertainty or the interannual variability (IAV) of the solar resource for each region in the Portfolio as shown in Table 1-4. The Portfolio level IAV, which is influenced by each regional IAV value, is used to forecast portfolio level uncertainty in Table 1-5 below.

Table 1-4 Future uncertainty by region

 

Region

   Inter-Annual
Variability
 

AR

     3.33

AZ

     1.58

CA

     2.82

CO

     2.40

CT

     3.10

FL

     2.31

GA

     3.58

IL

     2.58

KS

     2.40

MA

     2.89

MD

     2.87

ME

     2.91

MI

     2.40

NC

     3.07

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 6


LOGO

 

Region

   Inter-Annual
Variability
 

ND

     3.33

NH

     2.90

NJ

     3.02

NM

     2.02

NV

     2.25

NY

     2.55

OH

     2.51

OK

     3.59

PA

     2.87

RI

     3.04

TX

     3.79

WA

     2.93
  

 

 

 

Portfolio

     2.15
  

 

 

 

 

1.4.2

Annual forecasts inclusive of irradiance uncertainty only

Table 1-5 shows probability of exceedance values for the Portfolio for any given year when the only source of uncertainty considered is IAV. Availability losses or historical performance of the systems in the forecast sample and degradation are not considered in Table 1-5 below. Values are not specific to year 1 of the Portfolio, but represent the probability of exceedance of the IAV for any 1-year period given the historical IAV of the regions represented in the Portfolio.

Table 1-5 Portfolio exceedance values considering IAV only

 

Exceedance value

   1- year  

P50

     1.0000  

P75

     0.9855  

P90

     0.9725  

P95

     0.9647  

P99

     0.9501  

 

1.5

Degradation

For an individual system utilizing standard crystalline modules, DNV utilizes an asymmetric system-level degradation distribution with a mean of 0.81%. This system-level degradation rate distribution is based on a peer-reviewed study published by NREL and DNV. The study analyzed a quality-controlled performance data from numerous PV installations to isolate the effect of degradation from other performance factors. For Maxeon systems, DNV utilizes an annual system-level P50 degradation factor of 0.25%.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 7


LOGO

 

DNV notes that the study was primarily based on performance data from larger-capacity PV systems, rather than residential- scale systems study.

There are notable differences between long-term module level degradation rates, such as the rates detailed in manufacturers warranties, and system level degradation. This difference is often attributed to BOS losses and system level degradation, which is the sum of the module level degradation and BOS degradation effects. It should be emphasized that a module can degrade at a rate independent of other modules. Over time the variation of these rates leads to system mismatch where the optimum operating current and voltages of modules may vary. For hardwired arrays this can lead to none of the degraded modules working as well in the array as they would individually, and this impact is expected to increase with time.

The Portfolio will utilize microinverters and module-level-power-electronic (MLPE) technology. The utilization of micro- inverters and module-level-power-electronics technology on residential sites can theoretically mitigate some of the electrical mismatch that can further degrade system performance; however, DNV currently lacks sufficient and statistically robust data to evaluate this behavior.

DNV performed a Monte Carlo simulation on the Portfolio systems to estimate the uncertainty in Portfolio-level degradation. A key assumption is that each module model behaves independently. Other factors can create either correlation or independence in degradation; however, little data is available to inform how these factors behave. In each realization of the simulation, a degradation rate is randomly sampled from a distribution unique to each module model, and this degradation rate is assigned to all systems utilizing that same module make and model. The Portfolio-level degradation rate was calculated as an energy estimate-weighted average of the degradation rates for all systems within the Portfolio. The results of 1,000 simulations of the Portfolio are presented in the table below.

Table 1-6 Portfolio degradation rates

 

Percentile

   Degradation
rate
 

P50

     0.80

P75

     0.92

P90

     1.04

P95

     1.11

P99

     1.27

 

1.6

Performance guarantee payout modeling

DNV anticipates that in some cases the Customer’s performance guarantee under its customer agreements will result in reimbursements paid to homeowners. Performance guarantee payouts are observed throughout the residential solar industry.

DNV understands that the Customer guarantees 90% of expected production for both PPA and lease systems. Actual production in a given true-up period below 90% results in a refund to the customer, while actual production above 90% will be used to offset future underperformance. The true-up period for systems in the Portfolio is three years.

