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The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1
and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are
numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-
tetrahydrocannabinolmediates its action throughCB1/CB2 receptors.However, these synthetic basedCannabisderived compounds
are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an
alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated
from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity,
and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of
endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically
derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic
alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid
receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future
therapeutics.

1. Introduction

The endocannabinoid system (ECS), an important lipid sig-
naling and immunomodulator system, has begun to reap
attention as it is widely involved in modulating host of phys-
iological responses ranging from appetite, respiration, meta-
bolism, inflammation, pain, neurotransmission, and so forth.
The ECS is comprised of the G-protein coupled receptors

(GPCRs) such as cannabinoid receptors 1 and 2 (CB1 andCB2);
cannabinoid receptor ligands also known as endocannabi-
noids are characterized by arachidonyl ethanolamide (anan-
damide, AEA) and 2-arachidonoyl glycerol (2-AG) [1, 2] and
the enzymes involved in synthesis and degradation of the
endocannabinoids.The levels of the endocannabinoids in the
tissues are maintained by the critical balance between their
biosynthesis (involving phospholipase D and diacylglycerol
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lipase-dependent and other pathways) and cellular uptake as
well as degradation by the enzymes: fatty acid amide hydro-
lase (FAAH) and/or monoacylglycerol lipases (MAGL) [3].
Recently, some additional GPCRs such asGPR18, GPR55, and
GPR119 have been recognized asmembers of the cannabinoid
family; however the physiological significance is yet to be
established [4].

The CB1 and CB2 receptors are well characterized mem-
bers of the GPCR which couple to G-proteins in the Gi/o
family. The activation of the CB1 and CB2 receptors causes
the numerous intracellular effects which may be cell type and
ligand specific and involve the inhibition of various voltage
gated Ca+2 channels and adenylate cyclase activity and the
activation of K+ channels, resulting in lower levels of cAMP
along with activation of MAPK pathways [5].The CB1 recep-
tors regulate the activities of adenylyl cyclase, ERK, glycogen
synthase kinase 3, and calcium and potassium channels [5].
TheCB2 receptor couples toGi tomediate their cellular effects
via inhibition of adenylyl cyclase and regulation of transcrip-
tion factors [5]. The inhibition of activation of cannabinoid
receptors and inhibition of endocannabinoid degradative
enzymes have been found to enhance endocannabinoid
signaling and harness the therapeutic potential of the ECS as
an important therapeutic target [6, 7].

In recent years, research is focusing on the unique neuro-
modulator system, ECS, which is named after the plant that
led to its discovery [3]. The pervasive and varied regulatory
actions of the ECS in maintenance of general health and
diseases have supported the regulatory approval of several
molecules of natural and synthetic origin as novel drugs that
modulate the cannabinoid receptor signaling mediated by
CB1 or CB2 receptors or alter the ECS activity by reducing
the endocannabinoid tone by inhibiting FAAH and MAGL
[6, 8]. The potential role for ECS-based therapies must be
explored with a clear and complete picture of the potential
beneficial and adverse effects that will occur from exogenous
activation and/or inhibition of ECS using cannabinoid based
medicines. The modulation of ECS by cannabinoid based
medicines holds remarkable therapeutic promise in a vari-
ety of pathological conditions including neuropathic pain,
diabetic complications, obesity, stroke, hypertension, cancer,
psychosis, glaucoma, epilepsy, addiction, and neurodegener-
ative diseases including Alzheimer’s disease, multiple sclero-
sis, and Parkinson’s disease [7, 9].

The cannabinoids comprise compounds that produced
endogenous (endocannabinoids), synthetic, and active com-
ponents of Cannabis sativa, a traditional source of about
100 natural cannabinoids also known as phytocannabi-
noids [10]. The physiological effects of these phytocannabi-
noids derived from Cannabis sativa have been known since
ancient times and used for both leisure and medicinal
purposes and have generated immense interest for phar-
maceutical development. Phytocannabinoids are defined as
agents of plant origin that interacts with either of cannabinoid
receptors or shares chemical similarity with cannabinoids
or both. It is known that they arise from the interaction
of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoac-
tive constituent of the plant; Cannabis sativa interact with
cannabinoid receptors [11–13].

Several classes of synthetic cannabinoid agents have
been developed for the therapeutic targeting of the several
components of ECS. Among them, rimonabant (SR141716A;
Acomplia), a CB1 receptor antagonist/inverse agonist, makes
a therapeutic success for the management of obesity but was
withdrawn because of safety concerns about its psychiatric
adverse effects, particularly increased incidence of depres-
sion, anxiety, and suicidal tendencies [10]. Numerous illicitly
produced synthetic cannabinoid agonists typically acting as
agonists at CB1 receptors that mimic the effects of Δ9-THC
have been reported to drug monitoring agencies. Synthetic
agents produce atypical pharmacological effects such as
hypertension, seizures, and panic attacks. This is explained
by atypical effect of CB1 receptor agonist, which is apparently
higher for synthetic cannabinoids: JWH-018 and JWH-073
comparedwithΔ9-THC, the agentmainly accountable for the
behavioral effects of cannabis [14].

In parallel to the development of synthetic analogues
modulating ECS components, the pharmaceutical companies
followed several approaches to target the cannabinoid recep-
tors and modulate ECS activity including the development of
phytocannabinoid compounds isolated from the plants. Cur-
rently, several drugs which modulate the CB1 or CB2 recep-
tors are at present in the clinic such as Cesamet (nabilone),
Marinol (dronabinol; Δ9-THC), and Sativex (cannabidiol
and Δ9-THC). The agents, nabilone and dronabinol, are
indicated to relieve chemotherapy-induced nausea and vom-
iting. Dronabinol is also used as appetizer, while the plant
derived cannabis preparation. Sativex is frequently indicated
for the symptomatic relief of neuropathic pain in adults with
multiple sclerosis and spasticity and is also used as an adjunct
to relieve pain in adult patients with advanced cancer.

The potential agents derived from plants targeting ECS
have become a central focus of contemporary translational
research for diverse indications with important unmet med-
ical demands. The present review focuses on medicinal
plants that have shown to modulate the ECS appearing
as therapeutic possibility for diseases which involves ECS
dysregulation. The present review focuses on natural small
molecules, isolated and characterized as cannabinoid recep-
torsmodulator.These naturally derivedmolecules could offer
the potential leads for future drug discovery and the targeting
of endocannabinoid dysregulation or the diseases where
endocannabinoid modulation represents an important ther-
apeutic target. Additionally, the medicinal plants modulating
ECS are also provided that can be subjected for the isolation
of components possessing cannabinoid receptor agonist or
antagonist activity. The actions of cannabinoid compounds
partly involve several non-CB receptor dependent mecha-
nisms and are regarded as an additive beneficial effect of
phytocannabinoids molecules for multitargeting.

2. Phytochemicals as Lead Compounds
Targeting ECS

Following the progress in chemical isolation and screening
techniques, several novel lead molecules were isolated and
characterized from the natural products for the development
of new drugs. In current years, numerous molecules have
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Figure 1: Cannabinoid receptor mediated medicinal and pharmacological activities of lead compounds isolated from medicinal plants.

been isolated and characterized which showed cannabinoid
receptor affinity, efficacy, and therapeutic benefits in the
in vitro, in silico, and in vivo studies [15–21]. The agents
were also found to inhibit endocannabinoid metabolizing
enzymes, FAAH, DAGL, and MAGL inhibitors, and exhibit
their potential efficacy mediated by the cannabinoid medi-
ated mechanism [7]. Figure 1 depicts the cannabinoid recep-
tors and endocannabinoid metabolizing enzymes mediated
pharmacological effects and therapeutic benefits of small
molecules derived from nature.

Directly acting ligands are the compounds which exhibit
high binding affinities (in low nanomolar to micromolar
range) to the cannabinoid receptors and exert distinct func-
tional effects behaving either as agonists, inverse agonists,
partial agonists, or antagonist [22], whereas indirectly acting
ligands target either the key proteins in the ECS which regu-
late endocannabinoid levels in tissues or the allosteric sites
on the CB1 receptors [6]. Recently, availability of different
tools such as radioligand and [35S]GTP𝛾S binding assays
facilitated the characterization of agonists, antagonists, and
inverse agonists for cannabinoid receptors. Some practical
guidelines and specific considerations in order to characterize
the ligands using these assays are available for cannabinoid
receptors. The agonists which bind to CB1 and CB2 receptors
show little selectivity; however the CB1 and CB2 receptor
antagonists are highly selective usually in nanomolar affinity

at the respective receptor. This allows differentiating the CB1
or CB2 mediated mechanism and responses of in vitro and in
vivo studies. In addition to the selective CB1 and CB2 antag-
onists that are used to block agonist effects, there are also
genetic tools (CB1/CB2 receptor knockout mice) available
to the research community. There are several nonselective
agonists which are available which prefer either CB1 or CB2
receptors [4, 10].

In this review, the small molecules derived from natural
products targeting ECS components are described in order
to provide them as standard sources of templates for devel-
oping novel ligands for pharmaceutical development and
clinical usage.The database searches usingMedline/PubMed,
EMBASE, Google Scholar, and Science Direct were con-
ducted to include all the available published literature in
the present review paper. The years of coverage for litera-
ture retrieval were from 1975 to May 25, 2015. The search was
limited to English language publications; however if the
abstract was available in English, then it is included in
the present paper. For literature search, the standard MeSH
such as natural products, cannabinoid receptor modulators,
cannabinoid agents, medicinal plants, and cannabinoid lig-
ands and articles all together on cannabinoid ligands were
used in the database search engines. In almost all cases, the
original articles were obtained and the relevant data was
extracted.
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Table 1 depicts the physicochemical properties and drug
likeness of phytochemicals and Figure 2 represents the
chemical structure of phytochemicals modulating cannabi-
noid receptors and endocannabinoid metabolizing enzymes.
Table 2 shows the therapeutic properties and underlying
cannabinoidmediatedmechanismof small naturalmolecules
modulating cannabinoid receptors and endocannabinoid
metabolizing enzymes. The cannabinoids are chemically
defined as terpenoalcoholic compounds and chemical class of
molecules identified till date is provided in Table 3. Recently,
some selective full agonists and antagonists for specific
CB1 and CB2 receptors have been recognized. Among the
phytocannabinoids, 𝛽-caryophyllene is one which has been
identified as a full agonist for CB2 receptors and isolated from
cannabis as well as noncannabis plant [18]. This generated
interest in characterizing the cannabinoid-like compounds
or CB receptor modulating ligands from plants other than
cannabis, which is considered a traditional source of phyto-
cannabinoids.

2.1. Alkylamides Derivatives

2.1.1. Alkylamides from Echinacea angustifolia. Various stud-
ies have demonstrated that the CB2 receptors are primarily
found in immune cells and participate in immune regula-
tion [16, 17, 23, 24]. Thus, interactions of alkylamides with
CB2 receptors can be demonstrated by immunomodulatory
effect of Echinacea preparations [21, 25, 26]. Two alky-
lamides, dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide
and dodeca-2E,4E-dienoic acid isobutylamide, have been
isolated from Echinacea purpurea and Echinacea angustifolia
[21, 27]. Chemically, alkylamides show structural similarity
with anandamide and bind with CB2 receptors more potently
than endogenous cannabinoids with the 𝐾𝑖 values (CB2
approximately 60 nM; CB1 > 1500 nM) and act as full agonist
on CB2 receptors in nanomolar range. Also, the molecular
modeling studies have shown that alkylamide compounds
bind in the solvent-accessible cavity in CB2 receptors which
is directed by the H-bonding and pi-pi interactions [27].
Furthermore, these compounds raised total intracellular Ca2+
in CB2-positive promyelocytic HL 60 cells as demonstrated
by abrogation of the effects by SR144528 and also inhibit
the enzyme, FAAH [27]. Though, the ketolactones found in
Echinacea pallida (purple cornflower) did not show cannabi-
noid activity [28]. Another alkylamide, undeca-2-ene-8,10-
diynoic acid isolated from Echinacea spp., stimulates 3T3-L1
differentiation mediated by PPAR-𝛾 activity demonstrating
that anti-inflammatory property of alkylamides is due to
polyvalent activity [29, 30].

2.1.2. Alkylamides fromOtanthus maritimus L. Several alkyla-
mides have been isolated from dichloromethane root extract
of Otanthus maritimus L. (family: Asteraceae), an aromatic
herb growing on sandy beaches along the Mediterranean
coasts. These compounds exhibit cannabinoid receptors
binding affinity as demonstrated in the in vitro, in silico, and
in vivo studies [15, 31]. The in silico studies were carried out
by generating 3D models of hCB2 receptors in homology
modeling [31]. The root extract showed high binding affinity

to CB1 and CB2 receptors with 𝐾𝑖 values of 2.2 𝜇g/mL and
1.3 𝜇g/mL, respectively, and moderate affinity to 𝜇- and 𝛿-
opioid receptors in radioligand assay. Among the several
identified compounds from extract, a tertiary alkylamide,
1-[(2E,4E,8Z)-tetradecatrienoyl] piperidine, showed most
potent binding affinity with both CB1 and CB2 receptors with
a 𝐾𝑖 value of 0.8 𝜇M and 0.16 𝜇M, respectively. It showed
CB2 selectivity with a 𝐾𝑖CB1/𝐾𝑖CB2 = 5, with significant
potency (𝐾𝑖 = 160 nM) [31]. Other isolated alkylamides as
dodeca-2E,4E-dienoic acid isobutylamide, tetradeca-2E,4E-
dienoic acid isobutylamide, tetradeca-2E,4E,8Z-trienoic acid
isobutylamide, and 1-[(2E,4E,8Z)-tetradecatrienoyl] piperi-
dine showed highest affinity for CB2 receptors and show less
affinity to opioid receptors. In regard to CB2 receptor affinity,
the structure activity relationship (SAR) studies reveal the
influence of double bonds geometry in dodecatetraenoic
acid isobutylamides. The alkylamides, N-substituted with an
isobutyl or dimethylbutyl group and represented by a sec-
ondary alkylamide as the amide part, appear to be involved in
the CB2 receptor interaction [32]. However, it is observed that
the tertiary amide 1-[(2E,4E,8Z)-tetradecatrienoyl] piperi-
dine which contains a piperidinyl moiety linked to a C14
acyl chain appears to have more affinity and potency on
CB2 than dodeca-2E,4E-dienoic acid isobutylamide, an active
principle of Echinacea species [15]. Overall, alkylamides from
Echinacea and Otanthus spp. appear to be a good source of
CB2 receptors ligands in drug discovery.

2.2. 𝛼,𝛽-Amyrin. The pentacyclic triterpene and mixture
(1 : 1) of two isomers, 𝛼,𝛽-amyrin, are mainly constituent of
the resin of Protium kleinii and Protium heptaphyllum. The
CB receptormediated anti-inflammatory and antinociceptive
effect of 𝛼,𝛽-amyrin has been shown in mice model of
neuropathic pain [33]. It reduced mechanical and thermal
hyperalgesia and inflammation induced by complete Freund’s
adjuvant and by partial sciatic nerve ligation in animal
models.The antinociceptive responsesweremediated by acti-
vation of the ECS and comparable to the synthetic molecules,
ACEA and JWH-133. The reversals of antinociceptive effects
by CB1 or CB2 receptor antagonists (AM251 and AM630,
resp.) aswell as knockdownof theCB1/CB2 gene demonstrate
CB activity. It binds to CB1 receptors with a high affinity (𝐾𝑖 =
0.133 nM) and to CB2 receptors with a lower affinity (𝐾𝑖 =
1989 nM) along with absence of behavioral disturbances.The
binding to CB1 receptors was 200–300-foldmore potent than
Δ9-THC. However, in contrast to Δ9-THC and 2-AG, 𝛼,𝛽-
amyrin showed an unusual 15000-fold more binding selec-
tivity for CB1 receptors over CB2. Furthermore, 𝛼,𝛽-amyrin
decreased proinflammatory cytokines and chemokines and
prevented activation of the transcriptional factors:NF-𝜅B and
cyclic adenosine monophosphate response element binding
(CREB) and the expression of cyclooxygenase-2 (COX-2)
in footpads and spinal cords of mice. It also prevented
upregulation of CB2RmRNA but failed to affect CB1 receptor
mRNA upregulation as well as cortical levels of both CB1
and CB2 receptors. In another study, Chicca et al. [34]
showed CB receptor binding interactions of 𝛼,𝛽-amyrin
using hCB1/hCB2 receptors transfected CHO-K1 cells and
its effects on the endocannabinoid transport in U937 cells.
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Table 1: The physicochemical properties and common and IUPAC name of lead compounds modulating cannabinoid receptors.

Molecule & IUPAC name Chemical properties Common name(s)
Amyrin
(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-
Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-
tetradecahydropicen-3-ol

M. Wt.: 426.71 [g/mol]
M. formula: C30H50O

XLogP3-AA: 9.2
H-bond donor/acceptor: 1/1

Olean-12-en-3-beta-ol

Auroglaucin
2-[(1E,3E,5E)-Hepta-1,3,5-trienyl]-3,6-dihydroxy-5-(3-
methylbut-2-enyl)benzaldehyde

M. Wt.: 298.37618 [g/mol]
M. formula: C19H22O3

XLogP3-AA: 5.4
H-bond donor/acceptor: 2/3

Auroglaucine

Biochanin A
5,7-Dihydroxy-3-(4-methoxyphenyl)chromen-4-one

M. Wt.: 284.26 [g/mol]
M. formula: C16H12O5

XLogP3-AA: 3
H-bond donor/acceptor: 2/5

5,7-Dihydroxy-4-
methoxyisoflavone

Betulinic acid
(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Hydroxy-
5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-
1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexa-
decahydrocyclopenta[a]chrysene-3a-carboxylic
acid

M. Wt.: 456.70 [g/mol]
M. formula: C30H48O3

XLogP3-AA: 8.2
H-bond donor/acceptor: 2/3

3𝛽-Hydroxy-20(29)-lupaene-28-
oic
acid

Celastrol
(2R,4aS,6aR,6aS,14aS,14bR)-10-Hydroxy-2,4a,6a,6a,9,14a-
hexamethyl-11-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-
carboxylic
acid

M. Wt.: 450.60962 [g/mol]
M. formula: C29H38O4

XLogP3: 5.9
H-bond donor/acceptor: 2/4

Celastrol; tripterine; tripterin;
celastrol, Celastrus scandens

Beta-caryophyllene
(1R,4E,9S)-4,11,11-Trimethyl-8-
methylidenebicyclo[7.2.0]undec-4-ene

M. Wt.: 204.35 [g/mol]
M. formula: C15H24
XLogP3-AA: 4.4

H-bond donor/acceptor: 0/0

(−)-trans-Caryophyllene

Chelerythrine
1,2-Dimethoxy-12-methyl-[1,3]benzodioxolo[5,6-
c]phenanthridin-12-ium

M. Wt.: 348.37 [g/mol]
M. formula: C21H18NO4

+

XLogP3-AA: 4.6
H-bond donor/acceptor: 0/4

1,2-Dimethoxy-12-
methyl(1,3)benzodioxolo(5,6-

c)phenanthridinium

Curcumin
(1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-
3,5-dione

M. Wt.: 368.37 [g/mol]
M. formula: C21H20O6

XLogP3-AA: 3.2
H-bond donor/acceptor: 2/6

Diferuloylmethane

Cyanidin
2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol

M. Wt.: 287.24 [g/mol]
M. formula: C15H11O6

+

H-bond donor/acceptor: 5/5

Cyanidol, 3,5,7,3,4-
pentahydroxyflavylium

Cyanidin-3,5-di-O-glucoside
(2S,3R,4S,5S,6R)-2-[2-(3,4-Dihydroxyphenyl)-7-hydroxy-3-
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-
yl]oxychromenylium-5-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-
triol

M. Wt.: 611.52 [g/mol]
M. formula: C27H31O16

+

H-bond donor/acceptor: 11/15

Cyanin,
cyanidin 3,5-O-diglucoside

Cyanidin-3-O-glucoside
2-(3,4-Dihydroxyphenyl)-5-hydroxy-3-[(3R,4S,5S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-7-one

M. Wt.: 448.37 [g/mol]
M. formula: C21H20O11

XLogP3-AA: −1.2
H-bond donor/acceptor: 7/11

—

Cyanidin 3-galactoside
(2S,5R)-2-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxychro-
menylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

M. Wt.: 449.38 [g/mol]
M. formula: C21H21O11

+

H-bond donor/acceptor: 8/10
Idaein, cyanidin 3-O-galactoside

Cyanidin 3-O-rutinoside
2-[[6-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-
chromenylium-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-
6-methyloxane-3,4,5-triol
chloride

M. Wt.: 630.97 [g/mol]
M. formula: C27H31ClO15

H-bond donor/acceptor: 10/15

Meralop, 3-O-rutino
sylcyanidin,7,4-

dihydroxyflavilium
chloride
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Table 1: Continued.

Molecule & IUPAC name Chemical properties Common name(s)

Delphinidin
2-(3,4,5-Trihydroxyphenyl)chromenylium-3,5,7-triol

M. Wt.: 303.24 [g/mol]
M. formula: C15H11O7

+

H-bond donor/acceptor: 6/6

3,3,4,5,5,7-
Hexahydroxyflavylium

Euphol
(3S,5R,10S,13S,14S,17S)-4,4,10,13,14-Pentamethyl-17-[(2R)-6-
methylhept-5-en-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-
cyclopenta[a]phenanthren-3-ol

M. Wt.: 426.71 [g/mol]
M. formula: C30H50O

XLogP3-AA: 8.9
H-bond donor/acceptor: 1/1

Eupha-8,24-dienol

18𝛽-Glycyrrhetinic acid
(2S,4aS,6aR,6aS,6bR,10S,12aS,14bR)-10-Hydroxy-
2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-3,4,5,6,6a,7,8,8a,
10,11,12,14b-dodecahydro-1H-picene-2-carboxylic acid

M. Wt.: 470.68 [g/mol]
M. formula: C30H46O4

XLogP3-AA: 6.4
H-bond donor/acceptor: 2/4

18𝛽-Glycyrrhetic acid,
glycyrrhetinic acid

Grenadamide
(5E)-N-[(E)-10-Chloro-4,6-dimethyl-5-oxodec-9-en-2-yl]-5-
(chloromethylidene)octanamide

M. Wt.: 404.4141 [g/mol]
M. formula: C21H35Cl2NO2

XLogP3-AA: 6.1
H-bond donor/acceptor: 1/2

—

Guineensine
(2E,4E,12E)-13-(1,3-Benzodioxol-5-yl)-N-(2-
methylpropyl)trideca-2,4,12-trienamide

M. Wt.: 383.52 [g/mol]
M. formula: C24H33NO3

XLogP3-AA: 6.8
H-bond donor/acceptor: 1/3

Pipyahyine

Leucettamol A
(2S,3R,5Z,8Z,11Z,14Z,17Z,20Z,28R,29S)-2,29-
Diaminotriaconta-5,8,11,14,17,20-hexaene-3,28-diol

M. Wt.: 472.74 [g/mol]
M. formula: C30H52N2O2

XLogP3-AA: 6.2
H-bond donor/acceptor: 4/4

—

Magnolol
2-(2-Hydroxy-5-prop-2-enylphenyl)-4-prop-2-enylphenol

M. Wt.: 266.33 [g/mol]
M. formula: C18H18O2

XLogP3-AA: 5
H-bond donor/acceptor: 2/2

5,5-Diallyl-2,2-
dihydroxybiphenyl

Methylhonokiol
2-(4-Methoxy-3-prop-2-enylphenyl)-4-prop-2-enylphenol

M. Wt.: 280.36 [g/mol]
M. formula: C19H20O2

XLogP3-AA: 5.3
H-bond donor/acceptor: 1/2

4-Methoxy-3,5-di-2-propenyl-
(1,1-biphenyl)-2-ol,4-
methoxyhonokiol

Pristimerin
Methyl (2R,4aS,6aR,6aS,14aS,14bR)-10-hydroxy-
2,4a,6a,6a,9,14a-hexamethyl-11-oxo-1,3,4,5,6,13,14,14b-
octahydropicene-2-carboxylate

M. Wt.: 464.63 [g/mol]
M. formula: C30H40O4

XLogP3-AA: 6.3
H-bond donor/acceptor: 1/4

24-Nor-D:A-friedooleana-
1(10),3,5,7-tetraen-29-oic

acid

Quercetin
2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one

M. Wt.: 302.23 [g/mol]
M. formula: C15H10O7

XLogP3: 1.5
H-bond donor/acceptor: 5/7

—

Resveratrol
5-[(E)-2-(4-Hydroxyphenyl)ethenyl]benzene-1,3-diol

M. Wt.: 228.24 [g/mol]
M. formula: C14H12O3

XLogP3-AA: 3.1
H-bond donor/acceptor: 3/3

3,4,5-Trihydroxystilbene

Rutamarin
2-[6-(2-Methylbut-3-en-2-yl)-7-oxo-2,3-dihydrofuro[3,2-
g]chromen-2-yl]propan-2-yl
acetate

M. Wt.: 356.41 [g/mol]
M. formula: C21H24O5

XLogP3-AA: 4.4
H-bond donor/acceptor: 0/5

—

Salvinorin A
Methyl (2S,4aR,6aR,7R,9S,10aS,10bR)-9-acetyloxy-2-(furan-3-
yl)-6a,10b-dimethyl-4,10-dioxo-2,4a,5,6,7,8,9,10a-octahydro-
1H-benzo[f]isochromene-7-carboxylate

M. Wt.: 432.46 [g/mol]
M. formula: C23H28O8

XLogP3-AA: 2.5
H-bond donor/acceptor: 0/8

Divinorin A

Sanguinarine

M. Wt.: 332.32 [g/mol]
M. formula: C20H14NO4

+

XLogP3-AA: 4.4
H-bond donor/acceptor: 0/4

Dimethylene
dioxybenzphenanthridine



Evidence-Based Complementary and Alternative Medicine 9

Table 1: Continued.

Molecule & IUPAC name Chemical properties Common name(s)

𝛾-Sanshool
(2E,4E,8Z,10E,12E)-N-Propan-2-yltetradeca-2,4,8,10,12-
pentaenamide

M. Wt.: 259.38 [g/mol]
M. formula: C17H25NO

XLogP3-AA: 4.3
H-bond donor/acceptor: 1/1

—

Miconioside B
(2S)-7-[(2S,4S,5S)-6-[[(2R,3S)-3,4-Dihydroxy-4-
(hydroxylmethyl)oxolan-2-yl]oxymethyl]-3,4,5-tri-
hydroxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxy-phenyl)-6,8-
dimethyl-2,3-dihydrochromen-4-one

M. Wt.: 594.56 [g/mol]
M. formula: C28H34O14

XLogP3-AA: −0.5
H-bond donor/acceptor: 8/14

Farrerol
7-O-beta-D-apiofuranosyl(1->6)-

beta-D-glucopyranoside

Piperine
(2E,4E)-5-(1,3-Benzodioxol-5-yl)-1-piperidin-1-ylpenta-2,4-
dien-1-one

M. Wt.: 285.33 [g/mol]
M. formula: C17H19NO3

XLogP3: 3.5
H-bond donor/acceptor: 0/3

1-Piperoylpiperidine

Malvidin
2-(4-Hydroxy-3,5-dimethoxyphenyl)chromenylium-3,5,7-triol

M. Wt.: 331.29 [g/mol]
M. formula: C17H15O7

+

H-bond donor/acceptor: 4/6

3,5-Dimethoxy-3,4,5,7-
tetrahydroxy flavylium acid

anion

Matteucinol
5,7-Dihydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-
dihydrochromen-4-one

M. Wt.: 314.33 [g/mol]
M. formula: C18H18O5

XLogP3-AA: 3.4
H-bond donor/acceptor: 2/5

(2S)-5,7-Dihydroxy-2-(4-
methoxyphenyl)-6,8-dimethyl-
2,3-dihydro-4H-chromen-4-one

Monocillin II
(4E,8E,11S)-15-Hydroxy-11-methyl-12-
oxabicyclo[12.4.0]octadeca-1(14),4,8,15,17-pentaene-3,13-dione

M. Wt.: 300.349 [g/mol]
M. formula: C18H20O4

XLogP3-AA: 4.1
H-bond donor/acceptor: 1/4

—

Nonivamide
N-[(4-Hydroxy-3-methoxyphenyl)methyl]nonanamide

M. Wt.: 293.40 [g/mol]
M. formula: C17H27NO3

XLogP3-AA: 4.2
H-bond donor/acceptor: 2/3

N-Vanillyl pelargonamide,
pelargonic acid vanillylamide

Peonidin
2-(4-Hydroxy-3-methoxyphenyl)chromenylium-3,5,7-triol

M. Wt.: 301.27 [g/mol]
M. formula: C16H13O6

+

H-bond donor/acceptor: 4/5

3,4,5,7-Tetrahydroxy-3-
methoxyflavylium

Pelargonidin
2-(4-Hydroxyphenyl)chromenylium-3,5,7-triol

M. Wt.: 271.24 [g/mol]
M. formula: C15H11O5

+

H-bond donor/acceptor: 4/4

3,4,5,7-Tetrahydroxy flavylium
chloride

Radicicol

M. Wt.: 364.77698 [g/mol]
M. formula: C18H17ClO6

XLogP3-AA: 3.4
H-bond donor/acceptor: 2/6

Monorderne, radisico,
melanotetan II, monorden A

Sciadonic acid
(5E,11E,14E)-Icosa-5,11,14-trienoic acid

M. Wt: 306.48 [g/mol]
M. formula: C20H34O2

XLogP3-AA: 6.7
H-bond donor: 1/2

Icosa-5,11,14-trienoic acid,
5c,11c,14c-eicosatrienoic acid

Semiplenamides A
(2E,6E)-N-(2-Hydroxyethyl)-2-methylicosa-2,6-dienamide

M. Wt.: 365.59 [g/mol]
M. formula: C23H43NO2

XLogP3-AA: 7.7
H-bond donor/acceptor: 2/2

—

Semiplenamides B
2-[[(2E,6E)-2-Methylicosa-2,6-dienoyl]amino]ethyl acetate

M. Wt.: 407.62 [g/mol]
M. formula: C25H45NO3

XLogP3-AA: 8.3
H-bond donor/acceptor: 1/3

—

Semiplenamides G
2-[[(2S,3R)-2-Methyl-3-pentadecyloxirane-2-carbonyl]amino]
propyl acetate

M. Wt.: 411.61 [g/mol]
M. formula: C24H45NO4

XLogP3-AA: 7.6
H-bond donor/acceptor: 1/4

—
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Table 1: Continued.

Molecule & IUPAC name Chemical properties Common name(s)

Serinolamide A
(E)-N-[(2R)-1-Hydroxy-3-methoxypropan-2-yl]-N-
methyloctadec-4-enamide

M. Wt.: 383.6083 [g/mol]
M. formula: C23H45NO3

XLogP3-AA: 6.6
H-bond donor/acceptor: 1/3

(4E)-N-[(2R)-1-Hydroxy-3-
methoxy-2-propanyl]-N-methyl-

4-octadecenamide

Voacamine

M. Wt.: 704.89 [g/mol]
M. formula: C43H52N4O5

XLogP3-AA: 6.1
H-bond donor/acceptor: 2/7

Voacanginine, voacamine

Yangonin
4-Methoxy-6-[(E)-2-(4-methoxyphenyl)ethenyl]pyran-2-one

M. Wt.: 258.26 [g/mol]
M. formula: C15H14O4

XLogP3-AA: 2.7
H-bond donor/acceptor: 0/4

4-Methoxy-6-(𝛽-(p-
anisyl)vinyl)-𝛼-pyrone

The XLogP3-AA data, molecular weight, molecular formula, and H-bond donor/H-bond were collected from NCBI, http://www.ncbi.nlm.nih.gov/pccom-
pound/?term.

Table 2: The cannabinoid receptor affinity, potency, and activity of lead molecules.

Compound CB receptor mediated effect CB receptor affinity/potency References
𝛾-Sanshool Diabetes CB2 agonist Dossou et al. 2013 [106]

4-O-Methylhonokiol Alzheimer’s diseases CB2 agonist Gertsch and Anavi-Goffer 2012 [87]
Schuehly et al. 2011 [85]

Yangonin Anxiety CB1 receptor antagonist Ligresti et al. 2012 [112]
Amyrin Neuropathic pain CB1/CB2 agonist, MAGL inhibitor Simão da Silva et al. 2011 [33]
Betulinic acid Cancer CB1 antagonist/CB2 agonist Liu et al. 2012 [38]

𝛽-Caryophyllene

Ulcerative colitis
Alzheimer’s diseases
Insulin resistance
Alcohol addiction

Anxiety
Depression

Nephrotoxicity
Cerebral ischemia

CB2 agonist

Bento et al. 2011 [40]
Horváth et al. 2012 [47]

Al Mansouri et al. 2014 [41]
Bahi et al. 2014 [49]
Choi et al. 2013 [43]
Klauke et al. 2014 [50]
Suijun et al. 2014 [44]
Guo et al. 2014 [42]

Gertsch et al. 2008 [18]
Celastrol Neuropathic pain CB2 agonist Yang et al. 2014 [55]

Chelerythrine Neuropathic pain
Neuroblastoma

CB1 antagonist Lim et al. 2003 [57]

Curcumin Neuroprotective
liver fibrosis

CB1 antagonist/CB2 agonist Hassanzadeh and Hassanzadeh, 2012
[64]

Euphol Neuropathic pain CB1/CB2 agonist, MAGL inhibitor Dutra et al. 2012 [71]
18𝛽-Glycyrrhetinic acid Obesity CB1 antagonist Park et al. 2014 [73]
Pristimerin Pain & inflammation MAGL inhibitor Chicca et al. 2012 [34]

Salvinorin A
Anxiety

Depression
Neuropathic pain
Ulcerative colitis

CB1 agonist, FAAH inhibitor

Fichna et al. 2012 [102]
Aviello et al. 2011 [100]
Capasso et al. 2008 [98]
Braida et al. 2009 [95]
Braida et al. 2007 [99]

Malyngamide B Inflammation CB1/CB2 agonist Montaser et al. 2012 [82]
Rutin Depression CB1 agonist Su et al. 2014 [83]

Serinolamide B Inflammation
Cancer

CB1 and CB2 receptors action Montaser et al. 2012 [82]

Bento et al. 2011 [40]Ulcerative colitis Horvath et al. 2012 [47]´Alzheimer’s diseases Al Mansouri et al. 2014 [41]Insulin resistance Bahi et al. 2014 [49]Alcohol addiction𝛽-Caryophyllene CB agonist Choi et al. 2013 [43]𝛽-
Anxiety

B2
Klauke et al. 2014 [50]y

Depression Suijun et al. 2014 [44]p
Nephrotoxicity j

Guo et al. 2014 [42]p y
Cerebral ischemia Gertsch et al. 2008 [18]
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Table 3: The chemical class of compounds showing nature derived cannabinoid ligands.

Alkaloids Terpenes and terpenoid Polyphenols Fatty acid derivatives

(i) Auroglaucin
(ii) Chelerythrine
(iii) Guineensine
(iv) Bibenzyls
(v) Isoperrottetin A
(vi) Sanguinarine
(vii) 𝛾-Sanshool
(viii) Voacamine
(ix) 3,6-Oxidovoacangine
(x)
5-Hydroxy-3,6-oxidovoacangine
(xi) Haplosamates
(xii) Desulfohaplosamates
(xiii) Piperine
(xiv) Neocosmosins
(xv) Monocillins
(xvi) Radicicol
(xvii) Yangonin

(i) Amyrin
(ii) Betulinic acid
(iii) 𝛽-Caryophyllene
(iv) Celastrol
(v) Euphol
(vi) Falcarinol
(vii) 18𝛽-Glycyrrhetinic acid
(viii) Isoperrottetin A
(ix) Pristimerin
(x) Salvinorin A
(xi) Thujone
(xii) Yangonin
(xiii) Thujone

(i) Biochanin A
(ii) Curcumin and derivatives
(iii) Cyanidin derivatives
(iv) Desmodianones
(v) Delphinidin
(vi) (+)-Catechin derivatives
(vii) Honokiol derivatives
(viii) Peonidin
(ix) Pelargonidin
(x) Magnolol
(xi) Malvidin
(xii) Rutin
(xiii) 6-Methyltetrapterol A
(xiv) Magnolol
(xv) Miconioside
(xvi) Resveratrol

(i) Dodeca-2E,4E,8Z,10Z-tetraenoic
acid isobutylamide
(ii) Dodeca-2E,4E-dienoic acid
isobutylamide
(iii) 1-[(2E,4E,8Z)-Tetradecatrienoyl]
piperidine
(iv) Dodeca-2E,4E-dienoic acid
isobutylamide
(v) Tetradeca-2E,4E-dienoic acid
isobutylamide
(vi) Tetradeca-2E,4E,8Z-trienoic acid
isobutylamide
(vii) 1-[(2E,4E,8Z)-Tetradecatrienoyl]
piperidine
(viii) Malyngamides
(ix) Serinolamides
(x) Sciadonic acid
(xi) Semiplenamides

The study showed that it did not bind to cannabinoid
receptors (𝐾𝑖 > 10 𝜇M) whereas it inhibited 2-AG hydrol-
ysis in pig brain homogenates and failed to inhibit AEA.
Additionally, 𝛽-amyrin is found to weakly inhibit human
MAGL in a rapid, reversible, and noncompetitive manner,
similar to structurally related but more potent triterpene,
pristimerin. Subsequently, Matos et al. [35] also showed the
cannabimimetic activity of 𝛼,𝛽-amyrin in dextran sulfate
sodium-induced colitis in mice by diminishing disease activ-
ity, colonic damage, and activity of myeloperoxidase, N-
acetylglucosaminidase, and attenuating induction of proin-
flammatory mediators: cytokines, chemokines, and adhesion
molecules in the colon. The abrogation of the beneficial
effects of 𝛼,𝛽-amyrin by CB1 receptor blocker, but not by CB2
receptor blocker, demonstrates the CB1 receptor mediated
mechanism. Additionally, 𝛼,𝛽-amyrin treatment reduced the
MAGL and FAAH enzymes. Integrating the ECSmodulatory
properties 𝛼,𝛽-amyrin seem to be a promising candidate for
future therapeutics.

2.3. Anthocyanins. Anthocyanins are water-soluble polyphe-
nol compounds abundantly found in colored fruits and
vegetables particularly in red and blue fruits such as blue-
berry, cranberry, and red cabbage. These have been shown to
regulate several intracellular functions. Numerous studies
have shown that anthocyanins and anthocyanidins exhibit
antioxidant, redox-inflammatory signaling which contrib-
utes to its analgesic, cardioprotective, neuroprotective, anti-
cancer, atherogenic, antihyperlipidemic, and antihyperten-
sive effects. The cannabinoid receptor activity has been
demonstrated by competitive radioligand assays of cyanidin
(𝐾𝑖 = 16.2 𝜇M) and delphinidin (𝐾𝑖 = 21.3 𝜇M) for hCB1
receptors whereas similar affinities for CB2 receptors have
been shown by cyanidin (𝐾𝑖 = 33.5 𝜇M), delphinidin (𝐾𝑖 =
34.3 𝜇M), and peonidin (𝐾𝑖 = 46.4 𝜇M) [36]. However,
the cyanidin derivatives such as cyanidin-3,5-di-O-glucoside,

cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyani-
din-3-O-rutinoside, malvidin, and pelargonidin showed
inhibition of both CB1 and CB2 receptors. Additionally,
cyanidin-3-O-𝛽-glucoside also reported to activate all forms
of PPARs and reduces hepatic lipids by altering the expres-
sion of genes involved in lipid metabolic pathways. Taking
altogether the multiple pharmacological properties, antho-
cyanins appear as polypharmacological agent for diseases
involving dysregulation of ECS and PPARs [36].

2.4. Auroglaucin. Auroglaucin, a benzaldehyde compound,
is obtained from ethyl acetate extract of fungus Eurotium
repens collected from Tifton, GA. The extract as well as
auroglaucin showed binding affinity for CB1 (62.6%) andCB2
receptors (43.1%) using CP55,940 assay in CHO-K1 cells [37].
The extract also showed affinity with opioid receptors with
binding affinity more than 40%. The IC50 for CB1 and CB2
receptor was 15.2 and 19.9 𝜇M, respectively [37].

2.5. Betulinic Acid. Betulinic acid is a widely distributed
pentacyclic triterpenoid with a lupan skeleton in the plant
kingdom. Betulinic acid isolated from the extract of several
plants and its synthetic analogues exhibit a broad spectrum
of activities including antioxidant, anti-inflammatory, anti-
angiogenic, immunomodulatory, and anticancer. Liu et al.
[38] investigated the effects of CB1 and CB2 receptor antag-
onists AM251 and AM630, respectively, on betulinic acid-
dependent repression of Sp1, Sp3, and Sp4 and survivin.
Betulinic acid and either AM251 or AM630 attenuated the
effects of betulinic acid persuaded downregulation of Sp1,
Sp3, and Sp4 and survivin and AM251 and AM630 inhibited
betulinic acid-mediated downregulation of ErbB2, p-ErbB2,
p-MAPK, p-Akt, and YY1 in BT474 and MDA-MB-453
cells. Further, betulinic acid competitively bound to both
cannabinoid receptors with𝐾𝑖 values of 36.7 ± 4.1 and 41.2 ±
12.1 𝜇mol/L for mCB1 and hCB2 receptors, respectively, in
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radioligand binding assay. The role of CB receptor mediated
activity was further confirmed in CB1 and CB2 knockdown
mice partially reversed betulinic acid-induced downregula-
tion of Sp1, Sp3, and Sp4. Betulinic acid-mediated repression
of Sp1, Sp3, Sp4, and Sp-regulated genes found because of
induction of the Sp repressor ZBTB10 and downregulation of
microRNA-27a, which constitutively inhibits ZBTB10 expres-
sion, showed that the effects of betulinic acid were CB1 and
CB2 receptor dependent. Further, it has also been shown to
activate PPAR-𝛾, which encourages it as amultitargeted agent
for future therapeutics.

2.6. Biochanin A. Biochanin A is an O-methylated isoflavone
compound predominantly found in vegetable plants, red
clover, soy, alfalfa sprouts, peanuts, and chickpea, and pos-
sesses potent antioxidant, anti-inflammatory, phytoestro-
genic, and antineoplastic activities. It showed modest effects
on CB1 and CB2 receptors in [3H]CP55,940 assay and
inhibited brain CB1 receptors (27%) and recombinant CB2
receptors (33%) [39]. No studies are available to demonstrate
its other activities such as PPAR-𝛾 modulation. It has been
reported to inhibit FAAH (IC50 = 0.62𝜇M) at micromolar
potencies in RBL2H3 cells [39].

2.7. 𝛽-Caryophyllene. 𝛽-Caryophyllene, a volatile sesquiter-
pene, is abundantly found in essential oil of many plants such
as cloves, oregano, cinnamon, black pepper, hemp, rosemary,
and hops [18]. It is popularly used in food, cosmetics, and
fragrances as a preservative, additive, and flavoring agent. It
is approved by several food and flavor regulatory agencies
including United States Food and Drug Administration
(FDA) for its use as a food additive and classified as a “gen-
erally regarded as safe” compound. Gertsch et al. [18] first
time reported that the fractionation of cannabis essential oil
yields 𝛽-caryophyllene which possesses an affinity for CB2
receptors. In radioligand assays, (𝐸)-𝛽-caryophyllene and
its isomer (𝑍)-𝛽-caryophyllene dose-dependently displaced
CP55,940 from hCB2 receptors significantly expressed in
HEK293 cells (𝐾𝑖 = 155 ± 4 nM) in the nanomolar range
and exhibit selective full agonism on CB2 receptors. (E)-𝛽-
caryophyllene exerts potent cannabimimetic anti-inflam-
matory effects in mice. Several studies have shown the CB2
receptor dependent therapeutic effects in ulcerative colitis
[40], alcohol addiction [41], cerebral ischemia [42, 43],
insulin resistance [44], glutamate neurotoxicity [45], hyper-
triglyceridemia [46], renal injury [47], liver fibrosis [48], anx-
iety and depression [49], neuropathic pain [50], Alzheimer’s
disease [51], and CB2 receptor knockout mice [47]. Taking
together the cannabimimetic [18], opioidergic [52], and
PPARs mediated activity [53], 𝛽-caryophyllene appears as
most promising molecule of pharmaceutical interest with
multifunctional and polypharmacological properties.

2.8. Catechins. Catechins are the group of polyphenol com-
pounds abundantly found in the leaves of tea, the most
popular beverage consumed worldwide and in many fruits
and legumes. Catechins are known to maintain heath
and general well-being and pharmacotherapeutic effects.

The catechin compounds include (−)-epigallocatechin-3-
O-gallate (EGCG), (−)-epicatechin-3-O-gallate (ECG), (−)-
epigallocatechin (EGC), (−)-epicatechin, and (+)-catechin.
These compounds have been comprehensively studied and
shown to possess antioxidant, anti-inflammatory, GABAer-
gic, glutamatergic, monoaminergic, opioidergic, and nitr-
ergic modulatory activities and contribute to the several ther-
apeutic benefits. For the first time, Korte et al. [54] evaluated
the affinities of EGCG, ECG, EGC, (−)-epicatechin, and (+)-
catechin for human CB1 and CB2 receptors in competitive
radioligand binding assays in Chem-1 and CHO cells. All the
compounds, namely, EGCG (𝐾𝑖 = 33.6mM), EGC (𝐾𝑖 =
35.7mM), and ECG (𝐾𝑖 = 47.3mM) exhibited binding with
CB1 and CB2 receptors in a dose-dependent manner. How-
ever, the weaker binding to CB2 receptor was found with
inhibition constants more than 50mM for ECC and EGC.
The epimers such as (+)-catechin and (−)-epicatechin in
radioligand assays showed slight affinities for both CB1
and CB2 receptors. The study demonstrates that catechins
possess amoderate affinity for CB1 receptors whereas binding
to CB2 receptor was not very prominent. In SAR stud-
ies, the ungallated catechins were found to have negligible
bioactivities for CB1 and CB2 and the 31,41,51-trihydroxyl
substitution in the catechin B-ring partially contributing to
antioxidant, apoptosis-inducer, and 𝛽-secretase inhibiting
activity of catechins did not appear responsible for binding
with cannabinoid receptors.Thus, the multifunctional effects
of catechins could be further exploited for cannabinoid
activities that with additional pharmacological properties
may synergize the actions.

