EX-99.1 2 a12-12642_1ex99d1.htm EX-99.1

Exhibit 99.1

 

43-101 TECHNICAL REPORT,

PREFEASIBILITY STUDY AND MINERAL RESERVE ESTIMATE FOR

TIMMINS WEST MINE,

TIMMINS, ONTARIO, CANADA

 

NTS: 42-A-05,

Longitude: 81.55° West, Latitude: 48.32° North

UTM (NAD 83, Zone17): 458,915m East, 5,359,043 North

 

PREPARED FOR:

 

LAKE SHORE GOLD CORP.

181 University Ave, Suite 2000

Toronto, Ontario, Canada, M5H 3M7

 

 

Prepared by:                      Dean Crick, P. Geo.

Ralph Koch, P. Geo.

Robert Kusins, P. Geo.

David Powers, P. Geo.

Brian Buss, P. Eng.

 

Date:

 

May 14, 2012

 

Effective Date: March 29, 2012.

 



 

TABLE OF CONTENTS

 

1.0

SUMMARY

1

2.0

INTRODUCTION

11

 

2.1

LIST OF QUALIFIED PERSONS

11

 

2.2

UNITS AND CURRENCY

12

 

2.3

LIST OF ABBREVIATIONS

12

 

2.4

DEFINITIONS

15

 

 

2.4.1

Mineral Resource

15

 

 

2.4.2

Inferred Mineral Resource

15

 

 

2.4.3

Indicated Mineral Resource

15

 

 

2.4.4

Measured Mineral Resource

16

 

 

2.4.5

Mineral Reserve

16

 

 

2.4.6

Probable Mineral Reserve

16

 

 

2.4.7

Proven Mineral Reserve

16

 

2.5

GLOSSARY

16

 

 

2.5.1

General Glossary

16

 

 

2.5.2

Lake Shore Gold Mine Site Terminology

18

 

 

 

3.0

RELIANCE ON OTHER EXPERTS

19

 

 

 

4.0

PROPERTY DESCRIPTION AND LOCATION

22

 

4.1

PROPERTY DESCRIPTION

22

 

4.2

LOCATION

22

 

4.3

RECENT OWNERSHIP HISTORY AND UNDERLYING AGREEMENTS

26

 

4.4

PAST MINING ACTIVITY, ENVIRONMENTAL LIABILITIES AND PERMITTING

28

 

4.5

CONSULTATION

29

 

 

 

5.0

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

31

 

5.1

ACCESSIBILITY

31

 

5.2

CLIMATE

31

 

5.3

LOCAL RESOURCES AND INFRASTRUCTURE

31

 

5.4

PHYSIOGRAPHY

32

 

 

 

6.0

HISTORY

34

 

6.1

PRIOR OWNERSHIP

34

 

6.2

GENERAL HISTORY

34

 

6.3

HISTORICAL RESOURCE ESTIMATES

37

 

 

6.3.1

Historically Significant Non-Compliant NI 43-101 Resource Estimates

37

 

 

6.3.2

NI 43-101 Compliant Resource Estimates

38

 

6.4

HISTORIC PRODUCTION

39

 

 

 

7.0

GEOLOGICAL SETTING AND MINERALIZATION

41

 

7.1

REGIONAL GEOLOGY AND STRUCTURE

41

 

7.2

PROPERTY GEOLOGY

45

 

 

7.2.1

Timmins Mine Portion of the Timmins West Mine

45

 

 

7.2.2

Thunder Creek Portion of the Timmins West Mine

46

 

7.3

STRUCTURAL GEOLOGY

51

 

7.4

MINERALIZATION

51

 

Technical Report, Timmins West Mine, May 14, 2012

 

i



 

TABLE OF CONTENTS

 

8.0

DEPOSIT TYPES

65

 

 

 

9.0

EXPLORATION

67

 

9.1

GENERAL OVERVIEW

67

 

 

9.1.1

Timmins Deposit

67

 

 

9.1.2

Thunder Creek Deposit

72

 

 

 

10.0

DRILLING

77

 

 

10.1.1

Lake Shore Gold Corp. Historical Drilling Timmins Deposit

77

 

 

10.1.2

Lake Shore Gold Corp. Historical Drilling Thunder Creek Deposit

78

 

 

 

11.0

SAMPLING PREPARATION, ANALYSIS AND SECURITY

80

 

11.1

LAKE SHORE GOLD CORP. SAMPLING METHOD AND APPROACH

80

 

 

11.1.1

Surface Diamond Drill Program

80

 

 

11.1.2

Core Handling and Logging Protocols

80

 

 

11.1.3

Hole Collar and Down-Hole Attitude Surveys

80

 

 

11.1.4

Security

81

 

 

11.1.5

Surface Diamond Drill Core Sample Preparation, Analysis and Analytical Procedures

81

 

 

11.1.6

Data Management

85

 

 

11.1.7

Accuracy Analysis - Standards and Blanks

85

 

 

11.1.8

Precision Analysis — Duplicates

85

 

 

11.1.9

Reporting and Plotting

86

 

11.2

CHECK ASSAY PROGRAM

86

 

 

11.2.1

General Statement

86

 

 

11.2.2

Procedures

86

 

11.3

UNDERGROUND DIAMOND DRILL PROGRAM

87

 

 

11.3.1

General Description

87

 

 

11.3.2

Underground Sample Preparation and Analytical Procedures

88

 

11.4

DATA MANAGEMENT

89

 

 

11.4.1

Accuracy Analysis — Standards and Blanks

89

 

 

11.4.2

Precision Analysis — Duplicates

89

 