When forecasting performance guarantee payouts DNV considers the historical performance of assets in the portfolio (defined as Correction Factor or Regional Correction Factor), IAV, and degradation. In the performance guarantee model, DNV calculates Correction Factor by averaging the annual Performance Index values for all systems in the Production

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 8


LOGO

 

Sample for that region that have more than two years of production data. The Correction Factor standard deviation for a given region is calculated by taking a standard deviation of annual Performance Index values for each system in a region. Then all system level standard deviations are averaged to determine a regional standard deviation for modeling purposes. The table below shows the performance guarantee Correction Factor and Correction Factor standard deviation for the performance guarantee calculations.

Table 1-7 Performance guarantee Correction Factors and standard deviation

 

Region

   Systems with 2+ yrs
data in Production
Sample
     Correction
Factor
     Standard
deviation
 

US

     12,545        0.96        0.039  

DNV has forecast performance guarantee payouts for the Portfolio based on each system having a 25-year contract with the homeowner and the payout true-up period being every three years with a 1 year true-up period at the end of the term.

The model was run at a 90% guarantee level via Monte Carlo simulation for the Forecast Sample of 15,211 systems, which were sampled from the 12,545 systems with sufficient data. The methodology employed for these calculations for both the lease and PPA systems is as follows:

 

  1)

The calculations were performed on the 15,211 systems in the Forecast Sample. Each asset was assigned a first- year generation estimate in units of kWh/year by multiplying its kWdc size by the average yield factor of each state.

 

  2)

For each system, production was simulated for each year of the customer agreement according to the following process:

 

  a.

A Regional Correction Factor was sampled from the system’s Regional Correction Factor distribution for each year of each system realization.

 

  b.

A degradation rate was sampled for each system for each realization. DNV’s degradation distribution for PV systems has a median of 0.64% and a mean of 0.81%.

 

  c.

For each year of each system realization, inter-annual variability values were sampled from the Portfolio variability distributions for each year. These variability values were applied to the simulated production from (b).

 

  3)

If production for any year was below either 90% of the estimate for that year, the difference was considered reimbursable energy, and a refund is issued to the homeowner. If production exceeded the guaranteed production, that amount is banked against future underproduction.

 

  4)

For each system, the annual reimbursement rates were calculated as the ratio of the reimbursable energy to the estimated production in that year. The system’s total reimbursement rate was calculated as the ratio of the total reimbursable energy to the total energy produced. The average reimbursement rate was calculated for each region for both the annual and the lifetime results.

 

  5)

The model was run with 1,000 realizations and the P50, P75, P90, and P99 reimbursement rates were calculated.

Results are presented in Table 1-8 below as the ratio of reimbursable energy to the forecast energy for that three-year period (one year period for the last year of contract term). DNV’s forecast assumes that each system starts on the same date. The forecasts can be applied proportionally across different start years.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 9


LOGO

 

Table 1-8 Performance guarantee payout forecasts for the Portfolio

 

Year

   P50     P75     P90     P95     P99  

1

          

2

          

3

     0.03     0.09     0.20     0.28     0.46

4

          

5

          

6

     0.17     0.22     0.29     0.33     0.41

7

          

8

          

9

     0.57     0.67     0.76     0.82     0.93

10

          

11

          

12

     1.11     1.24     1.34     1.40     1.50

13

          

14

          

15

     1.74     1.89     2.00     2.07     2.16

16

          

17

          

18

     2.42     2.57     2.71     2.79     2.92

19

          

20

          

21

     3.19     3.35     3.50     3.57     3.68

22

          

23

          

24

     4.00     4.18     4.33     4.40     4.52

25

     4.58     4.77     4.90     4.97     5.09

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 10


LOGO

 

2

TECHNICAL INPUTS TO FINANCIAL MODEL

 

2.1

PV equipment replacement modeling

DNV modelled expected equipment replacement costs for inverters, modules, and monitoring equipment for the Portfolio as defined in the portfolio datatape [2] which included equipment specifications for each asset to be included in the Portfolio.

The model is designed to simulate an ownership model in which Palmetto is responsible for all O&M costs. DNV’s model considers equipment failure rates, projected equipment costs, equipment warranties, system size, likelihood of multiple non- critical failures on a single system, and labor costs.