2.9. Celastrol. Celastrol, a quinone methide triterpenoid,
is a pharmacologically active constituent from the root of
Tripterygium wilfordii and Celastrus regelii (family: Celas-
traceae) also known as Thunder of God Vine in the Asian
continent. It is used as a remedy of inflammatory and autoim-
mune diseases along with its antioxidant, anti-inflammatory,
anticancer, and insecticidal activities. Celastrol showed
cannabinoid mediated therapeutic activity in inflammatory
and neuropathic pain induced by carrageenan and spared
nerve injury in animal models [55]. It produces a dose-
dependent inhibition of edema and allodynia evidenced by
inhibition of inflammatory cytokines and hypersensitivity of
nociceptive response. Further, the reversal of antihyperalgesic
effects of celastrol by SR144528, a specific CB2 receptor antag-
onist, but not by SR141716, a specific CB1 receptor antagonist,
demonstrates the analgesia effects of celastrol through CB2
signaling. Although celastrol shows an effect on CB2 recep-
tors in neuropathic pain and inflammation, further studies
would explore its potential as a novel candidate for pain relief.

2.10. Chelerythrine and Sanguinarine. Chelerythrine and
sanguinarine are the alkaloids of quaternary benzophenan-
thridine class in several medicinal plants and reported as a
potent protein kinase C (PKC) inhibitor. These compounds
showed to modify behavior mediated by CB1 receptors [56].
The CB1 receptor modulatory property of chelerythrine was
first reported in a chronic constriction sciatic nerve injury
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multifunctional and polypharmacological properties.
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model of neuropathic pain [57]. The application of chelery-
thrine was found to inhibit CB1 receptors mainly within the
ipsilateral superficial spinal cord dorsal horn mediating tyro-
sine kinase receptors. Chelerythrine also inhibits desacetyl
levonantradol-dependent activation of CB1 receptor in the
neuroblastoma cells (N18TG2) and this was supported with
modulation of a downstream PKC by CB1 receptor [58]. The
pseudobase forms of chelerythrine and sanguinarine inhibit
CB1 receptors similar to Δ9-THC at low micromolar concen-
trations in mouse brain membrane [59]. In [3H]CP55,940
binding assay, the IC50 of sanguinarine and chelerythrine
appears in the 1-2 𝜇M range, which has similar potency
like cannabidiol, virodhamine, various Δ8-THC derivatives,
and certain bicyclic resorcinols [60]. However, these were
found weaker than Δ9-THC and Δ9-tetrahydrocannabivarin,
which inhibit the binding of [3H]CP55,940 at low nanomolar
concentrations [61]. Chelerythrine and sanguinarine showed
lesser potency in comparison with several conventional
CB1 receptor blockers but act differently to AM251 by the
reverse modulation of CB1 receptors [56]. A recent study
showed that chelerythrine produces the sequential activation
of muscarinic (M3) receptors and CB1 receptors which
synergistically induce contractile effects of the bovine ciliary
muscle by involving the activation of Rho-kinase and PKC
[62]. Considering the CB selectivity these molecules may
serve as a template for potent CB1 receptor blocking drugs
of natural origin negatively regulating the ECS.

2.11. Curcumin. Curcumin, chemically known as diferuloyl-
methane, is a well-known polyphenol molecule and an active
constituent of the dietary spice turmeric (Curcuma longa)
used for dietary and medicinal purposes since centuries.
Numerous studies demonstrate that curcumin regulates vari-
ous signaling molecules including inflammatory molecules,
cytokines and chemokines, adhesion molecules, transcrip-
tion factors, enzymes, protein kinases, protein reductases,
carrier proteins, cell survival proteins, cell-cycle regulatory
proteins, drug resistance proteins, growth factors, receptors,
DNA, RNA, and metal ions. Seely et al. [63] first showed that
curcumin binds to CB1 receptors with nanomolar affinities
and in micromolar affinities with CB2 receptors. Struc-
turally, curcumin also shares structural motifs with some
cannabinoid receptor ligands. Further, curcumin has been
showed to cause sustained elevation of brain derived nerve
growth factor and endocannabinoids in brain region-specific
and dose-dependent manner similar to the conventional
antidepressant amitriptyline [64]. However, pretreatment
with AM4113, a CB1 receptor neutral antagonist, but not with
SR144528, a CB2 receptor antagonist, prevents induction of
brain derived nerve growth factors and suggests CB1 recep-
tor mediated ECS as novel targets for curcumin. Recently,
Witkin et al. [65] reported that curcumin did not potently
alter GTP-𝛾-35S binding, which suggests its functional CB1
antagonist (𝐾𝑖 = 2080 nM). Further, curcumin did not
prevent the hypothermic effects of the CP55,940 and the
anti-immobility effects of curcumin did not occur in CB1
knockout (CB1

−/−) mice. In a recent study, Zhang et al. [66]
demonstrated the cannabinoid mediated antifibrotic activity

of curcumin in liver fibrosis induced by carbon tetrachlo-
ride. Curcumin treatment upregulated CB2 receptors and
downregulated CB1 receptors in hepatic stellate cells and
modulated the expression of extracellular matrix (ECM)
proteins. The abrogation of inhibition of curcumin effects on
ECM expression revealed that inverse agonism/antagonism
of CB1 receptors contributed to curcumin inhibition of ECM
expression. Further, in silico studies showed its binding toCB1
receptors with two hydrogen bonds. In a very recent study,
bisdemothoxycurcumin, a derivative of curcumin, has been
showed to induce apoptosis in activated hepatic stellate stem
cells by impairing cellular energetics and downregulating
cytoprotective proteins, likely through a mechanism that
involvesCB2 receptors as evidenced by reversal of theBDMC-
induced apoptosis with cotreatment of SR144528, a CB2
antagonist, and confirmed with genetic downregulation of
the receptor using siCB2 receptors [67].The studies conclude
that the effects of curcumin in chronic liver disease are
mediated by cannabinoid receptors andmay offer therapeutic
benefits in hepatic fibrosis. Integrated all together, cannabi-
noid mediated effects of curcumin and well established
manifold properties of curcumin; it holds a strong propensity
in diseases where ECS is dysregulated.

2.12. Haplosamate. Haplosamate derivatives are first nat-
urally derived cannabinomimetic compound belonging to
steroid family representing a new chemical class of cannabi-
noid receptor ligands. It is a group of steroids including
haplosamate A and haplosamate B [68, 69]. Haplosamate A
is a C28 sterol containing seven oxygenated carbons and a
rare six-member ether ring connecting C-16 and C-23 with a
sulfate group at C-3 as well as a methyl phosphate at C-15. For
the first time, it was isolated from a sponge, Xestospongia sp.,
and later on from other sponges such as Haplosclerida spp.
and Cribrochalina spp. [68] and Indonesian marine sponge,
Dasychalina spp. (family: Niphatidae). The isolated haplosa-
mate compounds, haplosamate A and desulfohaplosamate,
as well as semisynthetic derivatives were screened for the
interaction and affinity to cannabinoid receptor.Haplosamate
A and desulfohaplosamate exert opposite effects as haplosa-
mate A showed significant affinity for CB1 receptor, whereas
desulfohaplosamate showed higher affinity for CB2 receptor.
The 7-monoacetylated derivative of haplosamate A exhibits
affinity to both cannabinoid receptors in comparison with its
parent compound. However, acetylation at C-4 or dialdehyde
derivative showed the loss of affinity on both CB1 and CB2
receptors.

2.13. Euphol. Euphol, a tetracyclic triterpene alcohol, is the
key constituent in the sap of Euphorbia tirucalli L. (family:
Euphorbiaceae), a plant grown in Africa and South America,
Brazil, and Amazonas. King et al. [70] first reported that
euphol inhibits MAGL in a reversible and noncompetitive
manner. The SAR studies reveal that euphol is a bioisoester
of pristimerin and lacks the quinone methide group and is
found devoid of CNS side effects in the tetrad tests, such
as deficit locomotor, catalepsy, analgesia, and hypothermia,
typical features of cannabinoids. Euphol showed potent
immunomodulator and anti-inflammatory effects in animal
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models of ulcerative colitis and autoimmune encephalomyeli-
tis where CB2 receptors play a vital role in pathogenesis [71].
The antihyperalgesic effect of euphol appears similar to the
effects caused by ACEA, a CB1 receptor agonist, and JWH-
133, aCB2 receptor agonist.The reversal of the antinociceptive
effects of euphol on pretreatment with CB1 antagonist AM251
or with CB2 selective antagonist AM630 showed CB1 and
CB2 receptor dependent mechanisms. Euphol was found
efficacious in preventing the neuropathic behavior mediated
through the modulation of both CB1 and CB2 receptors.
These findings suggest that euphol has excellent potential for
use in neuropathic pain and persistent inflammation owing
its ability to interact with ECS and is devoid of the CNS
adverse effects even at high doses.

2.14. Falcarinol. Falcarinol is a C17-polyacetylene compound
with two carbon-carbon triple bonds and two double bonds
and possesses a reactive polyyne structure and is found pre-
dominantly in carrot, celery, fennel, parsnip, and Gamisans,
members of Araliaceae and Apiaceae family. It is a phy-
toalexin also known as panaxynol and isolated for the first
time from Panax ginseng. It showed to bind with both
cannabinoid receptors nonselectively but selectively alky-
lates the CB1 receptors and induces CB1 receptor mediated
functional signals by covalent and irreversible interaction
with the CB1 receptors (𝐾𝑖 = 0.59 𝜇M) [72]. Though,
falcarinol is not a functional ligand at CB2 receptor as it
did not interfere with constitutive or forskolin-stimulated
cAMP but appears as a weak partial agonist on CB2 receptor
and acting through Go signaling [72]. Falcarinol is unstable
and upon exposure to sunlight causes the formation of
secondary alcohol with the loss of binding affinity to the
cannabinoid receptors. Thus, only freshly obtained falcari-
nol exerts significant cannabinoid receptor binding affinity.
Recently, falcarinol showed inverse agonist/antagonism for
the CB1 receptors in keratinocytes and causes expression of
proallergic chemokines in keratinocytes, the effects similar to
rimonabant. Furthermore, a structural analog of falcarinol,
pontica epoxide, was found devoid of affinity either for
cannabinoid or for opioid receptors [15].

2.15. 18𝛽-GlycyrrhetinicAcid. 18𝛽-Glycyrrhetinic acid and its
diastereomer 18𝛼-GA are the triterpenoid saponins obtained
from the roots of Glycyrrhiza glabra L., popularly known
as licorice. It is generally used as a natural sweetener and
flavoring additive in food and as traditional medicines
owing to its antimicrobial, anticancer, and anti-inflammatory
properties. The inhibitory activities of licorice extract in
hCB1 receptor-expressing Chem-1 cells showed a dose-
dependent decrease in intracellular Ca2+ levels (IC50 = 1.96±
0.05 𝜇M) [73]. Other active constituents of licorice like
liquirtin, glabridin, and 18𝛼-glycyrrhetinic acid also exhibited
inhibitory activity against Ca2+ flux induced byAEA,whereas
18𝛽-glycyrrhetinic acid showed stronger potency evidenced
by more than 90% inhibition in responses to CB1 receptor
agonist. The 18𝛽-glycyrrhetinic acid was also found to regu-
late CB1 receptors implicated in antiadipogenesis responses
in 3T3-L1 cells and exerts antiobesity effects by correcting

lipid dysregulation, body weight gain in diet-induced obese
animals [73]. Further, it also alleviated effects of AEA, a
CB1 receptor agonist, and suppressed adipocyte differenti-
ation in 3T3-L1 cells by downregulating the AEA-induced
MAPK activation and expression of adipogenic genes includ-
ing C/EBP-𝛼 and PPAR-𝛾. The 18𝛽-glycyrrhetinic acid in
licorice extract appears to be an active constituent possessing
CB1 receptor downregulatory effect and confers therapeutic
effects against obesity.

2.16. Guineensine. Guineensine possesses potent cytotoxic,
insect repellents, anti-inflammatory, insecticidal, and anti-
feedant activities from black pepper, Piper nigrum (family:
Piperaceae). It appears as a potent novel inhibitor (EC50 =
290 nM) of cellular uptake of the AEA and 2-AG [74, 75] in
nanomolar range. Though, guineensine did not inhibit the
enzyme FAAH or enzyme MAGL or interact with cannabi-
noid receptors or fatty acid binding protein 5 (FABP5), a
major cytoplasmic AEA carrier, or serine hydrolases. The
SAR studies suggest the significance of alkyl chain length
interconnecting the pharmacophoric isobutylamide and ben-
zodioxol moieties for AEA cellular uptake inhibition. Stud-
ies have shown cannabimimetic effects such as catalepsy,
hypothermia, reduced locomotion, analgesia, and block-
ade of the effects by CB1 receptor antagonist, rimonabant
(SR141716A) in animals. Other common constituents of black
pepper, piperine, dose-dependently reduce intestinal fluid
accumulation induced by castor oil and pretreatment with
SR141716A; a CB1 receptor antagonist showed that the effects
were not dependent on cannabinoid receptors [76]. Similarly,
Izzo et al. [77] studied the effect of capsaicin, piperine, and
anandamide on upper gastrointestinal motility in mice and
showed the inhibitory effect of anandamide but not piperine
using a noneffective dose of SR141716A, a CB1 receptor
antagonist. Piperine appears to reduce upper gastrointesti-
nal motility independent of CB1 receptors. Guineensine
appears as a novel plant derived compound which inhibits
endocannabinoid uptake independent of FAAH [74, 75].
Thus, the scaffold of guineensine could be useful in finding
future tools for ECS transport and modulatory mechanism
in therapeutics.

2.17. Hydroxyeicosatetraenoic Acid (HETE) and Hydroxyl-
Anandamide (HAEA). The oxylipin, 3-hydroxyarachidonic
acid (3(R)-HETE), is an intermediate of the 𝛽-oxidation of
arachidonic acid and plays an important biological role in
the life cycle of fungi. The fungal pathogen Candida albicans
transforms arachidonic acid into 3(R)-HETE. It has been
showed that Diposascopsis uninucleata converts AEA into
3-HAEA and established an enantiodivergent synthesis to
study its pharmacological activity [78]. The affinity of AEA,
3(R)-HAEA, and 3(S)-HAEA for CB1 receptors was 0.02 ±
0.015 𝜇M, 1.85 ± 0.275 𝜇M, and 1.46 ± 0.33 and for CB2
receptors was 0.11 ± 0.025 𝜇M, 6.43 ± 0.7710 𝜇M, and 4.85 ±
0.38 𝜇M, respectively. Thus, yeasts producing 3(R)-HETE
convert AEA released by the host cells at the site of infec-
tion into 3(R)-HAEA which leads to the inflammatory and
algogenic responses associated with fungal diseases. Both the
enantiomers of 3-HAEA exhibited similar affinity for hCB1
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and hCB2 receptors but significantly (approximately 70–
90-fold and approximately 40–60-fold) lower affinity than
the parent compound AEA. Further, studies are needed in
order to utilize these compounds in drug discovery through
biotransformation.

2.18. Magnolol. Magnolol, a biphenyl neolignan from Mag-
nolia officinalis, was used popularly in traditional Chinese
medicine for insomnia, anxiety, and allergic diseases. Rempel
et al. [79] examined the extract and biphenyls honokiol,
magnolol, 8,9-dihydromagnolol, tetrahydromagnolol, and
trans-isomagnolol for its cannabinoid affinity and activity.
The study showed that magnolol behaved as partial agonist
for CB2 receptor, while honokiol was less potent but showed
full agonistic activity at CB1 and antagonistic properties at
CB2 receptor. However, further studies showed no inhibition
activity for FAAH andMAGL in rat brain preparations.Thus
magnolol showed partial agonist affinity at both CB receptor
subtypes, while tetrahydromagnolol showed higher affinity
for CB2 receptor and antagonist at GPR55, a CB-related
orphan receptor in 𝛽-arrestin translocation assays.

Fuchs et al. [80] synthesized analogs of magnolol and
investigated affinity at hCB1/CB2 receptors using CP55,940
radioligand studies and also examined SAR of these analogs
with variations of alkyl chains and phenolic groups which
may improve the potency. The study showed that methy-
lation of phenolic hydroxyl group abolishes the preference
of magnolol analogs for CB2 receptors; however depending
on which of the two phenolic groups was methylated the
resulting compounds exhibited an enhanced affinity to CB1
receptors. Full agonism on CB1 and CB2 receptors was
observed following methylation of the hydroxyl group in
the para-position to the propyl residue for derivatives. But
methylation of the hydroxyl group in the para-position of
the hexyl residues results in CB1 antagonist and partial CB2
receptors agonist activity, emphasizing the importance of
the free phenolic hydroxyl group for high intrinsic activity.
Further, activity of new analogs at Gi-coupled CB1 and
CB2 receptor subtypes on forskolin-stimulated adenylate
cyclase activity in cAMP accumulation assays confirmed
that potency and efficacy of magnolol can be easily altered
by methylation of one of the phenolic hydroxyl groups
and depending on the position of the methoxy group, full
agonism on both receptors with antagonist activity at CB1
and partial agonist activity at CB2 receptors can be achieved.
Magnolol also exhibited dual agonismof RXR𝛼 and PPAR𝛽/𝛾
and appears as an important agent to target this heterodimer
[81]. The manipulation of the biphenyl scaffold appears as a
putative pharmacophore for the further development of novel
CB receptor ligands.

2.19. Malyngamides. Malyngamides are the fatty acid amide
compounds abundantly found in marine cyanobacterial
metabolites from Lyngbya spp. Till date, more than 30
malyngamide analogues have been isolated and screened for
their cannabinoid affinity and activity. Among numerous
analogues, malyngamide B appeared to bind to both CB1
and CB2 receptors, with moderate potencies as agonist.
Further tests reveal its anti-inflammatory properties like

cannabimimetic compounds and it was found to inhibit
NO production with an IC50 of 6.2 𝜇M without affecting
cellular viability up to 25 𝜇M. It appears devoid of inhibitory
activity on FAAH, which catalyzes anandamide hydrolysis
and terminates anandamide signaling [82].

2.20. Rutin. Rutin is a flavonoid from Saussurea involucrata
also known as snow lotus, in different regions of China.
The cannabinoid mediated antidepressant activity of rutin
shown inmicemodels employing weight-loaded forced swim
test. Rutin treatment showed upregulation of CB1 receptors
in mouse brain tissue demonstrating antifatigue activity
and CB1 receptor-interacting proteins. Further, in brain
tissues, an increase in expression of peroxisome proliferator-
activated receptor-𝛼 coactivator (PGC-1𝛼) and sirtuin 1
(SIRT1) was also demonstrated [83]. Integrating together
the cannabinoid, PPAR-𝛾, and opioid receptor activities,
rutin may be a potential multitargeted polypharmacological
agent in prevention and treatment of diseases involving
dysregulation of PPAR and ECS.

2.21. Serinolamides. Serinolamides are fatty acid amides
found in a marine cyanobacterium, Lyngbya spp., collected
from Piti Bomb Holes from Guam. Among the isolated
compounds, the analogue serinolamide A isolated from
the marine cyanobacterium, Lyngbya majuscula, Oscillatoria
spp., showed structural similarity to the endocannabinoids
anandamide and 2-AG. Serinolamide A showed binding
affinity to the human cannabinoid receptors and found 5-
fold more selective agonist activity for the CB1 receptors
with moderate binding affinity [84], whereas serinolamide B
appeared to inhibit forskolin-stimulated cAMPaccumulation
mediating both CB1 and CB2 receptors withmoderate poten-
cies along with more CB2 receptor selectivity in binding as
well as functional assays. However, serinolamide B showed an
opposite trend in binding affinities compared to serinolamide
A,where it exhibited amoderate affinity andhigher selectivity
for CB2 (𝐾𝑖 = 5.2 𝜇M) over CB1 receptor (𝐾𝑖 = 16.4 𝜇M)
[82]. Serinolamide B like other cannabimimetic compounds
exerted anti-inflammatory effects in lipopolysaccharide-
(LPS-) induced murine macrophages RAW 264.7 with an
IC50 > 25 𝜇M. The observations indicate that presence of a
secondary amide versus a tertiary amide is not a major ele-
ment for specific receptor selectivity.Though, the compounds
represent a novel scaffold from a marine organism for the
development of cannabinoid modulators.

2.22. Methylhonokiol. 4-O-Methylhonokiol is a polypheno-
lic compound isolated from Magnolia grandiflora L., a tree
growing in Northern Mexico and the USA. Schuehly et al.
[85] first reportedmethylhonokiol as a potent agonist on CB2
receptors, triggering a novel type of heteroactive signaling in
the radioligand displacement assays in HEK293 cells. In an
in vitro study, methylhonokiol only showed ligand binding
interactions with CB2 receptors but no effects on GPR55
and CB1 receptors. It also acts both as inverse agonist and
as agonist dependent on the specific signal pathways. A
prominent effect of methylhonokiol observed is inhibition
of macrophage migration induced by 2-AG, even though
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it shows anti-inflammatory properties similar to 2-AG and
other endocannabinoids [86].

Based on the reports that orally administered 4-O-
methylhonokiol prevents amyloidogenesis and progression
of Alzheimer’s disease by inhibiting neuroinflammation in
mouse model of Alzheimer’s disease [87], authors also
suggested that 4-O-methylhonokiol exerts its beneficial
effects bymodulation ofCB2 receptors significantly expressed
in astrocytes and microglia. Its structural similarity with
HU308, a synthetic CB2 receptor-selective agonist, has been
shown to inhibit osteoclastogenesis and be useful as bone
resorption inhibitors support its cannabinoid property [88].
Overall, with activities such as GABAergic, PPAR-𝛾, and
AChE modulatory, methylhonokiol seems to be a novel
agent to target CB2 receptors in treatment of osteoarthritis,
Alzheimer’s disease, neuroinflammation, neuropathic pain,
and chronic bowel disease.

2.23. Miconioside. Miconioside compounds are flavanone
glycoside isolated from themethanolic extract of the stems of
Miconia prasina growing in tropical and subtropical regions
of the Americas. These compounds include miconiosides B
and C which showed their affinity to bind with CB1 and CB2
receptors. They showed weak inhibition for CB2 receptors,
but no activity on CB1 receptors in radioligand binding
studies [89].

2.24. Pristimerin. Pristimerin is a natural quinone methide
triterpenoid isolated from the Celastrus and Maytenus spp.
exhibiting anti-inflammatory, antioxidant, chemoprotective,
and antimalarial activity. Pristimerin exhibits reversible inhi-
bition of MAGL [70] as the quinone methide group to react
with cysteine residues of proteins to form covalent adducts
[90] and this was confirmed by using a rapid dilution assay.
Themolecular docking studies showed that lipophilic portion
of the molecule lies on a pocket located within the lid
domain of MAGL and its 3-hydroxyl group [70]. The bind-
ing of pristimerin to MAGL strengthens by the formation
of a polar interaction with a regulatory cysteine, possibly
Cys208. Chicca et al. [34] also showed that pristimerin and
JZL184 both produce potent inhibition of MAGL activity.
Pristimerin produced inhibition of [3H]-glycerol formation
and accumulation of intracellular [3H]2-AG and was found
less potent than 𝛽-amyrin, another MAGL inhibitor. Based
on the in vitro and in vivo studies, it has been concluded
that pristimerin inhibits MAGL in a rapid, reversible, and
noncompetitive manner.

2.25. Resveratrol. Resveratrol is a stilbenoid compound iso-
lated from fruits and plants and widely studied for its
pharmacological properties. Recently, the uncharacterized
trans-resveratrol receptor has shown to share many charac-
teristics with cannabinoid receptors. The affinity of trans-
arachidins, trans-resveratrol, and trans-piceatannol for CB1
and CB2 receptors was investigated in CHO cells expressing
cannabinoid receptors and it was found that trans-resveratrol
and all analogs bind to CB1 receptors, whereas isopreny-
lated trans-resveratrol derivatives tA1 and tA3 bind to CB2

receptors [63]. The study showed affinity of trans-resveratrol
and trans-piceatannol for CB2 receptors is 5- to 10-fold
lower than that observed for CB1 receptors. All compounds
except for tA3 exhibit approximately 2- to 10-fold selectively
for binding to CB1 receptors relative to CB2 receptors.
In molecular docking, trans-arachidins, trans-resveratrol,
trans-piceatannol, and their glucuronidatedmetabolites bind
with CB2 receptors while isoprenylated analogs tA1 and tA3
bind with both CB1 and CB2 receptors. Trans-resveratrol
and Trans-picetamol also bind to mCB1 receptors; however
they lack affinity for hCB2 receptors. The docking studies
showed that prenylated stilbenoids trans-arachidins 1 and 3,
the more lipophilic isoprenylated analogs of trans-resveratrol
and trans-piceatannol, may be preferable alternatives to
trans-resveratrol due to increased bioavailability via slowed
metabolism. Both parent and isoprenylated compounds bind
to CB1 receptors and were confirmed by the antagonistic
actions produced by CB1 receptor agonists. However, the
analogs possess an isoprenyl group, trans-arachidin 1 and
trans-arachidin 3, showed affinity for CB2 receptors, andwere
further confirmedbymolecular docking [91].Though, resver-
atrol has been well investigated in numerous experimental
and clinical studies; however the cannabinoid mediated
pharmacological effects need to be ascertained.

2.26. Resorcylic Acid Lactones. Resorcylic acid lactones neo-
cosmosin A, neocosmosin B, neocosmosin C, monocillin IV,
monocillin II, and radicicol are obtained from ethyl acetate
extracts of Neocosmospora spp. The extracts as well as the
compounds were found to exhibit moderate affinity with
opioid receptor and cannabinoid receptors in a high through-
put screen employing a receptor binding assay. Among these
compounds, neocosmosin B, monocillin II, and radicicol
showed a binding affinity for CB1 receptors using CP55,940
as standard. However, compounds, neocosmosin A, neo-
cosmosin B, neocosmosin C, monocillin II, and radicicol,
exhibited binding affinity to CB2 receptors with respect to
CP55,940 as standard. Neocosmosin C, monocillin II, and
radicicol also showed good affinity for binding with the
human opioid receptors [92, 93]. These findings are impli-
cated in neuropathic pain and neuroinflammatory disorders
where opioid and cannabinoid systems are dysregulated.

2.27. Salvinorin A. Salvinorin A, a trans-neoclerodane diter-
penoid, is the principal constituent of Salvia divinorum, a
plant used in Mexico for spiritual and medical purposes.
It possesses psychotropic activity that resembles with the
structure and mode of action of typical hallucinogens. The
radioligand displacement studies show salvinorin A as a
potent, selective, and full agonist on 𝜅-opioid receptors [94–
96], but not 𝜇- or 𝛿-opioid receptors. Other studies have
shown that salvinorin A possesses ECS mediated activity
and interaction with 𝜅-opioid in rats and Zebra fish models
[94, 96–101]. It provides a new lead compound for developing
antiallodynic agents via opioid and CB1 receptors activation.
Fichna et al. [102] demonstrated that salvinorin A impedes
gastrointestinal motility and ion transport, mediated by 𝜅-
opioid receptors in mice. Further, it significantly attenuated
chemical-induced colitis in mice and the antinociceptive
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action was blocked by opioid and CB1 receptor antagonists.
Salvinorin A also slows colonic motility in vitro and in vivo
and alters neurogenic ion transport [103, 104]. Further, Fichna
et al. [105] reported the inhibitory effects of salvinorin A on
endotoxin-induced ileal hypercontractility inmouse stomach
mediated by opioid receptors and cannabinoid receptors.The
inhibitory effect of salvinorin A on motility demonstrates
functional interaction between CB1 and 𝜅-opioid receptors
in the inflamed gut but in normal control animals [98].

Further, Aviello et al. [100] reported that salvinorin A
reduced inflammation and pain in animalmodels of LPS- and
carrageenan-induced paw edema as well as formalin-induced
inflammatory pain. The actions were found mediated by
the 𝜅-opioid receptors and CB1 receptors-dependent anti-
inflammatory actions on macrophages and in experimental
animals. A study evaluated salvinorin A in a set of in vitro and
in vivo tests and demonstrated that salvinorin A did not bind
or activate CB1 receptors but effects are mediated by its acti-
vation of 𝜅-opioid receptors [96]. Braida et al. [95] reported
the anxiolytic- and antidepressant-like effects of salvinorin A
which are mediated by both 𝜅-opioid and CB1 receptors. In
addition to a weak affinity for CB1 receptors, it also reduced
FAAH activity in amygdale. Based on the cannabinoid and
opioid modulatory activity, salvinorin A or its synthetic or
semisynthetic derivatives could be useful in the treatment of
lower gastrointestinal disorders because inflammation in the
intestine upregulates cannabinoid receptors and endogenous
cannabinoids.

2.28. 𝛾-Sanshool. 𝛾-Sanshool is an alkylamide compound
isolated from Zanthoxylum clava-herculis L. (family: Ruta-
ceae) also known as pepperwood, native to the southeastern
United States. Dossou et al. [106] have shown its CB2
receptor activity. Subsequently, a novel plate-based assay was
developed in order to determine both CB1 and CB2 receptors
antagonist and agonist activity and the ligand effect on
internalization of the CB1/CB2 receptors in different extracts
of the plant genus Zanthoxylum [106].

Later, it was found that 𝛾-Sanshool isolated from Zan-
thoxylum bungeanum shows potent agonism on the CB2
receptor and antagonism on CB1 receptors. In addition to its
interactions with CB1 and CB2 receptors, it showed antag-
onist activity at the follicle stimulating hormone receptor
(68%) and at the prolactin-releasing hormone receptor (52%).
These findings reveal that, given the role of cannabinoid
receptors in diabetes pathophysiology, 𝛾-Sanshool with a dual
function on CB1 receptors inhibition in combination with
CB2 activation may be useful in the treatment of diabetes.

2.29. Sciadonic Acid. Sciadonic acid is obtained from the
seeds of a coniferous plant, Sciadopitys verticillata (umbrella
pine) in Japan. Sciadonic acid structurally resembles with
2-AG, the endogenous natural ligand for the cannabinoid
receptor. Nakane et al. [107] showed that sciadonic acid
exhibits cannabimimetic activity by inducing rise of intracel-
lular Ca2+ levels in neuroblastomaxglioma hybrid cells (NG108-
15) expressing CB1 receptors. This was the first study show-
ing the occurrence of a cannabimimetic monoacylglycerol

in higher plants exhibiting CB1 receptor dependent mecha-
nism.

2.30. Semiplenamides. Semiplenamides (semiplenamideA to
G) belong to a series of novel fatty acid amides similar
to endocannabinoid, anandamide. These were isolated from
marine blue green algae, Lyngbya semiplena collected from
Papua New Guinea. Semiplenamides A, B, and G deriva-
tives exhibited weak affinity for the CB1 receptors [108].
Additionally, semiplenamide A was found to be a moderate
inhibitor of the anandamide membrane transporter thereby
inhibiting anandamide breakdown. The results indicate that
these compounds may appear as future cannabinoid specific
drugs of natural origin.

2.31. Thujone. Thujone, a monoterpene ketone, is found in
variable amounts in several food and medicinal plants such
as Juniperus spp., Cedrus spp. It has been regarded as a severe
neurotoxicant causing exciting and convulsive effects in the
CNS by inhibiting GABAA receptors in a dose-dependent
manner. It is known for its notoriety being an important
component of the once-popular drink absinthe. Thujone
possesses psychoactivity similar to cannabinoids but does not
mimic cannabinoids in inhibiting the synaptosomal enzyme
[109].

Meschler and Howlett [110] investigated the affinity of
thujone for the brain CB1 receptor in radioligand assay
and found that thujone affinity with the CB2 receptor is
approximately similar to the CB1 receptor. In bioassays and
forskolin-stimulated adenylate cyclase assays, thujone did not
show any activity on CB1 receptor. Thujone treatment in rats
exhibited different behavioral characteristics, the open-field
test for locomotor activity, the ring-stand test for immobility
(catalepsy), and hot-plate test for antinociception comparable
with a potent cannabinoid agonist, levonantradol. Though,
thujone was found devoid of stimulatory activity on brain
cannabinoid receptors and does not elicit cannabimimetic
behavioral effects in animals at physiologically relevant doses.

2.32. Voacamine and Analogues. Voacamine, 3,6-oxidovoa-
cangine, and 5-hydroxy-3,6-oxidovoacangine are the indole
alkaloids isolated from methanolic extract of root bark of
Voacanga africana, a tropical African tree. Several com-
pounds have been isolated and screened for the cannabi-
noid activity in Aequorin/GPCR cell-based Ca2+ functional
assay using CP55,940 or rimonabant as a positive con-
trol for cannabinoid receptors ligands [111]. These com-
pounds exhibited potent CB1 receptor antagonist activity in a
concentration-dependent manner compared to rimonabant,
whereas the other coexisting alkaloids, such as voacangine,
vobasine, and tabersonine, fail to exhibit any CB receptor
mediated activity. This was the first study showing that
naturally occurring alkaloids are also source of CB1 recep-
tor antagonists and this could be further evaluated for
cannabimimetic activity and potential therapeutic benefits.

2.33. Yangonin. Yangonin is a kavalactone extracted from
Piper methysticum Forster, popularly known as Kava, and
cultivated in the South Pacific Island Countries. Several
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compounds, known as kavalactones, are isolated and themost
common are kavain, 7,8-dihydrokavain, methysticin, 7,8-
dihydromethysticin, yangonin, and desmethoxyyangonin.
Ligresti et al. [112] examined their CB receptor binding affin-
ity and inhibitory activity on endocannabinoid metabolizing
enzymes, FAAH and MAGL involved in endocannabinoid
degradation. Only yangonin emerged as the most interesting
compound as evidenced by the binding affinity to the CB1
receptor (𝐾𝑖 = 0.72 𝜇M). However, all other compounds were
found inactive in inhibiting activities of FAAH and MAGL
enzymes.

The study also reported that 250–1250mg yangonin,
which is 10% of the total kavalactone-content taken orally,
may provide sufficient serum concentrations of yangonin to
affect CB1 receptors in the CNS. The authors suggested that
yangonin which possesses an extensive conjugated double
bond system bears a little structural resemblance to the
phytocannabinoids. The kavalactones may also be a target
for GABA and BZDs, voltage gated Na+/Ca2+ channels,
monoamine uptake, and arachidonate cascade which may
synergize and contribute to the psychopharmacological pro-
file of the Kava.

Miscellaneous Compounds Isolated from Nature. Desmodia-
none derivatives, desmodianones D and E and 6-methyl-
tetrapterol A, are isoflavonoids isolated from Desmodium
canum. It is known for soil preserving property and used as
forage with some application in traditional medicine. These
isoflavonoids possess cannabinoid-like moieties; however no
further reports on their cannabimimetic or cannabinoid
modulatory activity are available in the literature [113].
Isoperrottetin A, a bibenzyl compound along with several
bisbenzyls, prenyl bibenzyls, and sesquiterpenoids, has been
isolated from the ether extract of the liverwort, Radula
perrottetii. All these compounds are known to structurally
consist of cannabinoid moiety; however there is no report
available on their ECS modulating property [114].

Leucettamols are the bifunctionalized sphingoid-like
compounds obtained from a marine sponge, Leucetta sp.
In preliminary studies, they appear inactive on CB1, CB2,
and TRPV1 receptors. Soderstrom et al. [115] also extracted
numerous endocannabinoid-like purified unsaturated fatty
acids from green algae (Chlorophyta), the brown alga
Laminaria angustata, and the spongeMycalemicracanthoxea.
The authors did not find endocannabinoid compound fromL.
majuscula. Also, AEA has been detected in dietary chocolate
and cocoa obtained from Theobroma cacao, a popular plant
[116]. Recently, in a study, several compounds such as
sinostrobin, naringenin 7,4-dimethyl ether, 2,6-dihydroxy-
4-methoxychalcone, 4-methoxy-6-(2-phenylethenyl)-2H-
pyran-2-one, naringenin 7-methyl ether, and 3,5-heptanediol,
1,7-diphenyl are isolated from the dichloromethane extract of
Renealmia alpinia subjected to either opioid or cannabinoid
receptors in vitro binding affinity assays. Though, the plants
show antinociceptive and analgesic effect in the in vivo
model but the constituents and plant failed to show affinity to
cannabinoid receptors [117].The compound isolated from the
soil microfungus, Eupenicillium parvum, showed selective
𝜇-opioid receptor and CB1 receptor binding affinities, in vitro

binding assays [118]. These findings provide insight into the
potential therapeutic utility of this class of compounds.

3. Medicinal Plants Modulating Cannabinoid
Receptors and Metabolizing Enzymes

In the last few years, several medicinal plants have been
reported to modulate the ECS activity by inhibiting or acti-
vating the cannabinoid receptors and the endocannabinoid
metabolizing enzymes [22].The plants have been reported to
interact with cannabinoid receptors directly or indirectly in
experimental studies designed to evaluate the pharmacologi-
cal properties and therapeutic benefits using pharmacological
challenge of CB receptor agonists and antagonists or utilizing
the CB1/CB2 receptor knockout mice [6, 19, 22]. Several
medicinal plants other than cannabis have been shown to
alter the ECS signaling pathways and exhibit cannabimimetic
effects and put forward their potential therapeutic and dietary
application [6, 16–19]. The therapeutic and pharmacological
activities presented by these plants involving cannabinoid
mediated activity are present in Table 4.

In the modern era of medicine medicinal plants and
phytochemicals derived from plants continue to play an
important role in drug discovery and development [6, 16, 17,
41]. The plants have become the key resource for bioactive
agents and played a vital role in the search of lead compounds
for novel drug discovery and development. The isolated
bioactive agents and their synthetic or semisynthetic analogs
can be developed into promising drug candidates by the
processes of highly efficient bioactivity-directed fractiona-
tion and isolation, following analog synthesis using mod-
ern medicinal chemistry-based molecular modifications.
The next paragraphs focus on medicinal plants other than
cannabis which have been reported to interact with the
molecular components of ECS and are detailed below. The
bioactive constituents of such plants display a rich source for
the discovery of novel cannabinoid compounds with poten-
tial for pharmacological applications and drug development.
Besides the small molecules, secondary metabolites also play
an important role in search of novel compounds.

3.1. Corydalis yanhusuo. Corydalis yanhusuo (family: Papa-
veraceae) is one of the traditional Chinese medicines used
as sedative, hypnotic, and pain killer possessing a number of
potent alkaloids. The CB1 receptor mediated effect of Cory-
dalis yanhusuo was tested in an animal model of trigeminal
neuralgia pain induced in rats by chronic constriction injury
of the infraorbital branch of the trigeminal nerve [119]. Cory-
dalis binds to CB1 receptors and exerts antinociceptive effect
in animal models of inflammation and pain. In addition,
tetrahydropalmatine [127] an active component isolated from
Corydalis has shown to improve anxiolysis and decreased
motor movements, independent of the GABAA receptors
[127].The analgesic and anti-inflammatory effectmediated by
CB1 receptors along with anxiolytic activity is an advantage
over synthetic CB1 receptor modulators [127].

3.2. Echinacea purpurea. Echinacea purpurea is com-
monly used worldwide for the prevention and treatment of
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Table 4: The cannabinoid receptor affinity, potency, and activity of medicinal plants.

Medicinal plants CB mediated effect CB affinity/potency References

Corydalis yanhusuo Neuropathic pain CB1 antagonist Huang et al. 2010 [119]

Echinacea purpurea Immunomodulation CB2 agonist Chicca et al. 2009 [25]

Linum usitatissimum Inflammation CB2 agonist Styrczewska et al. 2012 [120]

Melilotus suaveolens Lung injury CB2 agonist Liu et al. 2014 [121]

Morinda citrifolia Immunomodulation CB1 antagonist/CB2 agonist Palu et al. 2008 [122]

Nelumbo nucifera Obesity CB2 agonist Velusami et al. 2013 [123]

Olea europaea Colon cancer CB1 agonist Cotrim et al. 2012 [124]

Rubus coreanus Osteoporosis CB1 antagonist/CB2 agonist Lim et al. 2015 [125]

Ruta graveolens Diabetes CB2 agonist Rollinger et al. 2009 [126]

common cold, cough, bronchitis, influenza, and allergic
respiratory diseases. It has been shown to exert antioxi-
dant, anti-inflammatory, and immunostimulatory proper-
ties owing to the chemical constituents, alkamides, and
ketoalkenes/alkynes. The alkamides were the first com-
pounds identified in plants besides cannabis to possess
cannabimimetic properties on both the cannabinoid CB1
and CB2 receptors, revealing their structural similarity to
the endogenous cannabinoid ligand anandamide [20, 128].
The extract of Echinacea roots was studied in [35S]GTPcS-
binding experiments on rat brain membrane preparations
using arachidonyl-20-chloroethylamide (ACEA), a full ago-
nist ligand at the CB1 receptor [128]. Among the isolated
compounds, some displayed partial agonist property while
others exhibit inverse agonist effects to CB1 receptor. Despite
their relatively low efficacy at the cannabinoid receptors, the
compounds behave as inverse agonist was capable of inhibit-
ing the full agonist effect of ACEA. The compounds showed
partial agonistic property that also significantly increased
the G-protein-stimulatory action of ACEA. The SAR studies
showed an exchange of isobutylamidemoiety (inverse agonist
activity) of the molecule for 2-methylbutylamide (partial
agonist activity).

The CB2 receptor activity of alkamides, demonstrated by
binding assays, is believed to be the most probable mech-
anism of action of alkamides as immunomodulator agents
isolated from Echinacea [21, 25, 27, 129]. The interaction
between anxiety and cannabinoids is known to be complex
and activation of the CB1 receptors by endogenous ligands
was believed to play a role in the control of anxiety [128].
The dry and fresh herb of Echinacea provides a different yield
of alkamides [29, 30]. All together the studies convincingly
suggest that Echinacea could provide scaffolds for future CB2
ligands in drug discovery and development.

3.3. Linum usitatissimum. Linum usitatissimum (family:
Linaceae), also known as flax, is considered a distinct source
of fibers and oil for industrial and medicinal application.
The transgenic plants are generated in order to enhance the
production of phenylpropanoids; a class of new terpenoid
has shown to possess health-beneficial properties. The plant

has shown to alter the expression of genes involved in
inflammatory processes in mouse and human fibroblasts and
activates the gene expression of CB2 receptor [120]. The
findings reveal that flax can be a source of cannabinoid-
like compounds which may influence the immunological
responses and aid in designing the fabric for wound dressing
with putative anti-inflammatory properties [120].

3.4. Melilotus suaveolens. Melilotus suaveolens Ledeb. (fam-
ily: Leguminosae), a traditional Tibetan medicine, is also
known as wild alfalfa or “cold-tasting” annual or biennial
herb. It has been reported to contain compounds such as
coumarin, flavonoids, phenolic acids, steroids, and triter-
penes. It has been found effective in inflammation, pain,
and antimicrobial activity. The cannabinoid mediated anti-
inflammatory activity of M. suaveolens has been demon-
strated in a rat cecal ligation and puncture- (CLP-) induced
animal model of acute lung injury representing sepsis in
human [121]. It has shown to upregulate the CB2 expression
in peripheral blood mononuclear cells, reduce the number
of neutrophils, lymphocytes, and total cells, and inhibit the
induction of proinflammatory cytokines and transcription
factors, NF-𝜅𝛽65. The CB2 expression was shown to be
correlated negatively with NF-𝜅𝛽 mRNA and supported by
a significant reduction in CLP-induced lung inflammation.
These findings suggest that M. suaveolens may have thera-
peutic potential in the treatment of CLP-induced acute lung
injury.

3.5. Morinda citrifolia. Morinda citrifolia L. (family: Rubi-
aceae), also known as Noni, has been used by Polynesians
for over 2000 years for numerous diseases. The advent of
Tahitian Noni Juice generated interest in medicine for its
possible beneficial effects on human health and well-being.
Almost all parts of the plants are used medicinally in treating
a variety of ailments. Palu et al. [122] showed the binding
affinities of Noni samples (Tahitian Noni Juice and Noni
fruit juice concentrates) for CB1 and CB2 receptors in CHO-
K1 cells expressing hCB receptors using WIN-55,212-2, a
nonspecific ligand, and in vivo in mice. Both juices were
found to activate CB2 receptor but inhibit CB1 receptors.
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Tahitian Noni Juice produced inhibition of CP55,940 for CB1
receptors and enhancement for CB2 receptors. Noni fruit
juice concentrate caused stimulation of [3H]WIN-55,212-2
binding. At different concentrations the CB1 receptor was
inhibited whereas CB2 receptor showed stimulations at the
same concentrations.

The binding activity of Tahitian Noni Juice for CB1
receptors was similar at each concentration, even at fivefold
increased concentration. However, at both concentrations
a remarkable selectivity for CB2 binding/activation was
observed for CB2 receptor [122]. In mice orally administered
Tahitian Noni Juice decreased IL-4 and increased IFN-𝛾 sug-
gesting that Noni juice favorably alters the immune system
and exhibits immunomodulatory effects by activating the
CB2 receptors which are involved in the immune regulation.
The dual activity of Noni juice as CB1 receptor inhibitor and
CB2 receptor activator has potential benefits in inflammation
and immunomodulation.

3.6. Nelumbo nucifera. Nelumbo nucifera Gaertn. (family:
Nymphaeaceae), also known as a sacred lotus, is widely
distributed across the world and used as food and medicine.
The seeds, rhizomes, leaves, flowers, and roots of the plant
have been reported to contain megastigmanes including
eudesmane sesquiterpenes, nelumnucifosides A and B, alka-
loids such as roemerine, nuciferine, nornuciferine, nelumbo-
side, anonaine, 5-methoxy-6-hydroxyaporphine, liensinine,
asimilobine, and flavonoids.The cannabinoid activity of both
methanol and aqueous extracts of N. nucifera was studied
in measuring inhibition of CP55,940 elicited CB2 activity in
the Gi/Go-coupled CHO-K1 cell line [123]. The methanolic
extract showed antagonism against CP55,940 activity towards
CB2 receptor, whereas water extract was found inactive. A
potent antagonist activity towards CP55,940 activated CB2
receptor with an IC50 value of ∼62.3 nM was demonstrated
by AM630. The study indicated that N. nucifera petal extract
possesses potential benefits in metabolic disorders mediated
by antagonistic effect on CB2 receptors.

3.7. Olea purpurea. Olea europaea (family: Oleaceae), a
traditional tree of the Mediterranean basin, is the source of
olive oil. The effects of olive oil and its phenolic constituents
on gene expression in ECS have been studied in human colon
cancer cells (Caco-2). A selective and transient upregulation
of CNR1 gene-encoding for CB1 receptor was induced by
exposure of Caco-2 cells to the oil. However, the other
ECS components such as CB2, GPR55, and TRPV1 receptors
and endocannabinoid metabolizing enzymes, NAPE-PLD,
DAGL, FAAH, and MAGL, remained unaffected [130].

Further, dietary oil supplementation was found to
increase the expression of CB1 in the colon of rats. Following
oil supplementation, the methylation of Cnr1 promoter,
miR23a, and miR-301a, previously shown to be involved
in the pathogenesis of colorectal cancer, was predicted to
target CB1mRNA and appears reduced. In another study, the
phenolic compounds of olive oil were developed to allow the
preparation of unsaturated derivatives altered food intake in
rats owing to theirmolecular similarity with CB1 endogenous
ligands and PPAR-𝛼 as potential targets [124]. Taken together,

the findings demonstrate modulation of CB1 by olive oil or
its phenolic compounds and may provide a new therapeutic
avenue for prevention and treatment of cancer and obesity.

