

Re-Imagining the Internal Combustion Engine

Alexander Shkolnik, Co-Founder & CEO info@liquidpiston.com

Why a new engine? They've been around for 150 years

Today's engines only ~ 20% efficient

Diesels are heavy!

LPI-X engine could achieve 40-50% LPI-X engine is up to 10x smaller / lighter

A new engine? Who would care?

LPI Technology & X - Engine

Major Customer Benefits (Eg.)

New thermodynamic cycle

+
Novel rotary engine embodiment
+
scalable from 1hp to > 1000hp

Better fuel economy & more power for a variety of applications

Increase UAV mission duration by 2x

Increase fuel efficiency & lower cost of hybrid electric vehicles

Higher efficiency, multi-fuel generator sets

LiquidPiston Overview

Disruptive technology

Very strong IP position

Focused go-to-market strategy

- Capital-lite business model
- LIQUIDPISTON

- New thermodynamic cycle & innovative rotary internal combustion engine
 - Up to 2x more efficient (compared to automotive gasoline engine)
 - Up to 10x smaller and lighter (compared to a diesel engine)
- 27 patents: 16 granted/allowed; 11 pending; rich pipeline
- Initial focus on < 100 HP "niche" markets: \$100B+ market
- First customers: US military (generators, APUs, and drones)
- 2nd phase customers (targeted): small-engine manufacturers (handheld power equipment, generators, mopeds)
- Future: Scale to other power products, including powertrains for Range-extending Electric Vehicles (REVs)
- License to customers & partners to manufacture
- Revenue model: Licenses, royalties & engineering services

LiquidPiston Overview – *continued*

Traction

- Two DoD development contracts issued Sept 2016 for \$5.5M, representing non-dilutive development funding
 - In partnership with two major Prime Contractors
 - Objectives include field tested generators in 24 months
- Multiple potential partners in discussion military & commercial

Superior investment return

- \$100M+ projected revenue run-rate within 5 years
- 50%+ projected EBITDA
- Multiple exit possibilities

Investment required

- Currently seeking capital to augment 2016 seed round
- \$5 \$10M all in new capital required to reach cash flow breakeven. Company expects to raise Series A financing (\$5-7M) in early 2017.

Team

Dr. Alexander Shkolnik - Co-Founder & CEO

- PhD in Computer Science from MIT;
 - Team lead on MIT DARPA LittleDog program;
- Technical focus on leading teams in modeling dynamic systems, optimization and controls.

Dr. Nikolay Shkolnik – Co-Founder & CTO

- PhD in Physics from UConn
- >25 patents: engines, fuel cells, super caps, energy systems, robotics
- Former Clean Energy Program Director, GEN3;
 - Motorola award for Creativity
- TRIZ expert

Per Suneby, VP of Corporate Development

- MBA, Harvard; BASc Electrical Engineering, U. British Columbia
- Seasoned tech & clean tech startup executive
- NE Clean Energy Fellow

Team of seven w/engine design & testing experience

Directors

Dr. Tony Tether, Retired Director of DARPA; VP SAIC, VP Ford Aerospace, Director of National Intelligence. Invested >\$25 B while at DARPA.

Dr. Alexander Shkolnik,

Dr. Nikolay Shkolnik,

Per Suneby

Advisors

Thomas Howell, Director, New Technology, Jacobs; Chief Engineer, Engines - Ricardo

Dr. S.M. Shahed, Retired Director of Southwest Research Institute (SWRI); V.P of Engineering at Honeywell; President of the Society of Automotive Engineers (SAE)

James Marsh, Retired Director of ATL, Lockheed Martin

Dr. Sam Kogan & Alex Lyubomirsky, GEN3 Partners / TRIZ

Status: LPI-X Mini installed in small vehicle demo (go-kart)

70 cc 3-5 HP X-Mini Prototype Rotary Engine

Engine powering go-kart: https://vimeo.com/170502635 https://vimeo.com/164412266

Engine assembly, running in dyno: https://vimeo.com/99002635

LPI-X Engine technology

Potential Engine Benefits

High-efficiency

- 75% theoretical thermal cycle efficiency of HEHC
- 57% expected realized peak brake efficiency
- 50% expected realized partial load brake efficiency

Compact and lightweight

- > 5x smaller, > 2x lighter than comparably powered engines
- High power density potential of up to 2 HP/Lb (3.3kW/kg)

Multi-fuel capable

Including diesel, gasoline, natural gas, JP-8

Scalable

From 1 to over 1000 HP; Prototypes from 3 to 70 HP

Low cost at volume

Few moving parts and materials

Quiet

- No poppet valves
- Exhaust turbulence minimized by over-expansion

Low-vibration

Only two primary moving parts, optimally balanced

Low temperature exhaust

Due to overexpansion

It's not a Wankel! (More like a Wankel inverted inside-out....)