 

2.1.1

PV equipment replacement assumptions

Portfolio

 

   

The lease/PPA for all systems is 25 years; no lease renewals or defaults are considered.

 

   

No equipment replacement costs past lease expiration date.

 

   

System installation date was taken from the datatape. Systems in the Portfolio were installed in 2023-2025.

DNV modeled the inverter capacities in Table 2-1.

Table 2-1 Portfolio inverter OEM

 

Inverter OEM

   Capacity (kWdc)      % of total capacity  

Enphase

     99,262        73.5

SolarEdge

     20,736        15.4

Tesla

     14,855        11.0

Tigo

     214        0.2
  

 

 

    

 

 

 

Total

     135,067        100.0
  

 

 

    

 

 

 

DNV modeled module capacities in Table 2-2.

Table 2-2 Portfolio module OEM

 

Module OEM

   Capacity (kWdc)      % of total capacity  

Canadian Solar

     15495        11.5

Hyundai

     9837        7.3

Ja Solar

     2434        1.8

Jinko

     17170        12.7

Longi

     5367        4.0

Longi Solar

     275        0.2

Maxeon

     543        0.4

Mission

     912        0.7

Qcells

     61032        45.2

REC

     3380        2.5

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 11


LOGO

 

Module OEM

   Capacity (kWdc)      % of total capacity  

SEG

     2677        2.0

Silfab

     3599        2.7

Solarever

     15        0.0

Trina

     8075        6.0

United Renewable Energy Co

     385        0.3

Vsun

     3472        2.6

ZNShine

     391        0.3

(blank)

     8        0.0
  

 

 

    

 

 

 

Grand Total

     135,067        100.0
  

 

 

    

 

 

 

Labor

 

   

Truck roll costs are synonymous with labor costs and are exclusive of equipment costs.

 

   

One truck roll equates to one site visit. One crew may perform multiple truck rolls or site visits in a day.

 

   

Truck rolls have been modelled at $250.00 per instance.

 

   

The failure of one module, optimizer, or microinverter, all considered non-critical components, only decreases system production incrementally by the proportion of energy represented by that part in the system. DNV’s model requires that more than two (2) non-critical components fail before a truck roll is allowed on a given system.

 

   

In order to model the number of truck-rolls required, DNV used the binomial distribution to calculate the number of sites which had a minimum threshold of failed non-critical components. For example, a minimum threshold could be two (2) failed microinverters and one (1) failed module on an Enphase system. The binomial distribution can be used to calculate how many sites have more than two (2) non-critical component failures necessitating a truck roll.

 

   

Labor cost escalation has not been modeled.

 

   

DNV did not model reimbursement from manufacturers for warranty replacement labor.

Equipment

 

   

DNV’s O&M cost forecasting assumes the Sponsor possesses mature logistics capabilities and is able to exercise and enforce all relevant equipment warranties to their fullest extent. Under successful warranty claims, the equipment and shipping costs to replace failed components are fully covered by the original equipment manufacturer. Each equipment manufacturer provides distinct warranty terms, after which all replacement equipment costs are fully borne by the system Owner.

 

   

Equipment modeled with the following warranties:

 

   

Modules: 25 years

 

   

Inverters:

 

   

SolarEdge Inverters: 25 years

 

   

SolarEdge Optimizers: 25 years

 

   

Telsa Inverters: 12.5 years

 

   

Enphase microinverters: 25 years

 

   

Monitoring hardware: 5 years for all manufacturers

 

   

For each Tesla inverter installed, Palmetto holds $600 back from each installer. This is put into a reserve to be allocated toward Tesla inverter failures after the Tesla 12.5 year inverter warranty expires. DNV modeled a reserve of $1,218,000 ($600 * 2,030 Tesla inverters) against which equipment costs of Tesla inverters are offset after the warranty expires. The reserve covers inverter equipment costs until 2048.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 12


LOGO

 

   

DNV assumes all warranties are honored for the full term and has not derated any warranty terms based on the financial strength of the OEMs.

 

   

DNV considers primary and secondary equipment failures, meaning equipment that is replaced can fail again.

 

   

DNV uses a DNV-modified version of Wood Mackenzie’s H2 2023 US solar PV system pricing data [3].

Figure 2-1 displays the forecast O&M costs for the Portfolio.