3.8. Rubus coreanus Miquel. Rubus coreanusMiquel (family:
Rosaceae), also known as Korean black blackberry, is known
for its benefits in liver and kidney diseases, spermatorrhoea,
prostate, and urinary diseases. It is known to contain tannins
such as sanguiin H-4 and sanguiin H-6, flavonoids such as
3,4-dihydroxybenzoic acid, nigaichigoside F1, nigaichigoside
F2, and coreanoside F1, a dimeric triterpene glycosyl ester,
and anthocyanins. Its supplementation has shown to enhance
antioxidant capacity in men [131]. The cannabinoid recep-
tors mediated activity of Rubus coreanus has been shown
in osteoporosis and occurs with N-methyl-N-nitrosourea-
(MNU-) induced prostatic hyperplasia in aged rats as well
as diabetic osteoporosis rats [125] following streptozotocin
or ovariectomization [132].The upregulation of CB1 and CB2
receptors were increased in rats that were ovariectomized and
treatedwith streptozotocin andRubus coreanus but decreased
in those treated with streptozotocin and Rubus coreanus
alone. The study revealed that in postmenopausal diabetic
and aged rats the antiosteoporotic effect is attributable to the
CB receptor-related upregulation of osteoblastogenesis and
inhibition of prostatic hyperplasia. Rubus coreanus rescued
bone loss in diabetic and aged osteoporosis by simultane-
ous alteration of activation in osteoblasts and osteoclasts
dependent on upregulation of the ECS. Though, the active
component responsible for an effect is yet to be determined.

3.9. Ruta graveolens. Ruta graveolens L. (family: Rutaceae)
is a plant of medicinal and culinary importance native to
Mediterranean region of southern Europe and northern
Africa and Balkans. The plant and phytochemicals isolated
have shown to be effective in different types of skin diseases
including psoriasis, vitiligo, and cutaneous lymphoma. The
dichloromethane and methanol extracts of Ruta graveolens
yielded several constituents and were subjected to in silico
studies using hitting model for CB2 ligands consisting of the
five selective agonists AM1241, GW405833, HU-308, JWH-
133, and JWH-267 [126]. Of all the molecules subjected to
parallel screening, rutamarin showed selective affinity to the
CB2 receptor with a 𝐾𝑖 of 2.64 ± 0.2 𝜇g/mL or 7.4 ± 0.6 𝜇M
in radioligand displacement assay. The findings reveal that
rutamarin may provide a novel scaffold for the discovery of
CB2 specific ligands.

MiscellaneousMedicinal Plants. Recently,Withania somnifera
Dunal, a popular medicinal plant, possesses immunomod-
ulator activity shown to prevent tolerance to the analgesic
effect of morphine and suppress rebound hyperalgesia found
devoid of affinity for cannabinoid receptors [133].Hypericum
perforatum also known as St. John’s wort is a popular
plant remedy for depression that did not show cannabi-
noid property studied using the pharmacological challenge
with several agonists and antagonists including SR141716A,
CB1 receptor antagonist. However, naloxone significantly
reduced the inhibitory effect of Hypericum perforatum on
contractions induced by electrical field stimulation mediated
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by opioid receptors [134]. Yuliana et al. [135] evaluated the
effects of several dietary spices in the antiobesity related
bioactivity screening assays and found that nutmeg, mace,
black pepper, and turmeric are capable of modulating the
CB1 receptors. El-Alfy et al. [136] also showed that nut-
meg extract showed a concentration-dependent inhibition
for both FAAH and MAGL. Inhibition of endocannabi-
noid metabolizing enzymes by nutmeg extracts explains the
cannabis-like effect exerted by nutmeg.

4. Concluding Remarks and Future Prospects

Compared to synthetic compounds, natural products are
known to offer huge structural diversity and the availability
of modern techniques for separation, structure elucidation,
and screening and combinatorial synthesiswill lead to revital-
ization of plant products as sources of novel drugs. In recent
years, several new selective CB1 and CB2 receptor agents
from natural products have been described. Though, several
have been identified by these ligands in vitro and in silico
studies. However, these molecules are used at micromolar
concentrations in the in vitro studies and therefore may show
affinity at both receptors. Therefore, additional controls are
needed to be performed in order to ensure the selectivity,
affinity, potency, and site of action of these molecules.

The in vivo characterization, pharmacokinetic consider-
ations, and the cannabinoid mediated mechanism should
be demonstrated for the pharmacological benefit and phar-
maceutical development. Moreover, many of these ligands
exert prominent CB receptor-independent pharmacological
effects, such as activation of the opioid receptors, nicotinic
acetylcholine receptors, G-protein-coupled receptor GPR55,
peroxisome proliferator-activated receptor gamma, and the
transient receptor potential vanilloid channels. The char-
acterization of CB-dependent and CB-independent mecha-
nisms could be further beneficial in developing the multi-
targeted polypharmacological compound for diseases which
involve multiple mechanisms particularly the neurodegener-
ative and neuropsychiatric diseases where endocannabinoid
system dysregulation plays a critical role. Based on current
knowledge, the components of ECS may be a system that,
under the appropriate conditions, produces synergy with
established therapeutic agents in different diseases particu-
larly autoimmune inflammatory diseases.

Currently, there are no clinical data indicating that
the use of these ligands as adjuvant or cotreatment could
improve the efficacy of the available agents or reduce the
dosage thereby reducing the adverse effects and maximizing
efficacy. Thus, such clinical comparisons would be very
interesting andmore research should be directed towards the
potential synergism and antagonism of cannabinoid ligands
in pharmacotherapeutics. The potential of the ECS in a
wide range of disorders has been demonstrated; therefore,
it is tempting and reasonable to speculate that the nature
derived small molecules modulating cannabinoid receptors
will have to demonstrate therapeutic efficacy and elucidate
underlying potential mechanism of therapeutic benefits by
cannabinoids. Additionally, lack of toxicity along with addi-
tional anxiolytic activity which appears with synthetic CB1

receptor antagonists, the phytocannabinoids, can potentially
be promising for future armamentarium of the cannabinoid
based therapeutics. The data on acute and chronic toxicity
and safety is also desired in order to undergo the translation
of the observed experimental benefits into humans.

Themedicinal plants are part of diet since civilization and
therefore based on the evidences of cannabimimetic activity
of many more plants could be promoted for inclusion in
the diet as these could indirectly exert immunomodulatory,
nonpsychoactive, and anti-inflammatory action. This could
potentially modulate inflammatory and other pathophysi-
ological processes. The wide availability, easy accessibility,
high lipophilicity, and wide therapeutic window make them
an excellent candidate for therapeutic intervention. Further,
the isolation and characterization of pharmacophores from
these plants may provide a model for drug leads using
combinatorial chemistry and in silico approaches for future
drug discovery. These plants may also offer dietary means of
treatment for targeting of endocannabinoid dysregulation or
the diseases where endocannabinoid modulation represents
an important therapeutic target.

The development of new drugs remains an important
task for the pharmaceutical industry.The natural compounds
from these herbs could provide a rich source in the search for
new candidates targeting GPCRs in particular cannabinoid
receptors and ECS. Developing phytocannabinoids possess
cannabimimetic activity and being devoid of psychotropic
activity will enhance their therapeutic spectrum. To explore
this possibility, several herb-based natural compound library
and cell-based cannabinoid receptor assays were developed
to perform high throughput screening. We believe that the
process of assay development for cannabinoid receptors,
compound screening using these assays, and hit compounds
identification will lead to a successful compound for future
therapeutic use.
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Abstract
Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential 
(TRP) cation channels are critical components of cellular biosignaling networks. These plasma-
membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse 
ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties 
with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid 
chemical classes, the overlap establishing a physiological connectivity between these two 
ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals 
engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer 
ligands that interact with cannabinoid receptors and/or TRP channel as xenobiotics. Functional 
interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the 
antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), 
vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-
relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the 
active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen 
(paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., ∆9-
tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential 
themselves or promote the use of other addictive substances, suggesting the therapeutic potential 
for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and 
therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the 
possibility of dual-acting ligands as drugs.

Graphical abstract

*Corresponding Author: Mailing address: Northeastern University Center for Drug Discovery, 360 Huntington Avenue, 116 Mugar 
Hall, Boston, MA 02115-5000. Phone: 617-373-4200. Fax: 617-373-7493. a.makriyannis@neu.edu. 
Author Contributions
Both authors contributed to the writing of the manuscript.
Notes
The authors declare no competing financial interest.

HHS Public Access
Author manuscript
ACS Chem Neurosci. Author manuscript; available in PMC 2016 July 18.

Published in final edited form as:
ACS Chem Neurosci. 2014 November 19; 5(11): 1097–1106. doi:10.1021/cn5000875.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords
Drug discovery; endocananbinoid; G-protein coupled receptors; ion channels; ligands; 
phytochemicals; phytocannabinoid; signal transduction

At the cellular level of biological organization, a fundamental paradigm for communication 
utilizes plasma-membrane proteins (receptors, ion channels, transporters, etc.) as 
components of organized signaling circuits that interact with molecules (ligands) for the 
purpose of transmitting information from the external milieu to the intracellular 
compartment, thus enabling the target-cell to respond to its environment.1 This core 
principle of signal transduction is well exemplified by two ubiquitous mammalian signaling 
systems, one of which employs cannabinoid (CB) receptors; the other, transient receptor 
potential (TRP) cation channels.

Discovery and molecular characterization of the first CB receptor to be cloned (CB1) was 
spurred by identification and synthesis of the major psychotrophic component of marijuana, 
(−)-∆9-tetrahydrocannabinol (∆9-THC), a plant-derived CB (“phytocannabinoid”) (Figure 
1A). A second CB receptor, designated CB2, was subsequently identified through homology 
cloning, and other putative CB receptors have been suggested. Both CB1 and CB2 are class-
A G-protein coupled receptors (GPCRs) featuring characteristic 7-transmembrane helical 
domains, significant homology with one another in their transmembrane domains, and 
distinct distributions: CB2 is found mainly in peripheral tissues (principally 
immuneassociated), whereas CB1 is a major GPCR in the central nervous system at 
presynaptic neurons and is also expressed in the periphery.2 CB1 and CB2, along with a 
growing family of their endogenous activators (“endocannabinoids”) and the enzymes that 
synthesize and inactivate those agonists, are constituents of the endocannabinoid system, a 
biosignaling network ubiquitous in mammals.3 The best-studied endocan-nabinoids, 2-
arachidonoylglycerol (2-AG) and N-arachidonylethanolamide (or anandamide) (AEA), are 
lipid mediators derived from diacylglycerol and N-acylphophatidycholine, respectively 
(Figure 2A). They originate from membrane phospholipids by distinct enzymatic pathways 
and possess specific functional and pharmacological properties.4 In the central nervous 
system (CNS), the presynaptic serine hydrolase, monoacylglyceorol lipase (MGL), is 
primarily responsible for 2-AG inactivation in vivo along with the , -hydrolase domain-
containing proteins 6 and 12 (ABHD6 and ABHD12), whereas AEA is inactivated by fatty 
acid amide hydrolase (FAAH) postsynaptically.5 Aside from its canonical role in the CNS as 
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 CB2 is found mainly in peripheral tissues (principally
immuneassociated), whereas CB1 is a major GPCR in the central nervous system at 
presynaptic neurons and is also expressed in the periphery.2 CB1 and CB2, along with a 
growing family of their endogenous activators (“endocannabinoids”) and the enzymes that 
synthesize and inactivate those agonists, are constituents of the endocannabinoid system, a 
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a key retrograde modulator of neurotransmitter release,6 the endocananibinoid system, either 
alone or in concert with other neuromodulatory signaling systems, is involved in a number 
of fundamental (patho)physiological processes, including energy balance, emotional 
processing, reward and motivation, immune function, and pain sensing.7–10

Across animal phyla, TRP channels constitute a superfamily of over 50 nonselective cation-
channel membrane proteins that function as cellular sensors whose activity in response to 
external stimuli ultimately elicits a change in cell-membrane potential.11 All known TRP 
channels evidence six transmembrane segments (TMS1-TMS6) and a short, hydrophobic, 
cation-permeable pore domain between TMS5 and TMS6. TRP channels are polymodal: 
their ion permeability can be modulated by diverse mechanisms including G-protein coupled 
signaling, membrane depolarization, and direct ligand binding. The 28 distinct mammalian 
TRP channels identified have been classified on the basis of sequence homology into six 
subfamilies, each subfamily characterized by distinct gating mechanisms and cation 
selectivities.12 Of these subfamilies, the six vanilloid or “thermo” TRP channels (TRPV1–6) 
have garnered the most attention, with TRPV1 being the best-characterized and first-cloned 
TRPV due to its physiological role in nervous tissue as a molecular integrator of diverse 
noxious chemical and thermal stimuli, notably its extreme responsiveness to thermal (heat) 
activation from the pungent vanilloid capsaicin (8-methyl-N-vanillyl-6-nonenamide) (Figure 
3A), an irritant found in hot chili peppers, as well as to other phytochemical toxins and 
acid.13 Reminiscent of the endocananbinoid system, TRP-channel signaling is involved in 
many (patho)physiological processes, for example, cell proliferation/differentiation, 
neurotransmitter release, chemical sensing, cell death, and inflammation.11,14,15 Indeed, 
both endocanabinoid-system proteins8–10 and TRP channels15–18 are aggressively being 
pursued as drug targets for indications including diabetes, pain, cancer, neurodegeneration, 
and substance-abuse disorders.

The goal of this Review is to summarize and discuss select concepts related to the most 
important ligands associated with the (in)activation of the CB and TRP-channel signaling 
systems. A particular focus will be on ligands belonging to the terpene or lipid chemical 
classes that interact with both systems.

 COMMONALITIES BETWEEN CANNABINERGIC AND TRP BIOSIGNALING 
SYSTEMS

Aside from their basic physiological role as routes of cellular communication and focuses of 
contemporary drug discovery, CB-receptor- and TRP-channel-dependent signaling share 
several fundamental properties. Cannabinergic and TRP-signaling systems are both 
pleiotropic. Their pleiotropic, or “opportunistic”, nature is manifested in the ability of CB1, 
CB2, and TRPV1 to interact with and engage structurally diverse ligands belonging to a 
wide variety of chemical classes, some of which may also interact with other signaling 
systems. Most relevant to the present discussion, the endocannabinoid and TRP systems 
overlap in their ligand-recognition properties with respect to select naturally occurring 
ligands.19 The shared endogenous ligands are found in plants and animals and generally 
belong to the lipid and terpene chemical classes. The seminal discovery in this regard, 
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belong to the lipid and terpene chemical classes. 



demonstration in 1999 that the endocannabinoid AEA can activate TRPV1 channels,20 also 
established physiological connectivity between endocananbinoid-system and TRP-channel-
mediated cellular signaling, a relationship particularly relevant in the CNS where CB1 and 
TRPV1 activation provides a framework for ∆9-THC’s psychobehavioral manifestations and 
the transmission and modulation of thermal and pain effects. The spectrum of natural 
cannabinergic and TRP-channel ligands has been greatly expanded by medicinal chemistry 
efforts that have produced designer synthetic ligands that interact as xenobiotics with CB 
receptors and/or TRP channels.9,21,22

 PHYTOCANNABINOIDS AND LIGANDS BASED UPON A TERPENOID 
CHEMOTYPE

Among its approximately 500 endogenous phytochemicals,23 the cannabis plant contains 
some 70 unique cannabinoids (“phytocannabinoids”), of which the most well-studied are 
shown in Figure 1A. ∆9-THC is the archtypical “classical CB”, encompassing a fused-ring 
tricyclic terpenoid derivative incorporating a polar benzopyran ring with a terminal, 
hydrophobic alkyl (n-pentyl) side-chain, a characteristic lipophilic domain, and hydrogen-
bonding phenolic group.24 ∆9 -THC can engage and activate both CB1 and CB2 receptors 
with low nanomolar affinity, although the action of ∆9-THC as a partial agonist at 
presynaptic CB1 receptors in the CNS is thought to account for its psychotropic activity as 
the main psychoactive cannabis phytocannabinoid. ∆9-THC and its much less prominent 
natural isomer, (−)-∆9-tetrahydrocannabinol (∆8-THC), are virtually equivalent as to CB-
receptor affinity and pharmacological activity, although ∆8-THC is the more chemically 
stable isomer.25 As compared to ∆9 -THC, the phytocannabinoid (−)-cannabidiol (CBD) has 
significantly less affinity for CB receptors, modest CB2 selectivity, and negligible 
psychotropic activity.26,27 Another classical terpenoid phytocannabinoid, (−)-∆9 -
tetrahydrocannabivarin (∆9 -THCV), is a shorter side-chain ∆9 -THC homologue with a 
similar CB-receptor affinity and selectivity profile. As a “neutral” CB1 antagonist in some 
systems, ∆9-THCV at low doses can antagonize the effects of ∆9-THC in a manner distinct 
from that of typical CB1 antagonists/inverse agonists and may also have CB receptor-
independent pharmacological activities.27,28

The classic terpenoid phytocannabinoids THC, CBD, and ∆9-THCV have inspired the 
synthesis of several structurally related cannabinergic compounds that display varying 
degrees of selectivity as CB1/CB2 agonists and, generally, improved CB-receptor affinity 
versus ∆9-THC. Many of the synthetic CB agonists based on classic phytocannabinoids have 
been designed with therapeutic application in mind and, consequently, have been profiled 
preclinically for both their molecular pharmacology in vitro and potential salutary effects in 
disease models in vivo. Most prominent of these xenocannabinoids include nabilone, the 
first CB drug to be synthesized and used to treat chemotherapy-associated nausea, and 
CP-55,940, the first tritiated CB that, as a radiolabeled ligand, played a key role in the 
discovery of CB1.2,7,8 Other related xenocannabinoids include HU-210,29 AM4054,30

AM841,31 and AM238932 (Figure 1B. Of note, the isothiocyanate AM841 has been 
identified as an exceptionally potent “megagonist” at CB2 whose molecular mechanism of 
action involves covalent modification of a critical cysteine residue in the receptor’s 
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∆9  As compared to -THC, the phytocannabinoid (−)-cannabidiol (CBD) has 
significantly less affinity for CB receptors, modest CB2 selectivity, and negligible

26,27psychotropic activity.2



transmembrane helix 6.33 Similarly, the analgesic potency of the novel, high-efficacy, CB1-
selective agonist AM2389 is 1000-fold greater than that of morphine in the standard rat tail-
flick model of pain.34

 ENDOCANNABINOIDS AND RELATED LIPID LIGANDS
Endocannabinoid lipid mediators that activate CB1 and CB2 are exemplified by AEA and 2-
AG (Figure 2A). AEA is a partial CB1 activator with modest affinity and a relatively weak 
CB2 ligand with low overall efficacy, whereas 2-AG is a full agonist at CB1 and CB2, albeit 
with lower affinity and greater efficacy relative to AEA.3,4 As is the case for synthetic 
phytocannabinoid analogues, several lipid cananbinergic ligands structurally related to 
AEA/2-AG have been synthesized by medicinal chemists for potential therapeutic 
application. These include arachidonoylcyclopropylamide (AM860, ACPA), a potent, 
selective CB1 agonist with anxiolytic and vasorelaxant properties in vivo;35 R-
methanandamide (AM356), the first metabolically stable, chiral AEA analogue with partial 
CB1 efficacy and higher potency as compared to AEA itself that exerts therapeutic 
neuroprotective, antinociceptive, vasorelaxant, and anti-inflammatory effects;36 AMG313, 
the first AEA analogue with a chiral methyl arachidonoyl side chain;37 and AM9017, the 
first AEA analogue with high CB2 affinity (Whitten and Makriyannis, 2014, unpublished 
results) (Figure 2B).

 PHYTO-TRPs AND RELATED TERPENOID LIGANDS
The prototypic, plant-derived TRPV1 agonist and homovanillic ester, capsaicin, is one of the 
five principal capsaicinoids present in Cayenne chili pepper (Capsicum annuum L.)38,39

(Figure 3A). Several other structurally diverse phytochemicals have been identified as 
naturally occurring TRP-channel modulators of various TRP channel subfamilies. The 
diterpene capsaicin analogue resiniferatoxin is an extremely potent TRPV1 agonist,40 and 
the phytocannabinoid cannabidiol is both a CB1/CB2 agonist as well as an activator of 
TRPV1, TRPV2, and TRPV341,42 (Figure 3A). Other phytochemical TRP-channel activators 
include the four transient potential receptor channel ankyrin 1 (TRPA1) agonists 
cinnamaldehyde (found in cinnamon),43 eugenol (found in cloves),44 gingerol (found in 
ginger),45 and umbellulone (found in California bay laurel, the “headache tree”)46 and the 
two marine sphingoids leucettamol-A and leucettamol-B, which activate TRPA1 and inhibit 
transient receptor potential channel melastatin 8 (TRPM8)47 (Figure 3A). Some plant-
derived TRP-channel agonists have served as templates for medicinal chemistry efforts 
aimed at producing TRP-channel modulators with improved pharmacological profiles as 
potential drugs, for example, gingerol analogues.48

 ENDOGENOUS TRP-CHANNEL AND RELATED LIPID LIGANDS
Several naturally occurring lipids act on TRP channels to modify cation flux through 
them.49–51 The endocannabinoid AEA modulates CB1/CB2 and also acts as a TRPV1 
agonist20 (Figure 2A), while oleoylethanolamide (OEA) is a TRPV1 agonist that also binds 
to peroxisome proliferator-activated receptor alpha (PPAR- ) and the GPR119 CB-like 
receptor52 (Figure 4A). Other endogenous N-acyl-amide lipids structurally related to AEA 
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include the FAAH inhibitor and TRPV1 antagonist N-arachidonoylserotonin53 and the CB1 
and TRPV1 agonist N-arachidonoyldopamine (NADA).54 NADA was the first endogenous 
compound (“endovanilloid”) identified in mammalian nervous tissue with potency 
comparable to the phytochemical capsaicin at TRPV1 and is a long-chain fatty-acid amide, 
as are AEA and capsaicin.55 N-Acyl-amide lipids that act at TRP channels have inspired 
synthetic analogues including N-vanillylarachidonamide (“arvanil”), a TRPV1 agonist and 
CB1 partial agonist.56 Similarly, N-arachidonoylaminophenol (AM404), the first potent 
lipid-amide inhibitor of cellular AEA uptake, was subsequently shown to be a potent TRPV1 
activator and cyclooxygenase-1/2 inhibitor as well57–59 (Figure 4B).

Lipids produced by the lipoxygenase-mediated oxygenation of polyunsaturated 20-carbon 
fatty acids (especially arachidonic acid), including the eicosanoids leukotriene B4 (LTB4)
and 12-hydroperoxyeicosatetraenoic acid (12-HPETE), are potent, endogenous TRPV1 
activators60,61 (Figure 4A). Formed by macrophages in vivo, an endogenous lipid mediator 
involved in resolving inflammation, maresin-1 (4Z,7R,8E,10-E,12Z,14S,16Z,19Z)-7,14-
dihydroxy-4,8,10,12,16,19-docosahexaenoic acid, is synthesized from docosahexaenoic acid 
lipoxygenation and acts as a TRPV1 antagonist62 (Figure 4A). Other endogenous lipid-
derived mediators have been identified as modulators of TRP channels from nonvanilloid 
subfamilies or TRP channels in the vanilloid subfamily other than TRPV1; for example, 4-
hydroxynonenal produced from polyunsaturated fatty acid peroxidation activates TRPA1,63

and epoxytrienoic acids (EETs), including 5 ,6 -epoxyeicosatrienoic acid (5 ,6 -EET)
produced from epoxygenation of 20-carbon polyunsaturated fatty acids by cytochrome 
P450, activate TRPV1and TRPV464,65 (Figure 4A).

 THERAPEUTICALLY RELEVANT FUNCTIONAL INTERPLAY BETWEEN 
CANNABINERGIC AND TRP-CHANNEL-MEDIATED SIGNALING

The ability of the synthetic aminoalkylindole cannabinoids R-(+)-WIN55,212-2 and 
AM1241 (Figure 5) to elicit peripherally mediated antinocieption and antihyperalgesia in 
acute pain models66 and alleviate capsaicin-induced hyperalgesia/allodynia67,68 prompted 
investigation of their mechanism of action. Particularly intriguing was the notion that both 
R-(+)-WIN55,212-2 and AM1241 can inhibit nociceptive sensory neurons while differing in 
their activation profiles at CB receptors: R-(+)-WIN55,212-2 is a full CB1 agonist,69

whereas AM1241 is a CB2-selective agonist.70 Cellular and in vivo animal data demonstrate 
that these CB agonists exert peripheral antinocifensive actions against the phytochemicals 
capsaicin and mustard oil by desensitizing TRPA1 and TRPV1 channels on sensory 
neurons.71 Thus, these cannabinergic compounds first act to activate TRPA1 and TRPV1, 
which is then followed by desensitization of these TRP channels.

Another level of interaction between endocananbinoid-system and TRP-channel signaling is 
illustrated by the metabolic cascade responsible for TRPV4 activation by the lipids AEA 
(Figure 2A) and 5 ,6 -EET (Figure 4A). As elucidated by Watanabe et al.,72 enzymatic 
hydrolysis of the endocananbinoid AEA by FAAH produces arachidonic acid. This FAAH-
dependent AEA hydrolysis is a metabolic conversion that is obligatory for AEA to activate 
TRPV4, since the arachidonic acid so produced serves as substrate for EET production 
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through the cytochrome-P450 epoxygenase pathway. A resulting lipid epoxide product, 5 ,
6 -EET, is able to activate and open TRPV4, leading to calcium influx into the target cell, a 
phenomenon important to the physiological modulation of vascular tone and AEA’s 
vasorelaxant property.

A further example of the functional crosstalk between the endocananibnoid system and TRP 
channel-mediated information transduction has emerged from a series of laboratory studies 
in rodents on the mechanism of action of acetaminophen (N-acetyl-p-aminophenol), a 
widely used over-the-counter analgesic and antipyretic drug.59,73,74 Spanning a decade, 
these studies by Zygmunt and colleagues demonstrated that the antinociceptive effect of 
acetaminophen is dependent upon brain TRPV1 and that acetaminophen is biotransformed 
to the synthetic lipid AM404 through the action of the endocananbinoid-system enzyme, 
FAAH, in rat and mouse brain. The mechanism of acetaminophen’s TRPV1-mediated 
antinociception was demonstrated to reflect acetaminophen hepatic metabolism to p-
aminophenol, which is subsequently conjugated with arachidonic acid in FAAH-containing 
neurons expressing TRPV1, leading to the formation of the TRPV1 activator AM404, which 
directly interacts with this TRP channel to elicit a therapeutic effect (analgesia, reduce 
fever). Notably, neither acetaminophen nor p-aminophenol interacts with TRPV1. Prior to 
this work, AM404 was shown to inhibit cellular AEA uptake and cyclooxygenase-1/2 and 
activate TRPV1.57,59 Thus, AM404’s potent analgesic activity in vivo may reflect its 
pleiotropic activity profile and effects on multiple endocananbinoid-system and TRP-
channel targets.

 INVOLVEMENT OF CANNABIBERGIC AND TRP-CHANNEL SIGNALING IN 
DRUG ABUSE

Potentiation of cannabinergic and TRP-channel signaling by phytochemicals has been linked 
to substance-abuse-related disorders, with great implications for human health. Stimulation 
of CB1 in the CNS by the phytocannabinoid ∆9-THC is generally accepted to be the basis 
for the negative cognitive effects of marijuana and its abuse liability,75 inviting novel 
medicinal chemistry approaches (e.g., CB1 agonists with limited CNS penetration76) for 
modulating CB1 activity without inviting adverse psychobehavioral events. Observations 
that changes in cannabinergic activity and/or endocannabinoid tone have been associated 
with a variety of physiological challenges and disease states involving the nervous system 
and most every peripheral organ suggest that the endocananbinoid system contributes to 
normal physiological conditions by responding to injurious or disease-provoking insults in 
order to attenuate or delay their potentially damaging consequences and help maintain 
homeostatic balance.77,78 Thus, modulation of endocannabinoid-system activity has been of 
great therapeutic interest with respect to two general modalities: (a) regulating 
endocananbinoid-system activity with an agent whose dosing regimen/molecular 
pharmacology does not itself invite adverse events; (b) enhancing cyto- and tissue-protective 
endocannabinoid-system activation in a time-, event-, and tissue/organ-specific manner so as 
to reduce the potential for adverse responses. Examples of the former modality are the 
successful introduction into the clinic in certain markets of Sativex, a mixture of ∆9-THC
and the nonpsychoactive phytocannabinoid CBD (Figure 1A), for relief of neuropathic pain 
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associated with multiple sclerosis, as an adjunctive pain reliever for advanced cancer, and for 
treating spasticity due to multiple sclerosis79 and CB1 (periphero-)neutral antagonists for 
cardiometabolic disease.80 The latter modality would include FAAH inhibitors that enhance 
the CNS endocannabinoid elevation observed after brain injury to therapeutic levels.10

The well-known cooling sensation of menthol (Figure 3A), a constituent of the wild mint 
plant (Mentha arvensis), reflects this phytochemical’s ability to trigger chemically the cold-
sensitive TRPM8 receptors in cold-sensitive sensory neurons. Menthol also has complex 
olefactory- and somatosensory-stimulating properties and interacts with TRPA1, an irritant-
sensing TRP channel expressed by nociceptors in the lung and respiratory tract.81 In 
humans, a common haplotype of the gene encoding for TRPA1 provides a functional TRPA1 
channel associated with a preference for mentholated cigarettes among heavy smokers.82

This genetic and biological profile along with the ubiquitous presence of menthol as an 
additive in most commercial cigarettes, the preference for menthol-containing cigarettes 
during smoking initiation, and the lower smoking-cessation rates for menthol smokers have 
prompted investigation as to menthol’s potential role in promoting smoking behavior/
nicotine addiction and its contribution to the incidence of tobacco-related diseases.83 Data in 
mice demonstrate that menthol, through TRPM8 activation, acts as a potent respiratory 
counterirritant to suppress the respiratory irritation caused by a wide variety of irritants in 
tobacco smoke.84 In this manner, menthol’s biological activity at TRPM8 may facilitate 
smoke inhalation and promote tobacco smoking/nicotine addiction, an enormous health 
problem as the leading cause of preventable death and illness underserved by current 
pharmacotherapeutic strategies.85 In the clinic, the CB1 antagonist/inverse agonist 
rimonabant has been shown to increase the likelihood that smokers will quit,86 and inhaled 
CBD reduces cigarette consumption, perhaps by modulating the craving-related salience of 
smoking cues.87 These aggregate in vivo and clinical data regarding menthol pharmacology 
support the proposition that TRP-channel and endocannabinoid-system signaling are 
involved in sustaining tobacco smoking and may be leveraged for therapeutic gain against 
nicotine addiction.

Perhaps instigated by menthol’s biological properties as related to tobacco smoking, the very 
potent synthetic TRPM8 agonist, icilin (Figure 3B), has been studied by the tobacco industry 
as a flavor enhancer for cigarettes.88 It is noteworthy, however, that icilin, but not menthol, 
requires calcium as a coagonist to attain maximal levels of TRPM8 activation, suggesting 
that discrete structural requirements must be fulfilled for ligand-induced TRP channel 
activation and degree of thermosensitivity.89–91 This proposition was indeed supported by 
mutagenesis experiments demonstrating that specific residues in the cytoplasmic loop 
interconnecting TMS2 and TMS3 (i.e., N799, D802, and G805) are critical for TRPM8’s 
icilin sensitivity, just as residues in analogous positions (i.e., Y511 and S512) are critical for 
activation of TRPV1 by capsaicin.91 Further evidence for ligand-sensitive functional 
domains in TRP channels comes from demonstration that many noxious TRPA1-activating 
compounds are electrophiles whose covalent modification of select reactive cysteine 
residues in this TRP channel is critical for the rapid signaling of potential tissue damage 
through the neural pain pathway.92 Despite their noxious and abuse-related properties, then, 
some phytochemicals have proven their value for interrogating the molecular mechanisms by 
which TRP channels are activated.
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 CONCLUSIONS
Both naturally occurring and synthetic terpenes and lipids stimulate cannabinergic or TRP 
channel-mediated signaling in mammals. Some of these signaling molecules are co-opted by 
both information systems and are able to act at both discrete CB and TRP-channel protein 
targets. Interaction of phytochemcials and synthetic ligands with both CB receptors and TRP 
channels and the significant degree to which CB1 and TRPV1 are coexpressed in several 
brain regions (including the hypothalamus, striatum, hippocampus and substantia nigra)93

carry implications for human health and disease treatment. For instance, demonstration that 
the competitive TRPV1 antagonist AMG9810 (Figure 3B) further reduces the inflammatory 
activation of human endothelial cells elicited by the synthetic CB R-(+)-WIN55,212-2 or the 
naturally occurring CB1 and TRPV1 agonist NADA, whereas TRPV1 inhibition with 
AMG9810 alone potentiated the inflammation suggests that cannabinergic and TRP-
mediated signaling work in concert to regulate endothelial inflammatory sensitivity/
homeostasis.94 The anticonvulsant effect of dual FAAH and TRPV1 blockade with N-
arachidonoyl-serotonin depends upon potentiation of CB1 activity as a result of the 
increased AEA levels consequent to FAAH inhibition with a component of TRPV1 blockade 
against the neuroexcitatory effect of TRPV1 activation by AEA.95 Such findings suggest 
that discrete functional and pharmacological interactions between TRP channels and 
endocannabinoid-system proteins offer opportunities to develop novel, dual-acting ligands 
both as both probes for interrogation of their independent and integrative functionality and 
as drugs that modulate these two biosignaling systems for therapeutic gain.
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 ABBREVIATIONS
CB cannabinoid

TRP transient receptor potential

CB1 cannabinoid 1 receptor

(−)-∆9-THC (−)-∆9-tetrahydrocannabinol

CB2 cannabinoid 2 receptor

GPCR G-protein coupled receptor

2-AG 2-arachidonoylglycerol

AEA anandamide

CNS central nervous system

MGL monoacylglycerol lipase

ABHD6 , -hydrolase domain-containing protein 6
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ABHD12 , -hydrolase domain-containing protein 12

FAAH fatty acid amide hydrolase

TMS transmembrane segment

TRPV transient receptor potential vanilloid

(−)-∆8-THC (−)-∆8-tetrahydrocannabinol

CBD cannabidiol

∆9-THCV ∆9-tetrahydrocannabivarin

ACPA arachidonoylcyclopropylamide

TRPA1 transient potential receptor channel ankyrin 1

TRPM8 transient receptor potential channel melastatin 8

OEA oleoylethanolamide

PPAR- peroxisome proliferator-activated receptor alpha

NADA N-arachidonoyl dopamine

LTB4 leukotriene B4

12-HPETE 12-hydroperoxyeicosatrie-noic acid

EET epoxytrienoic acid

5 ,6 -EET 5 ,6 - epoxytrienoic acid
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Figure 1. 
Chemical structures of select plant-derived terpenoid cannabinoids (phytocannabinoids) (A) 
and select synthetic terpenoid cannabinoids (B) discussed in the text.
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Figure 2. 
Chemical structures of select lipid endocannabinoids (A) and structurally related synthetic 
cannabinergic agents (B) discussed in the text.
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Figure 3. 
Chemical structures of select plant-derived terpenoid TRP-channel ligands (A) and synthetic 
TRP-channel ligands (B) discussed in the text.
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Figure 4. 
Chemical structures of select endogenous (A) and synthetic (B) lipid TRP-channel ligands 
discussed in the text.
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Figure 5. 
Chemical structures of synthetic aminoalkylindole cannabinoids discussed in the text.
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Abstract: Medicinal use of Cannabis sativa L. has an extensive history and it was
essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive
compound—Δ9-tetrahydrocannabinol (Δ9-THC)—as well as the G-protein-coupled cannabinoid
receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R),
both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines
several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and
(iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids
are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these
terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids)
and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant,
can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a
role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological,
and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review,
we summarize and critically highlight past, present, and future progress on the understanding of
the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different
pathological conditions.

Keywords: phytocannabinoid; terpenoids; cannabinoid receptors; Cannabis plant; endocannabinoids;
inflammation.

1. The Era of Cannabis sativa, Cannabinoids, and the Endocannabinoid System: A Long
Journey Traveled

The Cannabis sativa era has a long and remarkable history dating from prehistoric Xinjiang,
an ancient Chinese place, where users consumed Cannabis not only for religious/spiritual or hedonic
purposes but also for its medicinal effects [1–3]. The first report of hemp medicinal use comes
from Chinese medicine, around 2300 B.C. In India, Cannabis became part of the Hindu religion,
being subsequently introduced to Europe between 1000 and 2000 B.C. Long after Cannabis reached
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the Americas, South America (mainly Chile) in 1545, and over 60 years later (1606), its cultivation
was introduced to North America. Western medicine slowly progressed from the understanding and
moderate use in the early and mid-19th century, to its wider use, based on its medicinal properties in
the 20th century. Nevertheless, due to prejudice and misinformation, the use of this plant has been
marginalized, which has hindered research progress regarding its medicinal beneficial effects [1,2].

Currently, Cannabis is the most commonly cultivated, trafficked, and abused drug worldwide,
potentially causing a substantial public health impact since it can alter sensory perception and induce
elation and euphoria [4,5]. Recent use rates among the population in general show a concentration to
adolescents and young adults (20 to 24 years-old), ranging from 2%–5% of the global population (an
estimated 13 million cannabis-dependent individuals in 2010); yet, the highest numbers (∼10%–13%)
are reported in North America [5–7]. A study published by Hasin and colleagues revealed a significant
rise in marijuana use prevalence in 2001–2002 and 2012–2013, accompanied by a large increase of
marijuana-induced disorders in this same time period [8,9]. Conversely, another study showed
that Cannabis-induced disorders declined among young users during 2013-2014, in the USA [10,11].
According to United States Code, “marijuana/cannabis” comprises “all parts” of the plant Cannabis
sativa L. and every compound derivative of such plant. By the year 2016, 28 states in the USA
have voted to authorize or implement medicinal cannabis programs. Among these, eight states
and the district of Columbia have legalized the recreational use of Cannabis [12]. In other countries,
including the United Kingdom (UK), Denmark, Czech Republic, Austria, Sweden, Germany, and Spain,
it is formally approved; thus, decriminalizing the therapeutic use of Cannabis and cannabis-based
products [13,14]. Pioneering in Latin America, Uruguay, became the first country to legalize the sale,
cultivation, and distribution of Cannabis [15,16]. Wilkinson and D’Souza have previously described
that the medicalization and/or incorporation of Cannabis into a medicine is complex for a number of
reasons, including that (i) it is a plant rather than a pharmaceutical product, and (ii) knowledge of
its properties and effects is still limited [17]. However, in light of the recently and largely reported
pharmacological discoveries and therapeutic benefits of Cannabis, the controlled and medicinal use of
Cannabis for some pathological conditions have been enforced.

Era of cannabinoids started when Mechoulam and Gaoni isolated and characterized the main
psychoactive component of Cannabis sativa, the Δ9- tetrahydrocannabinol (Δ9-THC). Subsequently,
in 1988, Howlett’s group established the presence of a specific cannabinoid receptor in the rat brain
by using a tritium labeled cannabinoid [18], followed by the cloning of the cannabinoid receptor
type-1 (CB1R) [19]. Then, Matsuda and coworkers (1990) described a second receptor, named the
cannabinoid receptor type-2 (CB2R), which was cloned by Munro and coworkers in 1993 [18,19]. These
receptors can be activated by endogenous molecules produced normally by our bodies, and likewise
by external synthetic and natural molecules. The number of natural compounds identified or isolated
from Cannabis sativa has been increasing in the last decade, with 565 identified substances between
cannabinoids and non-cannabinoid constituents [20]. The genus Cannabis comprises closely related
species, mainly, Cannabis indica, Cannabis ruderalis (identified in 1924), Cannabis sativa L., which is
widely known as “hemp” and not psychoactive, as well as Cannabis sativa, which induces psychoactive
effects [1]. Cannabinoids are defined as a group of molecules that modulate cannabinoid receptors
(CBR) and are characterized by three varieties, such as endogenous or endocannabinoids, synthetic
cannabinoids, and phytocannabinoids. The latter variety comprehends natural terpenoids or phenolic
compounds derived from Cannabis sativa or other species, and will be further explored later in this
review [21]. Altogether, 120 cannabinoids have been isolated from the Cannabis sativa plant and
classified into 11 general types, as described below (Table 1) [20].

in 1988, Howlett’s group established the presence of a specific cannabinoid receptor in the rat brain
by using a tritium labeled cannabinoid [18], followed by the cloning of the cannabinoid receptor
type-1 (CB1R) [19]. Then, Matsuda and coworkers (1990) described a second receptor, named the
cannabinoid receptor type-2 (CB2R), which was cloned by Munro and coworkers in 1993 [18,19]. These
receptors can be activated by endogenous molecules produced normally by our bodies, and likewise
by external synthetic and natural molecules.
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Table 1. Cannabis sativa L. constituents by chemical class.

Chemical Class Compounds

Δ9-THC types 23
Δ8-THC types 5

CBG types 16
CBC types 9
CBD types 7

CBND types 2
CBE types 5
CBL types 3
CBN types 11
CBT types 9

Miscellaneous types 30
Total cannabinoids 120

Total non-cannabinoids 445
Grand Total 565

THC, tetrahydrocannabinol; CBG, cannabigerol; CBC, cannabichromene; CBD, cannabidiol; CBND, cannabinodiol;
CBE, cannabielsoin; CBL, cannabicyclol; CBN, cannabinol; CBT, cannabitriol, as previously described [20].

Pharmacologically approaching, three compounds have been isolated and identified as the most
important, namely the Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabinol (CBN).
Relevantly, preclinical and clinical research has shown that cannabinoids, especially CBD, play key a
role in different pathological conditions (Table 2).

When we talk about the era of the “endocannabinoid system”, we have to keep in mind that this
biological system was named over the response of its receptors to cannabinoid drugs, such as the
previously mentioned and well-studied Δ9-THC and biologically active synthetic analogs, just like it
has happened with the opioids in the past. In addition to its receptors, the system is highly modulated
by the enzymes involved in the endogenous cannabinoids synthesis and inactivation (endocannabinoid
metabolism). Furthermore, some other receptors have been reported to be activated by cannabinoid
drugs and related molecules, including GPR55, GPR18, and GPR119 [40–42]. CB1R is a key component
of the endocannabinoid system (ECS), since it interacts with endogenous and exogenous cannabinoids,
including Δ9-THC, and it is considered the most abundant metabotropic receptor in the brain [43].
It has been cloned from humans and it is accountable for the Cannabis effects on mood, as well as
negative psychotomimetic effects, including anxiety, paranoia, and dysphoria [4,44]. While CB1R plays
a role as a neurotransmission regulator in different brain regions and for this reason mediates the
Cannabis psychoactive effects, CB2R, in particular, mediates anti-inflammatory and immunomodulatory
actions [45]. An accumulating body of evidence suggests that both CB1R and CB2R, and their ligands,
play a significant role in physiologic and pathologic processes [46]. In this context, both receptors have
been widely studied regarding their relevance in the modulation of immune-mediated inflammatory
diseases, neuroinflammation, neurological and neurodegenerative diseases, cancer, and autoimmunity.

Beyond the CBR, mammalian tissues can both synthesize and release cannabinoid receptor
ligands [44,47,48]. The era of ECS started when Devane and colleagues (1992) described for the first
time, the N-arachidonoylethanolamine molecule, named anandamide from porcine brain. Interestingly,
anandamide interact to CBR and induces behavioral actions similar to the ones induced by Δ9-THC,
when administered in rodents [4,49]. The mainly endogenous cannabinoids are the anandamide (AEA)
and the 2-arachidonoyl glycerol (2-AG). It is now ordinarily accepted that the mammalian tissues
contain an ECS composed by: (i) CB1R and CB2R cannabinoid receptors [19,44], (ii) endogenous
cannabinoids ligands [49–51], and (iii) enzymes involved in the cannabinoids ligands synthesis and
inactivation. Regarding these enzymes, the fatty acid amide hydrolase (FAAH) breaks amide bond
and releases arachidonic acid and ethanolamine from AEA, and the monoacylglycerol lipase (MAGL)
is responsible for a more efficiently 2-AG degradation [52]. Endocannabinoids are produced on
demand from membrane lipids using the machinery of the enzymes responsible for their synthesis,

Pharmacologically approaching, three compounds have been isolated and identified as the most
important, namely the Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabinol (CBN).
Relevantly, preclinical and clinical research has shown that cannabinoids, especially CBD, play key a
role in different pathological conditions (Tableff 2).iffeffff

CB1R is a key component
of the endocannabinoid system (ECS), since it interacts with endogenous and exogenous cannabinoids,
including Δ9-THC, and it is considered the most abundant metabotropic receptor in the brain [43].

, CB2R, in particular, mediates anti-inflammatory and immunomodulatory
actions [45]. An accumulating body of evidence suggests that both CB1R and CB2R, and their ligands,
play a significant role in physiologic and pathologic processes [46]. In this context, both receptors have
been widely studied regarding their relevance in the modulation of immune-mediated inflammatory
diseases, neuroinflammation, neurological and neurodegenerative diseases, cancer, and autoimmunity.
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transport, and degradation. For instance, the N-arachidonoyl phosphatidylethanolamine (NArPE)
originates a phosphatidic acid by a reaction mediated by a specific phospholipase D (NAPE-PLD);
most importantly, it is hydrolyzed to AEA, in a reaction catalyzed by N-acyltransferase (NAT). The
latter reaction happens out of an acyl group from the arachidonoylphosphatidylcholine (diArPC) sn-1
position converted to a phosphatidylethanolamine (PE) amino group. Following, AEA is degraded
by FAAH. Synthesis of 2-AG depends on the phosphatidylinositol (PI) conversion to diacylglycerol
(DAG) by the phospholipase C (PLC) enzyme, and subsequent DAG transformation to 2-AG by the
action of the diacylglycerol lipase (DAGL) [53]. The ECS is involved with multiple biological functions,
such as immune-mediated inflammatory and autoimmune diseases [53], as well as neuroinflammatory
and neurodegenerative conditions [54]. Moreover, the ECS participates in the immune control at the
CNS [55], maintaining overall “fine-tuning” of immune response balance [56], and influencing the
neuroendocrine reaction to inflammation and infection [57].