 

11.4.3

Reporting and Plotting

89

 

 

11.4.4

Check Assay Program

89

 

 

11.4.5

Procedures

89

 

11.5

UNDERGROUND FACE CHIP CHANNEL AND MUCK SAMPLES

89

 

 

11.5.1

Procedure for Taking Face Chip Channel Samples

89

 

 

11.5.2

Procedure for Taking Muck Samples

90

 

11.6

DISCUSSION

90

 

 

 

12.0

DATA VERIFICATION

92

 

12.1

GENERAL TIMMINS WEST MINE

92

 

12.2

HISTORICAL TREATMENT

93

 

 

 

13.0

MINERAL PROCESSING AND METALLUGICAL TESTING

94

 

13.1

HISTORICAL TEST WORK

94

 

13.2

RECENT TEST WORK

94

 

 

 

14.0

MINERAL RESOURCE ESTIMATES

96

 

14.1

SUMMARY

96

 

14.2

ESTIMATION METHOD

99

 

ii



 

TABLE OF CONTENTS

 

 

 

14.2.1

Estimation Method and Parameters

99

 

 

14.2.2

Database

101

 

 

14.2.3

Grade Capping

102

 

14.3

SPECIFIC GRAVITY

114

 

14.4

VARIOGRAPHY

114

 

14.5

BLOCK MODEL MINERAL RESOURCE MODELING

118

 

 

14.5.1

General

118

 

 

14.5.2

Block Model Parameters

118

 

 

14.5.3

Grade Interpolation

118

 

14.6

BLOCK MODEL VALIDATION

121

 

14.7

MINERAL RESOURCES AND CLASSIFICATION

131

 

 

14.7.1

General

131

 

 

14.7.2

Mineral Resources

131

 

14.8

RECONCILIATION TO PREVIOUS RESOURCE TIMMINS DEPOSIT

138

 

14.9

ADDITIONAL DRILL HOLE INFORMATION EVALUATION

139

 

14.10

RECOMMENDATIONS

139

 

14.11

RESOURCE BASE USED FOR THE PRELIMINARY ECONOMIC ASSESSMENT

139

 

 

 

15.0

MINERAL RESERVE ESTIMATES

143

 

15.1

TIMMINS DEPOSIT RESERVE ESTIMATE

143

 

15.2

THUNDER CREEK DEPOSIT RESERVE ESTIMATE

144

 

15.3

TIMMINS WEST MINE COMBINED RESERVES

145

 

 

 

16.0

MINING METHODS

146

 

16.1

UNDERGROUND ACCESS

151

 

 

16.1.1

Primary / Secondary Access

151

 

16.2

SHAFT AND HOISTING FACILITIES

151

 

 

16.2.1

Hoisting Plant

152

 

 

16.2.2

Shaft Services

152

 

 

16.2.3

Ore / Waste Handling System and Loading Pocket

152

 

16.3

STOPING METHODS

153

 

 

16.3.1

Timmins Deposit

153

 

 

16.3.2

Thunder Creek Deposit

158

 

16.4

RESOURCE ANALYSIS (DILUTION AND RECOVERY)

160

 

 

16.4.1

Mining Dilution and Recovery

160

 

 

16.4.2

Block Model Cut-Off Grade

161

 

 

16.4.3

Timmins Deposit Probable Reserve Estimate

161

 

 

16.4.4

Thunder Creek Deposit Probable Reserve Estimate

163

 

16.5

HAULAGE

165

 

 

16.5.1

Timmins Deposit Underground Truck Haulage

165

 

 

16.5.2

Thunder Creek Deposit Underground Truck Haulage

165

 

16.6

DEVELOPMENT

165

 

 

16.6.1

Timmins Deposit

167

 

 

16.6.2

Thunder Creek Deposit

170

 

 

16.6.3

Ground Support

172

 

16.7

DEVELOPMENT SCHEDULE

172

 

16.8

PRODUCTION

173

 

 

16.8.1

Timmins Deposit Production

174

 

 

16.8.2

Thunder Creek Deposit Production

176

 

iii



 

TABLE OF CONTENTS

 

 

 

16.8.3

Production Summary

177

 

16.9

PRODUCTION EQUIPMENT

179

 

16.10

VENTILATION

179

 

 

16.10.1

Timmins Deposit Ventilation

181

 

 

16.10.2

Thunder Creek Ventilation

181

 

 

16.10.3

Mine Air Heating and Cooling

183

 

16.11

PERSONNEL

183

 

16.12

UNDERGROUND MINE SERVICES

185

 

 

16.12.1

Electrical Distribution and Communications

185

 

 

16.12.2

Compressed Air

185

 

 

16.12.3

Service Water

186

 

 

16.12.4

Mine Dewatering

186

 

 

16.12.5

Roadbed Material

186

 

16.13

MATERIALS SUPPLY

187

 

16.14

MAINTENANCE

187

 

16.15

SAFETY

187

 

16.16

GEOTECHNICAL

187

 

 

16.16.1

Thunder Creek

187

 

 

16.16.2

Timmins Deposit

191

 

16.17

BELL CREEK TAILINGS FACILITY

193

 

 

 

17.0

RECOVERY METHODS

195

 

17.1

HISTORY

195

 

17.2

BELL CREEK MILL PROCESS DESCRIPTION

195

 

 

17.2.1

Current Process (Pre-Phase 2 Expansion)

195

 

 

17.2.2

Phase 2 Expansion

196

 

17.3

METALLURGICAL BALANCE

197

 