 

LOGO

Figure 2-1 Total Portfolio O&M cost

 

2.1.2

Inverter replacement equipment costs

Table 2-3 below displays DNV’s modeled equipment replacement costs for inverters and optimizers in the Portfolio. Optimizers only apply to SolarEdge inverters for the Portfolio. DNV has assigned the costs below to respective components in the Portfolio. In all cases, the Wood Mackenzie forecast extends to 2033 [3]. Thereafter, DNV assumes a 2% annual cost reduction until 2044 where DNV assumes a flatline of costs.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 13


LOGO

 

Table 2-3 Inverter equipment replacement costs

 

Year

   String [$/Wdc]      Microinverter [$/Wdc]      Optimizer [$/Wdc]  

2025

   $ 0.143      $ 0.346      $ 0.179  

2026

   $ 0.140      $ 0.339      $ 0.175  

2027

   $ 0.138      $ 0.332      $ 0.171  

2028

   $ 0.135      $ 0.325      $ 0.168  

2029

   $ 0.132      $ 0.319      $ 0.165  

2030

   $ 0.130      $ 0.312      $ 0.161  

2031

   $ 0.127      $ 0.306      $ 0.158  

2032

   $ 0.124      $ 0.300      $ 0.155  

2033

   $ 0.122      $ 0.294      $ 0.152  

2034

   $ 0.119      $ 0.288      $ 0.149  

2035

   $ 0.117      $ 0.282      $ 0.146  

2036

   $ 0.115      $ 0.277      $ 0.143  

2037

   $ 0.112      $ 0.271      $ 0.140  

2038

   $ 0.110      $ 0.266      $ 0.137  

2039

   $ 0.108      $ 0.260      $ 0.135  

2040

   $ 0.106      $ 0.255      $ 0.132  

2041

   $ 0.104      $ 0.250      $ 0.129  

2042

   $ 0.102      $ 0.245      $ 0.127  

2043

   $ 0.100      $ 0.240      $ 0.124  

2044

   $ 0.098      $ 0.235      $ 0.122  

2045

   $ 0.098      $ 0.235      $ 0.122  

2046

   $ 0.098      $ 0.235      $ 0.122  

2047

   $ 0.098      $ 0.235      $ 0.122  

2048

   $ 0.098      $ 0.235      $ 0.122  

2049

   $ 0.098      $ 0.235      $ 0.122  

 

2.1.3

Inverter failure rates

DNV assumes the inverter and optimizer failure rates as shown in Figure 2-2. DNV’s projected failure rates are based on available data.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 14


LOGO

 

LOGO

Figure 2-2 DNV primary residential inverter and optimizer failure rates

 

2.1.4

Module replacement costs

Table 2-4 below displays DNV’s modeled equipment replacement costs for modules in the Portfolio. In all cases, the Wood Mackenzie forecast extends to 2033 [3]. Thereafter, DNV assumes a 3% annual cost reduction until 2045 where DNV assumes a flatline of costs.

Table 2-4 Module equipment replacement costs

 

Year

   Module [$/Wdc]  

2025

   $ 0.370  

2026

   $ 0.380  

2027

   $ 0.370  

2028

   $ 0.360  

2029

   $ 0.350  

2030

   $ 0.340  

2031

   $ 0.340  

2032

   $ 0.330  

2033

   $ 0.320  

2034

   $ 0.310  

2035

   $ 0.301  

2036

   $ 0.292  

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 15


LOGO

 

Year

   Module [$/Wdc]  

2037

   $ 0.283  

2038

   $ 0.275  

2039

   $ 0.267  

2040

   $ 0.259  

2041

   $ 0.251  

2042

   $ 0.243  

2043

   $ 0.236  

2044

   $ 0.229  

2045

   $ 0.229  

2046

   $ 0.229  

2047

   $ 0.229  

2048

   $ 0.229  

2049

   $ 0.229  

 

2.1.5

Module failure rates

DNV assumes the module failure rates as shown in Figure 2-3. DNV’s projected failure rates are based on available data.

 

LOGO

Figure 2-3 DNV primary module failure rates

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 16


LOGO

 

2.1.6

Meter replacement costs

Table 2-5 below displays DNV’s modeled equipment replacement costs for meters in the Portfolio. DNV assumes a flatline cost of $250/meter for all years forecasted.