Importantly, the ECS (i.e., CBR, endogenous cannabinoids, and anabolic/catabolic enzymes)
are present in the cardiovascular tissues (myocardium, smooth muscle, and vascular endothelial
cells), as well as in the circulating blood cells [58]. CB1R are expressed in the peripheral nervous
system, including vagal afferent neurons, while CB2R are expressed in cardiomyocytes, coronary
artery endothelial cells, and smooth muscle cells. For this reason, the endocannabinoid signaling
exerts complex cardiac and vascular effects ranging from vasodilatation to vasoconstriction, and
decreased myocardial contractility [58]. Those are important biological effects, as they could play
an essential role in side effects promoted by potential molecules that are able to modulate this
system. For instance, in healthy individuals, CB1R activation decreased myocardial contractility
and blood pressure, possibly by peripheral inhibition of noradrenaline release from postganglionic
sympathetic axons that leads to regulation of cardiac output [59]. In an opposite way, CB2R may exert
a cardioprotective role associated to its immunomodulatory properties during tissue inflammation
and tissue injury in cardiovascular diseases. The endogenous cannabinoids (2-AG and AEA) also have
vascular effects, which are mediated by perivascular transient receptor potential vanilloid 1 (TRPV1)
and transient receptor potential vanilloid 4 (TRPV4) activation in smooth muscle cells, promoting
dilatory response [60]. Between the common clinical adverse effects associated with the Cannabis
plant use, the increased cardiovascular activity and heart rate, as well as decreased blood pressure
have been described [60]. In addition, the uses of Cannabis plant or synthetic cannabinoids have been
linked to myocardial infarction, cardiomyopathy, arrhythmias, and stroke [58,61,62]. It occurs, possibly
due to dose-dependent effects of phytocannabinoids and consequent modulation of the autonomic
nervous system, at least partly via CB1R activation [60], since the CB1R antagonist Rimonabant®

ameliorate the cannabis-induced tachycardia [63,64]. It is important to be aware of the harmful
consequences that come along with the use of Cannabis plant and/or synthetic cannabinoids, as they
could contribute to development of cardiovascular disorders, since the ECS has an essential role in the
cardiovascular signaling.

The future, shedding light to a new era, is promising and based on the cloning of CBR associated
with the possibility of manipulation of endocannabinoid levels in tissues, by using endocannabinoid
enzymes-targeted pharmacology. This represents an opening of a possible gateway to the discovery
and/or development of cannabimimetic ligands, beyond the Cannabis plant, which could still show
therapeutic effects and possibly rule out many of the important adverse effects. A previous review has
already stated that some plants, not belonging to the Cannabis genus, produce molecules chemically
similar to the phytocannabinoids, named cannabimimetic ligands [65] (Figure 1). Cannabinoid-like
molecules (mainly terpenes) of either plant or synthetic origin that are non-psychotropic have been
studied. Terpenes and terpenoids are a widespread group of secondary metabolites found in numerous
plant families, including Cannabaceae and others. Herein, we discuss the role of cannabinoid-like
molecules, mainly terpenes, as prospective therapeutics for a variety of pathological conditions.
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Table 2. CBD pharmacological actions on pathological conditions.

Research Themes Main Findings References

Alzheimer’s disease (AD)

CBD prevented expression of proteins involved
with tau phosphorylation and AD progression.

CBD showed therapeutic potential for
AD-associated cognitive impairment.

[22,23]

Anti-inflammatory properties

CBD induced apoptosis and inhibited
lipopolysaccharide-activated NF-κB and

interferon-β/STAT inflammatory pathways in
microglial cells; CBD protected

oligodendrocytes progenitor cells from
inflammatory-induced apoptosis.

[24]

Anxiety

CBD modulated anxiety responses partially
through 5-HT1A-mediated neurotransmission,
and demonstrated anxiolytic effects during a

stimulated public speaking test; CBD action on
limbic and paralimbic regions contributed to

reduced autonomic arousal and subjective
anxiety; CBD blocked anxiety-induced REM

sleep alteration through anxiolytic properties.

[25,26]

Diabetes
CBD showed beneficial effects on glycemic

control and cardiovascular dysfunction
during diabetes.

[27]

Immunomodulatory effects CBD modulated T-cell function and apoptotic
signaling pathway. [28]

Inflammatory bowel disease (IBD) CBD attenuated intestinal inflammation and
normalized motility in patients with IBD. [29]

Cognitive impairments

CBD interacted with components of emotional
memory processing and memory-rescuing, as

well as attenuated THC-induced memory
impairment effects.

[30]

Neuropathic pain CBD inhibited chemotherapy-induced
neuropathic pain. [31,32]

Parkinson’s disease (PD) CBD administration showed neuroprotective
effects during PD progression. [33]

Schizophrenia

CBD showed antipsychotic-like properties in
schizophrenia, as well as prevented clinical

social dysfunction, and inhibited
psychomotor agitation.

[34,35]

Seizure/Epilepsy

CBD showed anticonvulsant effects in animal
models of seizure and patients with refractory
epilepsy. CBD was also described as safe and

beneficial for the treatment of
epileptic disorders.

[36–39]

CBD, cannabidiol; NF-κB, nuclear factor kappa B; STAT, signal transducer and activator of transcription protein
family; 5-HT1A, serotonin 1A receptor; REM, rapid eye movement sleep; THC, tetrahydrocannabinol.
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Figure 1. Beyond the Cannabis sativa plant. The Era of cannabinoids started with the description
and isolation of the main Cannabis sativa psychoactive component, Δ9-tetrahydrocannabinol (THC).
However, many other natural compounds were also identified, totalizing 565 substances among
cannabinoids and non-cannabinoids constituents. This figure illustrates some of the Cannabis sativa
compounds (d-limonene, β-caryophyllene, citral, and falcarinol) and its molecular structures that can
be also found in other plants, such as Cordia verbenacea, lemon, Cymbopogon citratus, and carrot. CBD,
cannabidiol. Figure created using the Mind the Graph platform.

2. Cannabis Phytocannabinoids: Focus on Tetrahydrocannabinol and Cannabidiol

The phytocannabinoid class includes more than a 100 compounds that are present in the
Cannabis sativa plant [66], which interact with components of the human ECS, briefly addressed
in this section. Phytocannabinoids production is dependent on plant internal factors (synthesized
hormone levels, plant kind, and parts of the plant) and on external factors (humidity, light, type of
soil, and temperature). The most elucidated compounds among the main phytocannabinoids are
CBN, CBD, Δ8- e Δ9-THC, cannabigerol, and cannabivarin. The Δ9-THC is the major psychotropic
compound found in high concentrations in the Cannabis sativa plants. It is classified as a CB1R
and CB2R partial agonist, showing preference for the CB1R. The agonist activity on CBR triggers
adenylyl cyclase (AC) inhibition and, thereby, the ability of modulating different neurotransmitters
release as dopamine, acetylcholine, glutamate, and gamma-aminobutyric acid (GABA) [66]. Of note,
phytocannabinoids not only bind to CBR, but also show potential actions on different kinds of receptors,
such as peroxisome proliferator-activated receptors (PPAR), glycine receptors, and the transient
receptor potential (TRP) cation channels. The CBD, unlike the tetrahydrocannabinol (THC), is a
non-psychotropic cannabinoid that has been widely investigated regarding its potential therapeutic
use. It has been already established in the literature that CBD shows anti-inflammatory, anti-epileptic,
analgesic, anxiolytic, and neuroprotective properties, as well as it can be used to mitigate Parkinson’s
disease (PD) symptoms [67–69]—Table 2. CBD acts as a negative allosteric modulator of CB1R [65]
and as an inverse agonist in CB2R, besides being a FAAH enzyme inhibitor.

To briefly highlight, many other phytocannabinoids (e.g., cannabigerol, cannabichromene, and
cannabinol) showed significant therapeutic value. The cannabigerol (CBG) showed agonist and
antagonist activity on TRP channels and it was also able to produce 5-HT1 and CB1R antagonism [70].
Additionally, CBG is an AEA reuptake inhibitor [71], and it showed colon anti-tumor activity by

. It has been already established in the literature that CBD shows anti-inflammatory, anti-epileptic,
analgesic, anxiolytic, and neuroprotective properties, as well as it can be used to mitigate Parkinson’s
disease (PD) symptoms [67–69]—Table 2. CBD acts as a negative allosteric modulator of CB1R [65]

However, many other natural compounds were also identified, totalizing 565 substances among
cannabinoids and non-cannabinoids constituents. This figure illustrates some of the Cannabis sativa
compounds ( -limonene, -caryophyllene, citral, and falcarinol) and its molecular structures that can(d- β-
be also found in other plants, such as Cordia verbenacea, lemon, Cymbopogon citratus, and carrot. CBD,
cannabidiol.
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inhibiting transient receptor potential melastatin 8 (TRPM8) channels [72]. Relevantly, when associated
with CBD, it demonstrated anti-inflammatory activity reducing tumor necrosis factor (TNF) expression
and upregulating Interleukin–10 (IL-10) and Interleukin–37 (IL-37) levels [70]. Cannabichromene (CBC)
showed agonist activity on CB2R [73]. Besides, it interacts with TRP channels, being suggested as a
potential therapeutic resource for the treatment of pain and inflammation [71]. Lastly, CBN showed
similar therapeutic properties to other phytocannabinoids, such as anticonvulsant, anti-inflammatory,
and antibacterial [71]. In addition, CBN showed inhibitory activity on cyclooxygenase (COX),
lipoxygenase (LOX), and P450 cytochrome enzymes [71], as well as on keratinocyte proliferation,
supporting a possible potential therapeutic for psoriasis cases [74]. As it can be appreciated with the
major phytocannabinoids, the wide ranges of possible interactions of these molecules with multiple
targets in our body, demonstrates the magnitude and the complexity of phytocannabinoids acting in
living organisms.

We just established that phytocannabinoids demonstrate different pharmacological effects, and it
can get even more intriguing and complex when we focus on previous data describing that the
combined use of some phytocannabinoids can possibly increase the positive effects proportionate
by them. For instance, the use of CBD associated with Δ9-THC promoted downregulation of the
neuroinflammatory process in animal models of multiple sclerosis (MS) [75], besides, reducing pain [76]
and muscle spasticity in MS patients [75]. Importantly, CBD attenuated the psychotropic effects of THC
when used in a combined form [75]. This last piece of data supports the hypothesis that CBD binds to
an allosteric site on CB1R that is functionally distinct from the active site for 2-AG and THC [77]. In this
same context, a recent study reported that a botanical drug preparation (BDP) was more potent than
pure THC to produce antitumor responses in cell culture and animal models of breast cancer. While
pure THC mainly activated CB2R and generated reactive oxygen species (ROS), the BDP modulated
different targets and mechanisms of action [78]. This combined effect, observed with the association
of phytocannabinoids and other compounds present in the Cannabis sativa plant, such as terpenoids,
is known as the entourage effect [79] (Figure 2).

 

Figure 2. Entourage effect. Beyond the Δ9- tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD),
there are many compounds present in Cannabis sativa, including terpenoids (such as linalool, terpineol,
and citral), which could contribute to beneficial effects related to this plant. However, the underlying
mechanism of these medicinal effects is largely unknown when molecules are associated. Figure created
using the Mind the Graph platform.

t CBD binds to
an allosteric site on CB1R that is functionally distinct from the active site for 2-AG and THC [77].

there are many compounds present in Cannabis sativa, including terpenoids (such as linalool, terpineol,
and citral), which could contribute to beneficial effects related to this plant. However, the underlyingffeffeffff
mechanism of these medicinal effects is largely unknown when molecules are associated. Figure createdffeffeffff
using the Mind the Graph platform.
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Cannabis Terpenoids

Beyond the phytocannabinoids, the Cannabis plant is able to produce a diversity of compounds.
Thirty-one-years ago, Mechoulam and Ben-Shabat described what they named the ‘’entourage effect”,
suggesting interactions between Cannabis “inactive” metabolites and closely related molecules could
markedly increase the activity of the “primary” cannabinoids (Figure 2). From this, it was possible to
hypothesize that could be a contribution of “minor cannabinoids” and Cannabis terpenoids to the plant
overall pharmacological effect. Therefore, a recent study evaluated the effect of common terpenoids,
by themselves and in combination with THC, in AtT20 cells expressing CB1R or CB2R. Surprisingly,
none of the analyzed terpenoids modulated the THC phytocannabinoid agonist signaling. Thus, the
authors suggested that if the phytocannabinoids–terpenoids entourage effect exists, it is not at the
CB1R or CB2R receptor level [80]. Corroborating, when rats were submitted to an abdominal writhing
model and treated only with terpenoids they demonstrated increased abdominal writhing, while the
animals treated with THC showed robust analgesia, even better than the rats that received the Cannabis
full extract. In this case, Cannabis antinociceptive property was linked to Δ9-THC, since terpenes
alone do not alter the nociceptive behavior [81]. Using a different approach, Nandal and co-authors
exposed cancerous cell lines to treatment with phytocannabinoids combined with low concentrations
of co-related terpenoids. They observed increased cell mortality at ratios similar to the ones obtained
with the natural plant extracts [82]. According to the authors, their results differed from Santiago
et al. findings because they evaluated terpenoids without statistical correlation to THC, meaning
that terpenoids concentrations in their preparations where higher than the natural-occurred in the
plants [80,82]. Thus, the possible “entourage effect” and the positive contribution derived from the
addition of terpenoids to cannabinoids could be interpreted as uncertain. However, the study of
terpenoids represents an open window that goes beyond its actions (i) in the endocannabinoid system
solely, or (ii) as mere phytocannabinoids passive co-authors, and even beyond the Cannabis plant.

3. Terpenoids in and beyond the Cannabis Plant

Cannabis contains a large number of monoterpene and sesquiterpene compounds, together
called terpenoids or terpenes, which are aromatic compounds synthesized in trichomes [71]. In the
plant, these compounds (i.e., more than 120 terpenes) synthesized alongside phytocannabinoids are
important volatile constituents that are responsible for the plant’s characteristic smell and also serve
for different organic functions, such as insect repellent, repellent to herbivore attack, and attractive
to pollinators [71]. Booth and Bohlmann described the terpenes- and cannabinoid-rich resin as
the most valuable cannabis products, with different psychoactive and medicinal properties [83].
Studies regarding terpenoid compounds (i.e., D-limonene, β-myrcene, α-pinene, α-terpineol, β-pinene,
β-caryophyllene, and others) have been growing in the last decades due to their large number and
extensive employability [71,84]. However, the presence of terpenoids has not been restricted to
the Cannabis sativa plant. These compounds normally occur in several other plant species, such as
Mirabilis jalapa, Lithophragm glabrum, Cordia verbenacea, Eucalyptus globus, Syzygium aromaticum, Senna
didymobotrya, Cymbopogon citratus, and in some Citrus genus plants, as Citrus limon and others. To
date, there are more than 10,000 articles versing about phytocannabinoids or cannabimimetics, and its
actions described in the literature. There are many Cannabis terpenoid compounds that are not majorly
found in the Cannabis plant but are highly expressed in other plants. Its actions are varied and complex,
being many compounds studied deep down to the mechanisms of action, pharmacokinetics, toxicity,
and pharmacodynamics, whereas others are still to be addressed regarding these aspects. The study
about terpenoids beyond the Cannabis plant has been earning ground in the research field due to the
fact that they can be utilized as tools for the improvement of therapeutic research for several diseases.
Herein, we can have a sense of how literature stands at this end regarding some of these compounds,
and we discuss the role of terpenoids as prospective therapeutics of different pathological conditions.

Studies regarding terpenoid compounds (i.e., D-limonene, -myrcene, -pinene, -terpineol, -pinene,β- α- α- β-
-caryophyllene, and others) have been growing in the last decades due to their large number andβ-

extensive employability [71,84].
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3.1. Beta (β)- and α-Caryophyllene

Beta and alpha-Caryophyllene are the major sesquiterpenes encountered in the Cannabis plant [85].
Importantly, a comparative study showed that regardless the type of extraction used supercritical
fluid extraction, steam distillation, or hydrodistillation, the major sesquiterpene compound to be
extracted was β-Caryophyllene (BCP) [86]. Caryophyllenes are considered phytocannabinoids with
strong affinity to CB2R but not CB1R [87], and are produced not only by Cannabis but also by a
number of plants, as a mechanism of defense to insects, for instance. The vast literature describes
a number of plants that contain this compounds such as Cordia verbenacea, Pterodon emarginatus,
Artemisia campestris, Lantana camara, Centella asiatica, Cyanthillium cinereum, and Croton bonplandianus,
just to name a few of the more than 30 species previously described. Heretofore published original
articles described seven main actions to caryophyllenes. These actions are reported to be repellent,
antimicrobial or antibacterial, anticancer or antiproliferative, antifungal, AChE inhibitor, antioxidant,
and anti-inflammatory. Regarding the antifungal and antimicrobial action, Sabulal and co-workers
showed that Zingiber nimmonii rhizome oil, which is a unique isomeric caryophyllene-rich natural
source, has inhibitory activity against fungi (e.g., Candida glabrata, Candida albicans, and Aspergillus
niger) as well as against both Bacillus subtilis and Pseudomonas aeruginosa bacteria [88]. More recently,
a study has shown that Phoebe formosana leaf extract has antifungal activity as well; BCP being one of
the active compounds identified [89]. In this same study, authors have reported that the oil exhibited
cytotoxic activity against human lung, liver, and oral cancer cells while the major active compound
was BCP. Corroborating, BCP was the major compound found in the tree bark essential oil from Pinus
eldarica, which showed antiproliferative activity in a concentration dependent manner against MCF-7
breast cancer cell line [90]. Likewise, anticancer activity against MCF-7 cells was also reported for the
essential oil of Cyperus longus mainly constituted of β- and α- caryophyllenes [91]. Regarding analgesic
effects, BCP has been demonstrated to attenuate paclitaxel (PTX)-induced peripheral neuropathy in
mice by a mechanism dependent on mitogen-activated protein kinase (MAPK) inhibition [92]. Recently,
a review has summarized, very well, the anticancer and analgesic properties of this compound [87].

The anti-inflammatory properties of BCP have been extensively shown in different mouse
models of disease. Bento and co-workers have demonstrated the beneficial effect of BCP treatment
in an inflammatory bowel disease mouse model, in which BCP oral treatment mitigated TNF
and Interleukin-1β (IL-1β) expression, reduced colon damage, and ameliorated disease score. To
a mechanistic level, they showed these effects were at some degree dependent on peroxisome
proliferator-activated receptor gamma (PPAR-γ) and CB2R activation [93]. In a very interesting study,
Gertsch and co-workers reported that BCP selectively binds to CB2R acting as a full agonist, highlighting
its potential therapeutic effects for inflammatory and painful states [94]. In an experimental autoimmune
encephalomyelitis (EAE) mouse model, Alberti and co-workers have reported anti-inflammatory
actions (i.e., reduced microglial activation and inducible nitric oxide synthase (iNOS) expression)
of Pterodon emarginatus essential oil that is mainly enriched with BCP. Anti-inflammatory actions,
in this case, contributed to attenuate neurological score and disease progression, being dependent
on the control of T helper 1 (Th1) and Treg activity [95]. Later, the same authors demonstrated
the effect of BCP in the experimental model of multiple sclerosis [96]. In fact, BCP extracted from
Cordia verbenacea essential oil induced a markedly anti-inflammatory effect in panoply models in
rats involving the attenuation of the abovementioned inflammatory molecules iNOS, TNF, and IL-2,
as well as prostaglandin E2 (PGE2), and COX-2 [97]. Likewise, through anti-inflammatory pathways,
BCP demonstrated a neuroprotective effect in a rat model of PD [98]. These are few very important
examples of the beneficial and useful properties of caryophyllene. We agree with Sut and co-workers’
point-of-view that some of the considered old molecules, as sesquiterpenes, could possibly play an
important role in drug discovery towards new discoveries [99].

3.1. Beta (β)- and -Caryophyllene(β( ) α-

Caryophyllenes are considered phytocannabinoids with
strong a nity to CB2R but not CB1R [87], and are produced not only by Cannabis but also by aaffin
number of plants,
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3.2. D-Limonene

Limonene, (4R)-1-methyl-4-prop-1-en-2-ylcyclohexene, is the most common monoterpene found
in nature; for instance, in Cannabis sativa oilseed hemp named Finola and also in citrus oils, from orange,
lemon, and tangerine [84]. Despite being found in Cannabis sativa, limonene does not interact with
CB1R or CB2R [100]. Interestingly, D-limonene absorption and metabolism in animals is accelerated,
and consequently it has a high rate of distribution and excretion. D-limonene metabolites have
been detected in adipose tissue and mammary glands in a high concentration, although it has
low toxicity [101]. This compound shows different pharmacological properties, which include
anti-inflammatory, gastro-protective, anti-nociceptive, anti-tumor, and neuroprotective [102–104].
A recent study has demonstrated D-limonene anti-tumor activity (i.e., tumor cells decreased in
proliferation and growth) in an animal model of chronic myeloid leukemia [102]. Moreover, D-limonene
also showed anti-inflammatory activity by inhibiting pro-inflammatory mediators, leukocyte migration,
and vascular permeability [105]. Regarding its activity on the gastrointestinal tract, there are different
articles described in the literature. For instance, the same group described a gastric protection
effect in rats with colon inflammation [103], and in an animal model of an ulcer induced by ethanol
and indomethacin [106]. In addition, D-limonene-induced mucus production and IL-6, IL-1β, and
TNF inhibition has been previously described [107]. Corroborating this data, Wang and colleagues
demonstrated that limonene affected the intestinal microbiota of mice and enhanced the relative
abundance of Lactobacillus, suggesting limonene direct effects on intestinal bacteria [108].

Limonene also inhibited nociceptive behavior induced by intraperitoneal acetic acid injection
and plantar formalin [109]. In a complementary way, combined administration of limonene and
β-ciclodextrin inhibited hyperalgesia in a chronic musculoskeletal pain model by downregulation
c-FOS expression in the spinal cord [84]. Reinforcing this information, treatment with Schinus
terebinthifolius essential oil—which is highly-concentrated in limonene—showed anti-hyperalgesic
and anti-depressive effects in a neuropathic pain animal model [110]. At a different point-of-view,
Smeriglio and colleagues reported the antioxidant and free radical scavenging properties of Citrus
lumia oil, which is highly-concentrated in monoterpenes (e.g., 48.9% D-limonene and 18.2% linalool),
suggesting an important preventive role in the genesis of oxidative stress-related pathologies [111].
In this context, a study conducted by Shin et al. showed that limonene decreased cell death, ROS levels,
extracellular signal-regulated kinase phosphorylation, and overall inflammation in the brains and eyes
of drosophila during Aβ42-induced neurotoxicity, a model of Alzheimer’s disease (AD) [104]. These
and other authors have been studying limonene effects in the context of its impacts in the CNS. For
instance, limonene has shown to exhibit anxiolytic effect increasing hippocampal dopamine levels and
serotonin in the prefrontal cortex [75]. Considering the information above exposed, this is just one of
the many compounds to be still addressed in this review that are natural and abundant in different
plants, which could be used as potential therapeutics for diseases dependent on the inflammatory and
oxidative-stress processes.

3.3. Linalool

Similar to limonene, linalool, 3,7-dimethylocta-1,6-dien-3-ol, is a monoterpene compound present
in several medicinal plants and fruits, including Cannabis sativa, which has been widely used in
the cosmetics and flavoring ingredients [112]. Linalool showed anti-inflammatory, anti-cancer, and
anxiolytic effects [113–115]. The use of aromatherapy for the treatment of anxiety is disseminated
among folk medicine. Accordingly, a study showed that linalool induced anxiolytic effects in
mice by modulating GABAergic synaptic transmission [115]. Similarly to others terpenes, linalool
showed anti-inflammatory activity, it prevented eosinophil migration, Th2-cytokines profile, and IgE
concentration, in an asthma animal model. In addition, linalool inhibited iNOS expression, NF-κB
(Nuclear factor kappa B) activation, inflammatory cells infiltration, and mucus hyper production during
asthma progression [113]. Inflammation as well as oxidative stress are processes closely related to the
progression of different CNS diseases, such as AD. In this context, a recent study demonstrated that
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linalool decreased ROS and lipid peroxidation levels, as well as improved mitochondrial morphology,
membrane potential, and respiration, directly reducing the cell death rate due to oxidative stress [114].
Additionally, linalool showed neuroprotective effects on Aβ1–40-induced cognitive impairment in
mice, which it was suggested to be mediated by inhibition of apoptosis and oxidative stress induced
by Aβ-dependent Nrf2/HO-1 pathway activation [116].

Regarding to its potential anti-tumor activity, linalool induced apoptosis of cancer cells in vitro
following the cancer-specific induction of oxidative stress, which was measured based on spontaneous
hydroxyl radical production and delayed lipid peroxidation. Besides, mice in the high-dose linalool
group exhibited a 55% reduction in average xenograft tumor weight compared to the control group [117].
Linalool has also reported to be protective against ultraviolet B (UVB)-induced tumor through
inhibition of inflammation and angiogenesis signaling, as well as induction of apoptosis in the mouse
skin [118]. Finally, a study showed that linalool reduced paclitaxel-induced acute pain in mice,
which was antagonized by the direct injection of naloxone hydrochloride, suggesting opioid signaling
modulation [119]. What can be appreciated so far, and will continue to be addressed, is the general
ability of different terpenes to modulate inflammation and oxidative stress through different pathways,
which in turn could be very useful to shed light to novel treatments for pain, cancer, autoimmune
diseases, and CNS diseases that rely greatly on the impact of these processes.

3.4. Terpineol

Terpineol (2-(4-methylcyclohex-3-en-1-yl)propan-2-ol) is a volatile monoterpene alcohol present
in the essential oil of Cannabis sativa [120], but also in several medicinal plants, such as Punica granatum
L., Rosmarinus officinalis L., and Psidium guajava L. Until this moment, there is no evidence in the
literature about the interaction of terpineol with CBR. Nonetheless, this compound shows different
pharmacological properties that include antinociceptive [121], antifungal [122], anti-inflammatory [123],
and antidiarrheal [124]. Likewise, terpineol analgesic activity has been investigated in different animal
models of pain. In this context, Oliveira and colleagues evaluated the effect of terpineol combined to
β-cyclodextrin (βCD) (family of cyclic oligosaccharides with a wide variety of practical applications,
including pharmacy, medicine, and foods) in an animal model of fibromyalgia. According to the
authors, α-terpineol-βCD complex reduced nociceptive behavior induced by a chronic muscle pain
model [121]. Still, this effect was mediated by activation of descending inhibitory pain system,
since analgesic effect was reversed by systemic administration of naloxone (opioid antagonist), or
ondansetron (5-HT3 antagonist) [121]. Additionally, terpineol has also been demonstrated to be a safe
and effective drug for control of sarcoma-induced cancer pain in mice [125]. In a complementary way,
terpineol could be investigated as preventive treatment for the development of dependence and of
tolerance to opioid analgesics, since it attenuated the analgesic effect of morphine [126]. Thus, it is
possible to suggest that terpineol alone, or combined to other drugs, could be an interesting target for
development of new analgesics to control chronic pain symptoms. Besides, it could work as adjunctive
therapy to morphine in order to reduce side effects related to treatment with opioid drugs.

Terpineol showed not only antinociceptive but also neuroprotective properties, since improved
memory impairment in rats exposed to transient bilateral common carotid artery occlusion. The
underlying mechanisms described comprise the facilitation of LTP and suppression of lipid peroxidation,
in the hippocampus [127]. In accordance, Abies koreana essential oil (terpenoids-rich oil, including
terpineol) enhanced memory of mice submitted to scopolamine-induced amnesia [128]. Regarding
it anti-inflammatory properties, terpineol has also been investigated for the treatment of allergic
inflammation and asthma because decreased leucocyte migration and TNF levels. Furthermore,
terpinen-4-ol and α-terpineol were found to suppress the production of inflammatory mediators
(e.g., NF-κB, p38, ERK, and MAPK signaling pathways) in lipopolysaccharide (LPS)-stimulated human
macrophages [129]. Altogether, data supports that terpineol should be better investigated in order to
characterize its neuroprotective effects found in cerebral ischemia-related memory impairment and
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possibly be extended to other neurological conditions, such as seizures, migraine, Parkinson’s disease,
as well as to clarify its anti-inflammatory potential.

Terpineol properties go beyond, it has previously been shown antifungal properties against
Penicillium digitatum because it disrupts fungi cell wall allowing the leakage of intracellular
components [130]. In agreement with this, tea tree oil’s antibacterial and antifungal properties
were attributed mainly to 1,8-cineol, methyl eugenol, and terpinen-4-ol [131]. Recently, Chaudhari and
co-authors reported the efficacy of α-terpineol loaded chitosan nanoemulsion (α-TCsNe) to control
AFB1, a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus fungi [122].
Included in miscellaneous actions, in addition to bactericidal and antifungal activities, terpineol has
been recognized as algaecide [132] and by its natural repellent activity against Tribolium castaneum
(H.) [133]. Finally, this monoterpenoid exhibited strong anti-proliferative activity on cancer cell
lines [134], as well as it inhibited growth of tumor cells trough modulation of NF-κB signaling
pathway [135]. Thus, it is possible hypothesize that terpineol as a versatile compound with a wide
variety of beneficial effects could be a possible venue for the development of new antibiotics, antifungal,
and anticancer agents.

3.5. Terpinene

Gamma-terpinene, 1-methyl-4-propan-2-ylcyclohexa-1,4-diene, is a monoterpene structurally
similar to 1.8-cineol, being both found in the essential oils of Cannabis sativa and several other
plants including the Eucalyptus genus (Myrtaceae), Cupressus cashmeriana, Lippia microphylla, Lavandula
angustifolia, and Citrus myrtifolia [136–141]. Gamma-terpinene is very well described in the literature
as an anti-inflammatory, antimicrobial, analgesic, and anticancer agent [136,137,142–144]. A recent
study demonstrated that γ-terpinene reduced some inflammatory parameters, such as edema and
inflammatory cell infiltration during tests in experimental models of inflammation, namely phlogistic
agent-induced paw edema, acetic acid-induced microvascular permeability, carrageenan-induced
peritonitis, and lipopolysaccharide-induced acute lung injury [145]. In addition, another study
assessed the effect of γ-terpinene on pro- and anti-inflammatory macrophage production of cytokines
in an animal model. The authors reported that γ-terpinene significantly increased the production
of IL-10, which was dependent on PGE2 production since effects were reversed by COX-2 inhibitor
nimesulide [146].

Besides the anti-inflammatory action, Assmann and colleagues described the anti-tumor activity
and some of the possible underlying mechanisms of the Melaleuca alternifolia essential oil, which is
composed of three major compounds terpinen-4-ol (41.98%), γ-terpinene (20.15%), and α-terpinene
(9.85%), on MCF-7 breast cancer cells [147,148]. Authors reported γ-terpinene potential cytotoxic
activity by decreasing breast cancer cells viability. Effects were observed in the early stages of apoptosis,
such as increased BAX/BCL-2 genes ratio and increased cell arresting to S phase of the cycle [148].
Antimicrobial activity has been tested as well; Melaleuca spp. plants demonstrated effects against a
wide range of gram-positive and gram-negative bacteria, fungi, and yeasts. Impressively, Melaleuca
thymifolia volatile oil exhibits higher antimicrobial activity than gentamicin and streptomycin against
Staphylococcus aureus [131]. Considering the exposed, it is feasible to suggest that γ-terpinene could
server as natural immunomodulatory agent with antioxidant, antimicrobial, and anticancer properties
that could be useful therapeutically.

3.6. Alpha (α)- and β-Pinene

Alpha-pinene is considered a natural compound present not only in Cannabis sativa but also in
essential oils of many aromatic plants, such as Lavender angustifolia, Rosmarinus officinalis, and coniferous
trees [149]. Alpha-pinene is a bicyclo[3.1.1]hept-2-ene that contains a reactive 4-membered ring structure
and exhibits antioxidant, antimicrobial, anti-tumor, hypnotic, and anxiolytic activities [83,120,150–152].
There are different biological properties described to α-pinene, as well as essential oils containing
this compound have been used to treat several diseases [153], although no affinity towards CBRs
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have been described [154]. Alpha-pinene has been extensively investigated in the last years for its
medicinal properties that include sedative, hypnotic, and anxiolytic [152,155]. In this context, Yang and
colleagues demonstrated that α-pinene interacts with GABAA/benzodiazepine receptors prolonging
its synaptic transmission, significantly increasing the duration of non-rapid eye movement sleep
(NREMS), and reducing sleep latency [151]. The beneficial effects of α-pinene are also extended to
convulsions [80,81], ischemic stroke [82], and schizophrenia [156]. Besides, α-pinene also showed
neuroprotective effects that might be related to its antioxidant properties, which include being able to
decrease malondialdehyde and hydrogen peroxide levels while increasing catalase and peroxidase
activity. A study has reported that rats exposed to pentylenetetrazol (PTZ)-induced convulsions
submitted to α-pinene intraperitoneal (i.p.) administration presented both initiation time delayed
and reduced duration of myoclonic and tonic-clonic seizures, following PTZ injection [81]. Another
study suggested that α-pinene appears to be devoid of anticonvulsant action, since only β-pinene
affected the intensity of seizures and time of death of PTZ-treated mice [80]. Further, it was suggested
that α-pinene might serve as potential therapeutics for schizophrenia since it possibly suppresses
neuronal activity. However, it has also been demonstrated that inhalation of α-pinene inhibits
dizocilpine (MK-801)-induced schizophrenia-like behavioral abnormalities in mice [156]. Lastly,
α-pinene mitigated learning and memory loss induced by scopolamine in mice. The underlying
mechanisms reported were increased choline acetyltransferase messenger RNA (mRNA) expression in
the cortex and increased antioxidant enzyme levels (e.g., HO-1 and manganese superoxide dismutase
(MnSOD)) in the hippocampus through activation of Nrf2 [157].

Beyond neuroprotection, the cytoprotective and antinociceptive properties of α-pinene have been
previously described. Regarding the former, studies were conducted using peptic ulcer, ultraviolet A
radiation (UVA) irradiation, and aspirin-induced cytotoxicity models [158–160]. In details, α-pinene
was able to prevent UVA-induced loss of mitochondrial membrane potential, lipid peroxidation,
DNA damages, and ROS generation [158]. Likewise, α-pinene inhibited UVA-induced activation of
pro-angiogenesis factors (e.g., iNOS and vascular endothelial growth factor (VEGF)), as well as blocked
expression of inflammatory mediators (e.g., TNF, IL-6, and COX-2) and apoptotic mediators (e.g., Bax,
Bcl-2, caspase-3, and caspase- 9) in mouse skin submitted to UVA-irradiation at the rate of 10 J/cm2/day,
for 10 days [159]. In contrast, α-pinene promoted cytoxicity, and consequently cancer cells apoptosis by
increasing activity of caspase-3 in human ovarian cancer cells (PA-1) [161]. In this sense, another study
showed that α-pinene was also able to inhibit human hepatoma tumor progression by inducing G2/M
phase cell cycle arrest [162]. Regardingα-pinene antinociceptive effects, it was previously demonstrated
its beneficial potential in capsaicin-induced dental pulp nociception [163], xylene-induced ear edema,
and formalin-inflamed hind paw models [164]. In this context, α-pinene exhibited significantly
anti-inflammatory and analgesic effects through inhibition of COX-2. Moreover, the analgesic effect of
α-pinene on capsaicin-induced pulp nociception was blocked by co-administration with bicuculline
or naloxone, thus suggesting that this effect could be mediated, at least in part, by interaction with
GABA-A and μ-opioid receptors [163].

Related toα-pinene, another important monoterpene present in different Cannabis sativa L. varieties
is β-pinene, which can also be found in many plants essential oils and obtained commercially by
distillation or by α-pinene conversion [165,166]. Literature describes β-pinene antimicrobial and
antioxidant activity [167], as well as its derivatives have been associated to anticancer, anticoagulation,
and antimalarial effects. Additionally, β-pinene showed repellent activity against Tribolium castaneum,
which is a beetle species from the Tenebrionidae family that is also a powerful invertebrate system for
molecular genetics studies. Looking for the mechanism by which β-pinene mediated this repellent
activity; authors reported that exposition to this compound alters the gene expression, namely Grd
(which encodes GABA receptor), Ace1 (which encodes class A acetylcholinesterase) and Hiscl2 (which
encodes histamine-gated chloride channel subunit 2) [168]. However, according to Pajaro-Castro and
colleagues, β-pinene showed little ability to dock on proteins associated with neurotransmission process
in the Tribolium castaneum [168]. Even though the β-pinene-induced repellent effect still remains to be
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fully addressed, it seems feasible to be considered that β-pinene monoterpene could act on different
insect and mammalian receptors associated with neurotransmission. For instance, Guzmán-Gutiérrez
and co-authors attributed to Litsea glaucescens essential oil (being β-pinene and linalool the two
main active principles) antidepressant-like and sedative-like properties [169]. Posteriorly, the same
group evaluated the mechanisms related to antidepressant effect of the essential oil compounds.
In brief and focused on β-pinene, adult male ICR mice were pre-treated with (1S)-(−)-β-pinene
(100 mg/kg) and exposed to forced swimming test (FST). Results showed that β-pinene, as well as
imipramine (control drug), decreased the immobility time of mice when compared with control in the
FST. Furthermore, administration of 5-HT1A receptor antagonist prevented the antidepressant-like of
β-pinene, demonstrating that this compound could interact with the serotonergic system. Likewise,
β-pinene anti-immobility effects were also prevented by propranolol (β-receptor antagonist), neurotoxin
DSP-4 (noradrenergic neurotoxin), and SCH23390 (a D1 receptor antagonist), suggesting its possible
interactions with the adrenergic and dopaminergic system as well [170].

The use ofβ-pinene as an antitumor, as well as antiviral and antifungal agent has also been explored.
Regarding the former, β-pinene-based thiazole derivatives were investigated as antineoplastic agents
in vitro. Twenty-four β-pinene-based thiazole derivatives were synthesized and 5 g compound showed
cytotoxic against three different cancer cell lines (Hela, CT-26, and SMMC-7721). Cytotoxic effect
have been described to be mediated by action in the following signaling pathways: i) increased ROS
activity, ii) loss of mitochondrial membrane potential, and iii) altered expression of Bax/Bcl-2, ultimately
provoking cell injury and even cell death [171]. Concerning its antiviral and antifungal activity, it was
shown its beneficial effects against Rhizopus stolonifer (the common bread mold) and Absidia coerulea
fungi, as well as against herpes simplex virus type 1 (HSV-1), in vitro [172,173]. In fact,β-pinene reduced
HSV-1 viral infectivity through interaction with free virus particles by 100% in a dose-dependent
manner [174]. Similarly, β-pinene was able to reduce Candida biofilm adhesion through molecular
interaction mainly with delta-14-sterol reductase–enzyme, which is related to metabolic pathway
leading to cholesterol biosynthesis; thus, an effective target for antifungal drugs development [175,176].
Interestingly, when combined with commercial antimicrobial ciprofloxacin, bothβ-pinene andα-pinene
demonstrated synergistic activity against methicillin-resistant Staphylococcus aureus [177]. Summarizing,
here we describe, the antioxidant, anti-inflammatory, and immunomodulatory activity of both pinenes.
Importantly, the neuromodulatory role that α-pinene and β-pinene are able to play could be used to
shed light on innovative approaches to treat a variety of neurological conditions.

3.7. β-Elemene

β-elemene (1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane) is a derivative terpenoid found in
Cannabis sativa, which may arise due to oxidation or due to thermal- or UV-induced rearrangements
during processing or storage [85,178,179]. However, β-elemene is present not only in Cannabis sativa but
also from Curcuma rhizome, and it is commonly used in traditional Chinese medicine due to its anticancer
properties with no reported severe side effects [180]. In this way, this compound has been extensively
studied as an anticancer agent in vitro and in vivo and has been demonstrated to be a promising drug
for the treatment of a wide variety of tumors [181–186]. Among the challenges associated to cancer
treatment, it is the development of multidrug resistance (MDR), which negatively impacts the effect of
chemotherapy drugs, and consequently treatment success. It was previously proposed that one of the
viable solutions to overcome MDR is to combine two chemotherapeutic drugs, acting synergistically to
target multiple key pathways to inhibit tumor progression [187,188]. In this context, the combination of
β-elemene with other chemotherapeutic agents (i.e., cisplatin and doxorubicin) and other therapeutic
adjuvant has demonstrated great potential to inhibit tumor cells and tumor growth. According to
Li and colleagues, β-elemene and cisplatin combined chemotherapy treatment is one of the most
important approaches available for lung cancer therapy in China. Besides, the China Food and Drug
Administration has approved it for the treatment of different tumors, such as brain, ovary, prostate,
breast, lung, liver, and colon [189–191]. Additionally, when associated to hyperthermia β-elemene
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significantly inhibited growth of adenocarcinoma human alveolar basal epithelial cells A549 cells in a
dose-dependent manner, when compared to β-elemene treatment alone [182]. Mechanistically, the
exposition of A549 cells to hyperthermia plus β-elemene significantly increased mRNA expression of
cyclin-dependent kinase inhibitor p21 that ultimately induced cell apoptosis [182]. Another approach
to try overcoming unsuccessful chemotherapy is the nanotechnology-based drug delivery system,
which could improve pharmacokinetics of chemotherapeutic agents [192]. These carriers encompass a
broad range of dispersion systems (i.e., polymeric micelles, liposomes, and dendrimers) that protect
against drug degradation, promote sustained release, and reduce side effects [192]. Thus, different
studies evaluated the therapeutic effects of β-elemene co-loaded with chemotherapy drugs: i) cisplatin
in co-loaded liposomes [193]; ii) doxorubicin (DOX) in pH-sensitive nanostructured lipid carriers
(DOX/β-elemene Hyd NLCs) [194]; iii) cabazitaxel in complex liposome [195]. In summary, these
reports described that β-elemene co-loaded with lower doses of chemotherapy drugs was able to
induce toxicity effects against tumor while retaining a similar therapeutic effect of the drug by itself,
demonstrating synergistic effect of the compounds. Corroborating, β-elemene was also described
as a radiosensitizer producing DNA damage and inhibition of DNA repair, as well as increased
apoptosis. Beta-elemene was also able to inhibit the activation of the Prx1-NFκB-HIF-1α axis, a key
regulator whereby tumor cells adapt to radiation therapy and hypoxia [196]. Beta-elemene was also
shown to inhibited monocyte chemoattractant protein-1 (MCP-1) secretion, a macrophage recruitment
chemokine that contributes to cancer cells metastasis [197]. Altogether, these reports demonstrate the
possible mechanisms behind β-elemene anticancer activity and suggest different ways to incorporate
this compound into current clinical therapies.

Besides the very promising anticancer activity, it has been reported in the literature a variety of
other beneficial effects attributed to β-elemene. Li and co-authors, for instance, provided evidence
of β-elemene beneficial effects for atherosclerosis treatment [198]. In this study, apoE homozygous
deficient mice were fed a high-fat diet during four weeks followed by β-elemene (135 mg/kg) oral
gavage administration for another 12 weeks. Beta-elemene treatment significantly reduced lipid areas
of atherosclerotic plaques and aortic root lesion sizes and necrotic core, basically by boosting antioxidant
enzymes while decreasing inflammatory cytokines levels. [198]. In a different study, β-elemene exerted
retino-protective effect by downregulation of hypoxia-inducible factor–1alpha (HIF-1α), VEGF, iNOS,
and pro-inflammatory mediators during diabetes progression in a streptozotocin (STZ)-induced rat
model [199]. Finally, the potential application of β-elemene in an EAE animal model was tested, in
which mice were treated from day one after induction with β-elemene (20 mg/kg, i.p.) until the end of
experiment. Beta-elemene reduced IFN-γ and IL-17 levels and completely blocked EAE onset and
the severity of clinical symptoms. Furthermore, β-elemene inhibited IL-17, IFN-γ, ROR-γT, and T-bet
mRNA expression in the optic nerve of EAE mice [200]. If we start to appreciate the bigger picture,
it is possible to note that as the other terpenes here described so far, β-elemene shows the ability to
modulate essential biological functions, such as inflammation, oxidative stress, immunology response,
cell division, as well as endothelial regulation. Beneficial properties of this compound have been
studied to a mechanistically level highlighting it as a promising tool for the treatment of relevant
diseases, but there are many venues that still remain to be explored.

3.8. β-Ocimene and Camphene

Beta-ocimene (3,7-dimethyl-1,3,6-octatriene) is acyclic monoterpene that serves as a chemical
cue to attract natural enemies of phytophagous insect in several plant species, including Cannabis
sativa [85]. Booth et al. demonstrated using the variety ‘Finola’ of Cannabis sativa oilseeds that the most
abundant monoterpenes found were myrcene, (+)-α-pinene, (−)-limonene, (+)-β-pinene, terpinolene,
and (E)-β-ocimene [85]. Farré-Armengol and colleagues demonstrated that the emissions of β-ocimene
in flowers follow marked temporal and spatial patterns of emission, which are typical from floral
volatile organic compound (VOC) emissions that are involved in pollinator attraction [201]. Another
study reported that a monoecious cultivar (Futura 75) and a dioecious one (Finola) of Cannabis sativa
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tested in a mountain area in Alps, Italy (elevation: 1100 meters above sea level, during the growing
season 2018) showed particular phytochemical behavior. For instance, inflorescences from Finola
variety were characterized by higher concentrations of β-ocimene and α-terpinolene, while α- and
β-pinene accompanied by extremely high β-myrcene were found as predominant in Futura variety
indicating that geographical provenience should be considered for a specific medicinal use of Cannabis
sativa [202]. Currently, at least three beneficial properties have been described in the literature for this
compound, such as antitumor, antifungal, and anticonvulsant [203,204], but mechanisms underlying
the biological activity of this compound remain poorly explored.

Camphene (2,2-dimethyl-3-methylidenebicyclo(2.2.1)heptane) is a cyclic monoterpene present
in Cannabis inflorescence in low titer but abundant in the essential oil of Thymus vulgaris that
showed some pharmacological activities, such as expectorant, spasmolytic, and antimicrobial [205].
Camphene showed fumigant and contact toxicity against Liposcelis bostrychophila and Tribolium castaneum
insects. Furthermore, it presented moderate repellent effect to T. castaneum while showed attractant
effect to Liposcelis bostrychophila, [206]. Extending these observations, Benelli et al. showed that
camphene inhibited Helicoverpa armigera and Spodoptera litura—key polyphagous insects pest—with
a lethal dose (LC50) of 10.64 and 6.28 μg/mL, respectively, confirming the promising potential as
a botanical insecticide [207,208]. Altogether, these findings strongly support the use of camphene
as an eco-friendly and effective insecticidal agent. More recently, Souza and co-authors evaluated
the anti-Mycobacterium tuberculosis activity of 17 novel synthesized thiosemicarbazones derived from
(−)-camphene, in vitro. Overall, the majority of the tested compounds exhibited significant inhibitory
effects on the Mycobacterium tuberculosis growth, with minimal inhibitory concentrations (MIC) values
ranged from 3.9 to > 250 μg/mL [209]. Although there are not as much reports about β-ocimene and
camphene as was described to the other compounds here reviewed thus far, their repellent and/or
insecticide activity seem to be promising.