17.4

ACTUAL MINERAL PROCESSING RESULTS OF TIMMINS WEST MATERIAL

199

 

 

 

18.0

PROJECT INFRASTRUCTURE

200

 

18.1

TIMMINS WEST MINE SITE

200

 

18.2

BELL CREEK MILL SITE

200

 

 

 

19.0

MARKET STUDIES AND CONTRACTS

201

 

 

 

20.0

ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

202

 

20.1

REGULATORY AND FRAMEWORK

202

 

 

20.1.1

Provincial Environmental Assessments

202

 

 

20.1.2

Federal Environmental Assessments

202

 

 

20.1.3

Provincial Permits

202

 

 

20.1.4

Federal Permits

203

 

20.2

ENVIRONMENTAL IMPACTS

204

 

20.3

ENVIRONMENTAL MONITORING PROGRAM

205

 

20.4

HAZARDOUS MATERIALS HANDLING

206

 

20.5

SPILL AND EMERGENCY RESPONSE PLAN

206

 

20.6

CLOSURE PLANNING

206

 

20.7

CONSULTATION

207

 

 

 

21.0

CAPITAL AND OPERATING COSTS

209

 

21.1

LAKE SHORE BUDGETED 2012 CAPITAL COSTS

209

 

21.2

SUSTAINING CAPITAL COSTS

210

 

iv



 

TABLE OF CONTENTS

 

 

 

21.2.1

Lake Shore Capital Projects

212

 

 

21.2.2

Bell Creek Mill Expansion and Related

212

 

 

21.2.3

Mobile Equipment Purchases

212

 

 

21.2.4

Mobile Equipment Rebuilds

213

 

 

21.2.5

Underground Infrastructure and Construction

213

 

 

21.2.6

Ramp Development

213

 

 

21.2.7

Waste Infrastructure Development

213

 

 

21.2.8

Raise Development

213

 

 

21.2.9

Waste Haulage

214

 

21.3

OPERATING COSTS

214

 

 

21.3.1

Lake Shore Budgeted 2012 Operating Costs

215

 

 

21.3.2

Direct Operating Costs (2013 to 2019)

215

 

 

21.3.3

Indirect Costs

217

 

 

21.3.4

Surface Ore Haulage and Milling

218

 

 

 

22.0

ECONOMIC ANALYSIS

219

 

22.1

SUBLEVEL EVALUATIONS

219

 

 

 

23.0

ADJACENT PROPERTIES

223

 

23.1

GENERAL STATEMENT ABOUT ADJACENT PROPERTIES

223

 

23.2

ADVENTURE GOLD INC. — MEUNIER 144 GOLD PROPERTY — BRISTOL TOWNSHIP

223

 

23.3

PELANGIO EXPLORATION INC. — POIRIER OPTION — BRISTOL TOWNSHIP

225

 

23.4

NEWCASTLE MINERALS LIMITED — WEST TIMMINS GOLD PROJECT — CARSCALLEN TOWNSHIP

225

 

23.5

RICHMONT MINES INC. — CRIPPLE CREEK PROPERTY — DENTON TOWNSHIP

225

 

23.6

EXPLOR RESOURCES INC. — TIMMINS PORCUPINE WEST (ONTARIO) PROPERTY — BRISTOL AND OGDEN TOWNSHIPS

226

 

 

 

24.0

OTHER RELEVANT DATA AND INFORMATION

228

 

 

 

25.0

INTERPRETATION AND CONCLUSIONS

229

 

25.1

RISKS

234

 

 

 

26.0

RECOMMENDATIONS

236

 

 

 

27.0

REFERENCES

239

 

27.1

REPORTS AND SCHEDULES

239

 

27.2

ASSESSMENT RESEARCH IMAGING FILES (AFRI)

246

 

27.3

PRESS RELEASES

251

 

 

 

28.0

DATE AND SIGNATURE PAGE

261

 

 

 

29.0

CERTIFICATES OF QUALIFIED PERSONS

262

 

v



 

TABLE OF CONTENTS

 

LIST OF FIGURES

 

Figure 1.1:

GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE FOR THE TIMMINS DEPOSIT

6

Figure 1.2:

GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE FOR THE THUNDER CREEK DEPOSIT

7

Figure 4.1:

TIMMINS WEST MINE PROPERTY

23

Figure 4.2:

LOCATION MAP

30

Figure 5.1:

PHYSIOGRAPHY

33

Figure 7.1:

TECTONIC ASSEMBLAGES OF THE ABITIBI SUBPROVINCE EAST OF THE KAPUSKASING STRUCTURAL ZONE (AFTER AYER, J.A., DUBÉ, B., TROWELL, N.F.; NE ONTARIO MINES AND MINERALS SYMPOSIUM, APRIL 16, 2009)

43

Figure 7.2:

REGIONAL GEOLOGY

44

Figure 7.3:

PROPERTY GEOLOGY

50

Figure 7.4:

TIMMINS DEPOSIT UNDERGROUND GEOLOGY 310 M LEVEL (UPPER LEVEL)

56

Figure 7.5:

TIMMINS DEPOSIT UNDERGROUND GEOLOGY 525 M LEVEL (LOWER LEVEL)

57

Figure 7.6:

TIMMINS DEPOSIT UNDERGROUND GEOLOGY 790 M LEVEL (LOWER LEVEL)

58

Figure 7.7:

TIMMINS DEPOSIT GENERALIZED CROSS-SECTION 4575E (TIMMINS WEST MINE GRID)

59

Figure 7.8:

THUNDER CREEK UNDERGROUND GEOLOGY 300 M LEVEL (UPPER MINE)