Table 2-5 Meter replacement costs

 

Year

   Meter [$/meter]  

2025

   $ 250  

2026

   $ 250  

2027

   $ 250  

2028

   $ 250  

2029

   $ 250  

2030

   $ 250  

2031

   $ 250  

2032

   $ 250  

2033

   $ 250  

2034

   $ 250  

2035

   $ 250  

2036

   $ 250  

2037

   $ 250  

2038

   $ 250  

2039

   $ 250  

2040

   $ 250  

2041

   $ 250  

2042

   $ 250  

2043

   $ 250  

2044

   $ 250  

2045

   $ 250  

2046

   $ 250  

2047

   $ 250  

2048

   $ 250  

2049

   $ 250  

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 17


LOGO

 

2.1.7

Meter failure rates

DNV assumes the meter failure rates as shown in Figure 2-4.

 

LOGO

Figure 2-4 Meter failure rates

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 18


LOGO

 

2.1.8

Portfolio equipment replacement forecast

Table 2-6 below shows the equipment replacement forecast $/kWdc by year for the Portfolio. DNV also notes that these costs are exclusive of labor inflation.

Table 2-6 Annual equipment replacement cost forecast for the Portfolio

 

Year

   Equipment $/kWdc      Labor $/kWdc      Total $/kWdc  

2025

   $ 0.00      $ 1.05      $ 1.06  

2026

   $ 0.00      $ 0.31      $ 0.31  

2027

   $ 0.00      $ 0.49      $ 0.49  

2028

   $ 0.00      $ 0.66      $ 0.67  

2029

   $ 0.00      $ 0.77      $ 0.77  

2030

   $ 0.01      $ 0.84      $ 0.85  

2031

   $ 0.02      $ 0.90      $ 0.91  

2032

   $ 0.04      $ 0.95      $ 0.98  

2033

   $ 0.07      $ 1.02      $ 1.09  

2034

   $ 0.17      $ 1.33      $ 1.50  

2035

   $ 0.44      $ 1.81      $ 2.25  

2036

   $ 1.12      $ 2.76      $ 3.88  

2037

   $ 2.11      $ 4.25      $ 6.36  

2038

   $ 3.32      $ 5.98      $ 9.30  

2039

   $ 4.09      $ 7.39      $ 11.48  

2040

   $ 3.97      $ 7.58      $ 11.55  

2041

   $ 3.03      $ 6.63      $ 9.66  

2042

   $ 1.81      $ 5.25      $ 7.06  

2043

   $ 0.85      $ 4.16      $ 5.01  

2044

   $ 0.31      $ 4.00      $ 4.31  

2045

   $ 0.10      $ 3.95      $ 4.05  

2046

   $ 0.04      $ 3.94      $ 3.98  

2047

   $ 0.95      $ 3.94      $ 4.89  

2048

   $ 0.96      $ 3.85      $ 4.81  

2049

   $ 0.84      $ 2.37      $ 3.21  
  

 

 

    

 

 

    

 

 

 

Column total ($/kWdc)

   $ 24.27      $ 76.18      $ 100.45  
  

 

 

    

 

 

    

 

 

 

Table 2-7 below shows the equipment replacement forecast total spend by year for the Portfolio. DNV also notes that these costs are exclusive of labor inflation.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 19


LOGO

 

Table 2-7 Annual equipment replacement cost forecast for the Portfolio

 