3.9. Nerolidol

Nerolidol ((6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol), also known as peruviol, is a noncyclic
sesquiterpene alkene alcohol common to citrus peels, Piper claussenianum, Baccharis dracunculifolia,
and Cannabis plant [210]. Previously, it was demonstrated its inhibitory effect on the growth of
Leishmania braziliensis promastigotes. Importantly, ultra-structural observation of nerolidol-treated
parasites by STM showed mitochondria morphological alterations in the, nuclear chromatin and
flagellar pocket along with cell shrinkage. In this same study, authors demonstrated some nerolidol
mechanisms of action that included loss of mitochondrial membrane potential, phosphatidylserine
exposure, and DNA degradation [211]. These evidences have been further exploited and extended in a
study showing that nerolidol also inhibited Leishmania amazonensis amastigotes and promastigotes
(with IC50 values between 2.6 and 3.0 M), indicating substantial accumulation of nerolidol in the cell
membrane [212]. What is also relevant to this topic are the findings demonstrating the antiparasitic
activity of nerolidol in mice infected with adult stages of Schistosoma mansoni. Authors showed that
nerolidol (100, 200, or 400 mg/kg oral route) inhibited worm burden and egg production, directly
associated with tegumental damage, although nerolidol showed low efficacy in mice harboring juvenile
schistosomes. [213]. Substantiating, Baldissera et al. reported that nerolidol-loaded nanospheres
mitigated the Trypanosoma evansi-induced cytotoxic and genotoxic effects in the rodent brain tissue
during infection by upregulating NO levels; thus, preventing DNA damage and cell death [210]. Such
results strongly support that nerolidol (a food additive and safe molecule) is an effective antiparasitic
agent and could potentially display anti-inflammatory properties.

Regarding its potential anti-inflammatory and/or immunomodulatory activity, there are a number
of studies using different cell-based and rodent models, which here we summarize. A study has
shown that nerolidol blocked LPS-induced acute kidney injury by inhibiting the TLR4/NF-κB signaling
pathway. Specifically, nerolidol markedly prevented the rise of nitrogen and creatinine levels in
LPS-treated rats, and also inhibited the increase of inflammatory mediators, like TNF, IL-1β, and
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NF-κB in LPS-treated NRK-52E cells [214]. Further, de Souza et al. demonstrated that nerolidol
nanoencapsulation improved its anti-inflammatory effect on zymosan-induced arthritis in mice.
Importantly, under the conditions assessed the formulation did not demonstrated cytotoxicity in
J774 cell line [215]. A study has also shown the immunomodulatory actions of trans-nerolidol
on the efficacy of doxorubicin in breast cancer cells and in a breast tumor mouse model. The
compound increased doxorubicin accumulation into MDA-MB-231 and MCF7 breast cancer cells while
blocked cell migration ability, in vitro [216]. In addition, nerolidol demonstrated positive effects on
cyclophosphamide (CYP)-induced neuroinflammation, oxidative stress, and cognitive impairment,
as well as prevented structural abnormalities in the hippocampus and cortex regions of rodents [217].
The same authors also showed using in silico approach that nerolidol binds into Nrf2 pocket domain—a
key nuclear factor that regulates the expression of antioxidant proteins [217], as previously addressed in
this review. In summary, authors concluded that nerolidol could be a prospective therapeutic molecule
that can mitigate CYP-induced neurotoxic signs through regulation of Nrf2 and NF-κB pathway [217],
although further studies are needed to confirm this neuroprotective hypothesis. Lastly, cardioprotective
effects have been suggested to this compound by the same research group. They previously evaluated
nerolidol cardioprotective potential as an oral treatment against CYP-induced cardiotoxicity in mice.
Nerolidol inhibited cardiac inflammation, oxidative stress, cardiac apoptosis, and cardiac fibrosis, as
well as ultra-structural changes leading to cardiac dysfunction induced by cyclophosphamide [218].
Corroborating, Asaikumar et al. showed that nerolidol inhibited isoproterenol-induced myocardial
damage in rats [219]. Here we reviewed the most described and better-explored activities of the
nerolidol, which are antiparasitic, anti-inflammatory and/or immunomodulatory, and cardioprotective.

3.10. Euphol

Euphol is a tetracyclic triterpene usually extracted in alcoholic preparations due to its chemical
structure and therefore affinity for this solvent. Even though it is not a major compound of the
Cannabis plant, one could find a few chemically structure similarities in between the euphol molecule
and a couple of cannabinoids derivate, such as CBD and CBN [220]. In fact, euphol is the major
compound found in different plant species from the Euphorbiaceae family [221], including Euphorbia
resinifera, Euphorbia nerifolia, Euphorbia bivonae, Euphorbia umbellata, and Euphorbia tirucalli. Regarding
the latest cited Euphorbia tirucalli, it is a common plant found in Brazil and by far the most studied
species from the Euphorbia family in concern to its major compound: euphol. Studies on euphol
chemical structure using x-ray crystallographic, Fourier transform-ion cyclotron resonance mass
spectrometry, tandem mass spectrometry, and gas chromatography coupled mass spectrometry,
as well as its quantitative determination in the rat plasma by liquid chromatography-tandem mass
spectrometry allowed a better understanding of this compound chemical and biological behavior [222–224].
Importantly, ethnopharmacology evidences have lead and contributed to studies on the anticancer and
anti-inflammatory effects of this triterpene compound, as by many years the plants from this family
have been used as folk phytomedicine to treat tumors and inflammation states [221]. Although, limited
studies on antiviral, antiparasitic [225,226], antimicrobial, and antifungal activities of euphol have
been recently reported. In our point, the most interesting aspect of a recent study is the finding that
euphol can modulate the immune system by inducing cytokine production, namely IL-4, IL-3, and IL-2;
thereby, influencing the Th1/Th2 balance [227]. These results could help to explain and support many
of the previous described actions of euphol as an anti-inflammatory compound that will be discussed
later. That being established, the two most described activities of this compound are the antitumor
and the anti-inflammatory. The former is the primary and the most reported activity in the literature,
being described for different Euphorbia species as well as cancer cell types while the latter is more recent;
however, better studied in terms of mechanism of action. For instance, Euphorbia tirucalli-derived
euphol beneficial effects against many cancer cell lines was previously tested and described. These
cell lines included tumor cells from breast, head and neck, colon, glioma, prostate, epidermis, lung,
bladder, melanoma, esophagus, ovary, and pancreas. Euphol cytotoxicity effect was observed against
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all cancer cell lines being very pronounced in this last cited, in which inhibited proliferation, motility,
and colony formation as well [228]. Likewise, Euphorbia umbellata-derived euphol exhibited cytotoxic
effects against K-562 leukemia cell line; being suggested that the main mechanism of action was
apoptosis induction [229]. Other mechanisms of action proposed to euphol cytotoxic activity against
breast and glioblastoma tumor cell lines included CDK2 downregulation whilst upregulates p21-
and p27-CDK inhibitors and autophagy induction/facilitation, respectively [230,231]. Despite of its
beneficial anticancer effect, very recently a study has suggested that euphol, along with sitosterol
and lupeol, could cause hepatotoxicity by inducing significant increase in alanine aminotransferase,
aspartate aminotransferase, and total bilirubin levels in rats treated sub-chronically with Euphorbia
bivonae extract [232]. That consists of one report showing potential toxic actions of this compound in
one species while there are many other enlightening reports describing its safety and its beneficial
use to treat inflammatory diseases. Reports from a group in the south of Brazil coordinated by
Professor Calixto in the early 2010s have described many of this compound uses towards inflammatory
diseases management, as well as possible mechanisms of action. The earliest report described its
anti-inflammatory actions on a mouse model of colitis, in which this compound inhibited important
inflammatory cytokine production in the colon tissue (e.g., IL-1β, MCP-1, TNF, and IL-6); besides, the
inhibition of adhesion molecules (i.e., selectins and integrins) [233]. A second study reported that
euphol also inhibits inflammatory mediators and lymphocyte function-associated antigen-1 (LFA-1)
integrin in the CNS, as it did in the periphery. At this time, euphol blocked Th17 myelin-specific cell
migration with an overall benefic effect of reducing the severity and development of EAE, a multiple
sclerosis model [234]. Later, it was described its beneficial action in a skin-inflammation mouse
model induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), corroborating early 2000s findings
described by a Japanese group, and further extending the understanding about euphol mechanisms of
action by showing that it inhibits TPA-induced protein kinase C (PKC) isoforms [235,236]. Later, PKC
inhibition was again implicated in mediating euphol anti-inflammatory effects, as well as CB1R and
CB2R in mouse models of inflammatory (e.g., PGE2-, carrageenan-, and complete Freund’s Adjuvant
(CFA)-induced) and neuropathic (e.g., spared nerve injury (SNI)-, paclitaxel-, and B16F10 melanoma
cells-induced hypersensitivity) pain [237,238]. Notably, cannabinoid-mediated anti-inflammatory
actions involve suppression of inflammatory cytokines, MAPKs pathway activation, and modulation
of TNF and NF-κB [220], all pathways in which euphol has been demonstrated to effective. Euphol has
the potential to be a very attractive anti-inflammatory molecule that works through the cannabinoid
system but evidence shows that it definitely can go beyond that.

3.11. Citral

Citral, (2E)-3,7-dimethylocta-2,6-dienal, is the main compound of essential oils that have been used
mainly in popular medicine in eastern countries. It is the major compound extracted from Cymbopogon
citratus, popularly known as lemongrass, but it can also be extracted from different plants including
lemon myrtle and Lindera citriodora [239]. This essential oil has been used as ingredient in foods because
of its lemon-like fragrance. However, citral has gained attention in the last years due to its antimicrobial
properties against Cronobacter sakazakii, a foodborne pathogen clinically associated to neonatal infections
such as meningitis, septicemia, and/or necrotizing enteritis [240,241]. Its reported antimicrobial activity
also extends to Staphylococcus aureus [242], Candida albicans [243], Enterobacter cloacae [244], Listeria
monocytogenes [245], Aeromonas spp. [246], and Streptococcus pyogenes [247]. In this context, Yang and
colleagues recently demonstrated that when combined with cinnamaldehyde, citral changed cecal
microbiota composition of non-vaccinated and vaccinated broiler chickens, reducing the incidence and
severity of necrotic enteritis induced by coccidiosis [239]. This is in accordance with another finding,
in which citral was able to affect mouse intestinal microbiota, enhancing the relative abundance of
Lactobacillus [108]. From these evidences, it was possible suggest that citral could be an important
molecule for development of new antibiotic and antifungal drugs, especially because until the moment
there is no evidence of relevant toxicity and side effects related to its accumulation in tissues and
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delayed excretion [248]. However, Sharma and co-authors have well highlighted that strategies are
required to increase citral stability, which could facilitate its applications [249].

Citral has also been recognized by its anti-inflammatory actions in animal models of acute lung
injury [250], carrageenan-induced paw edema and croton oil-induced ear edema [251], segmental
glomerulosclerosis [252], pleurisy [253], and peritonitis [254]. In this context, citral inhibited
LPS-induced myeloperoxidase (MPO) activity, TNF, COX-2, and IL-8 expression, as well as NF-κB
activation via PPAR-γ [254,255]. In accordance, Shen and colleagues demonstrated that GW9662 PPAR-γ
antagonist reversed the anti-inflammatory response mediated by citral. Additionally, citral showed
antioxidant properties linked to inhibition of Nrf2 pathway early activation, oxidative stress, and
apoptosis [252]. More recently, Gonçalves and colleagues demonstrated that citral immunomodulatory
property appears to be related to its ability to modulate CB2R, TLR4 and TLR2/dectin-1, as well
as signaling pathways downstream of CBR and TLRs activation, including ATP-dependent K+
channels [256]. The antioxidant activity of this compound was also shown when co-administrated with
aspirin in rat small intestine epithelial cells, in which it regulated superoxide dismutase (SOD) and
glutathione (GSH) enzymes, significantly decreasing the aspirin-induced cell death [257]. Importantly,
a link between its antioxidant and antinociceptive activity has been shown in an animal model of
rheumatoid arthritis. Citral has promoted a decrease in oxidative stress parameters and induced
antinociceptive effects through serotonergic communication at spinal the spinal cord level [227].
In fact, the citral antinociceptive activity is among the broad variety of beneficial effects already
contemplated in the literature. When combined to other analgesics as naproxen, citral increased their
antinociceptive activity as well significantly inhibited naproxen-induced gastric injury [258]. However,
citral showed high volatility, low solubility in water, and consequent low bioavailability, which could
limit its use. One possible solution could be the combination of citral with β-cyclodextrin and
hydroxypropyl-β-cyclodextrin, which in turn demonstrated antihyperalgesic and anti-inflammatory
activity [253]. Here we could suggest that citral should be better investigated in order to identify its
possible clinical application for the treatment of chronic pain conditions, such as peripheral neuropathy,
fibromyalgia, complex regional pain syndrome (CRPS) and lumbar chronic pain.

Beyond, citral attracted scientists’ attention towards its anticancer properties in a variety of cancer
types, such as melanoma [259], colon cancer [260], and breast cancer [261]. Bayala and co-authors
provided evidence about Cymbopogon citratus and Cymbopogon gigantescus essential oil cytotoxic activity,
which have citral as its major component and significantly decreased prostate and glioblastoma
cancer cell survival [262]. In addition, citral showed cytotoxic effect in non-tumoral HaCaT and
tumoral A431 cells, inhibiting NO production even at the lowest concentration tested [263]. Regarding
the possible mechanisms underlying its antiproliferative effects, it has been reported MARK4 and
a Ser/Thr kinase inhibition. Of note, aberrant expression or dysregulation of these proteins are
linked with cancer development, such as hepatocellular carcinoma, glioma, and metastatic breast
carcinomas [264,265]. Other mechanisms also comprise apoptosis induction and downregulation of
the aldehyde dehydrogenase activity—a reactive protein overexpressed during cancer progression
and therapy resistance [266,267]. From this, it was previously suggested that citral could work as
aldehyde dehydrogenase inhibitor, and consequently as adjuvant therapy for treatment of some types
of cancer [268]. In order to improve citral solubility and delivery without enhancing toxic effects in vivo,
Nordin and colleagues incorporated citral into a nanostructured lipid carrier (NLC) and evaluated its
in vitro anti-cancer effects. Initially, they showed that NLC as a drug delivery system for citral has the
potential to sustain drug release without inducing any toxicity [269]. Then, they showed that NLC-citral
regulated apoptosis, cell cycle, and metastasis signaling, all key signaling pathways related to cancer
development [261]. In addition, citral was pointed as a potential effective additive to chemotherapeutic
treatment [270,271]. Thus, when combined with hyperthermia intraperitoneal chemotherapy (HIPEC)
and pirarubicin for colorectal cancer, citral increased the HIPEC efficacy by enhancing chemo-drug
penetration and consequently its intracellular concentration. Furthermore, it was described a safe
alternative that decreased the chemo-drug dose necessary to induce antiproliferative effect reducing
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possible side effects [271]. Still, this natural compound showed chemoprotective actions in hairless
(HRS/J) mice exposed to UVB irradiation for 24 weeks, a model of skin carcinogenesis. Mechanisms
involved in citral chemoprotective effect not surprisingly included oxidative stress and inflammatory
cytokines inhibition and increased skin cell apoptosis [272]. It has been previously described that citral
mediated antiproliferative effects through p53activation, ROS- and mitochondrial-mediated apoptosis,
as well as by NO depletion and interference with cell proliferation-related signaling pathways [259,260].
Collectively, these set of data here gathered suggests that citral represents an important molecule for
the management of different types of cancer and highlights the possibility of translational application
as a novel treatment alone or in combination with other chemotherapeutic drugs.

3.12. Celastrol

Celastrol, 2R,4aS,6aR,6aS,14aS,14bR-10-hydroxy-2,4a,6a,6a,9,14a-hexamethyl-11-oxo-1,3,4,5,6,1
3,14, 14b-octahydropicene-2-carboxylic acid, is a pentacyclic triterpenoid isolated from Tripterygium
wilfordii root extracts and used in traditional Chinese medicine for treatment of chronic diseases,
including neurodegenerative disorders (e.g., amyotrophic lateral sclerosis, AD, and PD), type 2
diabetes, obesity, atherosclerosis, cancer, inflammatory and autoimmune diseases (e.g., systemic lupus
erythematosus, multiple sclerosis, inflammatory bowel disease (IBD), psoriasis, and rheumatoid
arthritis (RA) [273–275]. In fact, this natural compound has been cited in a wide variety of reports
describing its antioxidant [276,277], and anti-inflammatory action [278,279] through inhibition of NF-κB
signaling pathway [280]. In details, this last study demonstrated that celastrol significantly blocked
COX-2 expression, IL-8 and ICAM-1, as well as IL-1β-induced PGE2 through inhibition of NF-κB
in a Graves’ ophthalmopathy model using orbital fibroblasts [281]. Here are a few more examples
of this extent literature about celastrol anti-inflammatory effects. Kim and co-authors demonstrated
that celastrol inhibited LPS-stimulated NO generation, PGE2, iNOS, and COX-2, in RAW264·7 cells.
In this same study, authors have reported that celastrol inhibited LPS-induced inflammatory cytokines
production and also protected mice from TPA-induced ear edema by inhibiting MPO activity and the
production of inflammatory mediators [278]. In addition, celastrol inhibited CFA-induced arthritis
rat model via modulation of i) inflammatory cytokines (i.e., IL-17, IL-6, and IFN-γ) in response to
the disease-related antigens, ii) IL-6/IL-17-related transcription factor STAT3, iii) cyclic citrullinated-
and Bhsp65-peptides directed antibodies, and iv) MMP-9 and phospho-ERK activity, supporting the
use of celastrol as an adjunct (along with conventional drugs) or alternative approach for the RA
treatment [279]. Aside from the anti-inflammatory effect, also relevant are the findings demonstrating
celastrol antitumor activity in a variety of human tumor cell types. Data previously suggested that
celastrol represents a promising agent for the management of human tumor cell lines, such as triple
negative breast cancer [282], leukemia [283,284], carcinoma [285] and lung cancer [286]. In terms
of mechanisms, a study based on pharmacological and biochemical approaches has shown that
celastrol inhibited cell proliferation and induce apoptosis through JNK activation, AKT suppression,
and anti-apoptotic proteins downregulation [287].

Celastrol potential beneficial effects on the CNS have also been previously reported. Kiaei et al.
described that celastrol improved weight loss, motor performance, and delayed the onset of motor
neuron degeneration in the G93A SOD1 transgenic amyotrophic lateral sclerosis (ALS) mouse model.
Celastrol increased HSP70 while mitigated iNOS, TNF, cluster of differentiation 40 (CD40), and GFAP
proteins expression in the lumbar spinal cord of G93A mice [288]. Celastrol effects on HSPs have
also been reported to play a key neuroprotective role in defense against misfolded proteins and
aggregation-prone proteins [289]. Speaking of protein aggregation, celastrol was reported to inhibit
amyloid beta aggregation, the main toxin to be accounted for AD initiation and progression [276,281].
Based on these facts, we could suggest that celastrol might represent a useful molecule to treat
neurodegenerative diseases with an inflammatory background. In spite of that, celastrol use is still
limited by its low water solubility, reduced oral bioavailability, and side effects reducing its therapeutic
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potential [290]. Different structure modifications or encapsulation solutions must be studied to
overcome this problem.

3.13. Falcarinol

Falcarinol—(3R,9Z)-heptadeca-1,9-dien-4,6-diyn-3-ol)—also named panaxynol or carotatoxin is
found in carrots, parsley, celery, and Panax ginseng [291]. This natural compound has been cited in
a wide variety of reports describing its antineoplastic [292] and anti-inflammatory properties [293].
Besides, falcarinol has been also investigated as pharmacological tool for treatment of cardiovascular
and metabolic diseases. Regarding the latter, it is know that serum high molecular weight (HMW)
adiponectin values are inversely correlated with the presence of metabolic syndrome, and consequently
linked to pathogenesis of insulin resistance, type 2 diabetes, and cardiovascular diseases [294]. In this
sense, Takagi and colleagues demonstrated that falcarinol restored FoxO1 and increased C/EBPα
levels (transcription factors that positively regulate adiponectin gene transcription), resulting in HMW
adiponectin secretion by 3T3-L1 adipocytes treated with palmitic acid, an obesity model in vitro [295].
In addition, falcarinol also reduced endoplasmic reticulum (ER) stress, C/EBP homologous protein
(CHOP) protein and ROS levels, as well as decreased inflammatory adipokine-induced MCP-1 [295].
Still in this scenario, the association of chronic inflammatory disorders and/or systemic diseases to
microbiota dysbiosis has been gaining attention [296]. Importantly, a study previously showed that
the beneficial effects of falcarinol and falcarindiol rely on its ability of changing the composition of
low abundant gut-microbiota members. In this study, the ability of falcarinol to regulate microbiota
was allied to its ability to reduce the incidence of neoplastic lesions [292]. In this cancer scenario,
the mucosa-associated bacterial population as the fecal microbiota plays an important role in colon
carcinogenesis, the second most commonly diagnosed cancer with high incidence, morbidity, and
mortality [296,297]. That being established, Kobaek-Larson and co-authors have reported that
daily diet supplementation with falcarinol and falcarindiol decreased the number of neoplastic
lesions and polyps growth rate in the colon of azoxymethane-treated rats [298]. Recently, this same
group demonstrated the chemopreventive effect of a special diet supplemented with falcarinol and
falcarindiol on colorectal precancerous lesions in a dose-dependent manner; besides, this effect
was mainly mediated by inhibition of NF-κB and its downstream inflammatory markers, especially
COX-2 [299]. Anticarcinogenic properties of falcarinol were also demonstrated in cancer stem-like
cells (CSCs), in which it played an essential role in tumor occurrence, evolution, metastasis, recurrence,
and therapeutic resistance [300], as well as in non-small cell lung cancer (NSCLC) [301]. Essentially,
falcarinol eliminated CSC population in NSCLC and abolished lung tumor formation in mice via HSP90
(a molecular chaperone of numerous oncoproteins) modulation [302]. Falcarinol anticancer activity
also extends to leukemia [303], breast cancer [304], hepatocarcinoma [305], renal carcinoma [306],
and glioma [307]. For instance, mechanisms pointed to explain its ability to induce cell cycle arrest, thus,
its anticarcinogenic properties on human promyelocytic leukemia cell growth are PKCδ proteolytic
cleavage, caspase-3 activation, and PARP degradation [303].

In a different context, falcarinol has been also reported to be a facilitator of type 1 hypersensitivity
and atopic dermatitis [308]. On the other hand, Leonti and colleagues showed that falcarinol is
not an allergen itself; however, it facilitates sensitization by other allergens, since it aggravated
histamine-induced edema reactions in skin prick tests. In this study, similar effects were obtained with
Rimonabant® (a CB1R inverse antagonist), implying that falcarinol-induced dermatitis could be related
to CB1R antagonism in keratinocytes [291]. Despite that falcarinol has been related to allergic reactions,
it has also been shown to induce anti-inflammatory responses in a couple of different models. Falcarinol
promoted a reduced cell infiltration in a LPS-induced reduction in intestinal barrier context [293].
In addition, falcarinol was able to induce Nrf2-mediated resolution of inflamed macrophage-induced
cardiomyocyte hypertrophy [309]. Collectively, data here presented provided information about
falcarinol crucial positive effects on pathological conditions, such as metabolic diseases, cardiovascular
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diseases, and cancer. However, we consider that for the development of possible therapeutic tools
underlying mechanisms as well as toxicity, and bioavailability needs be better investigated.

3.14. Salvinorin A

The trans-neoclerodane diterpenoid salvinorin A is a short-acting highly-selective kappa
opioid receptor agonist and consequently the primary psychoactive component of Salvia divinorum
(psychoactive herb used in magic-ritual contexts by Mazateca Indians in Mexico) [310]. In agreement,
eight healthy hallucinogen-using adults exposed to inhalation of 16 doses of Salvia divinorum showed
dose-related dissociative effects and impairments in recall/recognition memory tests [311]. Given the
fact that salvinorin A highly interacts with opioid receptors, it has been considered an emerging target
for next-generation of analgesics. In addition, salvinorin A showed hallucinogen effects similarly to
lysergic acid diethylamide (LSD) [312,313]. Walentiny and colleagues demonstrated that salvinorin
A administration induced pronounced hypolocomotion and antinociception (and to a lesser extent,
hypothermia) effects in the tetrad assay, which were reverted by the administration of kappa opioid
receptor (KOR) selective antagonist but not by CB1R antagonist Rimonabant® [310]. Moreover, rats
exposed to sciatic nerve ligature neuropathic pain model and treated with salvinorin A directly
in the insular cortex showed antinociceptive behavior. However, in contrast with Walentiny and
colleagues, the analgesic effect of salvinorin A in this case was reverted by selective KOR and CB1R
antagonists [314]. In accordance with this finding, daily treatment with salvinorin A significantly
decreased formalin-induced mechanical allodynia at days three and seven in a KOR and CB1R
dependent manner, without inducing CB1R-related adverse effects. Electrophysiological experiments
in vivo also showed that repeated salvinorin A treatment completely normalized neuronal activity
following formalin injection, as well as it reduced formalin-evoked glial and microglial activation at the
spinal cord level [315]. Nonetheless, unlike other opioid ligands, salvinorin A showed short duration of
action and centrally mediated side-effects limiting its usefulness [316–318], justifying the development
of new salvinorin A analogues [319]. In this context, novel analogue β-tetrahydropyran salvinorin B
attenuated acute nociceptive and inflammatory pain, as well as mechanical and cold allodynia in the
PTX-induced neuropathic pain model [319]. On the other hand, mesyl salvinorin B (a KOR agonist)
showed moderated antinociceptive effect when compared to salvinorin A in warm-water (50 ◦C)
tail withdrawal and intraplantar formaldehyde (2%) tests. However, it mitigated cocaine-induced
hyperactivity and behavioral sensitization, without affecting aversion, sedation, anxiety, or learning and
memory impairment in rats [320]. Additionally, mesyl salvinorin B alone or associated with naltrexone
prevented alcohol-induced deprivation effect in mice [321], which could represent an alternative tool
for treatment of alcoholism in humans. Other salvinorin A analogues, such as p38, could also be
effective for the treatment of gastrointestinal inflammation, since it demonstrated anti-inflammatory
and analgesic effects in an experimental model of colitis [322]. Thus, these findings support the use
of novel salvinorin A-like compounds and its analogues as possible pharmacological alternatives for
pain relief, control of cocaine-seeking behavior, and alcoholism, as it seems to have potent CNS and
anti-inflammatory actions.

Regarding these actions, the anti-inflammatory effects associated with salvinorin A also extend to
cerebral hypoxia/ischemia [323–326]. Salvinorin A attenuated brain edema and inhibited neuronal death
in hippocampal CA1 region, cortex, and striatum during forebrain ischemia model [325]. According to
Dong and colleagues, rats submitted to middle cerebral artery occlusion and treated with salvinorin A
one hour after reperfusion showed improvement of neurological severity score when compared to
control groups. Additionally, salvinorin A reduced infarct volume and effectively protected cerebral
vessels after ischemia/reperfusion. Importantly, human brain microvascular endothelial cells exposed
to the oxygen glucose deprivation model and treated with salvinorin A were protected against ROS
damage and decreased mitochondrial function (i.e., mitochondrial morphological changes and loss
of membrane potential). The latter, highly regulated by AMPK and phosphorylation mitofusin-2
expression, both upregulated in response to salvinorin A treatment [327]. Salvinorin A also mitigated
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cerebral vasospasm through endothelial nitric oxide synthase (eNOS) and NO upregulation and ET-1
downregulation. At the same time, salvinorin A inhibited AQP4 protein expression—a member
of a family of channel proteins that facilitate water transport and contribute to brain edema and
neuro-disorders development [326,328]. Concerning still its actions in the CNS, salvinorin A effects
on the mood were also investigated and linked to anxiolytic and antidepressant properties mediated
by KOR, as well as the ECS [329]. In lieu of antidepressant properties, another study associated
salvinorin A to depressive-like effects through dopamine signaling inhibition in the nucleus accumbens
of rats [330]. Extending, dysphoria as well as depressant-like effects of salvinorin A were attributed to
KOR-linked ERK activation, which in turn promoted dopamine transporter (DAT) phosphorylation,
modulating dopamine neurotransmission [331]. Recently, Keasling and colleagues evaluated the effects
of salvinolin, a new semisynthetic analog of salvinorin A, with mu opioid receptor affinity. In summary,
salvinolin demonstrated good oral bioavailability and showed antidepressant-like effect that was
blocked by the selective 5HT1A antagonist WAY100635 [332]. Another derivative of salvinorin A,
the 22-azido salvinorin A, also promoted an antidepressant-like effect linked to its ability of inhibiting
monoamine oxidase (MAO) enzyme, as well as to its affinity for α1A, α1B, α1D adrenergic receptors
beyond KOR [333]. Here, we could sense the staggering effects of salvinorin A and its analogues to
modulate a variety of neurotransmission systems in the CNS.

The pharmacological effects of salvinorin A are not limited to CNS but also related to the respiratory
system. Salvinorin A inhibited mast cell degranulation in the lung and consequently blocked airway
hyperactivity induced by ovalbumin sensitization. Thus, the authors suggested that salvinorin A
could represent a promising tool for the treatment of type 1 hypersensitivity and immune-mediated
diseases [334]. Moreover, salvinorin A inhibited leukotriene production in inflammatory exudates,
as well as it showed antipruritic effects mediated by KOR on compound 48/80-induced scratching
behaviors in mice [335]. Findings here summarized provide evidence about the anti-inflammatory
action of salvinorin A, and highlight this natural compound as a possible new tool for the treatment of
inflammatory diseases.

3.15. Pristimerin

Pristimerin (20α-3-hydroxy-2-oxo-24-nor-friedela-1-10,3,5,7-tetraene-carboxylic acid-29-methyl
ester) is a natural quinonoid triterpene isolated from the shrub families Celastraceae and Hippocrateaceae.
It is a natural compound with cannabimimetic effects without direct interacting with CBR. For instance,
pristimerin inhibited MAGL with high potency through a reversible mechanism [336]. It has been
extensively investigated mainly by its inhibitory activity against cancer cell growth. Pristimerin
inhibited Wnt/β-catenin signaling via GSK3β activation and Wnt gene suppression in colorectal
cancer cells [337]. In addition, Yousef and colleagues demonstrated pristimerin anticancer activity on
colon tumor cells associated to NF-κB signaling inhibition during the carcinogenic process [338,339].
Corroborating, this triterpenoid has also been shown to attenuated colitis-associated colon cancer by
modulating NF-κB positive cells, as well as AKT/FOXO3a signaling pathway [340]. The transcription
factor FOXO3 represents important target for cellular homeostasis, since it was able to regulate
apoptosis, proliferation, cell cycle progression, and consequently tumorigenesis [341,342]. Pristimerin
was also previously demonstrated to downregulate the PI3K/AKT/mTOR pathway playing a critical
cytotoxic and anti-metastatic role in the progression of HCT-116 colorectal cancer cells in vitro and
in vivo [343]. Finally, another study from Yousef and co-authors suggest that pristimerin downregulates
phospho-EGF and -EGRF2 and its downstream signaling pathways, which represent a key mechanism
involved in the proliferation of cancer malignant phenotypes [344,345].

The antiproliferative activity of pristimerin goes beyond colon-related cancers, it is extended
to breast [346–350], melanomas [351], osteosarcoma [352], pancreatic [353,354], and prostate
cancers [355–358]. Herein, we describe a few examples focusing on articles that have demonstrated
potential mechanisms of action. Pristimerin anticancer activity against breast cancer cells was
associated to ROS production and ASK1/JNK signaling pathway activation [346], as well as AKT
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signaling suppression [349,359]. Additionally, when combined to paclitaxel, pristimerin induced cell
autophagy through inhibition of ERK1/2/p90RSK signaling—involved in cancer cell proliferation,
differentiation, and migration [347,360]. Pristimerin-induced glioma overgrowth was dependent on
AGO2 upregulation (a critical protein for tumorigenesis) and PTPN1 downregulation (a metabolism
regulator oncogene reported to be aberrantly expressed in cancer cells) [361–363]. Furthermore,
pristimerin induced glioma cell necrosis by promoting mitochondrial dysfunction, c-Jun activation,
and consequently ROS overproduction [364]. It also inhibited the epidermal growth factor receptor
(EGFR) protein expression during glioma cancer development [365,366]. Antiproliferative effects
of pristimerin were investigated in oral squamous cell carcinoma cell lines as well. In this way,
pristimerin showed more potent antiproliferative activity than chemotherapy drugs cisplatin and
5-fluorouracil. This effect was associated with inhibition of MAPK1/2 and PKB signaling pathways [367].
Pristimerin-induced apoptosis activity was also demonstrated in ovarian cancer cells via inhibition of
AKT/NF-κB/mTOR signaling pathway [368]. Besides, few articles have reported pristimerin beneficial
effects on prostate cancer. Its progression was reported to be prevented by pristimerin-induced inhibition
on HIF-1α and SPHK-1, which stimulates different cellular processes including cell proliferation,
cell survival, and angiogenesis [355,369]. Pristimerin also induced apoptosis of prostate cancer cells
through activation of mitochondrial apoptotic pathway [358], ubiquitin-proteasomal degradation [357],
and inhibition of proteasomal chymotrypsin-like activity (a complex associated with cell proliferation,
apoptosis, and cancer progression) [370,371]. These summarized findings provide evidences regarding
pristimerin antiproliferative and cytotoxic activity as well as clinical benefits for treatment of different
types of cancer.

Finally, yet importantly, Tong and co-authors showed that pristimerin inhibited arthritic and
cartilage inflammation, as well as bone damage in the joints of rats submitted to adjuvant arthritis.
Pristimerin inhibited inflammatory cytokines and pSTAT3 and ROR-γt transcription factors, as well
as Th17/Treg ratio favoring immune suppression [372]. In addition, anti-inflammatory properties of
pristimerin included inhibition of inflammatory cytokine levels (e.g., IL-6, IL-17, IL-18, and IL-23),
increase IL-10 expression, and mitigate NF-κB and MAPK signaling, showed during rheumatoid
arthritis model and murine macrophages exposed to LPS [373]. In this sense, pristimerin seems able to
interact with essential targets of the inflammatory and/or immune-mediated processes; and for this
reason, it should further investigated regarding its potential ability to serve as a treatment of disorders
related to the imbalance in the immune system, including autoimmune diseases.

4. Conclusions

The reports here highlighted showed the complex and varied pharmacology of Cannabis
sativa, particularly phytocannabinoids—typical terpenophenolic compounds—as well as plenty
of non-cannabinoids second metabolites, such as monoterpene, sesquiterpene, and stilbenoids.
Interestingly enough, there are an increasing number of studies on cannabimimetic ligands beyond the
Cannabis plant, which can act as CBR agonists or antagonist, or ECS enzyme inhibitors. They are mainly
terpenes including β-caryophyllene, D-limonene, terpineol, β-elemene, euphol, pristimerin, citral, and
many others (Figure 3), which can play a key role in the modulation of different pathological conditions.

The reports here highlighted showed the complex and varied pharmacology of Cannabis
sativa, particularly phytocannabinoids—typical terpenophenolic compounds—as well as plenty
of non-cannabinoids second metabolites, such as monoterpene, sesquiterpene, and stilbenoids.
Interestingly enough, there are an increasing number of studies on cannabimimetic ligands beyond the
Cannabis plant, which can act as CBR agonists or antagonist, or ECS enzyme inhibitors. They are mainly
terpenes including -caryophyllene, D-limonene, terpineol, -elemene, euphol, pristimerin, citral, andβ- β-
many others (Figure 3), which can play a key role in the modulation of different pathological conditions.ffiffeffff
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Figure 3. Role of Cannabis sativa compounds in diseases. The Cannabis sativa compounds have been
proved useful for treatment of different diseases in the periphery and the CNS, as illustrated above.
The CBD and THC actions in the CNS include immunomodulatory, neuroprotective, anxiolytic, and
anticonvulsant, in addition to its potential effects on PD and multiple sclerosis control. Anticancer
effects can be attributed to almost all Cannabis sativa compounds. This figure further illustrates the effect
of terpenoids, cannabimimetic ligands, beyond the Cannabis plant in different pathological conditions,
such as Herpes infection, diabetic retinopathy, psoriasis, asthma, AD, seizures, ischemic stroke, and
others. Figure created using the Mind the Graph platform.

Herein, we describe that many of them share common properties, namely anti-inflammatory,
analgesic, immunomodulatory, antiproliferative, and neuromodulatory. More specifically, the majority
of these compounds seem to be acting on the same targets even though if in different pathological
contexts (Table 3). We highlight the NF-κB, Nfr2, PPAR, COX-2, and CDKs proteins, just to name a
few. Although there are many published preclinical studies demonstrating the beneficial effects of
terpenes, there is an urge for detailed pharmacokinetic and pharmacodynamics characterization of
these compounds. As the cannabinoids and the Cannabis plant appear to be the most recent great hope
for the treatment of uncured diseases, the particular phytocannabinoid–terpenoid interaction—the
so-called entourage effect—must be continuously investigated. Besides, clinical studies are sorely
needed to confirm its efficacy and safety in humans; thus, we could finally have novel potential
treatments for a number of diseases that for the time being remain poorly managed.
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Table 3. The main findings about terpenoid compounds reviewed in the article.

Compound Main Findings

β- and α-Caryophyllene Antidepressant, anxiolytic, analgesic, anticonvulsant properties.
Acetylcholinesterase (AChE) inhibitor.

D-Limonene Anti-inflammatory, antinociceptive, gastroprotective, and
neuroprotective effects.

Linalool Anxiolytic, anticancer properties; neuroprotective effects against AD.

Terpineol

Analgesic activity in chronic pain conditions, such as fibromyalgia
and cancer pain. Adjunctive therapy to morphine adopted in order

to reduce its adverse effects. Preventive treatment for opioid
analgesic dependence and tolerance.

Terpinene Analgesic, antiproliferative, anti-inflammatory, and
antimicrobial properties.

α-Pinene Sedative, hypnotic, anti-seizure, anxiolytic, anticancer, and analgesic
activities. Neuroprotective effects against memory loss.

β-Pinene Antiviral, antifungal, anticancer, antimalarial,
antidepressant properties.

β-Elemene Anticancer and hypolipidemic compound. Potential treatment for
demyelinating disease.

β-Ocimene Antiproliferative, antifungal, and anticonvulsant properties.

Camphene Eco-friendly botanical insecticide.

Nerolidol Anti-inflammatory, anticancer, neuroprotective and
antimicrobial effects.

Euphol Antiviral, antiparasitic, antimicrobial, and antifungal activities.

Citral Antimicrobial, anti-inflammatory, antinociceptive, and
anticancer properties.

Celastrol Anti-inflammatory and anticancer compound.

Falcarinol Possible tool for treatment of cardiovascular diseases.
Anticarcinogenic compound.

Salvinorin A

Psychoactive herb; anxiolytic, anti-inflammatory, and antidepressant
effects. Alternative treatment for control of cocaine-seeking behavior

and alcoholism. Promising tool for treatment of type 1
hypersensitivity.

Pristimerin MGL inhibitor; anticancer and anti-metastatic effects.

AD, Alzheimer’s disease; MGL, monoacylglycerol lipase.
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Homologous Protein; COX, Cyclooxygenase; COX-2, Cyclooxygenase-2; CNS, Central nervous system; CYP,
Cyclophosphamide; DAT-1, Dopamine transporter; EAE, Experimental autoimmune encephalomyelitis; EGFR,
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box O3; GABA, Gamma-aminobutyric acid; GPR18, G protein-coupled receptor 18; GPR55, G protein-coupled
receptor 55; GPR119, G protein-coupled receptor 19; GSH, Glutathione; GSK-3β, Glycogen synthase kinase-3 beta;
HIF-1α, Hypoxia-inducible factor – 1alpha; HMW, High molecular weight; HO1, Heme oxygenase-1; Hsp90,
Heat shock protein 90; HSPs, Heat-shock proteins; i.p., Intraperitoneal; IBD, Inflammatory bowel disease; IFN-γ,
Interferon-gamma; IgE, Immunoglobulin E; IL-1β, Interleukin -1β; IL-2, Interleukin – 2; IL-3, Interleukin – 3;
IL-4, Interleukin – 4; IL-6, Interleukin – 6; IL-8, Interleukin – 8; IL-10, Interleukin – 10; IL-12, Interleukin –
12; IL-17, Interleukin – 17; IL-37, Interleukin – 37; iNOS, Inducible nitric oxide synthase; LFA-1, Lymphocyte
function-associated antigen-1; LPS, Lipopolysaccharide; LOX, Lipoxygenase; LTP, Long term potentiation; MAO,
Monoamine oxidase; MAPK, Mitogen-activated protein kinase; MARK4, Microtubule Affinity-Regulating Kinase
4; MCP-1, Monocyte chemoattractant protein-1; MMP-9, Matrix metallopeptidase – 9; MnSOD, Manganese
superoxide dismutase; MPO, Myeloperoxidase; mTOR, Mammalian target of rapamycin; NF-κB, Nuclear factor
kappa B; NO, Nitric oxide; NREMS, Non-rapid eye movement sleep; p90RSK, 90 kDa ribosomal S6 kinase;
PARP, Poly ADP-ribose polymerase; PGE2, Prostaglandin E2; PI3K, Phosphoinositide 3-kinase; PKB, Protein
kinase B; PKC, Protein kinase C; PPAR, Peroxisome proliferator-activated receptors; PPAR-γ, Peroxisome
proliferator-activated receptor gamma; pSTAT3, Phosphorylated STAT3; PTX, Paclitaxel; PTZ, Pentylenetetrazole;
RA, Rheumatoid arthritis; ROR-γt, Retinoid-related orphan receptor-γt; ROS, Reactive oxygen species; SNI,
Spared nerve injury; SOD1, Superoxide dismutase – 1; SPHK1, Sphingosinekinase 1; Th1, T helper 1; Th2, T
helper 2; TLR4, Toll-Like Receptor 4; TPA, 12-O-tetradecanoylphorbol-13-acetate; TRPM8, Transient receptor
potential melastatin 8; TRP, Transient receptor potential; TRPV1, Transient receptor potential vanilloid 1; TRPV4,
Transient receptor potential vanilloid 4; TNF, Tumor necrosis factor; UVA, Ultraviolet A radiation; VEGF, Vascular
endothelial growth factor.
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Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated
and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia
have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and
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aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of
THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be
proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new
therapeutic products is possible from this venerable plant.
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The roots of cannabis synergy

Cannabis has been a medicinal plant of unparalleled versa-
tility for millennia (Mechoulam, 1986; Russo, 2007; 2008),
but whose mechanisms of action were an unsolved mystery
until the discovery of tetrahydrocannabinol (THC) (Gaoni
and Mechoulam, 1964a), the first cannabinoid receptor, CB1

(Devane et al., 1988), and the endocannabinoids, ananda-
mide (arachidonoylethanolamide, AEA) (Devane et al., 1992)
and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995;
Sugiura et al., 1995). While a host of phytocannabinoids were
discovered in the 1960s: cannabidiol (CBD) (Mechoulam and
Shvo, 1963), cannabigerol (CBG) (Gaoni and Mechoulam,
1964b), cannabichromene (CBC) (Gaoni and Mechoulam,
1966), cannabidivarin (CBDV) (Vollner et al., 1969) and
tetrahydrocannabivarin (THCV) (Gill et al., 1970), the
overwhelming preponderance of research focused on psycho-
active THC. Only recently has renewed interest been manifest
in THC analogues, while other key components of the activ-
ity of cannabis and its extracts, the cannabis terpenoids,
remain understudied (McPartland and Russo, 2001b;
Russo and McPartland, 2003). The current review will recon-
sider essential oil (EO) agents, their peculiar pharmacology
and possible therapeutic interactions with phytocannab-
inoids. Nomenclature follows conventions in Alexander et al.
(2009).

Phytocannabinoids and terpenoids are synthesized in
cannabis, in secretory cells inside glandular trichomes
(Figure 1) that are most highly concentrated in unfertilized
female flowers prior to senescence (Potter, 2004; Potter,
2009). Geranyl pyrophosphate is formed as a precursor via
the deoxyxylulose pathway in cannabis (Fellermeier et al.,
2001), and is a parent compound to both phytocannabinoids
and terpenoids (Figure 2). After coupling with either olive-
tolic acid or divarinic acid, pentyl or propyl cannabinoid
acids are produced, respectively, via enzymes that accept
either substrate (de Meijer et al., 2003), a manifestation
of Mechoulam’s postulated ‘Nature’s Law of Stinginess’.
Although having important biochemical properties in their
own right, acid forms of phytocannabinoids are most com-
monly decarboxylated via heat to produce the more familiar
neutral phytocannabinoids (Table 1). Alternatively, geranyl

pyrophosphate may form limonene and other monoterpe-
noids in secretory cell plastids, or couple with isopentenyl
pyrophosphate in the cytoplasm to form farnesyl pyrophos-
phate, parent compound to the sesquiterpenoids, that
co-localizes with transient receptor potential vanilloid recep-
tor (TRPV) 1 in human dorsal root ganglion, suggesting a role
in sensory processing of noxious stimuli (Bradshaw et al.,
2009), and which is the most potent endogenous ligand to
date on the G-protein coupled receptor (GPR) 92 (Oh et al.,
2008).

An obvious question pertains to the chemical ecology of
such syntheses that require obvious metabolic demands on
the plant (Gershenzon, 1994), and these will be considered.

Is cannabis merely a crude vehicle for delivery of THC?
Might it rather display herbal synergy (Williamson, 2001)
encompassing potentiation of activity by active or inactive
components, antagonism (evidenced by the ability of CBD to
reduce side effects of THC; Russo and Guy, 2006), summation,
pharmacokinetic and metabolic interactions? Recently, four
basic mechanisms of synergy have been proposed (Wagner
and Ulrich-Merzenich, 2009): (i) multi-target effects; (ii) phar-
macokinetic effects such as improved solubility or bioavail-
ability; (iii) agent interactions affecting bacterial resistance;
and (iv) modulation of adverse events. Cannabis was cited as
an illustration.