60

Figure 7.9:

THUNDER CREEK UNDERGROUND GEOLOGY 730 M LEVEL (LOWER LEVEL)

61

Figure 7.10:

THUNDER CREEK GENERALIZED CROSS-SECTION, 9550N (THUNDER CREEK SURFACE GRID)

62

Figure 7.11:

GENERALIZED LONG-SECTION, ILLUSTRATING TIMMINS WEST MINE SHAFT, RAMPS, LEVELS, AND MINERALIZATION ENVELOPE (LOOKING EASTWARD)

63

Figure 7.12:

STRUCTURAL PLAN, 300 LEVEL (RHYS, 2010)

64

Figure 10.1:

SURFACE DIAMOND DRILL HOLE COLLAR LOCATIONS AND VERTICAL PROJECTION TO SURFACE OF THE OUTER PERIMETER OF THE RESOURCE ESTIMATION

79

Figure 14.1:

3D VIEW OF RESOURCE SOLIDS, LOOKING NORTHEAST

100

Figure 14.2:

CUMULATIVE FREQUENCY TIMMINS DEPOSIT — VEIN ZONES

105

Figure 14.3:

LOG CUMULATIVE FREQUENCY TIMMINS DEPOSIT — VEIN ZONES

105

Figure 14.4:

CUMULATIVE FREQUENCY TIMMINS DEPOSIT — ULTRAMAFIC ZONE

106

Figure 14.5:

LOG CUMULATIVE FREQUENCY TIMMINS DEPOSIT — ULTRAMAFIC ZONE

106

Figure 14.6:

CUMULATIVE FREQUENCY THUNDER CREEK DEPOSIT — ALL ZONES

107

Figure 14.7:

LOG CUMULATIVE FREQUENCY THUNDER CREEK DEPOSIT — ALL ZONES

107

Figure 14.8:

VARIOGRAMS — TIMMINS DEPOSIT

115

Figure 14.9:

VARIOGRAMS — THUNDER CREEK DEPOSIT

117

Figure 14.10:

SECTION 4575E — TIMMINS DEPOSIT, RESOURCE BLOCK MODEL

122

Figure 14.11:

310 LEVEL PLAN — TIMMINS DEPOSIT, BLOCK AND DRILL HOLE GRADES

123

Figure 14.12:

525 LEVEL PLAN — TIMMINS DEPOSIT, BLOCK AND DRILL HOLE GRADES

124

Figure 14.13:

790 LEVEL PLAN — TIMMINS DEPOSIT, BLOCK AND DRILL HOLE GRADES

125

Figure 14.14:

SECTION 9550N — THUNDER CREEK DEPOSIT, BLOCK AND DRILL HOLE GRADES

126

Figure 14.15:

730 LEVEL PLAN — THUNDER CREEK DEPOSIT, BLOCK AND DRILL HOLE GRADES

127

Figure 14.16:

3D VIEW OF RESOURCES TIMMINS DEPOSIT LOOKING SOUTHEAST

132

Figure 14.17:

3D VIEW OF THUNDER CREEK DEPOSIT LOOKING SOUTHEAST

133

Figure 14.18:

RESOURCE CLASSIFICATION, LONGITUDINAL VIEW OF INTERPOLATION PASSES

135

Figure 16.1:

TIMMINS DEPOSIT INDICATED MINERALIZED ZONES, LOOKING EAST

146

Figure 16.2:

THUNDER CREEK DEPOSIT INDICATED MINERALIZED ZONES, LOOKING EAST

147

 

vi



 

TABLE OF CONTENTS

 

Figure 16.3:

TIMMINS DEPOSIT AND THUNDER CREEK DEPOSIT, LOOKING EAST

147

Figure 16.4:

TIMMINS WEST MINE SURFACE INFRASTRUCTURE

149

Figure 16.5:

TIMMINS WEST MINE EXISTING UNDERGROUND INFRASTRUCTURE

150

Figure 16.6:

MINING SHAPES AT SECTION 4540 EAST

154

Figure 16.7:

MINING SHAPES AT SECTION 4550 EAST

155

Figure 16.8:

TYPICAL SECTION THROUGH A MCAF STOPE

156

Figure 16.9:

LONGITUDINAL LONGHOLE MINING METHOD

157

Figure 16.10:

SILL DEVELOPMENT FOR LONGITUDINAL LONGHOLE STOPES

157

Figure 16.11:

PLANNED MINE INFRASTRUCTURE

167

Figure 16.12:

EXISTING 650L INFRASTRUCTURE

169

Figure 16.13:

TYPICAL TIMMINS DEPOSIT SUBLEVEL INFRASTRUCTURE 850L

170

Figure 16.14:

EXISTING 730L INFRASTRUCTURE

171

Figure 16.15:

TYPICAL THUNDER CREEK SUBLEVEL INFRASTRUCTURE 660L

172

Figure 16.16:

TYPICAL TIMMINS DEPOSIT MINING BLOCK BELOW 650L

174

Figure 16.17:

EXAMPLE OF PRIMARY/SECONDARY STOPE SEQUENCING

177

Figure 16.18:

PRODUCTION SUMMARY (TONNES)

178

Figure 16.19:

PRODUCTION SUMMARY (OUNCES)

178

Figure 16.20:

TIMMINS WEST MINE VENTILATION SYSTEM

182

Figure 16.21:

BELL CREEK TAILINGS FACILITY

194

Figure 17.1:

SIMPLIFIED MILLING PROCESS AND SAMPLING POINTS

198

Figure 20.1:

TIMMINS WEST MINE WATER MANAGEMENT PLAN

205

Figure 23.1:

LOCATION OF ADJACENT PROPERTIES

224

Figure 25.1:

GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE, TIMMINS DEPOSIT

231

Figure 25.2:

GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE, THUNDER CREEK

231

 

LIST OF TABLES

 

Table 1.1:

TIMMINS WEST MINE RESOURCE ESTIMATES

5

Table 1.2:

BATCH MILLING RESULTS FOR THUNDER CREEK DEPOSIT MINERALIZATION

8

Table 1.3:

BATCH MILLING RESULTS FOR TIMMINS DEPOSIT MINERALIZATION

8

Table 2.1:

LIST OF ABBREVIATIONS

12

Table 2.2:

GLOSSARY

17

Table 3.1:

QUALIFIED PERSON FOR TIMMINS WEST MINE

19

Table 4.1:

TIMMINS WEST MINE STAKED CLAIMS

24

Table 4.2:

LEASED LANDS

25

Table 4.3:

PATENTED LANDS

26

Table 4.4:

SPECIES AT RISK

28

Table 5.1:

AVERAGE TEMPERATURES, PRECIPITATION AND SNOW FALL DEPTHS FOR THE TIMMINS AREA

31

Table 6.1:

CHRONOLOGY OF EVENTS FOR THE TIMMINS MINE COMPLEX AREA

34

Table 6.2:

WGM MINERAL RESOURCE ESTIMATE, OCTOBER 31, 2006

38

Table 6.3:

LSG UPDATED MINERAL RESOURCE OF SRK POLYGONAL RESOURCE AND STANTEC MINERAL RESERVE, AUGUST 2009

39

Table 6.4:

LSG INITIAL MINERAL RESOURCE FOR THUNDER CREEK DEPOSIT, OCTOBER 2011

39

Table 6.5:

TIMMINS DEPOSIT ANNUAL PRODUCTION FIGURES

40

Table 6.6:

THUNDER CREEK ANNUAL PRODUCTION FIGURES

40

Table 7.1:

TECTONIC ASSEMBLAGES

42

Table 7.2:

LITHOLOGICAL UNITS

49

 

vii



 

TABLE OF CONTENTS

 

Table 8.1:

OPERATIONS OF GREATER THAN 100,000 OUNCES OF GOLD PRODUCTION IN THE PORCUPINE GOLD CAMP

66

Table 9.1:

DIAMOND DRILLING STATISTICS FOR TIMMINS MINE COMPLEX

71

Table 9.2:

SUMMARY OF THUNDER CREEK EXPLORATION ACTIVITIES (MAY 10, 2009 TO OCTOBER 28, 2011)

74

Table 9.3:

SUMMARY OF TIMMINS DEPOSIT EXPLORATION ACTIVITIES (AUGUST 29, 2009 TO JANUARY 31, 2012)

75

Table 11.1:

OREAS STANDARDS USED BY LAKE SHORE GOLD CORP.

84

Table 11.2:

TIMMINS WEST MINE QA/QC DIAMOND DRILL CORE SAMPLING PROGRAM

90

Table 14.1:

TIMMINS WEST MINE RESOURCE ESTIMATES

97

Table 14.2:

TIMMINS DEPOSIT RESOURCE ESTIMATES

98

Table 14.3:

SUMMARY OF GEMS SQL DRILL HOLE DATABASE

102

Table 14.4:

BASIC STATISTICS OF RAW AU ASSAYS RESOURCE SOLIDS

103

Table 14.5:

SAMPLES ABOVE GRADE CAP BY ZONE

108

Table 14.6:

SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT

109

Table 14.7:

SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT CONTINUED

110

Table 14.8:

SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT CONTINUED

111

Table 14.9:

SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT CONTINUED

112

Table 14.10:

SAMPLE COMPOSITE STATISTICS THUNDER CREEK DEPOSIT

113

Table 14.11:

SPECIFIC GRAVITY BY ZONE

114

Table 14.12:

BLOCK MODEL GRID PARAMETERS

118

Table 14.13:

SEARCH ELLIPSE PARAMETERS

119

Table 14.14:

COMPARISON OF IDAND NEAREST NEIGHBOUR INTERPOLATIONS, BLOCKS ABOVE 0.0 GPT Au — TIMMINS DEPOSIT

128

Table 14.15:

COMPARISON OF ID² AND NEAREST NEIGHBOUR INTERPOLATIONS, BLOCKS ABOVE 1.5 GPT Au — THUNDER CREEK DEPOSIT

128

Table 14.16:

COMPARISON OF CHIP SAMPLE DEVELOPMENT GRADES AGAINST BLOCK MODEL GRADES

129

Table 14.17:

COMPARISON OF MUCK SAMPLE STOPE GRADES AGAINST BLOCK MODEL GRADES

130

Table 14.18:

TIMMINS WEST MINE RESOURCES

134

Table 14.19:

TIMMINS WEST MINE MINERAL RESOURCE ESTIMATES

136

Table 14.20:

TIMMINS WEST MINE RESOURCE SENSITIVITIES

137

Table 14.21:

COMPARISON OF NEW VS. SEPTEMBER 2009 RESOURCE ESTIMATE — TIMMINS DEPOSIT

138

Table 14.22:

TIMMINS DEPOSIT RESOURCE BASE USED FOR PEA

140

Table 14.23:

THUNDER CREEK DEPOSIT RESOURCE BASE USED FOR PEA

140

Table 14.24:

PEA SUMMARY AND ESTIMATED CASH FLOW

141

Table 14.25:

PEA ESTIMATED UNDISCOUNTED CASH FLOW AND NPV (5% AND 10% DISCOUNT INTEREST)

142

Table 15.1:

TIMMINS WEST MINE IN-SITU INDICATED RESOURCE AT 3.0 G/T CUT-OFF GRADE

143

Table 15.2:

TIMMINS DEPOSIT ESTIMATED RESERVES

144

Table 15.3:

THUNDER CREEK DEPOSIT ESTIMATED RESERVES

145

Table 15.4:

TIMMINS WEST MINE COMBINED RESERVES

145

Table 16.1:

TIMMINS WEST MINE IN-SITU INDICATED RESOURCE AT 3.0 G/T CUT-OFF GRADE

151

Table 16.2:

TIMMINS DEPOSIT LONGHOLE STOPE AVERAGE EXTERNAL DILUTION

162

Table 16.3:

TIMMINS DEPOSIT MCAF STOPE AVERAGE EXTERNAL DILUTION

162

Table 16.4:

TIMMINS DEPOSIT ESTIMATED PROBABLE RESERVES

163

Table 16.5:

THUNDER CREEK EXTERNAL DILUTION PARAMETERS

164

 

viii



 

Table 16.6:

THUNDER CREEK DEPOSIT ESTIMATED PROBABLE RESERVES

164

Table 16.7:

ESTIMATED DEVELOPMENT QUANTITIES

166

Table 16.8:

ANNUAL WASTE ROCK GENERATED FROM DEVELOPMENT AND RAISING

166

Table 16.9:

TIMMINS DEPOSIT DEVELOPMENT SCHEDULE MILESTONES

173

Table 16.10:

THUNDER CREEK DEVELOPMENT SCHEDULE MILESTONES

173

Table 16.11:

PRODUCTION SUMMARY

177

Table 16.12:

UNDERGROUND MOBILE EQUIPMENT FLEET

179

Table 16.13:

TIMMINS DEPOSIT STEADY STATE MOBILE EQUIPMENT AND VENTILATION

180

Table 16.14:

THUNDER CREEK STEADY STATE MOBILE EQUIPMENT AND VENTILATION

180

Table 16.15:

PERSONNEL ON PAYROLL (STEADY STATE)

183

Table 16.16:

ROCK MASS CHARACTERIZATION SUMMARY BY ROCK UNIT MAPPED AT THUNDER CREEK

188

Table 16.17:

SUMMARY OF THUNDER CREEK JOINT SETS BY DOMAIN

188

Table 16.18:

ASSUMED IN-SITU STRESS STATE AT THUNDER CREEK

189

Table 16.19:

HR RECOMMENDATIONS FOR UPPER MINING AREA

189

Table 16.20:

HR RECOMMENDATIONS FOR LOWER MINING AREA

189

Table 16.21:

HANGINGWALL HR FOR STOPES WITH VARYING STRIKE LENGTH AND VARYING LEVEL SPACING

190

Table 16.22:

STOPE BACK AND ENDWALL HR FOR STOPES WITH VARYING HANGINGWALL TO FOOTWALL SPAN

190

Table 17.1:

TIMMINS WEST MINE MATERIAL PROCESSED IN 2010

199

Table 17.2:

TIMMINS WEST MINE MATERIAL PROCESSED TO END THIRD QUARTER 2011

199

Table 21.1:

2012 TIMMINS WEST MINE BUDGETED CAPITAL COSTS

209

Table 21.2:

ESTIMATED SUSTAINING CAPITAL COSTS (2013 TO 2019)

211

Table 21.3:

OPERATING COST SUMMARY

214

Table 21.4:

DEVELOPMENT UNIT COSTS

216

Table 21.5:

MCAF UNIT COSTS

216

Table 21.6:

LONGHOLE STOPING UNIT COSTS

217

Table 22.1:

EXAMPLE OF SUBLEVEL EVALUATION — TIMMINS DEPOSIT 930L

219

Table 22.2:

SUBLEVEL EVALUATION SUMMARIES

220

Table 22.3:

ESTIMATED NET REVENUE

222

Table 23.1:

DISTANCE FROM THE TIMMINS WEST MINE HEADFRAME TO SIGNIFICANT TIMMINS AREA MINING LANDMARKS

223

Table 23.2:

SUMMARY OF WORK NEWCASTLE MINERALS LIMITED

225

Table 25.1:

TIMMINS WEST MINE RESOURCE ESTIMATES

230

Table 25.2:

BATCH MILLING RESULTS FOR THUNDER CREEK DEPOSIT MINERALIZATION

232

Table 25.3:

BATCH MILLING RESULTS FOR TIMMINS DEPOSIT MINERALIZATION

232

 

ix



 

1.0                               SUMMARY

 

This Technical Report is co-authored by: Dean Crick (P. Geo.), Ralph Koch (P. Geo.), Robert Kusins (P. Geo.), Brian Buss (P. Eng.) and David Powers (P. Geo.) on behalf of Lake Shore Gold Corp. (“Lake Shore Gold”, “LSG”) for the Timmins West Mine.  The report contains a summary of the resource estimates previously reported in the report submitted to SEDAR titled: 43-101 Technical Report, Preliminary Economic Assessment and Updated Mineral Resource Estimate for Timmins West Mine, Timmins, Ontario, Canada, having effective dates of October 28, 2011 (Thunder Creek Deposit) and January 31, 2012 (Timmins Deposit), prepared by Dean Crick, (P. Geo.), Ralph Kock (P. Geo.), Robert Kusins (P. Geo.), Brian Buss (P. Eng.) and David Powers (P. Geo.) on behalf of Lake Shore Gold Corp.  This report also includes a summary of the engineering design, cost analysis, and economic assessment conducted at a prefeasibility level on the indicated subset of the mineral resource pool sufficient in detail to substantiate an updated statement of Mineral Reserves for the Timmins West Mine.