Year

   Equipment $      Labor $      Total $  

2025

   $ 307      $ 142,447      $ 142,755  

2026

   $ 304      $ 42,133      $ 42,437  

2027

   $ 301      $ 66,533      $ 66,834  

2028

   $ 388      $ 89,693      $ 90,081  

2029

   $ 612      $ 103,468      $ 104,080  

2030

   $ 1,140      $ 113,483      $ 114,623  

2031

   $ 2,227      $ 120,993      $ 123,219  

2032

   $ 4,813      $ 127,960      $ 132,773  

2033

   $ 9,578      $ 138,086      $ 147,664  

2034

   $ 22,672      $ 179,410      $ 202,082  

2035

   $ 59,488      $ 244,945      $ 304,433  

2036

   $ 151,831      $ 372,189      $ 524,020  

2037

   $ 285,054      $ 573,701      $ 858,754  

2038

   $ 447,770      $ 808,238      $ 1,256,008  

2039

   $ 552,806      $ 998,183      $ 1,550,990  

2040

   $ 536,584      $ 1,023,561      $ 1,560,145  

2041

   $ 408,962      $ 895,277      $ 1,304,239  

2042

   $ 244,560      $ 709,522      $ 954,083  

2043

   $ 114,722      $ 562,417      $ 677,140  

2044

   $ 42,438      $ 540,158      $ 582,596  

2045

   $ 13,224      $ 534,002      $ 547,226  

2046

   $ 5,441      $ 531,945      $ 537,386  

2047

   $ 128,791      $ 532,195      $ 660,985  

2048

   $ 122,838      $ 490,131      $ 612,970  

2049

   $ 967      $ 2,714      $ 3,680  
  

 

 

    

 

 

    

 

 

 

Column total ($/kWdc)

   $ 3,157,819      $ 9,943,383      $ 13,101,202  
  

 

 

    

 

 

    

 

 

 

 

2.1

BESS equipment replacement modeling

DNV modeled the cost of replacing BESS within the Portfolio. The Portfolio has been modeled with 4,284 BESS units according to the distribution in the table below.

Table 2-8 Portfolio BESS Breakdown

 

Supplier

   Units      Concentration  

Enphase

     3,485        81

Tesla

     643        15

SolarEdge

     156        4
  

 

 

    

 

 

 

Total

     4,284        100
  

 

 

    

 

 

 

DNV made the following assumptions:

 

   

BESS units cost $6,250 in year 1 and decline in cost at 3.5% annually for 20 years.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 20


LOGO

 

   

Secondary failures are also modeled, meaning that a replaced unit can fail again.

 

   

Each unit that fails is required to be replaced.

 

   

Each failure requires one truck roll, modeled at $250 per truck roll.

 

   

All units were modeled as installed in the same year. DNV notes that most assets in the Portfolio were installed in 2024 with a few in 2023 and 2025.

 

   

No labor escalation has been modeled.

Each BESS product followed manufacturer specific warranty and labor reimbursement terms as provided by the Customer as follows:

Table 2-9 Portfolio BESS Breakdown

 

Supplier

   Warranty term
(years)
     Labor
reimbursement
term (years)
 

Enphase

     15        15  

Tesla

     10        10  

SolarEdge

     10        5  

All products were modeled along DNV’s generic 70% BESS failure curve shown in Table 2-10.

Table 2-10 DNV generic BESS failure curve

 

Year

   Failure Rate  

1

     6.40

2

     2.20

3

     1.60

4

     2.00

5

     1.80

6

     2.00

7

     1.50

8

     4.20

9

     17.10

10

     17.70

11

     1.80

12

     3.00

13

     5.60

14

     11.30

15

     21.70

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 21


LOGO

 

Table 2-11 Annual BESS equipment replacement cost forecast for the Portfolio

 

     Primary failures      Secondary failures         

Year

   Equipment cost      Labor cost      Total primary      Equipment cost      Labor cost      Total secondary      Total BESS
replacement costs
 

1 (2025)

   $ 0      $ 0      $ 0      $ 0      $ 55      $ 55      $ 55  

2

   $ 0      $ 0      $ 0      $ 0      $ 49      $ 49      $ 49  

3

   $ 0      $ 0      $ 0      $ 0      $ 64      $ 64      $ 64  

4

   $ 0      $ 0      $ 0      $ 0      $ 67      $ 67      $ 67  

5

   $ 0      $ 780      $ 780      $ 0      $ 156      $ 156      $ 936  

6

   $ 0      $ 585      $ 585      $ 0      $ 147      $ 147      $ 732  

7

   $ 0      $ 1,638      $ 1,638      $ 0      $ 288      $ 288      $ 1,926  

8

   $ 0      $ 6,669      $ 6,669      $ 0      $ 775      $ 775      $ 7,444  

9

   $ 0      $ 6,903      $ 6,903      $ 0      $ 1,208      $ 1,208      $ 8,111  

10

   $ 62,947      $ 3,596      $ 66,542      $ 63,590      $ 3,139      $ 66,729      $ 133,271  

11

   $ 101,239      $ 5,993      $ 107,232      $ 64,955      $ 3,228      $ 68,183      $ 175,415  