Could phytocannabinoids function analogously to the
endocannabinoid system (ECS) with its combination of
active and ‘inactive’ synergists, first described as an entourage
(Ben-Shabat et al., 1998), with subsequent refinement
(Mechoulam and Ben-Shabat, 1999) and qualification
(p. 136): ‘This type of synergism may play a role in the widely
held (but not experimentally based) view that in some cases
plants are better drugs than the natural products isolated
from them’. Support derives from studies in which cannabis
extracts demonstrated effects two to four times greater than
THC (Carlini et al., 1974); unidentified THC antagonists and
synergists were claimed (Fairbairn and Pickens, 1981), anti-
convulsant activity was observed beyond the cannabinoid
fraction (Wilkinson et al., 2003), and extracts of THC and
CBD modulated effects in hippocampal neurones distinctly
from pure compounds (Ryan et al., 2006). Older literature
also presented refutations: no observed differences were
noted by humans ingesting or smoking pure THC versus
herbal cannabis (Wachtel et al., 2002); pure THC seemed to
account for all tetrad-type effects in mice (Varvel et al., 2005);
and smoked cannabis with varying CBD or CBC content
failed to yield subjective differences combined with THC (Ilan
et al., 2005). Explanations include that the cannabis
employed by Wachtel yielded 2.11% THC, but with only
0.3% cannabinol (CBN) and 0.05% CBD (Russo and McPart-
land, 2003), and Ilan’s admission that CBN and CBD content
might be too low to modulate THC. Another factor is appar-
ent in that terpenoid yields from vaporization of street can-
nabis were 4.3–8.5 times of those from US National Institute
on Drug Abuse cannabis (Bloor et al., 2008). It is undisputed
that the black market cannabis in the UK (Potter et al., 2008),
Continental Europe (King et al., 2005) and the USA (Meh-
medic et al., 2010) has become almost exclusively a high-THC
preparation to the almost total exclusion of other phytocan-
nabinoids. If – as many consumers and experts maintain
(Clarke, 2010) – there are biochemical, pharmacological and

Figure 1
Cannabis capitate glandular (EBR by permission of Bedrocan BV,
Netherlands).
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phenomenological distinctions between available cannabis
‘strains’, such phenomena are most likely related to relative
terpenoid contents and ratios. This treatise will assess addi-
tional evidence for putative synergistic phytocannabinoid-
terpenoid effects exclusive of THC, to ascertain whether this
botanical may fulfil its promise as, ‘a neglected pharmaco-
logical treasure trove’ (Mechoulam, 2005).

Phytocannabinoids, beyond THC:
a brief survey

Phytocannabinoids are exclusively produced in cannabis
(vide infra for exception), but their evolutionary and eco-
logical raisons d’être were obscure until recently. THC pro-
duction is maximized with increased light energy (Potter,
2009). It has been known for some time that CBG and CBC
are mildly antifungal (ElSohly et al., 1982), as are THC and
CBD against a cannabis pathogen (McPartland, 1984). More
pertinent, however, is the mechanical stickiness of the
trichomes, capable of trapping insects with all six legs

(Potter, 2009). Tetrahydrocannabinolic acid (THCA) and
cannabichromenic acid (Morimoto et al., 2007), as well as
cannabidiolic acid and cannabigerolic acid (CBGA; Shoyama
et al., 2008) produce necrosis in plant cells. Normally, the
cannabinoid acids are sequestered in trichomes away from
the flower tissues. Any trichome breakage at senescence may
contribute to natural pruning of lower fan leaves that oth-
erwise utilize energy that the plant preferentially diverts to
the flower, in continued efforts to affect fertilization, gen-
erally in vain when subject to human horticulture for phar-
maceutical production. THCA and CBGA have also proven
to be insecticidal in their own right (Sirikantaramas et al.,
2005).

Over 100 phytocannabinoids have been identified (Bren-
neisen, 2007; Mehmedic et al., 2010), but many are artefacts
of analysis or are produced in trace quantities that have not
permitted thorough investigation. The pharmacology of the
more accessible phytocannabinoids has received excellent
recent reviews (Pertwee et al., 2007; Izzo et al., 2009; De Pet-
rocellis and Di Marzo, 2010; De Petrocellis et al., 2011), and
will be summarized here, with emphasis on activities with
particular synergistic potential.
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Phytocannabinoid and cannabis terpenoid biosynthesis.
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Table 1
Phytocannabinoid activity table

Phytocannabinoid structure Selected pharmacology (reference) Synergistic terpenoids

O

OH

delta-9-tetrahydrocannabinol (THC)

Analgesic via CB1 and CB2 (Rahn and Hohmann, 2009) Various

AI/antioxidant (Hampson et al., 1998) Limonene et al.

Bronchodilatory (Williams et al., 1976) Pinene

↓ Sx. Alzheimer disease (Volicer et al., 1997; Eubanks et al., 2006) Limonene, pinene, linalool

Benefit on duodenal ulcers (Douthwaite, 1947) Caryophyllene, limonene

Muscle relaxant (Kavia et al., 2010) Linalool?

Antipruritic, cholestatic jaundice (Neff et al., 2002) Caryophyllene?

OH

OH

cannabidiol

AI/antioxidant (Hampson et al., 1998) Limonene et al.

Anti-anxiety via 5-HT1A (Russo et al., 2005) Linalool, limonene

Anticonvulsant (Jones et al., 2010) Linalool

Cytotoxic versus breast cancer (Ligresti et al., 2006) Limonene

↑ adenosine A2A signalling (Carrier et al., 2006) Linalool

Effective versus MRSA (Appendino et al., 2008) Pinene

Decreases sebum/sebocytes (Biro et al., 2009) Pinene, limonene, linalool

Treatment of addiction (see text) Caryophyllene

O

OH

cannabichromene

Anti-inflammatory/analgesic (Davis and Hatoum, 1983) Various

Antifungal (ElSohly et al., 1982) Caryophyllene oxide

AEA uptake inhibitor (De Petrocellis et al., 2011) –

Antidepressant in rodent model (Deyo and Musty, 2003) Limonene

HO

OH

cannabigerol

TRPM8 antagonist prostate cancer (De Petrocellis et al., 2011) Cannabis terpenoids

GABA uptake inhibitor (Banerjee et al., 1975) Phytol, linalool

Anti-fungal (ElSohly et al., 1982) Caryophyllene oxide

Antidepressant rodent model (Musty and Deyo, 2006); and via
5-HT1A antagonism (Cascio et al., 2010)

Limonene

Analgesic, a-2 adrenergic blockade (Cascio et al., 2010) Various

↓ keratinocytes in psoriasis (Wilkinson and Williamson, 2007) adjunctive role?

Effective versus MRSA (Appendino et al., 2008) Pinene

O

OH

tetrahydrocannabivarin

AI/anti-hyperalgesic (Bolognini et al., 2010) Caryophyllene et al. . . .

Treatment of metabolic syndrome (Cawthorne et al., 2007) –

Anticonvulsant (Hill et al., 2010) Linalool

OH

OH

cannabidivarin

Inhibits diacylglycerol lipase (De Petrocellis et al., 2011) –

Anticonvulsant in hippocampus (Hill et al., 2010) Linalool

O

OH

cannabinol (CBN)

Sedative (Musty et al., 1976) Nerolidol, myrcene

Effective versus MRSA (Appendino et al., 2008) Pinene

TRPV2 agonist for burns (Qin et al., 2008) Linalool

↓ keratinocytes in psoriasis (Wilkinson and Williamson, 2007) adjunctive role?

↓ breast cancer resistance protein (Holland et al., 2008) Limonene

5-HT, 5-hydroxytryptamine (serotonin); AEA, arachidonoylethanolamide (anandamide); AI, anti-inflammatory; CB1/CB2, cannabinoid receptor 1 or 2; GABA, gamma
aminobutyric acid; TRPV, transient receptor potential vanilloid receptor; MRSA, methicillin-resistant Staphylococcus aureus; Sx, symptoms.
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THC (Table 1) is the most common phytocannabinoid in
cannabis drug chemotypes, and is produced in the plant via
an allele co-dominant with CBD (de Meijer et al., 2003). THC
is a partial agonist at CB1 and cannabinoid receptor 2 (CB2)
analogous to AEA, and underlying many of its activities as a
psychoactive agent, analgesic, muscle relaxant and antispas-
modic (Pacher et al., 2006). Additionally, it is a bronchodila-
tor (Williams et al., 1976), neuroprotective antioxidant
(Hampson et al., 1998), antipruritic agent in cholestatic jaun-
dice (Neff et al., 2002) and has 20 times the anti-
inflammatory power of aspirin and twice that of
hydrocortisone (Evans, 1991). THC is likely to avoid potential
pitfalls of either COX-1 or COX-2 inhibition, as such activity
is only noted at concentrations far above those attained
therapeutically (Stott et al., 2005).

CBD is the most common phytocannabinoid in fibre
(hemp) plants, and second most prevalent in some drug
chemotypes. It has proven extremely versatile pharmacologi-
cally (Table 1) (Pertwee, 2004; Mechoulam et al., 2007), dis-
playing the unusual ability to antagonize CB1 at a low nM
level in the presence of THC, despite having little binding
affinity (Thomas et al., 2007), and supporting its modulatory
effect on THC-associated adverse events such as anxiety,
tachycardia, hunger and sedation in rats and humans
(Nicholson et al., 2004; Murillo-Rodriguez et al., 2006; Russo
and Guy, 2006). CBD is an analgesic (Costa et al., 2007), is a
neuroprotective antioxidant more potent than ascorbate or
tocopherol (Hampson et al., 1998), without COX inhibition
(Stott et al., 2005), acts as a TRPV1 agonist analogous to
capsaicin but without noxious effect (Bisogno et al., 2001),
while also inhibiting uptake of AEA and weakly inhibiting its
hydrolysis. CBD is an antagonist on GPR55, and also on
GPR18, possibly supporting a therapeutic role in disorders of
cell migration, notably endometriosis (McHugh et al., 2010).
CBD is anticonvulsant (Carlini and Cunha, 1981; Jones et al.,
2010), anti-nausea (Parker et al., 2002), cytotoxic in breast
cancer (Ligresti et al., 2006) and many other cell lines while
being cyto-preservative for normal cells (Parolaro and Massi,
2008), antagonizes tumour necrosis factor-alpha (TNF-a) in a
rodent model of rheumatoid arthritis (Malfait et al., 2000),
enhances adenosine receptor A2A signalling via inhibition of
an adenosine transporter (Carrier et al., 2006), and prevents
prion accumulation and neuronal toxicity (Dirikoc et al.,
2007). A CBD extract showed greater anti-hyperalgesia over
pure compound in a rat model with decreased allodynia,
improved thermal perception and nerve growth factor levels
and decreased oxidative damage (Comelli et al., 2009). CBD
also displayed powerful activity against methicillin-resistant
Staphylococcus aureus (MRSA), with a minimum inhibitory
concentration (MIC) of 0.5–2 mg·mL-1 (Appendino et al.,
2008). In 2005, it was demonstrated that CBD has agonistic
activity at 5-hydroxytryptamine (5-HT)1A at 16 mM (Russo
et al., 2005), and that despite the high concentration, may
underlie its anti-anxiety activity (Resstel et al., 2009; Soares
Vde et al., 2010), reduction of stroke risk (Mishima et al.,
2005), anti-nausea effects (Rock et al., 2009) and ability to
affect improvement in cognition in a mouse model of hepatic
encephalopathy (Magen et al., 2009). A recent study has dem-
onstrated that CBD 30 mg·kg-1 i.p. reduced immobility time
in the forced swim test compared to imipramine (P < 0.01), an
effect blocked by pre-treatment with the 5-HT1A antagonist

WAY100635 (Zanelati et al., 2010), supporting a prospective
role for CBD as an antidepressant. CBD also inhibits synthesis
of lipids in sebocytes, and produces apoptosis at higher doses
in a model of acne (vide infra). One example of CBD antago-
nism to THC would be the recent observation of lymphope-
nia in rats (CBD 5 mg·kg-1) mediated by possible CB2 inverse
agonism (Ignatowska-Jankowska et al., 2009), an effect not
reported in humans even at doses of pure CBD up to 800 mg
(Crippa et al., 2010), possibly due to marked interspecies
differences in CB2 sequences and signal transduction. CBD
proved to be a critical factor in the ability of nabiximols
oromucosal extract in successfully treating intractable cancer
pain patients unresponsive to opioids (30% reduction in pain
from baseline), as a high-THC extract devoid of CBD failed to
distinguish from placebo (Johnson et al., 2010). This may
represent true synergy if the THC–CBD combination were
shown to provide a larger effect than a summation of those
from the compounds separately (Berenbaum, 1989).

CBC (Table 1) was inactive on adenylate cyclase inhibi-
tion (Howlett, 1987), but showed activity in the mouse can-
nabinoid tetrad, but only at 100 mg·kg-1, and at a fraction of
THC activity, via a non-CB1, non-CB2 mechanism (Delong
et al., 2010). More pertinent are anti-inflammatory (Wirth
et al., 1980) and analgesic activity (Davis and Hatoum, 1983),
its ability to reduce THC intoxication in mice (Hatoum et al.,
1981), antibiotic and antifungal effects (ElSohly et al., 1982),
and observed cytotoxicity in cancer cell lines (Ligresti et al.,
2006). A CBC-extract displayed pronounced antidepressant
effect in rodent models (Deyo and Musty, 2003). Additionally,
CBC was comparable to mustard oil in stimulating TRPA1-
mediated Ca++ in human embryonic kidney 293 cells (50–
60 nM) (De Petrocellis et al., 2008). CBC recently proved to be
a strong AEA uptake inhibitor (De Petrocellis et al., 2011).
CBC production is normally maximal, earlier in the plant’s
life cycle (de Meijer et al., 2009a). An innovative technique
employing cold water extraction of immature leaf matter
from selectively bred cannabis chemotypes yields a high-CBC
‘enriched trichome preparation’ (Potter, 2009).

CBG (Table 1), the parent phytocannabinoid compound,
has a relatively weak partial agonistic effect at CB1 (Ki

440 nM) and CB2 (Ki 337 nM) (Gauson et al., 2007). Older
work supports gamma aminobutyric acid (GABA) uptake
inhibition greater than THC or CBD (Banerjee et al., 1975)
that could suggest muscle relaxant properties. Analgesic and
anti-erythemic effects and the ability to block lipooxygenase
were said to surpass those of THC (Evans, 1991). CBG dem-
onstrated modest antifungal effects (ElSohly et al., 1982).
More recently, it proved to be an effective cytotoxic in high
dosage on human epithelioid carcinoma (Baek et al., 1998), is
the next most effective phytocannabinoid against breast
cancer after CBD (Ligresti et al., 2006), is an antidepressant in
the rodent tail suspension model (Musty and Deyo, 2006)
and is a mildly anti-hypertensive agent (Maor et al., 2006).
Additionally, CBG inhibits keratinocyte proliferation suggest-
ing utility in psoriasis (Wilkinson and Williamson, 2007), it is
a relatively potent TRPM8 antagonist for possible application
in prostate cancer (De Petrocellis and Di Marzo, 2010) and
detrusor over-activity and bladder pain (Mukerji et al., 2006).
It is a strong AEA uptake inhibitor (De Petrocellis et al., 2011)
and a powerful agent against MRSA (Appendino et al., 2008;
vide infra). Finally, CBG behaves as a potent a-2 adrenorecep-
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tor agonist, supporting analgesic effects previously noted
(Formukong et al., 1988), and moderate 5-HT1A antagonist
suggesting antidepressant properties (Cascio et al., 2010).
Normally, CBG appears as a relatively low concentration
intermediate in the plant, but recent breeding work has
yielded cannabis chemotypes lacking in downstream
enzymes that express 100% of their phytocannabinoid
content as CBG (de Meijer and Hammond, 2005; de Meijer
et al., 2009a).

THCV (Table 1) is a propyl analogue of THC, and can
modulate intoxication of the latter, displaying 25% of its
potency in early testing (Gill et al., 1970; Hollister, 1974). A
recrudescence of interest accrues to this compound, which is
a CB1 antagonist at lower doses (Thomas et al., 2005), but is a
CB1 agonist at higher doses (Pertwee, 2008). THCV produces
weight loss, decreased body fat and serum leptin concentra-
tions with increased energy expenditure in obese mice
(Cawthorne et al., 2007; Riedel et al., 2009). THCV also dem-
onstrates prominent anticonvulsant properties in rodent cer-
ebellum and pyriform cortex (Hill et al., 2010). THCV appears
as a fractional component of many southern African can-
nabis chemotypes, although plants highly predominant in
this agent have been produced (de Meijer, 2004). THCV
recently demonstrated a CB2-based ability to suppress
carageenan-induced hyperalgesia and inflammation, and
both phases of formalin-induced pain behaviour via CB1 and
CB2 in mice (Bolognini et al., 2010).

CBDV (Table 1), the propyl analogue of CBD, was first
isolated in 1969 (Vollner et al., 1969), but formerly received
little investigation. Pure CBDV inhibits diacylglycerol lipase
[50% inhibitory concentration (IC50) 16.6 mM] and might
decrease activity of its product, the endocannabinoid, 2-AG
(De Petrocellis et al., 2011). It is also anticonvulsant in rodent
hippocampal brain slices, comparable to phenobarbitone and
felbamate (Jones et al., 2010).

Finally, CBN is a non-enzymatic oxidative by-product of
THC, more prominent in aged cannabis samples (Merzouki
and Mesa, 2002). It has a lower affinity for CB1 (Ki 211.2 nM)
and CB2 (Ki 126.4 nM) (Rhee et al., 1997); and was judged
inactive when tested alone in human volunteers, but pro-
duced greater sedation combined with THC (Musty et al.,
1976). CBN demonstrated anticonvulsant (Turner et al.,
1980), anti-inflammatory (Evans, 1991) and potent effects
against MRSA (MIC 1 mg·mL-1). CBN is a TRPV2 (high-
threshold thermosensor) agonist (EC 77.7 mM) of possible
interest in treatment of burns (Qin et al., 2008). Like CBG, it
inhibits keratinocyte proliferation (Wilkinson and William-
son, 2007), independently of cannabinoid receptor effects.
CBN stimulates the recruitment of quiescent mesenchymal
stem cells in marrow (10 mM), suggesting promotion of bone
formation (Scutt and Williamson, 2007) and inhibits breast
cancer resistance protein, albeit at a very high concentration
(IC50 145 mM) (Holland et al., 2008).

Cannabis terpenoids: neglected
entourage compounds?

Terpenoids are EO components, previously conceived as the
quintessential fifth element, ‘life force’ or spirit (Schmidt,

2010), and form the largest group of plant chemicals, with
15–20 000 fully characterized (Langenheim, 1994). Terpe-
noids, not cannabinoids, are responsible for the aroma of
cannabis. Over 200 have been reported in the plant (Hendriks
et al., 1975; 1977; Malingre et al., 1975; Davalos et al., 1977;
Ross and ElSohly, 1996; Mediavilla and Steinemann, 1997;
Rothschild et al., 2005; Brenneisen, 2007), but only a few
studies have concentrated on their pharmacology (McPart-
land and Pruitt, 1999; McPartland and Mediavilla, 2001a;
McPartland and Russo, 2001b). Their yield is less than 1% in
most cannabis assays, but they may represent 10% of tri-
chome content (Potter, 2009). Monoterpenes usually pre-
dominate (limonene, myrcene, pinene), but these headspace
volatiles (Hood et al., 1973), while only lost at a rate of about
5% before processing (Gershenzon, 1994), do suffer dimin-
ished yields with drying and storage (Turner et al., 1980; Ross
and ElSohly, 1996), resulting in a higher relative proportion
of sesquiterpenoids (especially caryophyllene), as also often
occurs in extracts. A ‘phytochemical polymorphism’ seems
operative in the plant (Franz and Novak, 2010), as production
favours agents such as limonene and pinene in flowers that
are repellent to insects (Nerio et al., 2010), while lower fan
leaves express higher concentrations of bitter sesquiterpe-
noids that act as anti-feedants for grazing animals (Potter,
2009). Evolutionarily, terpenoids seem to occur in complex
and variable mixtures with marked structural diversity to
serve various ecological roles. Terpenoid composition is
under genetic control (Langenheim, 1994), and some
enzymes produce multiple products, again supporting
Mechoulam’s ‘Law of Stinginess’. The particular mixture of
mono- and sesquiterpenoids will determine viscosity, and in
cannabis, this certainly is leveraged to practical advantage as
the notable stickiness of cannabis exudations traps insects
(McPartland et al., 2000), and thus, combined with the insec-
ticidal phytocannabinoid acids (Sirikantaramas et al., 2005),
provides a synergistic mechano-chemical defensive strategy
versus predators.

As observed for cannabinoids, terpenoid production
increases with light exposure, but decreases with soil fertility
(Langenheim, 1994), and this is supported by the glasshouse
experience that demonstrates higher yields if plants experi-
ence relative nitrogen lack just prior to harvest (Potter, 2004),
favouring floral over foliar growth. EO composition is much
more genetically than environmentally determined, however
(Franz and Novak, 2010), and while cannabis is allogamous
and normally requires repeat selective breeding for mainte-
nance of quality, this problem may be practically circum-
vented by vegetative propagation of high-performance plants
under controlled environmental conditions (light, heat and
humidity) (Potter, 2009), and such techniques have proven to
provide notable consistency to tight tolerances as Good
Manufacturing Practice for any pharmaceutical would require
(Fischedick et al., 2010).

The European Pharmacopoeia, Sixth Edition (2007), lists 28
EOs (Pauli and Schilcher, 2010). Terpenoids are pharmaco-
logically versatile: they are lipophilic, interact with cell mem-
branes, neuronal and muscle ion channels, neurotransmitter
receptors, G-protein coupled (odorant) receptors, second
messenger systems and enzymes (Bowles, 2003; Buchbauer,
2010). All the terpenoids discussed herein are Generally Rec-
ognized as Safe, as attested by the US Food and Drug Admin-
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istration as food additives, or by the Food and Extract
Manufacturers Association and other world regulatory
bodies. Germane is the observation (Adams and Taylor, 2010)
(p. 193), ‘With a high degree of confidence one may presume
that EOs derived from food are likely to be safe’. Additionally,
all the current entries are non-sensitizing to skin when fresh
(Tisserand and Balacs, 1995; Adams and Taylor, 2010), but
may cause allergic reactions at very low rates when oxidized
(Matura et al., 2005). For additional pharmacological data on
other common cannabis terpenoids not discussed herein
(1,8-cineole, also known as eucalyptol, pulegone, a-terpineol,
terpineol-4-ol, r-cymene, borneol and D-3-carene), please see
McPartland and Russo (2001b).

Are cannabis terpenoids actually relevant to the effects of
cannabis? Terpenoid components in concentrations above
0.05% are considered of pharmacological interest (Adams and
Taylor, 2010). Animal studies are certainly supportive (Buch-
bauer et al., 1993). Mice exposed to terpenoid odours inhaled
from ambient air for 1 h demonstrated profound effects on
activity levels, suggesting a direct pharmacological effect on
the brain, even at extremely low serum concentrations
(examples: linalool with 73% reduction in motility at
4.22 ng·mL-1, pinene 13.77% increase at trace concentration,
terpineol 45% reduction at 4.7 ng·mL-1). These levels are
comparable to those of THC measured in humans receiving
cannabis extracts yielding therapeutic effects in pain, or
symptoms of multiple sclerosis in various randomized con-
trolled trials (RCTs) (Russo, 2006; Huestis, 2007). Positive
effects at undetectable serum concentrations with orange ter-
penes (primarily limonene, 35.25% increase in mouse activ-
ity), could be explainable on the basis of rapid redistribution
and concentration in lipophilic cerebral structures. A similar
rationale pertains to human studies (Komori et al., 1995),
subsequently discussed. Limonene is highly bioavailable with
70% human pulmonary uptake (Falk-Filipsson et al., 1993),
and a figure of 60% for pinene with rapid metabolism or
redistribution (Falk et al., 1990). Ingestion and percutaneous
absorption is also well documented in humans (Jäger et al.,
1992): 1500 mg of lavender EO with 24.7% linalool (total
372 mg) was massaged into the skin of a 60 kg man for
10 min, resulting in a peak plasma concentration of
100 ng·mL-1 at 19 min, and a half-life of 13.76 min in serum
(Jäger et al., 1992). EO mixtures (including limonene and
pinene) also increase permeation of estradiol through mouse
skin (Monti et al., 2002).

Government-approved cannabis supplied to patients in
national programmes in the Netherlands and Canada is
gamma-irradiated to sterilize coliform bacteria, but the safety
of this technique for a smoked and inhaled product has never
been specifically tested. Gamma-radiation significantly
reduced linalool titres in fresh cilantro (Fan and Sokorai,
2002), and myrcene and linalool in orange juice (Fan and
Gates, 2001).

D-limonene, common to the lemon and other citrus EOs
(Table 2), is the second most widely distributed terpenoid in
nature (Noma and Asakawa, 2010), and is the precursor to
other monoterpenoids (Figure 2) through species-specific
synthetic schemes. Unfortunately, these pathways have not
yet been investigated in cannabis. The ubiquity of limonene
serves, perhaps, as a demonstration of convergent evolution
that supports an important ecological role for this monoter-

pene. Studies with varying methodology and dosing in citrus
oils in mice suggest it to be a powerful anxiolytic agent
(Carvalho-Freitas and Costa, 2002; Pultrini Ade et al., 2006),
with one EO increasing serotonin in the prefrontal cortex,
and dopamine (DA) in hippocampus mediated via 5-HT1A

(Komiya et al., 2006). Compelling confirmatory evidence in
humans was provided in a clinical study (Komori et al., 1995),
in which hospitalized depressed patients were exposed to
citrus fragrance in ambient air, with subsequent normaliza-
tion of Hamilton Depression Scores, successful discontinua-
tion of antidepressant medication in 9/12 patients and serum
evidence of immune stimulation (CD4/8 ratio normaliza-
tion). Limonene also produces apoptosis of breast cancer
cells, and was employed at high doses in Phase II RCTs
(Vigushin et al., 1998). Subsequent investigation in cancer
treatment has centred on its immediate hepatic metabolite,
perillic acid, which demonstrates anti-stress effects in rat
brain (Fukumoto et al., 2008). A patent has been submitted,
claiming that limonene effectively treats gastro-oesophageal
reflux (Harris, 2010). Citrus EOs containing limonene proved
effective against dermatophytes (Sanguinetti et al., 2007;
Singh et al., 2010), and citrus EOs with terpenoid profiles
resembling those in cannabis demonstrated strong radical
scavenging properties (Choi et al., 2000). As noted above,
limonene is highly bioavailable (Falk-Filipsson et al., 1993),
and rapidly metabolized, but with indications of accumula-
tion and retention in adipose tissues (e.g. brain). It is highly
non-toxic (estimated human lethal dose 0.5–5 g·kg-1) and
non-sensitizing (Von Burg, 1995)

b-Myrcene is another common monoterpenoid in can-
nabis (Table 2) with myriad activities: diminishing inflam-
mation via prostaglandin E-2 (PGE-2) (Lorenzetti et al.,
1991), and blocking hepatic carcinogenesis by aflatoxin (De-
Oliveira et al., 1997). Interestingly, myrcene is analgesic in
mice, but this action can be blocked by naloxone, perhaps
via the a-2 adrenoreceptor (Rao et al., 1990). It is non-
mutagenic in the Ames test (Gomes-Carneiro et al., 2005).
Myrcene is a recognized sedative as part of hops prepara-
tions (Humulus lupulus), employed to aid sleep in Germany
(Bisset and Wichtl, 2004). Furthermore, myrcene acted as a
muscle relaxant in mice, and potentiated barbiturate sleep
time at high doses (do Vale et al., 2002). Together, these
data would support the hypothesis that myrcene is a promi-
nent sedative terpenoid in cannabis, and combined with
THC, may produce the ‘couch-lock’ phenomenon of certain
chemotypes that is alternatively decried or appreciated by
recreational cannabis consumers.

a-Pinene is a bicyclic monoterpene (Table 2), and the
most widely encountered terpenoid in nature (Noma and
Asakawa, 2010). It appears in conifers and innumerable plant
EOs, with an insect-repellent role. It is anti-inflammatory via
PGE-1 (Gil et al., 1989), and is a bronchodilator in humans at
low exposure levels (Falk et al., 1990). Pinene is a major com-
ponent of Sideritis spp. (Kose et al., 2010) and Salvia spp. EOs
(Ozek et al., 2010), both with prominent activity against
MRSA (vide infra). Beyond this, it seems to be a broad-
spectrum antibiotic (Nissen et al., 2010). a-Pinene forms the
biosynthetic base for CB2 ligands, such as HU-308 (Hanus
et al., 1999). Perhaps most compelling, however, is its activity
as an acetylcholinesterase inhibitor aiding memory (Perry
et al., 2000), with an observed IC50 of 0.44 mM (Miyazawa
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Table 2
Cannabis Terpenoid Activity Table

Terpenoid Structure
Commonly
encountered in Pharmacological activity (Reference)

Synergistic
cannabinoid

Limonene

H

Lemon

Potent AD/immunostimulant via inhalation
(Komori et al., 1995)

CBD

Anxiolytic (Carvalho-Freitas and Costa, 2002; Pultrini Ade et al.,
2006) via 5-HT1A (Komiya et al., 2006)

CBD

Apoptosis of breast cancer cells (Vigushin et al., 1998) CBD, CBG
Active against acne bacteria (Kim et al., 2008) CBD
Dermatophytes (Sanguinetti et al., 2007; Singh et al., 2010) CBG
Gastro-oesophageal reflux (Harris, 2010) THC

a-Pinene

Pine

Anti-inflammatory via PGE-1 (Gil et al., 1989) CBD

Bronchodilatory in humans (Falk et al., 1990) THC

Acetylcholinesterase inhibitor, aiding memory
(Perry et al., 2000)

THC?, CBD

b-Myrcene

Hops

Blocks inflammation via PGE-2 (Lorenzetti et al., 1991) CBD

Analgesic, antagonized by naloxone (Rao et al., 1990) CBD, THC

Sedating, muscle relaxant, hypnotic (do Vale et al., 2002) THC

Blocks hepatic carcinogenesis by aflatoxin
(de Oliveira et al., 1997)

CBD, CBG

Linalool HO

Lavender

Anti-anxiety (Russo, 2001) CBD, CBG?

Sedative on inhalation in mice (Buchbauer et al., 1993) THC

Local anesthetic (Re et al., 2000) THC

Analgesic via adenosine A2A (Peana et al., 2006) CBD

Anticonvulsant/anti-glutamate (Elisabetsky et al., 1995) CBD, THCV,
CBDV

Potent anti-leishmanial (do Socorro et al., 2003) ?

b-Caryophyllene

Pepper

AI via PGE-1 comparable phenylbutazone (Basile et al., 1988) CBD

Gastric cytoprotective (Tambe et al., 1996) THC

Anti-malarial (Campbell et al., 1997) ?

Selective CB2 agonist (100 nM) (Gertsch et al., 2008) THC

Treatment of pruritus? (Karsak et al., 2007) THC

Treatment of addiction? (Xi et al., 2010) CBD

Caryophyllene
Oxide

O

Lemon balm

Decreases platelet aggregation (Lin et al., 2003) THC

Antifungal in onychomycosis comparable to
ciclopiroxolamine and sulconazole (Yang et al., 1999)

CBC,CBG

Insecticidal/anti-feedant (Bettarini et al., 1993) THCA, CBGA

Nerolidol

OH

Orange

Sedative (Binet et al., 1972) THC, CBN

Skin penetrant (Cornwell and Barry, 1994) –

Potent antimalarial (Lopes et al., 1999,
Rodrigues Goulart et al., 2004)

?

Anti-leishmanial activity (Arruda et al., 2005) ?

Phytol
OH

Green tea

Breakdown product of chlorophyll –

Prevents Vitamin A teratogenesis (Arnhold et al., 2002) –

↑GABA via SSADH inhibition (Bang et al., 2002) CBG

Representative plants containing each terpenoid are displayed as examples to promote recognition, but many species contain them in varying concentrations.
5-HT, 5-hydroxytryptamine (serotonin); AD, antidepressant; AI, anti-inflammatory; CB1/CB2, cannabinoid receptor 1 or 2; GABA, gamma aminobutyric acid;
PGE-1/PGE-2, prostaglandin E-1/prostaglandin E-2; SSADH, succinic semialdehyde dehydrogenase.
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and Yamafuji, 2005). This feature could counteract short-term
memory deficits induced by THC intoxication (vide infra).

D-Linalool is a monoterpenoid alcohol (Table 2),
common to lavender (Lavandula angustifolia), whose psycho-
tropic anxiolytic activity has been reviewed in detail (Russo,
2001). Interestingly, linalyl acetate, the other primary terpe-
noid in lavender, hydrolyses to linalool in gastric secretions
(Bickers et al., 2003). Linalool proved sedating to mouse activ-
ity on inhalation (Buchbauer et al., 1991; Jirovetz et al.,
1992). In traditional aromatherapy, linalool is the likely
suspect in the remarkable therapeutic capabilities of lavender
EO to alleviate skin burns without scarring (Gattefosse, 1993).
Pertinent to this, the local anaesthetic effects of linalool (Re
et al., 2000) are equal to those of procaine and menthol
(Ghelardini et al., 1999). Another explanation would be its
ability to produce hot-plate analgesia in mice (P < 0.001) that
was reduced by administration of an adenosine A2A antago-
nist (Peana et al., 2006). It is also anti-nociceptive at high
doses in mice via ionotropic glutamate receptors (Batista
et al., 2008). Linalool demonstrated anticonvulsant and anti-
glutamatergic activity (Elisabetsky et al., 1995), and reduced
seizures as part of Ocimum basilicum EO after exposure to
pentylenetetrazole, picrotoxin and strychnine (Ismail, 2006).
Furthermore, linalool decreased K+-stimulated glutamate
release and uptake in mouse synaptosomes (Silva Brum et al.,
2001). These effects were summarized (Nunes et al., 2010,
p. 303): ‘Overall, it seems reasonable to argue that the modu-
lation of glutamate and GABA neurotransmitter systems are
likely to be the critical mechanism responsible for the seda-
tive, anxiolytic and anticonvulsant properties of linalool and
EOs containing linalool in significant proportions’. Linalool
also proved to be a powerful anti-leishmanial agent (do
Socorro et al., 2003), and as a presumed lavender EO compo-
nent, decreased morphine opioid usage after inhalation
versus placebo (P = 0.04) in gastric banding in morbidly obese
surgical patients (Kim et al., 2007).

b-Caryophyllene (Table 2) is generally the most common
sesquiterpenoid encountered in cannabis (Mediavilla and
Steinemann, 1997), wherein its evolutionary function may be
due to its ability to attract insect predatory green lacewings,
while simultaneously inhibiting insect herbivory (Langen-
heim, 1994). It is frequently the predominant terpenoid
overall in cannabis extracts, particularly if they have been
processed under heat for decarboxylation (Guy and Stott,
2005). Caryophyllene is common to black pepper (Piper
nigrum) and Copaiba balsam (Copaifera officinalis) (Lawless,
1995). It is anti-inflammatory via PGE-1, comparable in
potency to the toxic phenylbutazone (Basile et al., 1988), and
an EO containing it was on par with etodolac and indometha-
cin (Ozturk and Ozbek, 2005). In contrast to the latter agents,
however, caryophyllene was a gastric cytoprotective (Tambe
et al., 1996), much as had been claimed in the past in treating
duodenal ulcers in the UK with cannabis extract (Douth-
waite, 1947). Caryophyllene may have contributed to anti-
malarial effects as an EO component (Campbell et al., 1997).
Perhaps the greatest revelation regarding caryophyllene has
been its demonstration as a selective full agonist at CB2

(100 nM), the first proven phytocannabinoid beyond the
cannabis genus (Gertsch et al., 2008). Subsequent work has
demonstrated that this dietary component produced anti-
inflammatory analgesic activity at the lowest dose of

5 mg·kg-1 in wild-type, but not CB2 knockout mice (Gertsch,
2008). Given the lack of attributed psychoactivity of CB2

agonists, caryophyllene offers great promise as a therapeutic
compound, whether systemically, or in dermatological appli-
cations such as contact dermatitis (Karsak et al., 2007). Sen-
sitization reactions are quite rare, and probably due to
oxidized product (Skold et al., 2006).

Nerolidol is a sesquiterpene alcohol with sedative proper-
ties (Binet et al., 1972), present as a low-level component in
orange and other citrus peels (Table 2). It diminished experi-
mentally induced formation of colon adenomas in rats (Wat-
tenberg, 1991). It was an effective agent for enhancing skin
penetration of 5-fluorouracil (Cornwell and Barry, 1994). This
could be a helpful property in treating fungal growth, where
it is also an inhibitor (Langenheim, 1994). It seems to have
anti-protozoal parasite control benefits, as a potent antima-
larial (Lopes et al., 1999; Rodrigues Goulart et al., 2004) and
anti-leishmanial agent (Arruda et al., 2005). Nerolidol is non-
toxic and non-sensitizing (Lapczynski et al., 2008).

Caryophyllene oxide (Table 2) is a sesquiterpenoid oxide
common to lemon balm (Melissa officinalis), and to the euca-
lyptus, Melaleuca stypheloides, whose EO contains 43.8%
(Farag et al., 2004). In the plant, it serves as an insecticidal/
anti-feedant (Bettarini et al., 1993) and as broad-spectrum
antifungal in plant defence (Langenheim, 1994). Analo-
gously, the latter properties may prove therapeutic, as caryo-
phyllene oxide demonstrated antifungal efficacy in a model
of clinical onychomycosis comparable to ciclopiroxalamine
and sulconazole, with an 8% concentration affecting eradi-
cation in 15 days (Yang et al., 1999). Caryophyllene oxide is
non-toxic and non-sensitizing (Opdyke, 1983). This agent
also demonstrates anti-platelet aggregation properties in vitro
(Lin et al., 2003). Caryophyllene oxide has the distinction of
being the component responsible for cannabis identification
by drug-sniffing dogs (Stahl and Kunde, 1973).

Phytol (Table 2) is a diterpene (McGinty et al., 2010),
present in cannabis extracts, as a breakdown product of chlo-
rophyll and tocopherol. Phytol prevented vitamin A-induced
teratogenesis by inhibiting conversion of retinol to a harmful
metabolite, all-trans-retinoic acid (Arnhold et al., 2002).
Phytol increased GABA expression via inhibition of succinic
semialdehyde dehydrogenase, one of its degradative enzymes
(Bang et al., 2002). Thus, the presence of phytol could
account for the alleged relaxing effect of wild lettuce (Lactuca
sativa), or green tea (Camellia sinensis), despite the latter’s
caffeine content.

Selected possibilities for
phytocannabinoid-terpenoid synergy

Cannabis and acne
AEA simulates lipid production in human sebocytes of seba-
ceous glands at low concentrations, but induces apoptosis at
higher levels, suggesting that this system is under ECS control
(Dobrosi et al., 2008). CBD 10–20 mM did not affect basal lipid
synthesis in SZ95 sebocytes, but did block such stimulation
by AEA and arachidonate (Biro et al., 2009). Higher doses of
CBD (30–50 mM) induced sebocyte apoptosis, which was aug-
mented in the presence of AEA. The effect of CBD to increase
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Ca++ was blocked by ruthenium red, a TRP-inhibitor. RNA-
mediated silencing of TRPV1 and TRPV3 failed to attenuate
CBD effects, but experiments did support the aetiological role
of TRPV4, a putative regulator of systemic osmotic pressure
(T. Bíró, 2010, pers. comm.). Given the observed ability of
CBD to be absorbed transcutaneously, it offers great promise
to attenuate the increased sebum production at the patho-
logical root of acne.

Cannabis terpenoids could offer complementary activity.
Two citrus EOs primarily composed of limonene inhibited
Propionibacterium acnes, the key pathogen in acne (MIC
0.31 mL·mL-1), more potently than triclosan (Kim et al.,
2008). Linalool alone demonstrated an MIC of 0.625 mL·mL-1.
Both EOs inhibited P. acnes-induced TNF-a production, sug-
gesting an adjunctive anti-inflammatory effect. In a similar
manner, pinene was the most potent component of a tea-tree
eucalyptus EO in suppression of P. acnes and Staph spp. in
another report (Raman et al., 1995).

Considering the known minimal toxicities of CBD and
these terpenoids and the above findings, new acne therapies
utilizing whole CBD-predominant extracts, via multi-
targeting (Wagner and Ulrich-Merzenich, 2009), may present
a novel and promising therapeutic approach that poses
minimal risks in comparison to isotretinoin.

MRSA

MRSA accounted for 10% of cases of septicaemia and 18 650
deaths in the USA in 2005, a number greater than that attrib-
utable to human immunodeficiency virus/acquired immuno-
deficiency syndrome (Bancroft, 2007). Pure CBD and CBG
powerfully inhibit MRSA (MIC 0.5–2 mg·mL-1) (Appendino
et al., 2008).

Amongst terpenoids, pinene was a major component of
Sideritis erythrantha EO that was as effective against MRSA and
other antibiotic-resistant bacterial strains as vancomycin and
other agents (Kose et al., 2010). A Salvia rosifolia EO with
34.8% pinene was also effective against MRSA (MIC
125 mg·mL-1). The ability of monoterpenoids to enhance skin
permeability and entry of other drugs may further enhance
antibiotic benefits (Wagner and Ulrich-Merzenich, 2009).

Given that CBG can be produced in selected cannabis
chemotypes (de Meijer and Hammond, 2005; de Meijer et al.,
2009a), with no residual THC as a possible drug abuse liability
risk, a whole plant extract of a CBG-chemotype also express-
ing pinene would seem to offer an excellent, safe new anti-
septic agent.

Psychopharmacological applications:
depression, anxiety, insomnia,
dementia and addiction

Scientific investigation of the therapeutic application of ter-
penoids in psychiatry has been hampered by methodological
concerns, subjective variability of results and a genuine
dearth of appropriate randomized controlled studies of high
quality (Russo, 2001; Bowles, 2003; Lis-Balchin, 2010). The

same is true of phytocannabinoids (Fride and Russo, 2006).
Abundant evidence supports the key role of the ECS in medi-
ating depression (Hill and Gorzalka, 2005a,b), as well as
anxiety, whether induced by aversive stimuli, such as post-
traumatic stress disorder (Marsicano et al., 2002) or pain
(Hohmann et al., 2005), and psychosis (Giuffrida et al., 2004).
With respect to the latter risk, the presence of CBD in smoked
cannabis based on hair analysis seems to be a mitigating
factor reducing its observed incidence (Morgan and Curran,
2008). A thorough review of cannabis and psychiatry is
beyond the scope of this article, but several suggestions are
offered with respect to possible therapeutic synergies opera-
tive with phytocannabinoids-terpenoid combinations. While
the possible benefits of THC on depression remain controver-
sial (Denson and Earleywine, 2006), much less worrisome
would be CBD- or CBG-predominant preparations. Certainly
the results obtained in human depression solely with a citrus
scent (Komori et al., 1995), strongly suggest the possibility of
synergistic benefit of a phytocannabinoid-terpenoid prepara-
tion. Enriched odour exposure in adult mice induced olfac-
tory system neurogenesis (Rochefort et al., 2002), an
intriguing result that could hypothetically support plasticity
mechanisms in depression (Delgado and Moreno, 1999), and
similar hypotheses with respect to the ECS in addiction treat-
ment (Gerdeman and Lovinger, 2003). Phytocannabinoid-
terpenoid synergy might theoretically apply.

The myriad effects of CBD on 5-HT1A activity provide a
strong rationale for this and other phytocannabinoids as base
compounds for treatment of anxiety. Newer findings, particu-
larly imaging studies of CBD in normal individuals in anxiety
models (Fusar-Poli et al., 2009; 2010; Crippa et al., 2010)
support this hypothesis. Even more compelling is a recent
randomized control trial of pure CBD in patients with social
anxiety disorder with highly statistical improvements over
placebo in anxiety and cognitive impairment (Crippa et al.,
2011). Addition of anxiolytic limonene and linalool could
contribute to the clinical efficacy of a CBD extract.

THC was demonstrated effective in a small crossover clini-
cal trial versus placebo in 11 agitated dementia patients with
Alzheimer’s disease (Volicer et al., 1997). THC was also
observed to be an acetylcholinesterase inhibitor in its own
right, as well as preventing amyloid b-peptide aggregation in
that disorder (Eubanks et al., 2006). Certainly, the anti-
anxiety and anti-psychotic effects of CBD may be of addi-
tional benefit (Zuardi et al., 1991; 2006; Zuardi and
Guimaraes, 1997). A recent study supports the concept that
CBD, when present in significant proportion to THC, is
capable of eliminating induced cognitive and memory defi-
cits in normal subjects smoking cannabis (Morgan et al.,
2010b). Furthermore, CBD may also have primary benefits on
reduction of b-amyloid in Alzheimer’s disease (Iuvone et al.,
2004; Esposito et al., 2006a,b). Psychopharmacological effects
of limonene, pinene and linalool could putatively extend
benefits in mood in such patients.

The effects of cannabis on sleep have been reviewed
(Russo et al., 2007), and highlight the benefits that can accrue
in this regard, particularly with respect to symptom reduction
permitting better sleep, as opposed to a mere hypnotic effect.
Certainly, terpenoids with pain-relieving, anti-anxiety or
sedative effects may supplement such activity, notably, caryo-
phyllene, linalool and myrcene.
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The issue of cannabis addiction remains controversial.
Some benefit of oral THC has been noted in cannabis with-
drawal (Hart et al., 2002; Haney et al., 2004). More intriguing,
perhaps, are claims of improvement on other substance
dependencies, particularly cocaine (Labigalini et al., 1999;
Dreher, 2002). The situation with CBD is yet more promising.
CBD and THC at doses of 4 mg·kg-1 i.p. potentiated extinc-
tion of cocaine- and amphetamine-induced conditioned
place preference in rats, and CBD produced no hedonic
effects of its own (Parker et al., 2004). CBD 5 mg·kg-1·d-1 in
rats attenuated heroin-seeking behaviour by conditioned
stimuli, even after a lapse of 2 weeks (Ren et al., 2009).
A suggested mechanism of CBD relates to its ability
to reverse changes in a-amino-3-hydroxyl-5-methyl-4-
isoxazole-propionate glutamate and CB1 receptor expression
in the nucleus accumbens induced by heroin. The authors
proposed CBD as a treatment for heroin craving and addic-
tion relapse. A recent study demonstrated the fascinating
result that patients with damage to the insula due to cere-
brovascular accident were able to quit tobacco smoking
without relapse or urges (Naqvi et al., 2007), highlighting this
structure as a critical neural centre mediating addiction to
nicotine. Further study has confirmed the role of the insula in
cocaine, alcohol and heroin addiction (Naqvi and Bechara,
2009; Naqvi and Bechara, 2010). In a provocative parallel,
CBD 600 mg p.o. was demonstrated to deactivate functional
magnetic resonance imaging (fMRI) activity in human vol-
unteers in the left insula versus placebo (P < 0.01) without
accompanying sedation or psychoactive changes (Borgwardt
et al., 2008), suggesting the possibility that CBD could act as
a pharmaceutical surrogate for insular damage in exerting an
anti-addiction therapeutic benefit. Human studies have
recently demonstrated that human volunteers smoking can-
nabis with higher CBD content reduced their liking for drug-
related stimuli, including food (Morgan et al., 2010a). The
authors posited that CBD can modulate reinforcing proper-
ties of drugs of abuse, and help in training to reduce relapse
to alcoholism. A single case report of a successful withdrawal
from cannabis dependency utilizing pure CBD treatment was
recently published (Crippa et al., 2010).

