253G2 1 tv477187_253g2.htm 253G2

 

Filed pursuant to Rule 253(g)(2)

File No. 024-10585

 

Ziyen Inc.

 

Supplement No. 3

to the Offering Circular

qualified October 25, 2016

 

Dated: Oct 17, 2017

 

 

This Supplement No. 3 to the Offering Circular originally qualified October 25, 2016 (this “Supplement”) supplements the offering circular of Ziyen Inc. (“Ziyen”), dated October 14, 2016 (the “Offering Circular”). This Supplement should be read in conjunction with the Offering Circular (including the disclosures incorporated by reference therein). Unless otherwise defined in this Supplement, capitalized terms used in herein shall have the same meanings as set forth in the Offering Circular, including the disclosures incorporated by reference therein.

 

The purpose of this Supplement No.3 is to provide updated disclosure regarding the Compositional Analysis results for an oil sample obtained at the Ross et al Leasehold.

 

Compositional Analysis

 

Summary:

 

Ziyen Energy recently enlisted the services of Core Laboratories (UK), Petroleum Services Division in September to perform a compositional analysis of an oil sample sourced from the oil lease in Evansville, Indiana, referenced in Exhibit B - Oil and Gas Reserve Evaluation Report in Supplement No 1, filed on August 7, 2017.

 

High level points:

 

The reserve is a nice light crude, lacking any toxic, erosion or corrosion agents which will mean that our topside equipment should be easily maintained with a proper preventative maintenance regime.

 

The hydrocarbon ranging between C7 and C20 will minimize processing costs (no additional process complexity from H2S, waxes etc.), which means reaching premium as far as an unrefined crude goes.

 

There is nothing evident to suggest any other issue from the well product that could impact the ability to deliver to sales or flow with high availability: low water cut and minimized C2 - C4's: no hydrate issue, C36+'s are 7% mole weight so not much heavy end sludge (C60+), no amines, negligible benzene mean lower processing costs.

 

Low density, means that flow rates should be optimal

 

In summary, the news was exceptional. Ziyen Energy plans to use of the latest oil extraction methods for each well; —for oil which is compositionally of a high grade light crude which will ensure oil production and output will reach optimal operational levels.

 

The full Compositional Analysis report from Core Laboratories is included with this supplement.

 

 

 

  

  

 

Compositional Analysis

 

for

 

Ziyen Inc

 

2A

 

RFLA 201703638

 

FINAL REPORT

 

The analyses, opinions or interpretations in this report are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories (U.K.) Limited, (all errors and omissions excepted); but Core Laboratories (U.K.) Limited and its officers and employees assume no responsibility and make no warranty or representations as to the productivity, proper operation or profitability of any oil, gas or any other mineral well formation in connection with which such report is used or relied upon.

 

Petroleum Services Division

Core Laboratories (U.K.) Limited

 

Advanced Technology Centre

 

Howe Moss Drive, Kirkhill Industrial Estate, Dyce, Aberdeen AB21 0GL

Tel: +44 (0) 1224 421000 Fax: +44 (0) 1224 421003 Web: http://www.corelab.com

 

 

 

 

 

Petroleum Services Division

Core Laboratories (U.K.) Limited

Advanced Technology Centre

Howe Moss Drive

Kirkhill Industrial Estate

Dyce, Aberdeen AB21 0GL

Tel: +44 (0) 1224 421000

Fax: +44 (0) 1224 421003

Web: http://www.corelab.com

 

3rd October 2017

 

Ziyen Inc.

1623 Central Avenue

Cheyenne

Wyoming 82001

USA

 

Attention: Mr. Shane Fraser

 

Dear Sir,

 

Subject: Compositional Analysis; well 2A: Ziyen Inc; our file RFLA 201703638

 

On 29th September 2017 one atmospheric oil sample collected from the subject well was delivered to our Aberdeen laboratory. The sample was subject to compositional analyses as specified by Ziyen Inc. Presented in the following report are the final results of all analyses.

 

Please note that the sample will remain at Core Laboratories (U.K.) Limited for a period of one month at which time it will be returned to Ziyen Inc Inverness unless otherwise instructed in writting by Ziyen Inc.

 

Core Laboratories (U.K.) Limited are very pleased to have been of service to Ziyen Inc. in this work. Should any questions arise concerning the data presented in this report, or if Core Laboratories (U.K.) Limited may be of assistance in any other matter, please do not hesitate to contact us.

 

Yours sincerely,  
   
Core Laboratories (U.K.) Limited  
   
/s/ Donald McNeil  
Donald McNeil  
RFL Supervisor  

 

FINAL REPORT

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Table of Contents

 

Page
   
Section A - Summary of Analysis Methods  
   
Summary of analysis methods A.1
   
Section B - Compositional Analysis  
   
Compositional analysis of atmospheric oil sample to C36+ B.1-B.2
   
Chromatographic profile of atmospheric oil sample B.3
   
Section C - Appendix  
   
Data used in liquid compositional calculations C.1

 

Core Laboratories (U.K.) Limited
Advanced Technology Centre

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Section A - Summary of Analysis Methods

 

Core Laboratories (U.K.) Limited
Advanced Technology Centre

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Summary of Analysis Methods

 

Stabilised Liquid Compositions

The stabilised liquid composition was determined by temperature programmed high resolution capillary gas chromatography utilising a cold-on-column injection technique.