12

   $ 182,365      $ 11,186      $ 193,551      $ 78,824      $ 4,280      $ 83,104      $ 276,656  

13

   $ 355,108      $ 22,572      $ 377,680      $ 103,955      $ 6,058      $ 110,013      $ 487,693  

14

   $ 658,065      $ 43,346      $ 701,411      $ 152,726      $ 9,647      $ 162,373      $ 863,784  

15

   $ 0      $ 0      $ 0      $ 578,637      $ 32,085      $ 610,722      $ 610,722  

16

   $ 0      $ 0      $ 0      $ 898,325      $ 33,365      $ 931,690      $ 931,690  

17

   $ 0      $ 0      $ 0      $ 1,138,730      $ 52,232      $ 1,190,962      $ 1,190,962  

18

   $ 0      $ 0      $ 0      $ 761,643      $ 55,170      $ 816,814      $ 816,814  

19

   $ 0      $ 0      $ 0      $ 454,541      $ 31,308      $ 485,849      $ 485,849  

20

   $ 0      $ 0      $ 0      $ 627,235      $ 41,028      $ 668,263      $ 668,263  

21

   $ 0      $ 0      $ 0      $ 1,058,291      $ 66,465      $ 1,124,756      $ 1,124,756  

22

   $ 0      $ 0      $ 0      $ 1,593,764      $ 93,119      $ 1,686,883      $ 1,686,883  

23

   $ 0      $ 0      $ 0      $ 1,146,298      $ 90,227      $ 1,236,526      $ 1,236,526  

24

   $ 0      $ 0      $ 0      $ 241,217      $ 18,987      $ 260,204      $ 260,204  

25

   $ 0      $ 0      $ 0      $ 349,362      $ 27,499      $ 376,861      $ 376,861  
  

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

 

Totals

   $ 1,359,724      $ 103,268      $ 1,462,991      $ 9,312,093      $ 570,646      $ 9,882,741      $ 11,345,733  
  

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

 

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 22


LOGO

 

Table 2-12 Annual BESS equipment replacement cost forecast for the Portfolio per unit

 

     Primary failures      Secondary failures         

Year

   Equipment cost      Labor cost      Total primary      Equipment cost      Labor cost      Total secondary      Total BESS
replacement costs
 

1 (2025)

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

2

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

3

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

4

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

5

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

6

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

7

   $ 0      $ 0      $ 0      $ 0      $ 0      $ 0      $ 0  

8

   $ 0      $ 2      $ 2      $ 0      $ 0      $ 0      $ 2  

9

   $ 0      $ 2      $ 2      $ 0      $ 0      $ 0      $ 2  

10

   $ 15      $ 1      $ 16      $ 15      $ 1      $ 16      $ 31  

11

   $ 24      $ 1      $ 25      $ 15      $ 1      $ 16      $ 41  

12

   $ 43      $ 3      $ 45      $ 18      $ 1      $ 19      $ 65  

13

   $ 83      $ 5      $ 88      $ 24      $ 1      $ 26      $ 114  

14

   $ 154      $ 10      $ 164      $ 36      $ 2      $ 38      $ 202  

15

   $ 0      $ 0      $ 0      $ 135      $ 7      $ 143      $ 143  

16

   $ 0      $ 0      $ 0      $ 210      $ 8      $ 217      $ 217  

17

   $ 0      $ 0      $ 0      $ 266      $ 12      $ 278      $ 278  

18

   $ 0      $ 0      $ 0      $ 178      $ 13      $ 191      $ 191  

19

   $ 0      $ 0      $ 0      $ 106      $ 7      $ 113      $ 113  

20

   $ 0      $ 0      $ 0      $ 146      $ 10      $ 156      $ 156  

21

   $ 0      $ 0      $ 0      $ 247      $ 16      $ 263      $ 263  

22

   $ 0      $ 0      $ 0      $ 372      $ 22      $ 394      $ 394  

23

   $ 0      $ 0      $ 0      $ 268      $ 21      $ 289      $ 289  

24

   $ 0      $ 0      $ 0      $ 56      $ 4      $ 61      $ 61  

25

   $ 0      $ 0      $ 0      $ 82      $ 6      $ 88      $ 88  
  

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

 

Totals

   $ 317      $ 24      $ 342      $ 2,174      $ 133      $ 2,307      $ 2,648  
  

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

 

 

As stated above, the model assumes all BESS units are installed in the same year (2024). As such, the year 1 (2025) forecast above is advanced one year as DNV assumes the year 1 costs have already been absorbed by the Customer. The model also does not account for assets tailing out at the end of a contract. DNV’s modeled forecast BESS equipment replacement costs are $2,648 per BESS unit in 2025 dollars.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 23


LOGO

 

2.2

Financial model conclusion

A summary of the PV equipment replacement model and the BESS equipment replacement model is presented below.