 

The purpose of this technical report is to provide a comprehensive picture of the total resource pool for the Timmins West Mine (“TWM”) including a summary of the findings of a previously completed Preliminary Economic Assessment (PEA) and a full description of subsequent and more detailed work on the mine design, cost analysis, and economic evaluation of the indicated resource subset.  This work has been completed at a prefeasibility study level (PFS) and was conducted in order to substantiate declaration of an updated Mineral Reserve Statement for the Timmins West Mine.

 

It should be noted that any financial results summarized in this report and identified as output from the PEA are preliminary in nature and include inferred mineral resources that are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as mineral reserves, and there is no certainty that the financial results of the PEA will be realized.

 

The most recent work completed to support the declaration of Mineral Reserves has been conducted on the indicated mineral resource only, and it is the QP’s opinion that this work meets the definitions of a Preliminary Feasibility Study (PFS) under CIM guidelines.  There is significantly less risk in accepting these results as being reasonably achievable subject to the assumptions clearly outlined in the body of this report.

 

The Timmins West Mine includes mineralized zones from the Timmins Deposit and the Thunder Creek Deposit for which there is a common infrastructure.  The resource and reserves statements included in this report have an effective date of March 29, 2012.  This revised mineral resource and reserve statement uses exploration data collected by Lake Shore Gold Corp. from underground and surface drilling completed between the years 2003 and 2012.  It has been prepared in accordance with National Instrument 43-101, Standards and Disclosure for Mineral Projects.

 

Commercial production at the Timmins Deposit was announced in January, 2011.  Commercial production at the Thunder Creek Deposit commenced January, 2012.  As such, Lake Shore Gold considers this, and any future technical reports on the Timmins West Mine to be classified as being issued by a “Producing Issuer” under the definitions of NI 43-101.

 

The headframe of the Timmins West Mine is located within national topography series (“NTS”) map reference 42-A-05; at longitude 81.55° west; 48.32° north latitude.  Universal Transverse Mercator (“UTM”) co-ordinates for the headframe utilizing projection North American Datum (“NAD”) 83, Zone 17

 

1



 

are approximately 458,915 metres east, 5,359,043 metres north.  Provincial Highways 101 and 144 provide all weather road access to the property.  The street address of the offices and shops infrastructure is 8215 Highway 101 West, Timmins.  Bush roads, quad trails, drill trails and foot paths provide access to all areas within the claim boundaries.

 

The Timmins West Mine (“TWM”) area includes the Timmins Deposit property and the Thunder Creek Deposit property for a total area of approximately 12.9 square kilometres, or approximately 1,376 hectares situated in Bristol and Carscallen townships.  The majority of the property (97.4%) is situated within Bristol Township and approximately 36 hectares (2.6%) is located in Carscallen Township.  The Timmins Deposit portion of the TWM consists of a block of 23 contiguous claims (395 hectares) of which there are eleven individual patented claims and twelve leased claims that are further divided into two 21 year leases.  The Thunder Creek portion of the property consists of 57 staked claim units and three lease hold single unit patent claims totaling approximately 960 hectares.  Lake Shore Gold Corp. owns 100% interest in the Property subject to underlying royalties.  The claims and leases are all in good standing.

 

The TWM area lies along the northeast trending contact zone between southeast facing mafic metavolcanic rocks of the Tisdale Assemblage (to the northwest) and unconformably overlaying, dominantly southeasterly facing metasedimentary rocks of the Porcupine Assemblage (to the south east).  The contact dips steeply to the northwest, and is modified and locally deflected by folds and shear zones that are associated with gold mineralization.  Along and within several hundred metres of the contact area, several intrusions intrude mainly the mafic metavolcanic sequence between the Timmins Deposit and the southwestern parts of the Thunder Creek property.  These include: a southwesterly-widening alkaline ultramafic set of metamorphosed intrusions comprised dominantly of pyroxenite which occur along the mafic—metasedimentary rock contact or intruding the mafic metavolcanic rocks adjacent to the contact and which are termed the “alkaline intrusive complex”; and fine-grained, equigranular to locally K-feldspar porphyritic intrusions which are dominantly monzonite but may range to syenite in composition.  The latter include lenticular northeast trending unexposed body in the Porphyry Zone adjacent to the mafic-sedimentary contact in the Rusk area, and a more irregularly shaped stock to the south which intrudes the Porcupine Assemblage here termed the “Thunder Creek Stock” (Rhys, 2010).

 

Gold mineralization in the Timmins West Mine occurs in steep north-northwest plunging mineralized zones which plunge parallel to the local orientations of the L4 lineation features which also plunge parallel to the lineation, including folds and elongate lithologies.  Mineralization occurs within, or in favourable lithostructural settings within 100 metres of the Holmer and Rusk Shear Zones.  Mineralization comprises multiple generations of quartz-carbonate-tourmaline ± albite veins, associated pyrite alteration envelopes and disseminated pyrite mineralization.  Textural evidence suggests that veining formed progressively through D3 and D4 deformation.  All phases of gold-bearing veins cut and postdate alkali intrusive complex (AIC) and syenitic to monzonitic intrusion, although mineralization is often spatially associated with ore preferentially developed within these intrusions (Rhys, 2010).