Wankel Rotary Engine (e.g. Mazda RX-8)

- Otto cycle gasoline only
- Efficiency < 25%
- Sealing/lubrication issues
- + High power density

LPI X - Engine

- + HEHC cycle diesel / gasoline / multi-fuel
- + Efficiency > 40% (range depends on size)
- + Sealing/lubrication solved
- + High power density

See: http://liquidpiston.com/technology/how-it-works/

Competitive Advantages

TECHNOLOGY	Power Density (kW/m³)	Specific Power (kW/kg)	Energy Capacity (Wh/kg)	Efficiency	Cost of Ownership
Battery - Powered Devices					
OPOC Engines					
Micro - Turbines					
Fuel Cells					
LPI X- Engines					

Great	DK Bad
-------	--------

Extensive IP portfolio

- Comprehensive patent coverage
- 16 patents issued/allowed, 11 pending (worldwide/PCT)
- Defensible & extensible
- IP strategy supports licensing model

Engine demonstrators: 3 HP through 220 HP; gasoline, kerosene, JP8, diesel

X1 Diesel/JP-8 Engine (Alpha Prototype, 1.6L)

X Mini v3 Gasoline Engine Prototype (Beta Prototype, 70cc / 2-3kW) Image: Jalopnik.com

X4 .33L, 30 kW Concept (For DARPA / drones / generators / REVs)

X Engine Technology:

- Scalable
- Multiple fuel options
- Versatile most piston engine technologies are transferable, e.g., direct injection, supercharging, etc.

Demonstrated:

- Working running engine prototypes, fully cooled, hours of continuous operation
- 50% fuel efficiency improvement
- 50% power density improvement
- Beta prototype complete

Initial markets > \$100M

Sub -100HP engines in sectors demanding light-weight, compact, quiet, low-vibration, and/or fuel-efficient engines

		<u>Anı</u>	nual \$	
×	Unmanned aerial vehicles	,	\$4B	
÷	Auxiliary power units/gensets		\$8B	
	Military apps (gensets, ATVs, robots)		NA	
	Range extenders for EVs		\$40B	(est. 2025)
×	Mopeds, small motorcycles		\$22B	
÷	Lawn & garden equipment		\$7B	
	Small and medium boats		\$9B	

Currently in discussions with potential partners for co-development & technology licensing of engine for specific market applications

Markets: Long-term > \$400B

In addition to initial markets:

		Annual \$
•	Automotive and truck	\$290B
	Off-highway ¹ Diesel	\$46B
•	Military aircraft:	\$29B
•	Large watercraft and boats	\$19B
•	Stationary diesel	\$13B
	Helicopters and jets	\$13B

¹ Diesel includes agriculture, construction, logging, marine, mining, rail

LPI & partners can choose which segments of >\$400B global annual engine markets to address

Why the military as first customer?

- U.S. Military is the LARGEST consumer of oil in the world. 100 M barrels / year
- 99 gallons to deliver 1 gallon to front line + Cost measured in lives
- JP8 / Diesel engines are HEAVY

- Strong fit with LPI engine benefits
- Many applications UAVs, rangeextended vehicles, generator sets, etc
- A single generator contract can be up to \$200 - \$300M over 5 years. Different contract for each generator rating – 2kW, 3 kW, etc

DoD contract to develop 40 HP diesel engine

- \$2.5M base contract won Sept 2016, potential for \$7M in follow on contracts
- Example Applications:
 - 1. Today, 30kW Military generators weigh 2750 lbs → LiquidPiston could reduce this to ~200 lbs.
 - 2. Drones need efficient, compact power → LiquidPiston engine could double the mission range of a drone with same amount of fuel

40 HP (330cc) X4 concept

Dr. Tony Tether, retired Director of DARPA, has joined LiquidPiston Board of Directors

DoD contract to develop 3 kW diesel generator

\$3M potential program, in partnership with 2 major prime contractors

With X-Engine: 3 kW, 30 lbs.

Future Applications: Range-extended Electric Vehicles (REVs)

LPI engine platform helps enable cleaner, smarter auto future:

- Likely powertrain solution: range-extended hybrid power train (~30+ mile electric range, battery charged by range extender) -- small engine required (30-60 HP)
- Higher well-to-wheel energy efficiency & lower CO₂ footprint vs. charging EV with U.S. power grid
- Lower cost of ownership to consumers vs. all-electric
- Gasoline, diesel & natural gas usable for hybrid electric transportation with same engine platform

Future applications: Natural gas cogeneration (MicroCHP)

26% electrical efficiency

41% electrical efficiency

LPI-X Engines: Two initial product pathways

Objectives: Next 6 months

Baseline durability test on X-Mini + 1 refinement iteration

Baseline emissions test on X-Mini: Hydrocarbons, CO (NO_x tbd)

Develop benchmark testing protocol with partner

DoD:

2 development programs underway, meet milestones

Series A financing: \$5 – \$7M targeted for Q1 2017

- Goal: 1+ strategic partner(s) participating in Series A and/or NRE licensing MOU
- Objective of Series A will be to accelerate commercialization (beyond military application), and take company to cash-flow positive

Summary

- Game changing technology
- Very strong IP position: 27 patents issued and pending
- Leverage past investment & existing development / test infrastructure: 8 years,
 \$19M invested
- Beachhead customer identified: U.S. Military / DoD. 2 contracts won for \$5.5M
- Multiple potential partners several in discussion
- Capital efficient business model: Licensing, engineering services, avoiding Detroit / primary propulsion initially
- Innovative startup team proven & experienced, connected advisors and BoD members
- Multiple exit opportunities: 3 5 years