Table 2-13 Portfolio equipment replacement model summary

 

Year

   Total PV Equipment      Total PV Labor      Total BESS Equipment      Total BESS Labor      Total Cost  

1

   $ 307      $ 142,447      $ 0      $ 55      $ 142,809  

2

   $ 304      $ 42,133      $ 0      $ 49      $ 42,486  

3

   $ 301      $ 66,533      $ 0      $ 64      $ 66,898  

4

   $ 388      $ 89,693      $ 0      $ 67      $ 90,148  

5

   $ 612      $ 103,468      $ 0      $ 936      $ 105,016  

6

   $ 1,140      $ 113,483      $ 0      $ 732      $ 115,355  

7

   $ 2,227      $ 120,993      $ 0      $ 1,926      $ 125,146  

8

   $ 4,813      $ 127,960      $ 0      $ 7,444      $ 140,217  

9

   $ 9,578      $ 138,086      $ 0      $ 8,111      $ 155,775  

10

   $ 22,672      $ 179,410      $ 126,537      $ 6,735      $ 335,354  

11

   $ 59,488      $ 244,945      $ 166,194      $ 9,221      $ 479,848  

12

   $ 151,831      $ 372,189      $ 261,189      $ 15,466      $ 800,675  

13

   $ 285,054      $ 573,701      $ 459,063      $ 28,630      $ 1,346,448  

14

   $ 447,770      $ 808,238      $ 810,791      $ 52,993      $ 2,119,792  

15

   $ 552,806      $ 998,183      $ 578,637      $ 32,085      $ 2,161,711  

16

   $ 536,584      $ 1,023,561      $ 898,325      $ 33,365      $ 2,491,835  

17

   $ 408,962      $ 895,277      $ 1,138,730      $ 52,232      $ 2,495,201  

18

   $ 244,560      $ 709,522      $ 761,643      $ 55,170      $ 1,770,895  

19

   $ 114,722      $ 562,417      $ 454,541      $ 31,308      $ 1,162,988  

20

   $ 42,438      $ 540,158      $ 627,235      $ 41,028      $ 1,250,859  

21

   $ 13,224      $ 534,002      $ 1,058,291      $ 66,465      $ 1,671,982  

22

   $ 5,441      $ 531,945      $ 1,593,764      $ 93,119      $ 2,224,269  

23

   $ 128,791      $ 532,195      $ 1,146,298      $ 90,227      $ 1,897,511  

24

   $ 122,838      $ 490,131      $ 241,217      $ 18,987      $ 873,173  

25

   $ 967      $ 2,714      $ 349,362      $ 27,499      $ 380,542  
  

 

 

    

 

 

    

 

 

    

 

 

    

 

 

 

Totals

   $ 3,157,818      $ 9,943,384      $ 10,671,817      $ 673,914      $ 24,446,933  
  

 

 

    

 

 

    

 

 

    

 

 

    

 

 

 

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 24


LOGO

 

3

REFERENCES

[1] Palmetto, 10506137 Palmetto Enphase TDD 2024_PEGU ANALYSIS DATA, 28 August 2024.

[2] Palmetto, sabal finance accounts 2025-02-27T1621, 28 February 2025.

[3] Wood Mackenzie, US solar PV system pricing H2 2023, 2023.

 

DNV Document No.: 10558187-HOU-R-01, Issue: E, Status: Final – www.dnv.com   Page 25


LOGO

 

About DNV

We are the independent expert in assurance and risk management. Driven by our purpose, to safeguard life, property and the environment, we empower our customers and their stakeholders with facts and reliable insights so that critical decisions can be made with confidence. As a trusted voice for many of the world’s most successful organizations, we use our knowledge to advance safety and performance, set industry benchmarks, and inspire and invent solutions to tackle global transformations.