Perhaps terpenoids can provide adjunctive support. In a
clinical trial, 48 cigarette smokers inhaling vapour from an
EO of black pepper (Piper nigrum), a mint-menthol mixture or
placebo (Rose and Behm, 1994). Black pepper EO reduced
nicotine craving significantly (P < 0.01), an effect attributed
to irritation of the bronchial tree, simulating the act of ciga-
rette smoking, but without nicotine or actual burning of
material. Rather, might not the effect have been pharmaco-
logical? The terpenoid profile of black pepper suggests pos-
sible candidates: myrcene via sedation, pinene via increased
alertness, or especially caryophyllene via CB2 agonism and a
newly discovered putative mechanism of action in addiction
treatment.

CB2 is expressed in dopaminergic neurones in the ventral
tegmental area and nucleus accumbens, areas mediating
addictive phenomena (Xi et al., 2010). Activation of CB2 by
the synthetic agonist JWH144 administered systemically,
intranasally, or by microinjection into the nucleus accum-
bens in rats inhibited DA release and cocaine self-
administration. Caryophyllene, as a high-potency selective
CB2 agonist (Gertsch et al., 2008), would likely produce

similar effects, and have the advantage of being a non-
toxic dietary component. All factors considered, CBD, with
caryophyllene, and possibly other adjunctive terpenoids in
the extract, offers significant promise in future addiction
treatment.

Taming THC: cannabis entourage
compounds as antidotes
to intoxication

Various sources highlight the limited therapeutic index of
pure THC, when given intravenously (D’Souza et al., 2004) or
orally (Favrat et al., 2005), especially in people previously
naïve to its effects. Acute overdose incidents involving THC
or THC-predominant cannabis usually consist of self-limited
panic reactions or toxic psychoses, for which no pharmaco-
logical intervention is generally necessary, and supportive
counselling (reassurance or ‘talking down’) is sufficient to
allow resolution without sequelae. CBD modulates the psy-
choactivity of THC and reduces its adverse event profile
(Russo and Guy, 2006), highlighted by recent results above
described. Could it be, however, that other cannabis compo-
nents offer additional attenuation of the less undesirable
effects of THC? History provides some clues.

In 10th century Persia, Al-Razi offered a prescription in his
Manafi al-agdhiya wa-daf madarri-ha (p. 248), rendered
(Lozano, 1993, p. 124; translation EBR) ‘ – and to avoid these
harms {from ingestion of cannabis seeds or hashish}, one
should drink fresh water and ice or eat any acid fruits’. This
concept was repeated in various forms by various authorities
through the ages, including ibn Sina (ibn Sina (Avicenna),
1294), and Ibn al-Baytar (ibn al-Baytar, 1291), until
O’Shaughnessy brought Indian hemp to Britain in 1843
(O’Shaughnessy, 1843). Robert Christison subsequently cited
lemon (Figure 3A) as an antidote to acute intoxication in
numerous cases (Christison, 1851) and this excerpt regarding
morning-after residua (Christison, 1848) (p. 973):

Next morning there was an ordinary appetite, much
torpidity, great defect and shortness of memory, extreme
apparent protraction of time, but no peculiarity of
articulation or other effect; and these symptoms lasted
until 2 P.M., when they ceased entirely in a few minutes
after taking lemonade.

Literary icons on both sides of the Atlantic espoused
similar support for the citrus cure in the 19th century,
notably Bayard Taylor after travels in Syria (Taylor, 1855), and
Fitzhugh Ludlow after his voluntary experiments with ever
higher cannabis extract doses in the USA (Ludlow, 1857). The
sentiment was repeated by Calkins (1871), who noted the
suggestion of a friend in Tunis that lemon retained the con-
fidence of cure of overdoses by cannabis users in that region.
This is supported by the observation that lemon juice, which
normally contains small terpenoid titres, is traditionally
enhanced in North Africa by the inclusion in drinks of the
limonene-rich rind, as evidenced by the recipe for Agua Limón
from modern Morocco (Morse and Mamane, 2001). In his
comprehensive review of cannabis in the first half of the
20th century, Walton once more supported its prescription
(Walton, 1938).
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Another traditional antidote to cannabis employing
Acorus calamus (Figure 3B) is evident from the Ayurvedic tra-
dition of India (Lad, 1990, p. 131):

Calamus root is the best antidote for the ill effects of
marijuana. . . . if one smokes a pinch of calamus root
powder with the marijuana, this herb will completely
neutralize the toxic side effects of the drug.

This claim has gained credence, not only through force of
anecdotal accounts that abound on the Internet, but
with formal scientific case reports and scientific analysis
(McPartland et al., 2008) documenting clearer thinking and
improved memory with the cannabis–calamus combination,
and with provision of a scientific rationale: calamus contains
beta-asarone, an acetylcholinesterase inhibitor with 10% of
the potency of physotigmine (Mukherjee et al., 2007). Inter-
estingly, the cannabis terpenoid, a-pinene, also has been
characterized as a potent inhibitor of that enzyme (Miyazawa
and Yamafuji, 2005), bolstering the hypothesis of a second
antidote to THC contained in cannabis itself. Historical pre-
cedents also support pinene in this pharmacological role.

In the firstt century, Pliny wrote of cannabis in his Natural
History, Book XXIV (Pliny, 1980, p. 164):

The gelotophyllis [‘leaves of laughter’ = cannabis] grows
in Bactria and along the Borysthenes. If this be taken in
myrrh and wine all kinds of phantoms beset the mind,
causing laughter which persists until the kernels of pine-
nuts are taken with pepper and honey in palm wine.

Of the components, palm wine is perhaps the most mys-
terious. Ethanol does not reduce cannabis intoxication (Mello

and Mendelson, 1978). However, ancient wines were stored in
clay pots or goatskins, and required preservation, usually with
addition of pine tar or terebinth resin (from Pistacia spp.;
McGovern et al., 2009). Pine tar is rich in pinene, as is tere-
binth resin (from Pistacia terebinthus; Tsokou et al., 2007),
while the latter also contains limonene (Duru et al., 2003).
Likewise, the pine nuts (Figure 3C) prescribed by Pliny the
Elder harbour pinene, along with additional limonene (Sal-
vadeo et al., 2007). Al-Ukbari also suggested pistachio nuts as a
cannabis antidote in the 13th century (Lozano, 1993), and the
ripe fruits of Pistacia terebinthus similarly contain pinene (Cou-
ladis et al., 2003). The black pepper (Figure 3D), might offer
the mental clarity afforded by pinene, sedation via myrcene
and helpful contributions by b-caryophyllene. The historical
suggestions for cannabis antidotes are thus supported by
modern scientific rationales for the claims, and if proven
experimentally would provide additional evidence of synergy
(Berenbaum, 1989; Wagner and Ulrich-Merzenich, 2009).

Conclusions and suggestions for
future study

Considered ensemble, the preceding body of information
supports the concept that selective breeding of cannabis
chemotypes rich in ameliorative phytocannabinoid and ter-
penoid content offer complementary pharmacological activi-
ties that may strengthen and broaden clinical applications and
improve the therapeutic index of cannabis extracts containing
THC, or other base phytocannabinoids. Psychopharmacologi-
cal and dermatological indications show the greatest promise.

Figure 3
Ancient cannabis antidotes. (A) Lemon (Citrus limon). (B) Calamus plant roots (Acorus calamus). (C) Pine nuts (Pinus spp.). (D) Black pepper
(Piper nigrum).
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One important remaining order of business is the eluci-
dation of mono- and sesquiterpenoid biosynthetic pathways
in cannabis, as has been achieved previously in other species
of plants (Croteau, 1987; Gershenzon and Croteau, 1993;
Bohlmann et al., 1998; Turner et al., 1999; Trapp and Croteau,
2001).

Various cannabis component combinations or cannabis
extracts should be examined via high throughput pharmaco-
logical screening where not previously accomplished. Another
goal is the investigation of the biochemical targets of the
cannabis terpenoids, along with their mechanisms of action,
particularly in the central nervous system. Possible techniques
for such research include radio-labelling of select agents in
animals with subsequent necropsy. On a molecular level,
investigation of terpenoid changes to phytocannabinoid
signal transduction and trafficking may prove illuminating.
While it is known that terpenoids bind to odorant receptors in
the nasal mucosa (Friedrich, 2004) and proximal olfactory
structures (Barnea et al., 2004), it would be essential to ascer-
tain if direct effects in limbic or other cerebral structures are
operative. Given that farnesyl pyrophosphate is a sesquiterpe-
noid precursor and the most potent endogenous agonist yet
discovered for GPR92 (McHugh et al., 2010), in silico studies
attempting to match minor cannabinoids and terpenoids to
orphan GPCRs may prove fruitful. Behavioural assays of
agents in animal models may also provide clues. Simple com-
binations of phytocannabinoids and terpenoids may demon-
strate synergy as antibiotics if MICs are appreciable lowered
(Wagner and Ulrich-Merzenich, 2009). Ultimately, fMRI and
single photon emission computed tomography studies in
humans, with simultaneous drug reaction questionnaires and
psychometric testing employing individual agents and
phytocannabinoid-terpenoid pairings via vaporization or oro-
mucosal application, would likely offer safe and effective
methods to investigate possible interactions and synergy.

Should positive outcomes result from such studies, phy-
topharmaceutical development may follow. The develop-
ment of zero-cannabinoid cannabis chemotypes (de Meijer
et al., 2009b) has provided extracts that will facilitate discern-
ment of the pharmacological effects and contributions of
different fractions. Breeding work has already resulted in
chemotypes that produce 97% of monoterpenoid content as
myrcene, or 77% as limonene (E. de Meijer, pers. comm.).
Selective cross-breeding of high-terpenoid- and high-
phytocannabinoid-specific chemotypes has thus become a
rational target that may lead to novel approaches to such
disorders as treatment-resistant depression, anxiety, drug
dependency, dementia and a panoply of dermatological dis-
orders, as well as industrial applications as safer pesticides
and antiseptics. A better future via cannabis phytochemistry
may be an achievable goal through further research of the
entourage effect in this versatile plant that may help it fulfil
its promise as a pharmacological treasure trove.
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MINI-REVIEW Open Access

An Update on Non-CB1, Non-CB2 Cannabinoid
Related G-Protein-Coupled Receptors
Paula Morales* and Patricia H. Reggio

Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous
physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been
discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1),
which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2),
predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid recep-
tor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have
also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also
play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18
and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stim-
ulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic
relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabi-
noids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other
well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition,
the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling
under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-
related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular tar-
gets in modulating the ECS.

Keywords: cannabinoid receptors; endocannabinoid system; GPCRs; orphan receptors

Introduction
The Class A G-protein-coupled receptors (GPCRs),
cannabinoid receptor type 1 (CB1) and cannabinoid
receptor type 2 (CB2), have been widely confirmed
as cannabinoid targets. These receptors have been
shown to be involved in numerous physiopathological
processes, including pain, inflammation, cancer, meta-
bolic syndromes, hypertension, and neurodegenerative
disorders.1 Nonetheless, the complex pharmacology
of the endocannabinoid system (ECS) and its wide im-
plication in numerous biological functions suggest the
existence of other receptors playing important phys-

iological roles. Consequently, extensive research is
currently focused on the identification of potential
missing cannabinoid receptors.
Diverse Class A orphans or lately deorphanized

GPCRs have been proposed and evaluated as possible
ECS members. Nonetheless, the lack of selective ligands
for these receptors along with their intricate signal-
ing pathways is delaying a clear elucidation of their
relationship with the ECS. Therefore, thus far no
other GPCR has been categorized as the cannabi-
noid receptor type 3 by the International Union of
Pharmacology.2
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To date, two Class A G-protein-coupled receptors (GPCRs) have been
discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 ((CB1),
which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 ((CB2),
predominantly found in the immune system among other organs and tissues. E

In the last years, GPCRs such as GPR18
and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stim-
ulates strong debate due to the lack of pharmacological tools to validate it. B

The Class A G-protein-coupled receptors (GPCRs),
cannabinoid receptor type 1 ((CB1) and cannabinoid
receptor type 2 ((CB2), have been widely confirmed
as cannabinoid targets. These receptors have been
shown to be involved in numerous physiopathological
processes, including pain, inflammation, cancer, meta-
bolic syndromes, hypertension, and neurodegenerative

1disorders.1



Herein, we intend to provide an overview of the
GPCRs that have been postulated as cannabinoid mo-
lecular targets and the current available evidence of
their relationship with the ECS. Non-GPCR targets of
the cannabinoids such as the peroxisome proliferator-
activated receptors, ligand-gated ion channels, or tran-
sient receptor potential channels have been revised
elsewhere and are beyond the scope of this review.3,4

GPR55 and GPR18
Several GPCRs have been postulated to be putative
cannabinoid receptors, but so far, only GPR18 and
GPR55 have been demonstrated to be targets of a
wide variety of endogenous, phytogenic, and synthetic
cannabinoid ligands.4 Despite this fact, inconsistencies
in pharmacological data in the literature are hampering
their categorization.5,6

The cannabinoid-related class A GPCR GPR55 dis-
plays low sequence identity with CB1 and CB2 (*13%
and 14%, respectively). GPR55 is widely expressed
in the brain, as well as in the peripheral system,
co-localizing with the cannabinoid receptors in diverse
tissues.7–9 This receptor displays G-protein coupling
promiscuity associating with Ga13,

8,10 Gaq/11,
11 Ga12,

11

or Ga12/13
8,12 depending on the cell line or tissue.

GPR55 has been implicated in different physiopatholog-
ical conditions such as cancer,13–15 pain,11,16,17 meta-
bolic disorders,18,19 vascular functions,20,21 bone
physiology,22 and motor coordination.23

The phospholipid lysophosphatidylinositol (LPI) is
considered the endogenous GPR55 ligand.8,24,25 In
fact, GPR55 has also been named the LPI1 receptor.26

Numerous CB1 and CB2 ligands have also been
reported to act as GPR55 modulators.6,27–29 However,
significant pharmacological discrepancies have been
found depending on the tested functional outcome.6

For instance, the well-known phytocannabinoid D9-
tetrahydrocannabinol (D9-THC) displayed activation
of GPR55 according to certain reports,10,11 while it
was unable to exert any effect in other functional as-
says.24,30 Cannabinoid ligands reported to be recog-
nized by GPR55 and their intriguing pharmacology
have been recently reviewed elsewhere.31

Although its sequence presents low identity with
CB1 and CB2 (*13% and 8%), GPR18 has also been
tightly associated with the ECS.4,32 High expression
of GPR18 has been found in the lymphoid tissues,
while it is moderately expressed in other organs such
as lungs, brain, testis, or ovary.33,34 Initially, GPR18
was found to couple to Gai/o; however, subsequent find-

ings suggested the participation of the Gaq/11 transduc-
tion pathway as well.34–36 Different reports have shown
the therapeutic potential of this target in the treatment
of pathologies such as intraocular pressure,37 cancer,38

or metabolic disorders39 among others.
N-arachidonoyl glycine (NAGly) has been suggested

to be the endogenous GPR18 ligand by several research
groups.32,34 However, other researchers were not able
to confirm these data.40 Recent investigations point to
the existence of another endogenous GPR18 activator:
the polyunsaturated fatty acid metabolite, Resolvin D2
(RvD2), which is mainly involved in inflammatory pro-
cesses.41 In addition, and despite the pharmacological
divergences observed among some reports, GPR18
has been shown to recognize an array of CB1 and/or
CB2 ligands of endogenous, phytogenic, or synthetic
nature (reviewed by others).39,42

The pharmacological discrepancies on the appraisal
of cannabinoids in these two receptors, as well as the
lack of selective ligands targeting them, are delaying an
insightful understanding of the relation of GPR55
and GPR18 with the ECS. These inconsistencies,
which may rely on intrinsic properties of these
GPCRs, or on the cell type or functional assay, need
to be further studied. Intensive efforts are also focused
on the structural understanding of these receptors,43 as
well as the development of more potent and selective
pharmacological tools for the study of these promising
therapeutic targets.

GPR3, GPR6, and GPR12
GPR3, GPR6, and GPR12 are three orphan Class A
GPCRs that exhibit a very close phylogenetic relation-
ship with the cannabinoid receptors CB1 and CB2
(Fig. 1). Indeed, they belong to the same cluster of re-
ceptors, the so-called MECA cluster (which consists
of the melanocortin receptors, the endothelial differen-
tiation GPCRs, the cannabinoid receptors, the adeno-
sine binding receptors, and the orphan receptor
subset GPR3,�6, and�12).44,45 Because of their phylo-
genetic proximity, these orphan receptors share com-
mon conserved residues and unique sequence motifs
with CB1 and CB2.

46 According to Fredriksson et al.
these orphan receptors may share a common ancestor
with the cannabinoid receptors since they share the
same chromosomal positions.45

GPR3, GPR6, and GPR12, which share over 60%
of sequence similarity, were first cloned in 1995.47,48

These receptors constitutively activate adenylate cy-
clase by coupling to Gas proteins. In fact, different
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GPR55 is widely expressed
in the brain, as well as in the peripheral system,
co-localizing with the cannabinoid receptors in diverse

7–9tissues.7

GPR18 has also been
4,32tightly associated with the ECS.4 High expression

of GPR18 has been found in the lymphoid tissues,
while it is moderately expressed in other organs such

33,34as lungs, brain, testis, or ovary.3



groups have reported that when expressed in diverse
cell lines, they can stimulate adenylate cyclase to levels
similar in amplitude to agonist-activated GPCRs.47,49,50

In addition to Gas, GPR6 and GPR12 have also been sug-
gested to couple to Gai/o,

51,52 but further investigations
are required to confirm this G-protein promiscuity.

GPR3, GPR6, and GPR12 are predominantly
expressed in the brain and the reproductive system.49

This family of constitutively active GPCRs is involved
in neuronal differentiation and growth, as well as in
the formation of synaptic contacts.49 Therefore, their
role in different neurological processes such as neurite
outgrowth,49 Alzheimer’s disease,53–57 development of
cerebellar granule neurons,58,59 neuropathic pain,60

early phases of cocaine reinforcement,61 emotional-
like responses,62 instrumental learning,63 or Parkinson’s
disease64,65 has been studied. Other pathophysiological
conditions such as oocyte maturation,66,67 dyslipide-
mia,68 and cell proliferation69 may also be impacted
by the modulation of some of these receptors.

The bioactive lipids, sphingosine-1-phosphate50,52

and/or sphingosylphosphorylcholine,51 have been pro-

posed as endogenous ligands of these receptors (Fig. 2).
However, other groups were not able to confirm this
claim, and consequently, GPR3, GPR6, and GPR12
are still categorized as orphans.30,70,71 Interestingly,
among the very few ligands discovered so far for
these receptors, the nonpsychoactive phytocannabi-
noid cannabidiol (CBD) stands out as being able to tar-
get GPR3 and GPR6,72 acting as a b-arrestin2 inverse
agonist of both receptors. This functionality is of high
interest in the GPR3 field because b-arrestin2 signaling
at GPR3 has been directly linked to the manufacture of
beta-amyloid plaque (Ab1–40 and Ab1–42) in Alz-
heimer’s disease through complex formation with c-
secretase.56,57 Because CBD is an inverse agonist of
this signaling pathway at GPR3, it may represent a po-
tential tool for the reduction of amyloid pathology.
Other phytocannabinoids and several endocannabi-
noids were also tested but so far none of them were
found to modulate this family of orphan receptors.30,72

So, a relationship between the cannabinoids and the
orphan receptors GPR3, GPR6, and GPR12 has been
evidenced. Nonetheless, extensive research and more
pharmacological tools are needed to extract significant
conclusions about the association of these receptors
with the ECS and its ligands.

Alkylindole-Sensitive Receptors
As reported by different research groups, the well-known
aminoalkylindole cannabinoid agonist WIN55,212-2
(Fig. 3) displays pharmacological functions indepen-
dent of the cannabinoid receptors CB1 and CB2.

73–75

This fact led to the identification of novel targets com-
monly referred to as the alkylindole (AI)-sensitive re-
ceptors.74,76,77 These cannabinoid-related receptors are
modulated by AI derivatives, but not by other classes
of cannabinoid ligands.76 Diverse evidence suggests
that the AI-sensitive receptors are Gas-protein coupled
receptors that are mainly expressed in microglia and as-
trocytomas.76–79 However, their biological functions,
pharmacology, and therapeutic value remain to be unrav-
eled due to the lack of selective pharmacological tools.
Recent studies from Stella and coworkers revealed the

role of AI-sensitive receptors in the modulation of micro-
glial cell migration and proliferation highlighting their
potential in the treatment of gliomas.77,78 Moreover,
these authors have identified a series of naphthoyl AI de-
rivatives, ST-11, ST-23, ST-25, and ST-48 (Fig. 3) among
them, that bind to the AI-sensitive receptors.78 These
compounds display affinities in the nanomolar range
when competing with [3H]WIN55,212-2 in DBT

FIG. 1. Phylogenetic tree of cannabinoid
receptors and the closely related Class A GPCRs
(S1PR family and the orphan receptors GPR3,
GPR6, and GPR12). Data were obtained from
GPCRdb.org. CB1, cannabinoid receptor type 1;
CB2, cannabinoid receptor type 2; GPCR, G-
protein-coupled receptor; S1P, sphingosine-1-
phosphate.
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(Delayed Brain Tumor) cells which endogenously ex-
press AI-sensitive receptors, while lacking CB1 and
CB2 receptors.80 Compound ST-11 stands out from
this study because of its potency at AI-sensitive recep-
tors, while not interacting with CB1 and CB2 receptors.
In addition, in vitro assays revealed that this compound
inhibits cell migration and proliferation in the afore-
mentioned mouse glioma cell line, DBT. Further stud-
ies revealed that ST-11 can reduce glioblastoma growth
in a syngeneic mouse model.81

Even though extensive research is clearly needed to
understand the pathophysiological function of these re-
ceptors, reported data suggest that AI-sensitive recep-
tor agonists could represent a novel class of potential
brain cancer antitumor drugs.

Cannabinoid-Related Oligomers
Numerous studies have shown that GPCRs, cannabi-
noid receptors among them, can exist and function as
dimers or complexes of higher order.82–85 This oligo-
merization may affect receptor signaling, receptor

trafficking, and ligand binding. The physiological rele-
vance of such dimerization has not yet been fully estab-
lished for the cannabinoid receptors; nonetheless, the
presence of cannabinoid homo- and heterodimers in
specific tissues has been intensely reported over the
last years.

For the CB1 receptor, heteromers have been sug-
gested to exist under certain physiological conditions
with serotonin,86 angiotensin,87 opioid,88–90 GPR55,91

somatostatin,92 orexin,93,94 dopamine,95–97 and adeno-
sine98 receptors among others (Table 1). Although
CB2 has been less investigated, recent research revealed
that it may form heterodimers with CB1,

99 with
GPR55,100,101 with the serotonin receptor 5HT1A,

102 or
with the chemokine receptor CXCR4.103 The expression
of these heterodimers has been associated with different
pathologies. For instance, the CB2�CXCR4 and the
CB2�GPR55 dimers have been associated with cancer
progression, while the CB1�A2A and the CB1�D2 het-
eromers have been suggested to have physiological
implications in neurodegenerative disorders such as

FIG. 2. Structures of the putative GPR3, GPR6, and GPR12 endogenous ligands S1P and SPC and the GPR3 and
GPR6 inverse agonist CBD. SPC, sphingosylphosphorylcholine.

FIG. 3. Alkylindole derivatives WIN55,212–2, ST-11, ST-23, ST-25, and ST-48.
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Huntington’s or Parkinson’s diseases. All these data sug-
gest that the ECS interacts in a significant manner with
several other endogenous systems.

With regard to cannabinoid receptor homodimeri-
zation, more data have been published on CB1 homo-
dimers than on their CB2 counterparts. The presence
of CB1 receptor homodimers has been reported in dif-
ferent biological tissues,104–106 but their functional role
has not been determined. In contrast, CB2 homodimers
have been evidenced,107–109 but their pharmacological
potential has not been explored yet.

In this field, bivalent ligands have emerged as prom-
ising new pharmacological entities and potential tools
for the biological study of their respective dimeric recep-
tors.110–113 Despite their poor pharmacokinetic proper-
ties,114 bivalent ligands can exhibit enhanced activity
and selectivity over their respective corresponding par-
ent ligands offering unique pharmacological strategies.
Bivalent ligands have been synthesized and evaluated
for several GPCRs. Opioid,115,116 dopamine,117,118 and
histamine119 are some of the receptors for which a biva-
lent compound provided higher activity than their
monomer counterparts. CB1 homobivalent120–122 and
heterobivalent123–125 ligands have been also reported
and explored. However, currently available receptor
structural information challenges the fact that bivalent
ligands can simultaneously bind to both receptors
within the dimer, especially in the case of lipid receptors
as the cannabinoids.126 Therefore, novel drug design ap-
proaches to target dimers, as well as new techniques to
determine bivalent binding, remain to be explored.

Homo- and heterodimerization likely influences the
manner in which the ECS responds to ligands. Never-
theless, unambiguous data about their physical associ-
ation in native tissues, as well as their pharmacology,
are needed to clearly identify what biological functions
are impacted by cannabinoid dimers.

Well-Established GPCRs Related
to the Cannabinoids
Certain endo-, phyto-, and synthetic cannabinoid li-
gands have been shown to modulate well-known
GPCRs. These GPCRs include members of established
families such as the opioid, serotonin, muscarinic,
dopamine, and adenosine families. For instance, the
endocannabinoid anandamide has been shown to act
at the adenosine receptor A3,

127 the muscarinic acetyl-
choline receptors M1 and M4,128 and the serotonin
receptors 5-HT1A and 5-HT2A

129 among others. In ad-
dition, phytocannabinoids such as D9-THC and CBD
have been shown to modulate the l�and d�opioid re-
ceptors,130 while other plant-derived compounds such
as CBG (cannabigerol) and D9-THCV (tetrahydrocan-
nabivarin) display activity at the 5-HT1A recep-
tor.131,132 Likewise, synthetic cannabinoids, such as
the CB1 inverse agonists taranabant (MK-0364) and
rimonabant (SR141716), have also displayed activity
in well-established targets. These include the adenosine
A3 and the tachykinin NK2 receptors.133

Some of these cannabinoid ligands have been pro-
posed to interact allosterically with the aforementioned
targets. It is worth mentioning that the efficacy that
most of these cannabinoids exhibit toward these
GPCRs is lower than the one displayed at the CB1
and/or CB2 receptors. Therefore, there is no evidence in-
dicating a necessary recategorization of these receptors.

Other GPCRs
Because of their ability to recognize lipids and their
relatively close phylogenetic relationship with CB1
and CB2, several other Class A orphan or recently
deorphanized GPCRs such as GPR40, GPR43,
GPR41, GPR120 (currently classified as free fatty acid
receptors FFA1, FFA2, FFA3, and FFA4, respectively),
GPR23, GPR92 (recently categorized as lysophosphati-
dic acid receptors LPA4 and LPA5), GPR84, GPR119,
or GPR35 have been postulated as possible canna-
binoid receptor candidates.4 However, there is no
available evidence since they do not meet some of
the criteria established by the International Union of
Pharmacology.4,70

Table 1. Cannabinoid-Related G-Protein-Coupled Receptor
Dimers Reported So Far

Heterodimers Homodimers

CB1�D2 95,97 CB1�CB1
104–106

CB1�A2A
98 CB2�CB2

107–109

CB1�5HT2A
86

CB1�AT1
87

CB1�GPR55 91

CB1�SST5 92

CB1�OX1 94

CB1�OX2 93

CB1�lOR 90

CB1�dOR 88

CB1�CB2
99

CB2�GPR55 100,101

CB2�5HT1A
102

CB2�CXCR4 103

CB1, cannabinoid receptor type 1; CB2, cannabinoid receptor type 2.

Morales and Reggio; Cannabis and Cannabinoid Research 2017, 2.1
http://online.liebertpub.com/doi/10.1089/can.2017.0036

269



Conclusions
Two cannabinoid receptors, CB1 and CB2, have been
validated at the molecular level as the main targets of
the ECS. These two GPCRs have been widely explored
in the development of numerous pathophysiological
processes, and their therapeutic potential for the treat-
ment of different diseases has been extensively con-
firmed.1 Great efforts are being made to structurally
understand these receptors; in fact, CB1 in its inac-
tive134,135 and active136 states has been recently crystal-
lized. Despite possible crystallization artifacts, these
structures will help shedding light into the complex
pharmacology of the cannabinoid receptors.
Growing evidence suggests that other cannabinoid

or cannabinoid-like receptors remain to be identified
as important players of the ECS. Different endogenous,
phytogenic, and/or synthetic cannabinoid ligands have
been reported to modulate GPCRs such as GPR18,
GPR55, GPR3, GPR6, or the AI-sensitive receptors,
among others. Pharmacological discrepancies and the
lack of selective ligands for these receptors are delaying
the characterization of their relationship with the ECS.
Consequently, no CB3 receptor has yet been con-
firmed.2

Adding more complexity to the ECS scenario, mo-
lecular interactions of the cannabinoid receptors with
other GPCRs have been reported. Co-localization or
co-immunoprecipitation data suggest the presence of
cannabinoid homo- and heterodimers in specific native
tissues. Cannabinoid receptor dimerization may not
only influence the pharmacology of these receptors
but also it may provide new signaling pathways
through the interacting protomers. However, due to
the lack of appropriate tools, there is still limited
in vivo information about the expression of cannabi-
noid dimers. Hence, it remains a challenge to elucidate
their therapeutic relevance under specific physiological
conditions.
Currently, appropriate characterization of cannabi-

noid ligands should take into account the activity at
the aforementioned GPCRs. Possible biased agonism
of ligands, allosterism, or cross-talk signaling could
be determining the intricate GPCR pharmacology. In
addition, differential coupling and regulation of G-
proteins or the formation of oligomers are among
GPCR intrinsic properties that might be delaying the
validation of novel potential cannabinoid targets.
Therefore, further research is needed to fully under-
stand the physiopathological role of these non-CB1,
non-CB2 GPCRs in the modulation of the ECS.
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Background: Marijuana extracts (cannabinoids) have been used for several millennia

for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous

molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply

studied and classified. Thus, therapeutic actions, side effects and pharmacological

targets for cannabinoids have been explained based on the pharmacology of

cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and

sometimes contradictory results suggests the existence of other cannabinoid receptors.

Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed

as putative cannabinoid receptors. According to their expression, GPR18 and GPR55

could be involved in sensory transmission and pain integration.

Methods: This article reviews select relevant information about the potential role of

GPR18 and GPR55 in the pathophysiology of pain.

Results: This work summarized novel data supporting that, besides cannabinoid CB1

and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment.

Conclusion: There is evidence to support an antinociceptive role for GPR18 and

GPR55.

Keywords: GPR18, GPR55, endocannabinoid system, cannabinoid receptors, pain

PHYSIOLOGY OF PAIN

Adaptive Function of Pain
Pain involves unpleasant sensations in response to real or potential tissue damage (Basbaum
et al., 2009). Usually, pain unleashes a signal alert to prevent extensive injury by promoting
defensive (passive and/or active) actions against the noxious (nociceptive) stimuli. Thus, pain
is considered a protective and adaptive mechanism. However, pain may become persistent
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and pathological without a recognized protective or adaptive
mechanism. When this happens, it affects the quality of life of
patients and their social environment. Hence, pathological pain
is an important medical problem causing distress and disability
that requires prompt clinical investigation and treatment (Julius
and Basbaum, 2001; Moffat and Rae, 2011). On the other hand,
considering that tissue damage is not always the main origin
of pain, cognitive perception and somatic sensation should
be considered as related but different phenomena. Cognitive
perception involves a psychological component frequently
related with emotional experiences. Therefore, pain may be
cataloged as a subjective event that requires patient awareness
(Basbaum and Woolf, 1999; Julius and Basbaum, 2001; Walker
and Hohmann, 2005).

Sensory System: Anatomical and

Functional View
The terminal endings of primary afferent neurons whose cell
bodies are located in the dorsal root ganglia (DRG) and
trigeminal ganglia (TG) are responsible for the transmission of
multiple peripheral stimuli (proprioceptive or nociceptive) to
the central nervous system (Julius and Basbaum, 2001; Walker
and Hohmann, 2005). In the case of nociceptive transmission,
two main types of pseudo-unipolar nociceptive neurons are
found in those ganglia: (1) non-myelinated small diameter and
multimodal C-fibers, which conduct electrical impulses at low
speed (∼1 m/s), sensing and transducing thermal, chemical and
mechanical stimuli; and (2) thinly myelinated Aδ-fibers that
show fast conduction velocity (∼5–30 m/s), sensing mechanical
and thermal stimuli (Moffat and Rae, 2011). These primary
afferent nociceptive fibers sense the peripheral nociceptive
environment and send the nociceptive information to the spinal
dorsal horn where they make a synapse with second order
neurons, which convey neuronal firing to supraspinal sites where
the action potentials are decoded and perceived as pain. At
the peripheral level, there are several channels and receptors
involved in the initiation of nociceptive transmission, such as the
transient receptor potential vanilloid type 1 (TRPV1) channel,
tetrodotoxin-resistant (Na+-TTXr) voltage-gated sodium (Na+)
channels, purinergic P2X receptors, serotonin (5-HT3) channel
receptor, and calcium (Ca2+) channels, among others.

The nociceptive signal from the peripheral nociceptive fibers
is directed toward a second order neuron into the spinal cord,
and then the electrical signal is conducted to the brain cortex
mainly through the antero-lateral pathway tract where the signal
is interpreted as a painful sensation (Snider and McMahon, 1998;
Steeds, 2009; Fabbro and Crescentini, 2014). In fact, several
sensorial components such as stimuli identification, location, and
emotional components are codified in the cortex (Albe-Fessard
et al., 1985). The diversity of peripheral and central regions and
mechanisms implicated made the control of nociception and
pain a complex challenge. Finally, we must keep in mind that
nociceptive transmission could be endogenously modulated. For
instance, the spinal cord, which is the first relay of nociceptive
transmission, could be modulated by diverse neuromodulators
(noradrenergic, serotonergic, opioidergic, and oxytocinergic) (for

references see Mason, 2001; Vanegas and Schaible, 2004; Loyd
and Murphy, 2009; Condés-Lara et al., 2015; Llorca-Torralba
et al., 2016) that may diminish or increase the noxious sensation.
Nevertheless, these modulatory systems exist along the noxious
pathways, including the cortical station. So, the modulation
of nociceptive transmission is complex and involves an array
of neurotransmitters, neuromodulators and a wide variety of
specific and non-specific receptors, which are dysregulated
during pathological pain states (Heinricher, 2016).

Classic Treatments for Pain
Pain treatment can be categorized as pharmacologic and non-
pharmacologic. In the first case, there are a variety of druggable
targets in both central and peripheral nervous system commonly
used for pain treatment. Analgesics are classified as: (i) non-
opioid analgesics; (ii) opioid analgesics; and (iii) adjuvant
analgesics (Figure 1). The most frequently non-opioid analgesics
used are non-steroidal anti-inflammatory drugs (NSAIDs), such
as aspirin, ibuprofen and celecoxib. The primary mechanism of
action of NSAIDs is through the inhibition of the cyclooxygenase
enzymes (COX) by consequently decreasing the action of
prostaglandins and their sensitizing properties. Opioid-like
drugs, such as morphine, ameliorate pain by modulating the
cellular excitability at the supraspinal, spinal and peripheral level
through activation of opioid receptors (μ-, δ-, and κ-opioid
receptors). Furthermore, opioids could enhance descending
inhibitory pathways and modify the sensory and affective
components of pain. In the case of adjuvants, local anesthetics
(e.g., lidocaine) stop the electrical impulse by blocking voltage-
gated sodium (Na+) channels. Tricyclic and noradrenaline-
reuptake inhibitors act by maintaining and/or augmenting the
monoamine levels in descending tracts and anticonvulsants
decrease the synaptic transmission affecting neuronal excitability
(Basbaum and Woolf, 1999; Sinha et al., 2017).

Non-steroidal Anti-inflammatory Drugs
Non-steroidal anti-inflammatory drugs are substances that
inhibit a component of the inflammatory cascade and, thence,
are an important therapeutic option for non-steroid-based
pain treatment. Briefly, these compounds (with exception
of acetaminophen) have anti-inflammatory, antipyretic, and
analgesic effects by inhibiting COX activity. At this point, we
must keep in mind that the COX enzymes have at least three
isoforms (COX-1, COX-2 and COX-3) and the non-selective
NSAIDs act to block COX-1 and COX-2 indistinctly, favoring
gastrointestinal and renal side effects (mediated by COX-1
inhibition). These side effects are particularly common in the
elderly, who are most likely to experience chronic pain (Griffin
et al., 1991; Buffum and Buffum, 2000; Horl, 2010). To minimize
the side effects, selective COX-2 inhibitors have arrived at
clinical practice. Unfortunately, several clinical trials have shown
that these inhibitors also increase harmful cardiovascular effects
(Bhosale et al., 2015).

Opioid-Based Treatments
Opioid analgesics act in the central nervous system and
are typically prescribed to patients suffering chronic pain
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FIGURE 1 | General view of the current pharmacotherapy and guidelines used to treat pain. (A) Snapshot of the two main pathways (inhibition or activation) by

which analgesic drugs induce pain relief at peripheral, spinal and supraspinal levels. (B) To treat pain, the WHO proposed the three-step analgesic ladder. Although

primarily for the management of cancer pain, it is also used as a general guideline for the management of acute and chronic non-malignant pain. A key characteristic

in this approach is the use of adjuvants∗∗ with the primary drug along the pain treatment. (C) In the case of neuropathic pain, specific clinical guidelines have been

proposed by several international and regional professional associations. Although several recent clinical trials support these guidelines, we need to keep in mind that

several factors could limit the applicability in real-world settings (i.e., neuropathic pain is a syndrome caused by diverse etiologies and different clinical

manifestations). In general terms, three-line medication has been proposed by several professional associations (including the IASP, EFNS, NICE, and CPS). In all

cases, the use of strong opioids is recommended as a 3rd-line medication agent considering the potential risk for abuse, overdose, mortality or misuse. ∗No

conclusive efficacy on neuropathic pain treatment. ∗∗Adjuvants or co-analgesics are drugs non-specifically designed (or marketed) to treat pain; some examples:

glucocorticoids, antidepressants (some SNRIs and TCAs), α2-adrenergic agonists (e.g., clonidine) and cannabinoids (including cannabis). COX, cyclooxygenase or

prostaglandin-endoperoxide synthase; CPS, Canadian Pain Society; EFNS, European Federation of Neurological Sciences; GPCRs, G protein-coupled receptors,

IASP, International Association for the Study of Pain; NICE, National Institute for Health and Care Excellence (of the United Kingdom); WHO, World Health

Organization.

refractory to non-opioid treatment. Despite their well-known
side effects (sedation, nausea, vomiting, constipation, pruritus
and respiratory depression), opioids are widely accepted as
effective for acute pain as well as cancer pain. This group
of drugs have high abuse liability and are also toxic in
elevated doses. For instance, from 1999 to 2014, more than
165,000 persons died of overdose related to opioids in the
Unites States. In 2013, an estimated of 1.9 million people
abused or were dependent on opioid pain medication (Dowell
et al., 2016). Moreover, placebo-controlled trials indicate that,
on average, opioids do not result in a clinically significant
reduction of chronic pain symptoms (Martell et al., 2007),
and even in cases where opioid analgesia is adequate for
the individual patient, analgesic effects are typically not
maintained during the long-term opioid pharmacotherapy due
to pharmacokinetic or pharmacodynamic tolerance (Ballantyne
and Shin, 2008; Dumas and Pollack, 2008). Eventually, chronic
exposure to opioids results in hyperalgesia (Chu et al.,
2008).

Antidepressants
Antidepressant drugs have been used as analgesics in
chronic pain disorders for decades (Mico et al., 2006).
Their pharmacological mechanisms have been associated
with the ability to block 5-hydroxytriptamine (serotonin
or 5-HT) and noradrenaline re-uptake and consequently
with an increase of the activity of the endogenous analgesic
system. Tricyclic antidepressants (TCAs) (e.g., amitriptyline
and imipramine), tetracyclic antidepressants (TeCAs)

(e.g., amoxapine, maprotiline) and the selective serotonin-
norepinephrine reuptake inhibitors (SNRIs) (e.g., duloxetine
and venlafaxine) are traditionally used to treat chronic pain
(Mika et al., 2013). TCAs have been shown to be effective for
different neuropathic pain conditions in randomized controlled
trials (Finnerup et al., 2010). TCAs are generally reasonably
well-tolerated but high doses are associated with a high risk of
sudden cardiac death (Ray et al., 2004). The SNRIs duloxetine
and venlafaxine have a well-documented efficacy in painful
poly-neuropathy (Finnerup et al., 2010). SNRIs are generally
well tolerated. However, the most common side-effects reported
are nausea, somnolence, dizziness, constipation, anorexia, dry
mouth, hyperhidrosis, and sexual dysfunction (Stahl et al., 2005).

Anticonvulsants
Gabapentin and pregabalin are anticonvulsants with therapeutic
activity against neuropathic pain (Rajapakse et al., 2015). Their
analgesic mechanism has been associated to their binding to
the α2δ1 subunit, which in turn blocks voltage-gated calcium
(Ca2+)-channels at presynaptic sites (Gee et al., 1996) or NMDA
receptors at post-synaptic neurons (Chen et al., 2018; Ma et al.,
2018). Both drugs are well tolerated but the most common
side-effects are somnolence and dizziness, peripheral edema,
weight gain, nausea, vertigo, asthenia, dry mouth, and ataxia
(Quintero, 2017). Other anticonvulsants used for pain relief
are carbamazepine and its analog oxcarbazepine, lamotrigine
and valproate. Lamotrigine is effective for central post-stroke
pain (Vestergaard et al., 2001) and diabetic neuropathy
(Eisenberg et al., 2001), but has failed to relieve pain in patients
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with multiple sclerosis (Breuer et al., 2007) and neuropathic pain
(Silver et al., 2007). Valproate also has a limited role in the
treatment of neuropathic pain (Drewes et al., 1994; Otto et al.,
2004; Agrawal et al., 2009).

Cannabinoids
One alternative for pain treatment came from Asia more than
3000 years ago: marijuana extracts (Li, 1974; Touw, 1981;
Jensen et al., 2015). The utility of marijuana-based drugs for
treating pain is explained by the existence of an ancient system
of cellular control named the endocannabinoid system (ECS).
Unfortunately, our knowledge about the physiology of the ECS
is only partial (see below). In this review, we summarized novel
data supporting that, apart from cannabinoid type-1 (CB1) and
cannabinoid type-2 (CB2) receptors, some putative cannabinoid
receptors (i.e., GPR18 and GPR55) may be useful for pain
treatment. This should allow researchers to focus their studies
on developing endocannabinoid-based options as analgesics and
anti-inflammatory drugs.

ENDOCANNABINOIDS AND PAIN

Endocannabinoid System: Generalities
Despite the ancient and well-known use of cannabis derivatives
for pain management, medically recognized use of these
compounds has largely subsided due to the lack of knowledge of
its molecular pharmacology, its abuse for recreational purposes
and additional undesirable effects, such as hypomotility and
hypothermia (Crawley et al., 1993), impairments in executive
function (Crean et al., 2011) and memory consolidation
(Ranganathan and D’Souza, 2006). However, the identification
of the major psychoactive component �9-tetrahydrocannabinol
(�9-THC) (Gaoni and Mechoulam, 1964), and the subsequent
isolation of cannabinoid receptors (CB1 and CB2 receptors, both
G-proteins-coupled receptors linked to Gi/o proteins) with high
expression levels in the nervous system, led to an explosion
of studies exploring the ECS and its regulatory functions in
health and disease. Briefly, the ECS consists of endogenous
cannabinoids (endocannabinoids, eCBs), cannabinoid receptors,
enzymes responsible for synthesis and degradation of eCBs and
all genes related to them (Mackie, 2008a,b).

In this context, although several cannabinoids are available,
current literature about their potential use for pain treatment
remains controversial (Davis, 2014). Indeed, as reviewed by
Nurmikko et al. (2007) and Martin-Sanchez et al. (2009), �9-
THC or �9-THC plus cannabidiol induced relief in only one
among six to nine patients (number needed to treat, NNT = 6–9).
Moreover, the number needed to harm (NNH) (motor and
cognitive dysfunction and altered perception) ranged between
five and eight. These data suggest that, apart from its low efficacy,
�9THC could have a narrow therapeutic index. Nevertheless, the
above cannabimimetic effects seem to bemainly mediated by CB1
receptor activation, suggesting that other parts of the ECS could
be druggable to treat pain. In addition, one of the physiological
functions attributed to the eCBs is to suppress pain (Walker and
Huang, 2002).

Endogenous Cannabinoids
The first eCB isolated in the brain was N-arachidonoyl
ethanolamide (AEA), or anandamide (a name taken from
the Sanskrit word Ananda, which means “bliss, joy,” and
amide) (Devane et al., 1992; Figure 2). AEA is a fatty acid
neuromodulator derived from the non-oxidative metabolism of
arachidonic acid (AA). The second endocannabinoid identified
was 2-arachidonoyl glycerol (2-AG) (Mechoulam et al., 1995;
Sugiura et al., 1995). As the search for endogenous �9-THC-like
compounds continued, other bioactive lipids were extracted from
animal tissues. These include noladin ether (Hanus et al., 2001),
virodhamine (Porter et al., 2002) and N-arachidonoyl dopamine
(NADA) (Huang et al., 2001).

The most widely investigated eCBs are anandamide and 2-
AG. Indeed, anandamide is present in about 170-fold lower
levels of brain tissue than 2-AG (Stella et al., 1997), and
both lipidic derivatives activate cannabinoid CB1 and CB2
receptors. Certainly, anandamide shows preferential affinity
for CB1 (Ki = 89 nM) compared to CB2 (Ki = 371 nM)
receptors (Gauldie et al., 2001), whereas 2-AG is considered
a full agonist at both CB1 and CB2 receptors (Sugiura and
Waku, 2000). Nevertheless, it has been shown that AEA
could activate the vanilloid type-1 receptor (TRPV1), which
contributes to the many non-CB1-mediated effects (Zygmunt
et al., 1999; Smart et al., 2000). Furthermore, AEA and other
eCBs (palmitoylethanolamide [PEA] and oleylethanolamide
[OEA]) also are agonists of the peroxisome proliferator-activated
receptor α (PPARα) (Fu et al., 2003; Bouaboula et al., 2005;
Lo Verme et al., 2005). PEA also has a well-established role
in pain modulation and inflammation in rodents (Jaggar et al.,
1998; Calignano et al., 2001; Lo Verme et al., 2005; D’Agostino
et al., 2007; González-Hernández et al., 2015), whereas in
humans PEA treatment seems to relieve neuropathic pain
(Calabro et al., 2010; Conigliaro et al., 2011; Gatti et al.,
2012).