 

Calculation of Molar Compositions and Residual Fraction Properties

The molar compositions and residual fraction properties are calculated entities, which are derived using the measured weight % distribution and molecular weight and density properties for the carbon number groups present.

 

There are four main ways to calculate a molar composition:

 

i. balanced to a flashed liquid measured molecular weight and density using pseudo component properties. This results in compositions which calculate the residual fraction properties by material balance such that the calculated whole liquid molecular weight and density equals that which was measured. The flashed liquid density is measured by digital densitometer in accordance with IP Method 365. The flashed liquid molecular weight is determined using an in-house method utilising the depression of the freezing point of Benzene.

 

ii. not balanced to a measured molecular weight using pseudo component properties. In this case, a residual fraction molecular weight and density is assigned and the calculated whole oil molecular weight and density will not necessarily equal that which was measured (un-balanced). The assigned properties are derived from systematic approach using a linear regression technique. The log mole % versus mole weight is plotted for carbon number groups C20-C35 and extrapolated to zero mole %. The mid point molecular weight between the last defined component C35 and zero composition is assigned as the C36+ molecular weight. The density corresponding to the mid point molecular weight is taken from published property tables (Katz and Firoozabadi) and assigned as the C36+ value.

 

iii. calculated from measured (not pseudo component) data using properties measured on distillation fractions. In this case the residual fraction properties can also be measured.

 

iv. calculated from pseudo component data using properties taken from published property tables (Katz and Firoozabadi).

 

In the context of this analysis the molar composition of the atmospheric oil sample was calculated using approach i

 

Water Content by Karl Fischer Technique (IP 356)

A weighed representative portion of the flashed liquid was injected into a titration vessel of a volumetric Karl Fischer apparatus containing a mixed solvent. The water present was titrated to a potentiometric end point using Karl Fischer reagent. The test was repeated to confirm the initial result.

 

Core Laboratories (U.K.) Limited  
Advanced Technology Centre A.1

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Section B - Compositional Analysis

 

Core Laboratories (U.K.) Limited
Advanced Technology Centre

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Compositional Analysis of Atmospheric Oil Sample to C36+

 

   Component  Mole %   Weight % 
H2  Hydrogen   0.000    0.000 
CO2  Carbon dioxide   0.000    0.000 
N2  Nitrogen   0.000    0.000 
C1  Methane   0.032    0.002 
C2  Ethane   0.086    0.010 
C3  Propane   0.029    0.005 
iC4  i-Butane   0.036    0.008 
nC4  n-Butane   0.134    0.030 
C5  neo-Pentane   0.000    0.000 
iC5  i-Pentane   0.238    0.066 
nC5  n-Pentane   0.299    0.083 
C6  Hexanes   1.324    0.439 
   Me-Cyclo-pentane   0.262    0.085 
   Benzene   0.010    0.003 
   Cyclo-hexane   0.099    0.032 
C7  Heptanes   3.459    1.334 
   Me-Cyclo-hexane   0.773    0.292 
   Toluene   0.062    0.022 
C8  Octanes   6.494    2.855 
   Ethyl-benzene   0.969    0.396 
   Meta/Para-xylene   0.399    0.163 
   Ortho-xylene   0.257    0.105 
C9  Nonanes   5.701    2.814 
   Tri-Me-benzene   0.333    0.154 
C10  Decanes   7.122    3.900 
C11  Undecanes   6.110    3.457 
C12  Dodecanes   5.497    3.406 
C13  Tridecanes   5.850    3.940 
C14  Tetradecanes   4.934    3.608 
C15  Pentadecanes   4.601    3.648 
C16  Hexadecanes   3.752    3.206 
C17  Heptadecanes   3.540    3.229 
C18  Octadecanes   3.563    3.442 
C19  Nonadecanes   3.162    3.201 
C20  Eicosanes   2.668    2.824 
C21  Heneicosanes   2.272    2.545 
C22  Docosanes   2.197    2.579 
C23  Tricosanes   1.892    2.315 
C24  Tetracosanes   1.787    2.276 
C25  Pentacosanes   1.590    2.111 
C26  Hexacosanes   1.482    2.047 
C27  Heptacosanes   1.327    1.910 
C28  Octacosanes   1.264    1.888 
C29  Nonacosanes   1.200    1.857 
C30  Triacontanes   1.166    1.867 
C31  Hentriacontanes   0.987    1.633 
C32  Dotriacontanes   0.864    1.477 
C33  Tritriacontanes   0.794    1.400 
C34  Tetratriacontanes   0.749    1.361 
C35  Pentatriacontanes   0.638    1.194 
C36+  Hexatriacontanes plus   7.996    24.781 
              
   Totals:   100.000    100.000 

 

Core Laboratories (U.K.) Limited  
Advanced Technology Centre B.1

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Compositional Analysis of Atmospheric Oil Sample to C36+

 

Calculated Residue Properties     
      
C7+     
Mole%   97.822 
Molecular Weight (g mol-1)   264 
Density at 60°F (g cm-3)   0.8788 
      
C11+     
Mole%   71.882 
Molecular Weight (g mol-1)   315 
Density at 60°F (g cm-3)   0.9050 
      
C20+     
Mole%   30.873 
Molecular Weight (g mol-1)   472 
Density at 60°F (g cm-3)   0.9554 
      
C36+     
Mole%   7.996 
Molecular Weight (g mol-1)   806 
Density at 60°F (g cm-3)   1.0561 
      
Calculated Whole Sample Properties     
      
Average mole weight (g mol-1)   260 
      
Density at 60°F (g cm-3) [Measured]   0.8767 
      
Entrained water content (wt%)   0.08 

 

Core Laboratories (U.K.) Limited  
Advanced Technology Centre B.2

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Chromatographic Profile of Atmospheric Oil Sample

 

 

 

Core Laboratories (U.K.) Limited  
Advanced Technology Centre B.3

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Section C - Appendix

 

Core Laboratories (U.K.) Limited
Advanced Technology Centre

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Data Used in Liquid Compositional Calculations

 

     Mole Weight   Density        Mole Weight   Density 
Component     (g mol-1)   (g cm-3 at 60°F)   Component     (g mol-1)   (g cm-3 at 60°F) 
                          
Hydrogen  ****   2.016    N/A   Undecanes  ***   147    0.7890 
Helium  **   4.003    N/A   Dodecanes  ***   161    0.8000 
Hyd. sulphide  **   34.081    0.8006   Tridecanes  ***   175    0.8110 
Carbon Dioxide  **   44.010    0.8172   Tetradecanes  ***   190    0.8220 
Nitrogen  **   28.013    0.8086   Pentadecanes  ***   206    0.8320 
Methane  **   16.043    0.2997   Hexadecanes  ***   222    0.8390 
Ethane  **   30.070    0.3558   Heptadecanes  ***   237    0.8470 
Propane  **   44.096    0.5065   Octadecanes  ***   251    0.8520 
i-Butane  **   58.122    0.5623   Nonadecanes  ***   263    0.8570 
n-Butane  **   58.122    0.5834   Eicosanes  ***   275    0.8620 
i-Pentane  **   72.149    0.6238   Heneicosanes  ***   291    0.8670 
n-Pentane  **   72.149    0.6305   Docosanes  ***   305    0.8720 
Hexanes  *   86.18    0.6631   Tricosanes  ***   318    0.8770 
Me-cyclo-pentane  *   84.16    0.7533   Tetracosanes  ***   331    0.8810 
Benzene  *   78.11    0.8820   Pentacosanes  ***   345    0.8850 
Cyclo-hexane  *   84.16    0.7827   Hexacosanes  ***   359    0.8890 
Heptanes  *   100.20    0.6875   Heptacosanes  ***   374    0.8930 
Me-cyclo-hexane  *   98.19    0.7740   Octacosanes  ***   388    0.8960 
Toluene  *   92.14    0.8734   Nonacosanes  ***   402    0.8990 
Octanes  *   114.23    0.7063   Triacontanes  ***   416    0.9020 
Ethyl-benzene  *   106.17    0.8735   Hentriacontanes  ***   430    0.9060 
Meta/Para-xylene  *   106.17    0.8671   Dotriacontanes  ***   444    0.9090 
Ortho-xylene  *   106.17    0.8840   Tritriacontanes  ***   458    0.9120 
Nonanes  *   128.26    0.7212   Tetratriacontanes  ***   472    0.9140 
1-2-4-T-M-benzene  *   120.19    0.8797   Pentatriacontanes  ***   486    0.9170 
Decanes  *   142.28    0.7335                 

 

Data Source Refs :

 

*ASTM Data Series Publication DS 4B (1991) - Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.

 

**GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas GPA 2145-09.

 

***Journal of Petroleum Technology, Nov 1978, Pages 1649-1655.

Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients - D.L. Katz & A. Firoozabadi.

 

****NIST Database (September 2016).

 

Note:

The residue mole weight and density values (e.g. heptanes plus, undecanes plus, eicosanes plus) are calculated so that the calculated average mole weights and densities correspond with the measured values. This can lead to anomalous residue mole weights and densities where the Katz and Firoozabadi values may not be suitable for the isomer groups detected.

 

Core Laboratories (U.K.) Limited  
Advanced Technology Centre C.1

 

 

 

 

Ziyen Inc FINAL REPORT
2A RFLA 201703638

 

Report prepared by   Report approved by
     
/s/ Adam Meldrum   /s/ Donald McNeil
Adam Meldrum      Donald McNeil
Project Co-ordinator   RFL Supervisor

 

Core Laboratories (U.K.) Limited
Advanced Technology Centre