The eCBs are atypical neurotransmitters and/or
neuromodulators. They are not stored in synaptic vesicles
and are not released from presynaptic terminals via an exocytotic
mechanism. In fact, their precursors exist in the cell membrane,
are cleaved by specific enzymes “on demand” depending on
intracellular calcium increase and are released from cells
immediately after their production. The synthesis, release
and deactivation of the endogenous cannabinoids are tightly
regulated processes. As discussion of these processes is beyond
the scope of this review, the interested reader is referred to
several reviews on the topic (Howlett, 2002; Piomelli, 2003;
Simon and Cravatt, 2006; Okamoto et al., 2007; Ueda et al., 2011;
Luchicchi and Pistis, 2012).

Cannabinoid Receptors
To date, there are two known cannabinoid receptors that are part
of the ECS, the CB1 and CB2 receptors. These receptors belong
to the 7-transmembrane G-protein coupled receptors (GPCRs)
primarily coupled to Gi/o proteins that inhibit adenylyl cyclase
(AC) and increase mitogen-activated protein kinase (MAPK)
activity downstream of β-arrestin (Howlett, 2002; Vasileiou
et al., 2013). Activation of these receptors triggers the inwardly
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FIGURE 2 | Chemical structures of some plant (A), synthetic cannabinoids (B) and endocannabinoids (C) that bind to cannabinoid receptors (D). It is interesting to

note that cannabinoids could activate intracellular pathways by direct activation of its receptors (\protect� and �) or modulate other family receptors

(\protect� and �), which contribute to the biological effect of these molecules (particularly for the endocannabinoids). In general terms, classic cannabinoid

receptors (CB1 and CB2) are GPCRs, which are canonically coupled to Gi/o proteins. Consequently, under CB1/2 receptors: (i) a decrease of adenylyl cyclase (AC)

activity; (ii) an inactivation of Ca2+ channels; and (iii) activation of inwardly rectifying K+ channels are achieved. These are signal transduction systems associated

with inhibition of neurotransmitter release. The inhibition of AC occurs via activation of Gαi-mediated signaling whereas Gαo-activation results in inhibition of

voltage-dependent Ca2+ channels (VDCCs) through the release of associated βγ subunits (apparently CB2 receptors are ineffective, compared with CB1, for shifting

ionic currents via βγ subunits). In addition to PKA inhibition, CB1/2 receptor signaling also leads to the downstream activation of MAPK which can regulate nuclear

transcription factors and consequently expression of several genes. Note that GPR18 seems to be coupled to Gi/o proteins, whereas GPR55 has been associated

with an increase of intracellular Ca2+ via Gα12/13. In the case of TRPV1 channels (a non-selective cation channel for Ca2+, Mg2+, and Na+ ions), it is well-known

that agonist can be used rationally for the treatment of pain considering that this channel under constant activation desensitizes the nociceptive neuron. Finally,

although not fully investigated, cannabinoid compounds could also activate PPARα/δ, which are involved in pain modulation and transmission.
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rectifying potassium (K+)-channels and A-type potassium (K+)-
channel currents and inhibits N-Type and P/Q type calcium
(Ca2+)-channel activity (Demuth andMolleman, 2006). The CB2
receptor is also negatively coupled to adenylyl cyclase but it seems
not to be coupled to calcium (Ca2+)-channels (Felder et al.,
1995). However, CB1 receptors can also interact with Gs and
Gq/11 under certain conditions andwith certain agonists (Mackie,
2005, 2008b). In addition, a pair of orphan-related receptors
(GPR18 and GPR55) is also described as cannabinoid putative
receptors.

CB1 receptor expression
The CB1 receptor is highly expressed in the cortex, cerebellum
and associational cortical regions of neocortex (Glass et al., 1997).
It is also expressed in the spinal dorsal horn (Sanudo-Pena et al.,
1999) and in DRG neurons (Hohmann and Herkenham, 1999;
Salio et al., 2002; Walker and Hohmann, 2005). Autonomic
nerve terminals express CB1 receptors (Ishac et al., 1996; Vizi
et al., 2001), which negatively modulate the sympathetic tone
(Marichal-Cancino et al., 2013). Low levels of these receptors
have been reported in the adrenal gland, thymus, heart, bone
marrow, tonsils, prostrate, uterus, ovary and lung (Galiegue et al.,
1995; Rice et al., 1997). A key characteristic of this receptor
is the formation of heterodimers, suggesting that intracellular
signaling could change under different conditions (Callen et al.,
2012; Laprairie et al., 2012; Straiker et al., 2012).

CB2 receptor expression
The CB2 receptor is mostly expressed on cells of the immune
system and spleen (Munro et al., 1993; Galiegue et al., 1995;
Di Marzo et al., 2004). A few studies have found CB2
immunoreactivity expression in glial and neuronal cells in some
areas of the rodent brain (Gong et al., 2006; Onaivi et al.,
2006), but this expression remains controversial (Hohmann and
Herkenham, 1999; Salio et al., 2002; Walker and Hohmann,
2005). Notably, nerve injury and inflammation upregulate
expression of CB2 receptors in neurons and microglia (Beltramo
et al., 2006; Rahn and Hohmann, 2009; Sagar et al., 2009; Hsieh
et al., 2011). Furthermore, some studies have demonstrated the
presence of CB2 receptors in the DRG and afferent fibers in the
spinal dorsal horn (Ross et al., 2001; Anand et al., 2008).

Role of CB1 and CB2 Receptors on

Primary Afferent Neurons
DRG neurons express CB1 receptors (Hohmann and
Herkenham, 1999; Ross et al., 2001; Price et al., 2003). This
receptor is synthesized in the cell neuronal bodies and inserted
on both central and peripheral terminals (Hohmann and
Herkenham, 1999; Hohmann et al., 1999). CB1 receptors
are mainly expressed in myelinated fibers of DRG neurons
(Hohmann and Herkenham, 1999; Salio et al., 2002; Bridges
et al., 2003) and also co-localize with CGRP, TRPV1 and IB4
(Hohmann and Herkenham, 1999; Hohmann et al., 1999;
Ahluwalia et al., 2000; Bridges et al., 2003; Veress et al., 2013).

Nerve injury enhances CB1 receptor expression in the DRG
and spinal cord (Lim et al., 2003; Wang et al., 2007; Shiue
et al., 2017) and other brain areas related with the emotional

component of pain (Knerlich-Lukoschus et al., 2011). These data
give an anatomical basis for the involvement of CB1 receptors
in modulating neuropathic pain. In this regard, it has been
shown that systemic and local administration of CB1 receptor
agonists produce anti-nociceptive effects in neuropathic pain
models (Herzberg et al., 1997; Fox et al., 2001; Bridges et al.,
2003; Yu et al., 2010). Moreover, deletion of CB1 receptors in
peripheral (but not at spinal or supraspinal level) nociceptors
reduced analgesia by local or systemic (but no intrathecal) CB1
receptor agonists (Agarwal et al., 2007). Thus, CB1 receptors
located at primary afferent neurons constitute the prime target
for producing cannabinoid analgesia.

Some of the peripheral antinociceptive effects of cannabinoids
may occur through interaction with another receptor system.
In this regard, an early work in rat nodose ganglion neurons
showed that cannabinoid agonists inhibited 5-HT-induced
currents in a concentration-dependent manner. The inward
current was sensitive to the serotonin (5-HT3) receptor
antagonist MDL72222, suggesting a cannabinoid-mediated
inhibition of serotonin (5-HT3) currents (Fan, 1995). Later,
in vivo experiments demonstrated that application of CB1 and
CB2 receptor agonists attenuated the activity of rat peripheral
(5-HT3) receptors on the terminals of cardiopulmonary afferent
C-fibers (Godlewski et al., 2003) through an allosteric interaction
at a (5-HT3) modulatory site (Barann et al., 2002). Moreover,
the inhibitory effects of cannabinoids may occur through
a synergistic action with opioid receptors and their signal
transduction pathways (Pugh et al., 1996; Smith et al., 1998;
Manzanares et al., 1999; Massi et al., 2003; Scavone et al., 2013) or
by a cannabinoid-mediated increase in opioid peptide synthesis
and release of endogenous opioids such as enkephalins and
dynorphins (Corchero et al., 1997a,b; Valverde et al., 2001).

The use of cannabinoid agonists as analgesic drugs is limited
due to adverse effects in the CNS (Clermont-Gnamien et al.,
2002; Attal et al., 2004; Turcotte et al., 2010). However, since
it has been demonstrated that CB1 receptors are expressed at
primary afferent neurons (Agarwal et al., 2007), the synthesis
of CB1 receptor agonists with limited CNS penetration is under
development (Clapper et al., 2010; Yu et al., 2010).

The molecular mechanisms by which the CB1 receptor has
peripheral antinociceptive effects are not completely understood.
It is known that CB1 receptor, coupled to Gi/o protein, can
modulate several cellular mechanisms, all of which can reduce
the excitability of neurons (e.g., opening of inward rectifying
potassium (K+)-channels and A-type potassium (K+)-channels,
and inhibiting N-Type and P/Q type calcium (Ca2+)-channels)
(Demuth and Molleman, 2006). Moreover, there are several
studies showing that cannabinoids can modulate the activity of
transient receptor potential (TRP) channels, which are implicated
in the modulation of pain processing. For example, multiple
studies have shown that activation of the CB1 receptor suppresses
capsaicin-induced hyperalgesia in afferent neurons (Ko and
Woods, 1999; Li et al., 1999; Johanek et al., 2001; Millns
et al., 2001; Johanek and Simone, 2004; Santha et al., 2010).
However, there are controversial findings regarding the effects
of CB1 receptor agonists on TRPV1 channels, because the CB1
receptor agonist anandamide exerts dual effects on afferent
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neurons, depending on the concentration used (Ross, 2003; Evans
et al., 2004; Sousa-Valente et al., 2014). Specifically, anandamide
produces a CB1-mediated inhibitory effect at nM concentration,
while it exerts a TRPV1-mediated stimulatory effect at higher
concentrations (μM) in primary afferent neurons (Tognetto
et al., 2001; Roberts et al., 2002; Ross, 2003; Fischbach et al., 2007).
A recent study using mouse afferent neurons has shown that
activation of CB1 receptors inhibit nerve growth factor (NGF)-
induced sensitization of TRPV1 (Wang et al., 2014), possibly
through multiple signaling pathways, including ERK1/2 and
PI3K (Zhuang et al., 2004; Stein et al., 2006; Zhu and Oxford,
2007).

The analgesic action of cannabinoids may be mediated by
the presynaptic inhibition of neurotransmitter release in sensory
neurons. For example, presynaptic CB1 receptors inhibit CGRP
and substance P (SP) release from trigeminal sensory nerves
(Akerman et al., 2004; Oshita et al., 2005). Moreover, CB1
receptor agonists reduce voltage-activated Ca2+ current in DRG
neurons (Ross et al., 2001). On the other hand, it is possible
that even more important than peripheral actions, cannabinoids
induce analgesia by interfering with circuitry in the rostral
ventromedial medulla (RVM) (Meng et al., 1998).

CB2 receptors have also been found in nociceptive sensory
neurons of rodents (Ross et al., 2001; Merriam et al., 2008;
Schuelert et al., 2010) and humans (Anand et al., 2008). Like
with CB1 receptors, nerve damage upregulates CB2 receptors in
the superficial laminae of the dorsal horn of the spinal cord and
isolated DRG of mice (Wotherspoon et al., 2005) and human
beings (Anand et al., 2008).

Although the specific role of the CB2 receptor in sensory
neurons remains unclear, several functional studies in sensory
neurons point to an antinociceptive role (Burston and
Woodhams, 2014). For instance, the putative CB2 receptor
agonist JWH-133 inhibits capsaicin-induced depolarization
of the vagus sensory nerve in guinea pigs and humans (Patel
et al., 2003). Moreover, JWH-133 reduces the response of
wide dynamic range dorsal horn neurons to both innocuous
and noxious intensities of mechanical stimuli (Elmes et al.,
2004). This compound also attenuates the capsaicin-evoked
Ca2+ response in DRG neurons in neuropathic rats (Sagar
et al., 2009), while GW818646X (other CB2 receptor agonist)
diminishes capsaicin-induced inward cation currents and
elevation of cytoplasmic Ca2+ (Anand et al., 2008). Another CB2
receptor agonist, A-836339, inhibits von Frey-evoked activity
of WDR neurons in neuropathic rats (McGaraughty et al.,
2009). Local peripheral injection of the selective CB2 receptor
agonist AM1241 into the hind paw produces antinociception
to thermal stimulation (Malan et al., 2001). AM1241 also
inhibits bradykinin-induced mesenteric afferent nerve activity
(Hillsley et al., 2007). This effect was absent in CB2 knock-
out mice and blocked by AM630, a CB2 receptor inverse
agonist. Local injection of the PEA analog N-(4-methoxy-2-
nitrophenyl)hexadecanamide induces CB1- and CB2-dependent
antinociception in rats (Roa-Coria et al., 2012). Similar results
were observed with GW833972A, another putative CB2 receptor
agonist (Belvisi et al., 2008). Interestingly, repeated systemic
administration of the CB2 receptor selective agonist AM1710

suppresses paclitaxel-induced allodynia (Deng et al., 2015).
Taken together, the data strongly suggest that CB1 and CB2
receptors have an antinociceptive role. Despite this evidence,
there are few cannabinoid-based drugs currently available for
clinical use (see below).

CB1 and CB2-Based Treatment for Pain
A randomized, placebo-controlled, double-blinded crossover
design was used to examine the effect of cannabinoids on pain.
Low, medium, and high doses of smoked cannabis (respectively
2, 4, and 8% �9-THC by weight) did not modify capsaicin-
induced pain assessed in 15 healthy volunteers 5 min after
exposure (Wallace et al., 2007). In contrast, the medium dose
of �9-THC diminished capsaicin-induced pain 45 min after
cannabis exposure. Of note, these authors found that a high
dose of cannabis increased capsaicin-induced pain (Wallace et al.,
2007). Similar results have been reported with a high dose of
nabilone (an oral synthetic cannabinoid �9-THC analog) on 41
patients with postoperative pain (Beaulieu, 2006). Another study
evaluated cannabis extract capsules (20 mg of �9-THC) in 18
healthy female volunteers (Kraft et al., 2008). Treatment with�9-
THC was not able to reduce pain induced by capsaicin, electrical
stimulation or sunburn. Taken together, it seems that �9-THC
is not effective for acute pain. A similar conclusion was reached
after analyzing a total of 611 patients in seven well-designed
studies (Stevens and Higgins, 2017).

Although the effects of cannabinoids in the acute pain setting
seem to be disappointing, results of clinical trials evaluating
cannabinoids in chronic pain are much more promising (see
Table 1). The conditions causing chronic pain varied between
studies and included neuropathy (chemotherapy, diabetes,
human immunodeficiency virus [HIV]), cancer, fibromyalgia,
multiple sclerosis and rheumatoid arthritis (Whiting et al.,
2015). Sativex (containing �9-THC:cannabidiol [CBD] in an
approximate 1:1 ratio [oral spray]) reduced neuropathic pain in
patients with unilateral neuropathic pain (Berman et al., 2004;
Nurmikko et al., 2007; Langford et al., 2013; Serpell et al.,
2014). Likewise, treatment with smoked cannabis diminished
pain in patients with multiple sclerosis (Rog et al., 2005; Corey-
Bloom et al., 2012), neuropathic pain (Wilsey et al., 2013) and
diabetic neuropathy (Wallace et al., 2015). In contrast, sativex
was ineffective in relieving chemotherapy-induced neuropathic
pain (Lynch et al., 2014). Oral administration of dronabinol,
a synthetic �9-THC analog, modestly reduced central pain in
patients with multiple sclerosis (Svendsen et al., 2004). Nabilone,
another synthetic �9-THC analog, diminished neuropathic pain
in diabetic patients (Toth et al., 2012). Oral administration of
�9-THC (ECP002A) reduced pain in patients with progressive
multiple sclerosis. Drug dosage was well tolerated and had a stable
pharmacokinetic profile (van Amerongen et al., 2017). Nabilone
is also effective in patients with medication overuse headache
(Pini et al., 2012). In contrast, nabilone did not reduce pain in
patients with fibromyalgia (Skrabek et al., 2008).

A limitation to clinical use of cannabinoids for pain is their
unfavorable side-effect profile, such as drowsiness, dizziness,
speech impediments, memory impairment and confusion.
Results of clinical trials with these agents indicate that high
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TABLE 1 | Studies about the antinociceptive effects of CB1 and CB2 receptor agonists in different pain models.

Pain model Drug treatment

and dose

Behavioral readout Route Results Proposed mechanisms

of action

Reference

Partial SNL WIN 55,212-2

0.3–10 mg/kg

CP-55,940

0.03–1 mg/kg

HU-210

0.001–0.03 mg/kg

Mechanical

hyperalgesia Thermal

hyperalgesia Tactile

allodynia

s.c. or

i.t.

They produce complete

reversal of mechanical

hyperalgesia with catalepsy

Only WIN 55,212-2

reversed tactile allodynia

and thermal hyperalgesia in

this model

Via activation of CB1

receptors in both CNS

and in the periphery

Herzberg et al., 1997;

Fox et al., 2001;

Bridges et al., 2003

SNL or carrageenan

model

AZ11713908

0.6–1.2 μmol/kg

Thermal and

mechanical

hyperalgesia

s.c. Robust analgesia in both

models

Likely via peripheral

activation of CB1

receptor

Yu et al., 2010

Mechanical stimulation,

formalin or capsaicin

models, in mice that

lacked CB1 receptor

specifically in primary

nociceptors

Endocannabinoids

(AEA and

arachidonic acid)

Thermal and

mechanical

hyperalgesia

The nociceptor-specific

loss of CB1 receptor

substantially reduced the

analgesia produced by

local and systemic but no

intrathecal, delivery of

cannabinoids

Via CB1 receptors

expressed on the

peripheral terminals of

nociceptors

Agarwal et al., 2007

SNL, carrageenan, LPS

or CIA model

URB937 1 mg/kg

URB597 10 mg/kg

PF-3845 0.1-10

μg/kg

Thermal and

mechanical

hyperalgesia, tactile

allodynia

i.p. or

i.t.

Attenuation of hyperalgesia

and partial reduction of

allodynia

Suppresses FAAH activity

and increases AEA levels

Clapper et al., 2010;

Kinsey et al., 2011;

Booker et al., 2012

FCA, partial SNL, tail flick,

hot plate or incision

model of postoperative

pain

GW405833

0.3–30 mg/kg

Mechanical

hyperalgesia and

tactile allodynia

i.p. Elicits potent and

efficacious antihyperalgesic

effects in rodent models of

neuropathic, incisional and

chronic inflammatory pain

Via activation of CB2

receptors

Valenzano et al.,

2005

FCA, chronic constriction

injury, incision model of

postoperative pain or

knee joint osteoarthritic

pain

A796260

11–35 mg/kg

Thermal and tactile

allodynia

i.p. Analgesic activity in all pain

models

Via activation of CB2

receptors

Yao et al., 2008

Partial SNL or

carrageenan model

JWH133 50–

100 nmol/mouse

Tactile allodynia i.t., i.p.

or local

Reverses partial sciatic

nerve ligation-induced

mechanical allodynia in

mice.

Via activation of central

CB2 receptors

Patel et al., 2003;

Elmes et al., 2004;

Yamamoto et al.,

2008; Sagar et al.,

2009

SNL, Formalin,

Carrageenan, FCA or

intradermal capsaicin

AM1241

0.03–6 mg/kg

Tactile and thermal

allodynia, mechanical

hyperalgesia and

nocifensive response

i.v., i.p.

or i.pl.

Analgesic effects in all pain

models

Via activation of

peripheral CB2 receptors

Malan et al., 2001,

2002; Ibrahim et al.,

2003; Quartilho et al.,

2003; LaBuda et al.,

2005; Beltramo et al.,

2006; Hillsley et al.,

2007; Yao et al.,

2008

Formalin model or

postoperative pain

HU308 30,

50 mg/kg

Nocifensive response

and actile allodynia

i.p. Reduces blood pressure,

blocks defecation, and

elicits anti-inflammatory and

peripheral analgesic activity

Via activation of CB2

receptors

Hanus et al., 1999;

LaBuda et al., 2005

FCA or chronic

constriction injury

GW842166X

0.1–0.3, 15 mg/kg

Mechanical

hyperalgesia

p.o. Very potent analgesic in

inflammatory and

neuropathic pain models

Potent and highly

selective full agonist at

the CB2 receptor

Clayton et al., 2004;

Giblin et al., 2007;

Anand et al., 2008

SNL A836339

1–3 μmol/kg

Tactile allodynia i.v. Reduces both spontaneous

and von Frey-evoked firing

of WDR neurons in

neuropathic rats

Via activation of spinal

and peripheral CB2

receptors

McGaraughty et al.,

2009

Paclitaxel-neuropathic

pain

AM1710

0.1–10 mg/kg

Mechanical and

thermal allodynia

i.p. Suppresses allodynia

generated by paclitaxel

without central side effects

Via activation of CB2

receptors

Rahn et al., 2011;

Deng et al., 2015

AEA, anandamide; SNP, spinal nerve ligation; FCA, Freud’s complete adjuvant; CIA, collagen-induced arthritis; LPS, lipopolysaccharide; s.c., subcutaneous; i.p,

intraperitoneal; i.t., intrathecal; i.v., intravenous; p.o., oral administration; i.pl, intraplantar.
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dosages are required to attain therapeutic effects and it is
difficult to reach these dosages in clinical practice (Turcotte
et al., 2010). At doses that prevent subjective effects, some
cannabinoids seem to be ineffective for controlling acute pain
(Kalliomäki et al., 2013). Several peripherally restricted CB1 and
CB2 receptor agonists have been developed to avoid these side
effects (Pertwee, 2009; Yu et al., 2010; Rahn et al., 2011; Yrjola
et al., 2013). However, additional research is needed to improve
study methodologies including the use of standard formulations
and/or dosages, the increase in the number of subjects involved,
and the general determination of the safe and effective use of
cannabis for the treatment of human pain.

Another interesting area of research has recently focused on
the evaluation of the possible synergy between cannabinoids
and opioids in the management of pain. A combination of �9-
THC and morphine diminished experimental pain in healthy
volunteers (Roberts et al., 2006). Furthermore, dronabinol
combined with opioids relieved chronic pain in patients (Narang
et al., 2008).

In the last years, pain research has focused on the inhibition of
the enzymes playing a role in EC metabolism and the elevation
of the EC tonus locally. Special emphasis is given on multi-
target analgesia compounds, where one of the targets is the
EC degrading enzyme. Dual FAAH1 /TRPV1 blockers, such
as N-arachidonoyl-serotonin (AA-5-HT) and OMDM198, are
effective in animal studies, but this multi-target strategy has not
yet reached the clinic (Maione et al., 2007, 2013; Morera et al.,
2009; Costa et al., 2010; Malek et al., 2015).

Importantly, cannabinoids interact (apart from CB1 and CB2)
with several other pharmacological receptors, including the
cannabinoid putative receptors GPR18 and GPR55 (which have
been even suggested as CBx and CB3 receptors). It is likely
that the contradictory effects observed in clinical trials using
Cannabis sp.-based treatments (e.g., �9-THC) may be due to
the high promiscuity of cannabinoids for their receptors. Before
achieving a clinical benefit from an EC system-based therapy
in pain (and other alterations), it is mandatory to detect and
understand the physiological and/or pathophysiological role of
the cellular targets involved. In this context, we provide an
analysis of the potential participation of the putative cannabinoid
receptors GPR18 and GPR55 in pain (see below).

GPR18 AND GPR55: POTENTIAL

TARGETS FOR PAIN TREATMENT

GPR55 and GPR18: Generalities
Cannabinoids interact with multiple orphan receptors
(Alexander, 2012). Different groups have discussed if G
protein-coupled receptor 18 (GPR18) and 55 (GPR55) should
be considered as novel cannabinoid receptors (Alexander,
2012; Alexander et al., 2017). Nevertheless, the nomenclature

1FAAH, Fatty Acid Amide Hydrolase Enzyme. FAAH is an integral membrane
enzyme that hydrolyzes the endocannabinoid anandamide and related amidated
signaling lipids. FAAH KO mice display elevated anandamide levels, showing
reduced nociceptive transmission in several pain models. Journal of Neurobiology
61: 149–60.

suggested by the Nomenclature Committee of the Union of
Basic and Clinical Pharmacology (NC−IUPHAR) Subcommittee
on Cannabinoid Receptors (Pertwee et al., 2010) decided that
all criteria to consider these as novel cannabinoid receptors
remain incomplete and, accordingly, they were classified again
as orphan receptors (Alexander et al., 2017). Independently
of the official decision, these receptors clearly interact with
cannabinoids directly or indirectly. Expression of GPR18 seems
to be rich in the testis, spleen, peripheral blood leucocytes and
lymph nodes (Gantz et al., 1997; Vassilatis et al., 2003; Rosenkilde
et al., 2006). Its expression suggests a potential role in the
control of immune system activity (e.g., leucocytes migration)
(Burstein et al., 2011) and accordingly inflammation. Moreover,
activation of GPR18 by N-arachidonoylglycine leads to apoptosis
of inflammatory leukocytes (Burstein et al., 2011; Takenouchi
et al., 2012), which in turn reduces local inflammation. There
is also evidence that activation of GPR18 lowers intraocular
pressure in mice (Miller et al., 2016). All these findings suggest
a physiological function of NAGly via GPR18 in different
inflammatory processes.

Knowledge about GPR55 physiology in the nervous system
has increased recently (Marichal-Cancino et al., 2017). This
receptor has been suggested as a potential therapeutic target
in Parkinson’s disease due to a possible alteration on its
expression in the basal nuclei (Celorrio et al., 2017), where
it is related to procedural memories (Marichal-Cancino et al.,
2016). GPR55 is also expressed in the hippocampus, where
it has a role in spatial navigation (Marichal-Cancino et al.,
2018). Furthermore, it is possible that some antiepileptic
actions observed with phytocannabinoids involve the blocking
of GPR55 (Kaplan et al., 2017). However, the above is a
topic under study and findings are preliminary. Despite all
advances in the physiology of GPR55, several actions in different
areas of the CNS remain obscure (Marichal-Cancino et al.,
2017). Interestingly, PEA (a cannabinoid related compound)
is currently used to treat pain and inflammation. Like other
cannabinoid related molecules, PEA has a very complex
mechanism of action, which includes direct and/or indirect
interaction with CB1, TRPV1, PPAR, GPR55 and GPR18, among
other receptors (Keppel Hesselink et al., 2014). Certainly, PEA
has high affinity for GPR55 as a full agonist (Ryberg et al.,
2007). Thus, it is necessary to investigate whether GPR55 is
involved in the analgesic and anti-inflammatory actions of
PEA.

Actions of GPR18 and GPR55 and Their

Potential Role in the Pharmacology of

Pain
GPR18 and GPR55 are differentially expressed in the central
and peripheral nociceptive systems of rodents and humans,
suggesting a potential role in the modulation of nociceptive
pathways (DRG TXome Database)2(Ray et al., 2018). In general,
GPR18 is less studied compared to GPR55 (see below). This
is partly due to the fact that signaling mechanisms and

2http://www.utdallas.edu/bbs/painneurosciencelab/DRGtranscriptome/search.
php
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endogenous ligands are still controversial (Alexander et al.,
2017). GPR18 has been suggested to modulate, depending on the
ligand, both Gαi/o and Gαq/11 transduction pathways (Console-
Bram et al., 2014). In this sense, NAGly is proposed as the
endogenous GPR18 ligand (Kohno et al., 2006; McHugh et al.,
2010). However, a recent study suggests that NAGly increases
Ca2+ mobilization and MAPK activity in HAGPR55/CHO cells
(Console-Bram et al., 2017). This response is attenuated by
ML193 (GPR55 receptor antagonist) suggesting that NAGly-
mediated effects depend on GPR55 activation. Moreover, an
independent study reported that NAGly does not activate
GPR18 receptors (Lu et al., 2013). In support of this,
there is a previous observation showing that NAGly does
not activate GPR18 (Yin et al., 2009). These discrepancies
could be partially explained by the fact that NAGly is also
a reversible and non-competitive inhibitor of the glycine
transporter type 2 (GlyT2) (Wiles et al., 2006). In line with
this, it has been shown that NAGly enhances inhibitory
glycinergic transmission synaptic within the superficial dorsal
horn by blocking glycine uptake via GlyT2 and decreasing
excitatory NMDA-mediated synaptic transmission (Jeong et al.,
2010).

It has been proposed that both GPR18 and GPR55 could play
a role in the modulation of acute and chronic pain (Table 2).
In animal models of inflammatory pain, intraplantar NAGly
administration attenuates formalin-induced pain (Huang
et al., 2001). Moreover, intrathecal administration of NAGly
reduces complete Freund’s adjuvant (CFA)-induced mechanical
allodynia and thermal hyperalgesia by a CB1-independent
mechanism (Succar et al., 2007). Additionally, NAGly increases
the production of 15-deoxy-�13,14-prostaglandin J2 and lipoxin
A4, leading to a reduction in the migration of inflammatory
cells into the area of acute inflammation (Burstein et al.,
2011). GPR18 is expressed on human leukocytes, including
polymorphonuclear neutrophils (PMN), monocytes, and
macrophages and, furthermore, its activation regulates leukocyte
trafficking during acute inflammation (Chiang et al., 2015).
GPR18 and TRPV1 are expressed in chondrocytes within
the deep zone of cartilage in patients with osteoarthritis
(OA) (Dunn et al., 2016), suggesting that GPR18 presence
in degenerate tissues could be a target for treatment with
cannabinoids.

Nerve injury enhances expression of GPR18 mRNA in
spinal cord and/or the DRG of rats, suggesting a potential
role of GPR18 in the modulation of neuropathic pain
(Malek et al., 2016). Accordingly, intrathecal administration
of NAGly reduces mechanical allodynia in rats subjected to
spinal nerve ligation and this effect is not prevented by
pretreatment with either the CB1 or CB2 receptor antagonists
AM251 and SR144528, respectively (Vuong et al., 2008).
Although NAGly has been proposed as an endogenous
GPR18 ligand, recent studies have found that resolvin D2
(RvD2) also activates GPR18 receptors (Chiang et al., 2015;
Zhang et al., 2016). RvD2 activates recombinant human
GPR18 in a receptor- and ligand-dependent manner and
promotes the resolution of bacterial infections and organ
protection (Chiang et al., 2015). Moreover, RvD2 enhances

endothelial cell migration in a Rac-dependent manner via
GPR18, and GPR18-deficient mice have an endogenous defect in
perfusion recovery following hind limb ischemia (Zhang et al.,
2016). In rodents, intrathecal administration of RvD2 reverses
CFA-induced inflammatory pain, prevents formalin-induced
spontaneous pain, and also reverses C-fiber stimulation-evoked
long-term potentiation in the spinal cord (Park et al., 2011).
However, RvD2 antinociceptive effects seem to be mediated
by additional mechanisms involving the inhibition of transient
receptor potential (TRPV1 and TRPA1) channels (Park et al.,
2011). Undoubtedly, more studies to redefine the signaling
pathways, ligands and physiological functions of GPR18 are
needed.

GPR55 has been found highly expressed in large-diameter
neurons, but present at low levels in small-diameter neurons
of the mouse DRG (Lauckner et al., 2008). Indeed, reports
suggest that GPR55 plays a role in modulating nociceptor
excitability. Activation of GPR55 with lysophosphatidylinositol
(LPI) promotes excitability in cultured large DRG neurons
by increasing intracellular Ca2+ (Lauckner et al., 2008)
and also produces mechanical hypersensitivity in mice
after local peripheral administration (Gangadharan et al.,
2013). Although there is a general consensus that LPI acts
as an agonist for GPR55, it has been also reported that
LPI modulates large-conductance Ca2+-activated potassium
(K+) channels (BKCa) (Bondarenko et al., 2011a,b), 2-pore
domain potassium (K+)-channels (TREK-1) (Maingret et al.,
2000; Danthi et al., 2003) and the potassium (K+) channel
subfamily K member 4 (KCNK4 or TRAAK) (Maingret et al.,
2000), transient receptor potential (TRPV2; Monet et al.,
2009; Harada et al., 2017), and transient receptor potential
(TRPM8; Vanden Abeele et al., 2006; Andersson et al., 2007)
channels. All these channels are expressed in the primary
nociceptive pathway and their activation either modulates or
amplifies sensory information (Basbaum et al., 2009). Therefore,
the pharmacological data with LPI should be taken with
caution. Furthermore, LPI is not the sole GPR55 activator.
The hydrophilic glycerophospholipid lyso-phosphatidyl-β-D-
glucoside (LysoPtdGlc) was recently reported as a regulator
of the nociceptive central axon projections by activating
GPR55 with high affinity (Guy et al., 2015). This indicates that
glycerophospholipids could play a role modulating nociceptive
inputs in vivo.

Nerve damage increases GPR55 mRNA expression in the
spinal cord and DRG of rats (Malek et al., 2016) suggesting
the participation of these receptors in neuropathic pain. It has
been shown that the synthetic GPR55 agonist O-1602 reduces
movement-evoked firing of nociceptive C fibers in a rat model
of acute joint inflammation, and this effect is blocked by the
GPR55 receptor antagonist O-1918 (Schuelert and McDougall,
2011). O-1602 also has protective effects in a murine model of
experimentally induced colitis, but this anti-inflammatory effect
could not be mediated by GPR55 (Schicho et al., 2011).

On the other hand, other studies have reported that GPR55
knockout mice show a reduced tumor-induced mechanical
hypersensitivity (Gangadharan et al., 2013). GPR55 agonist
O-1602 produces pronociceptive effects in neuropathic rats
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TABLE 2 | Possible role of GPR18 and GPR55 receptors in different animal models of pain.

Pain

model/specie

Drug

treatment

Dose Route Outcome Proposed mechanisms

of action

Reference

Formalin /rat NAGly 275 nmol i.pl. Suppression of phase II

response

Non-CB1 mediated

mechanism

Huang et al.,

2001

CID16020046 10 μM Intra-ACC Attenuation of phase II

response Reduction of

p-ERK in the ACC

Attenuation of spinal c-fos

expression in the spinal

cord

Endogenous activation of

GPR55 signaling.

Modulatory effects of

GPR55 signaling in the

ACC on the descending

pain pathway

Okine et al., 2016

Formalin/mouse N/T N/T N/T No differences between WT

and GPR55−/− mice in

mechanical, cold and heat

hypersensitivity

Non-GPR55 mediated

mechanism

Carey et al., 2017

CFA /rat NAGly 70–700 nmol i.t. Attenuation of mechanical

and thermal hyperalgesia

Non-cannabinoid mediated

mechanism

Succar et al.,

2007

CFA/mouse N/T N/T N/T Absence of mechanical

hyperalgesia in GPR55−/−
mice

GPR55 signaling Staton et al.,

2008

Capsaicin/mouse N/T N/T N/T GPR55−/− and WT mice

display comparative levels

of capsaicin-evoked

nocifensive behavior,

mechanical and thermal

hyperalgesia

Non-GPR55 mediated

mechanism

Carey et al., 2017

PNL/rat

PNL/Mouse

PNL/Mouse

NAGly N/T

N/T

70–700 nmol

N/T N/T

i.t. N/T N/T Reduction of mechanical

allodynia Absence of

mechanical hyperalgesia in

GPR55−/− mice

GPR55−/− and WT mice

develop similar levels of

hypersensitivity to

mechanical, heat, and cold

stimulation

CB1 and CB2 independent

mechanism GPR55

signaling Non-GPR55

mediated mechanism

Vuong et al.,

2008 Staton

et al., 2008 Carey

et al., 2017

CCI/rat O-1602

AA-5-HT

1–10 mg/kg

100–1000 nM

i.p. i.t. Pronociceptive properties in

neuropathic pain induced

by O-1602 (atypical

cannabinoid) Upregulation

of CB2, GPR18, and

GPR55 mRNA in the spinal

cord and/or DRG after CCI.

Increased pain threshold to

mechanical and thermal

stimuli following AA-5HT

Pronociceptive role of

GPR55. Possible role of

GPR18 Involvement of

CB2, GPR18 and GPR55

receptors

Breen et al., 2012

Malek et al., 2016

Paclitaxel/mouse N/T N/T N/T GPR55−/− and WT mice

develop similar levels of

paclitaxel-induced

mechanical and cold

allodynia

Non-GPR55 mediated

mechanism

Carey et al., 2017

LPI-induced

pain/mouse

LPI 2 pmol–

6 nmol

i.pl. WT mice: Sensitization

against non-painful and

painful mechanical stimuli.

GPR55−/− mice: reduction

of LPI-induced acute

allodynia, attenuation of

LPI-induced long-term

mechanical hyperalgesia

GPR55, Gαq/11, and Gα13

pathways, and their

signaling via RhoA-ROCK

as well as ERK1/2

Gangadharan

et al., 2013

Hot plate

test/rat

LPI 1 μg Intra-PAG Reduction in nociceptive

threshold that is abolished

by a pretreatment with

ML-193, a GPR55

antagonist.

Pro-nociception mediated

by GPR55 activation at

central levels. Blockade of

GPR55 signaling in the PAG

may promote analgesia

Deliu et al., 2015

CFA, Complete Freund’s Adjuvant; PNL, partial ligation of the sciatic nerve; CCI, chronic constriction injury; NAGly, N-arachidonylglycine; LPI, lysophosphatidylinositol;

AA-5-HT, N-arachidonoyl-serotonin; WT, wild type; ACC, anterior cingulated cortex; PAG, periaqueductal gray; N/T, not tested.
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(Breen et al., 2012). At the central nervous system, local injection
of the GPR55 putative inverse agonist CID16020046 into the
anterior cingulated cortex (ACC) produces antinociception in
the formalin test by decreasing the extracellular signal-regulated
kinase 1/2 (ERK1/2) phosphorylation in the ACC and c-fos
mRNA expression in the spinal cord (Okine et al., 2016).
Moreover, LPI administration into the periaqueductal gray (PAG)
attenuates nociceptive latencies in a hot-plate test and also
produces a concentration-dependent increase in intracellular
Ca2+ levels in dissociated rat PAG neurons expressing GPR55
mRNA (Deliu et al., 2015). Although the exact mechanisms
underlying the GPR55-mediated antinociceptive effects remain
to be elucidated, it has been suggested that some cytokines
(e.g., IL-4 and IL-10) are responsible for the modulatory effects
observed during inflammatory pain conditions (Staton et al.,
2008).

Using cell lines, other studies have shown that GPR55 couples
to Gα13 and activates GTPases RhoA, Cdc42 and Rac1 (Ryberg
et al., 2007; Henstridge et al., 2009). Some efforts have tried to
elucidate the G-protein signaling pathway activated by GPR55
agonists in vivo. Using pharmacological and conditional genetic
tools inmice, the research group headed by Rohini Kuner showed
that LPI-mediated hypersensitivity depends on the activation of
Gα13 and Gαq/11, which in turn activate ERK1/2 (Gangadharan
et al., 2013). In support of these results, it has been shown that LPI
produces β-arrestin trafficking, MAPK, ERK1/2 phosphorylation
and activates the G-protein signaling by a PKCβII-independent
mechanism (Oka et al., 2007; Kapur et al., 2009). Interestingly,
the effects on β-arrestin GPR55 complex formation, ERK1/2
phosphorylation and internalization of GPR55 are blocked by
the GPR55 antagonist/partial agonist CP55,940 (Kapur et al.,
2009), suggesting that a complex mechanism triggered upon
GPR55 activation modulates G-coupled signaling pathways.
Moreover, it has been documented that activation of GPR55
leads to additional p38 MAPK (Oka et al., 2010) and AKT
phosphorylation (Pineiro et al., 2011). These events are related
to the subsequent activation of several major transcription
factors such as the nuclear factor of activated T-cells (NFAT)
(Waldeck-Weiermair et al., 2008; Henstridge et al., 2009, 2010),
CREB (Henstridge et al., 2010), NF-kB (Waldeck-Weiermair
et al., 2008; Henstridge et al., 2010), and ATF2 (Oka et al.,
2010).

Certainly, there is extensive literature indicating that signaling
pathways involving MAPK and transcription factors such as
NF-κB play an important role in pain (Niederberger and
Geisslinger, 2008; Ji et al., 2009). However, it is worth
emphasizing that most of the signaling mechanisms reported
for GPR55 receptors have been obtained in vitro using cell
lines and may not be completely translated to in vivo models.
This is particularly important due to the recent discrepancies
in the pain field using GPR55 knock-out mice. It was originally
reported that mice lacking GPR55 show no differences in
baseline pain responses compared to wild-type mice, but
mechanical hyperalgesia is absent following either intraplantar
CFA injection or partial nerve ligation (Staton et al., 2008).
However, a recent study using knock-out mice suggests that
GPR55 is dispensable for the development of inflammatory

and neuropathic pain (Carey et al., 2017). According to
these authors, GPR55 knock-out mice have no differences
in mechanical, cold or heat hypersensitivity after intraplantar
capsaicin, formalin or CFA injection. Likewise, development and
maintenance of neuropathic pain after paclitaxel administration
or partial nerve ligation is undistinguishable between GPR55
knock-out and wild-type mice. While the explanation for
this discrepancy is not clear, Carey et al. have suggested
that these differences could be due to multiple factors,
including the way the GPR55 knock-out mice were made, the
battery of tests used, freely moving animals versus restrained
animals during the test, sex differences, body weight, and
age of animals. Evidently, more behavioral studies using
controlled experimental conditions will be necessary to define
the importance of GPR55 receptors in modulating pain
responses.

CONCLUSION

Cannabinoids, via CB1 receptors, mainly induce inhibition
of pain integration that seems to be useful particularly in
the treatment of chronic pain, whereas CB2 stimulation
mainly causes antiinflammation via negative modulation of the
immune system. GPR18 and GPR55 have a role in integrating,
transmitting and/or alleviating pain. However, further studies
using more selective pharmacological tools combined with
genetic tools to generate cell-specific ablation or reactivation of
GPR18/GPR55 receptors in specific cell populations will help to
clarify the functional role of these receptors to take advantage of
them in therapeutics.
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Cannabinoids, via CB1 receptors, mainly induce inhibition
of pain integration that seems to be useful particularly in
the treatment of chronic pain, whereas CB2 stimulation
mainly causes antiinflammation via negative modulation of the
immune system. GPR18 and GPR55 have a role in integrating,
transmitting and/or alleviating pain. However, further studies
using more selective pharmacological tools combined with
genetic tools to generate cell-specific ablation or reactivation of
GPR18/GPR55 receptors in specific cell populations will help to
clarify the functional role of these receptors to take advantage of
them in therapeutics.
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What are they? Cannabinoid
receptors are G protein-
coupled receptors with 7 trans-
membrane domains. They are
expressed on the cell surface
with their binding domain
exposed to the extracellular
space. To date, two
cannabinoid receptors have
been cloned, CB1 and CB2.
Recent evidence suggests that
a third ‘CB3’ receptor is out
there, waiting to be cloned.

Where are they? CB1
receptors are found in many
brain regions including cortex,
hippocampus, nucleus
accumbens, basal ganglia,
hypothalamus, amygdala,
cerebellum and retina. CB2 is
localized to immune system
cells. Experiments in the
hippocampus suggest that
‘CB3’ is there, but the presence
or absence of ‘CB3’ in other
brain regions remains to be
determined.

What turns them on? Δ9-
tetrahydrocannabinol (THC), one
of the psychoactive ingredients
in marijuana, does a pretty good
job, but more potent agonists
such as the synthetic compound
WIN55,212-2 (WIN), are
available. Endocannabinoids
also bind and activate
cannabinoid receptors.

What are endocannabinoids?
THC and WIN are examples of
exogenous cannabinoid
receptor ligands, but the body
makes its own ligands, too, and
these are referred to as
endocannabinoids. Two of the
best-characterized endo-
cannabinoids are anandamide
and 2-arachidonylglycerol (2-
AG). Other candidate endo-
cannabinoids have been
identified but which, if any, of

these compounds are
physiologically relevant
cannabinoid receptor ligands is
still an open question.

Events downstream of
cannabinoid receptors... Like
other G protein-coupled
receptors, binding of ligand to
cannabinoid receptors causes
dissociation of the α and βγ G
protein subunits from the
cannabinoid receptor and from
each other. Release of the α
subunit leads to inhibition of
adenylyl cyclase, reducing
cAMP levels in the cell. In
neurons dissociated βγ subunits
directly inhibit calcium channels
that control neurotransmitter
release. Effects on other ion
channels have also been
reported. In addition, there is
evidence of a direct inhibitory
effect on the transmitter release
machinery.

When do they get activated?
Endocannabinoids are released
in a calcium-dependent manner
from dendrites, and maybe
other parts of the cell, when
neurons are activated. Endo-
cannabinoids then travel
backwards across the synaptic
cleft, acting as retrograde
messengers at cannabinoid
receptors that are present on

nearby presynaptic axon
terminals.

What effect does this have?
Action potential-evoked
neurotransmitter release is
suppressed when cannabinoid
receptors are activated. In the
hippocampus, axon terminals
that release inhibitory neuro-
transmitter are much more
sensitive to endocannabinoids
than terminals that release
excitatory neurotransmitter, so
moderate neuronal activity
may preferentially reduce
inhibitory input, while stronger
activity could suppress both
excitatory and inhibitory
inputs. In the cerebellum,
excitatory and inhibitory inputs
seem to have about the same
sensitivity to
endocannabinoids.

What happens if we don’t
have them? We don’t know
what happens in humans, but
mice that have no CB1
receptors have improved
memory, decreased appetite, a
decreased tendency to become
addicted to opiates, an
increased sensitivity to pain,
reduced locomotor activity, and
shorter life spans than normal
mice, suggesting a role for
endocannabinoids in each of
these systems.
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Figure 1. Depolarization of a postsynap-
tic neuron releases endocannabinoids.
Binding of ligand to the CB1 receptor
causes dissociation of the α and βγ sub-
units (red) of the G protein that is
coupled to the receptor. The α subunit
inhibits adenylate cyclase while the βγ
subunits inhibit voltage-dependent
calcium channels (pink) that control
release of neurotransmitter-filled vesi-
cles (yellow).
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