 

Although the primary target of the Timmins West Mine shaft was the Ultramafic (UM) Complex between 525 and 650 vertical metres, mining was initiated in the second half of 2009 via the surface ramp that had been completed to a vertical depth of 200 metres.  The mining at the Timmins Deposit from the surface ramp started with the Vein Zones, 1, 2, and 3, Footwall (FW) Zone and the Main Zone (MZ).  In the upper levels the results were largely as anticipated, short strike length, narrow quartz-tourmaline veins that returned low grade and small tonnes with poor continuity of mineralization.  An exception to

 

2



 

this experience was the MZ, which was comprised of a package of three singular quartz-tourmaline veins hosted within a lens of sediment with interstitial sulfide replacement mineralization between the veins.

 

In 2010, mining continued down from the 140 metre to the 270 metre Level, mining the MZ on the west side of the ramp and the Vein Zones on the east of the ramp.  The Vein Zones and FW Zone mining was largely disappointing, except for Vein 2 between the 180-240 metre Levels.  The MZ returned reasonable grade and tonnes as the longhole mining progressed on 30 metre sublevels below the 200 metre Level.  Mining in the upper part of the Timmins deposit has largely been shut down since the second half of 2011, due to grade and tonnage challenges with the Vein Zones, along with water problems at the bottom of the surface ramp.  The MZ is largely untested below the 260 metre Level where some of the best drill intersections were returned.

 

The first stope into the UM1 complex from the 650-610 metre Level in the fourth quarter of 2010 was considered highly successful for grade, tonnes and reconciliation to the block model.  Sill development was conducted on 20 metre sublevels on the 650 and 630 metre Levels with blind uppers drilled to the 610 metre Level elevation.  The large longhole excavation had a strike length of above 75 metres and maximum width of 35 metres.  The mining continued well into February 2011, as remnant material continued to be mucked from the stope, some of which was overbreak from the back.  The second block between the 610-585 metre Levels was mined in the second half of 2011, delayed substantially due to issues with mucking and backfilling the 650-610 metre Levels.

 

Mining a number of the smaller, structural hangingwall lenses comprising the UM complex including the UM2, UM1a has also proven successful despite their smaller size, moderately lower grade and complex geometry.  The next block of the UM1 is scheduled for mining towards the end of the first quarter and second quarter of 2012.  The positive results of the mining to date on the UM complex mineralization, is a promising indicator of planned mining below the 650 metre Level in 2012 and beyond.

 

Development of the 525 metre Level drill platform in the fourth quarter of 2010 also provided access to the 525 metre Level FW and MZ lenses at the level elevation.  Mining was initiated into the FW Zone model with sill development and 10 metre blind uppers between March and December 2011, producing substantial tonnage, but at the cost of grade.  This stope was rushed into production to replace the delayed 585 UM1 stope and would likely have returned better grades if an overcut had been excavated for grade control purposes.  The mineralization is characterized by albite bleaching of the mafic volcanics and finely disseminated pyrite with minimal quartz stringer development.  There appear to be at least two separate lenses, one of better grade tenor along the mafic ultramafic contact and one hosted entirely in the mafic volcanics, structurally in the hangingwall with lower grade, interstitial mineralization located sporadically between the two lenses.  The 480 metre Level up ramp has crosscut the 480 metre Level sill on the FW Zone, and longhole stoping is planned for the first quarter of 2012, blasting down into the 525 metre Level FW void.  Some sill development has been completed from the 525 metre Level down ramp into the MZ to the west.  Although initial drill indications aren’t as extensive as the 200-290 metre Level MZ intercepts, sill development grades on individual quartz-tourmaline veins have returned reasonable grade.

 

The underground mine geology drilling campaign and capital development for the Timmins deposit in 2012 is heavily weighted on the UM complex below the 650 metre Level.  25,000 metres of delineation drilling approaching 10-15 metre centres targeting between the 670-730 metre Levels will provide immediate mining horizons working up from the 730 metre Level to the 670 metre Level on 20 metre sublevel development.  A drill drift to be established on the 730 metre Level will provide drill coverage

 

3



 

from the structural hangingwall down to approximately the 810 metre Level on roughly 15-25 metre centres comprising an additional 10,000 metres for future mining.  By the end of 2012, it is anticipated that the 650 down ramp will have reached 810 vertical metres.

 

Access to the Thunder Creek deposit was gained by ramps extending from the 200 metre Level and 650 metre Level shaft stations of the Timmins West Mine.  Ramps were driven for horizontal distances of 660 metres and 890 metres in a south-southwest direction from the shaft to intersect the 300 metre Level and 730 metre Level elevations respectively in the Rusk and Porphyry Zones.  The Rusk horizon was intersected in July of 2010 at the 300 metre Level elevation, and the Porphyry Zone in November 2010 at the 730 metre Level.  Other development work completed near the 300 metre Level has included ramping to the 280 and 350 metre Levels, drifting along mineralization on the 300, 315, and 350 metre Levels as well as development of a drill platform north of the zone near the 280 metre Level.  Development work near the 730 metre Level has included drifting along and across the mineralization, ramping to the 690 metre Level and development of drill platforms near the 680 and 710 metre Levels.

 

Initial mining at Thunder Creek has been completed within one mining block located between the 300 and 315 metre Levels and in a second block between the 730 and the 695 metre Levels.  The block between 300 and 315 metre Levels was completed in the first quarter of 2011 and extracted mineralization from the Rusk Zone.  Initial mining on the 730 metre Level commenced in September 2011 and extracted mineralization which is a combination of Rusk and Porphyry style mineralization.  A comparison of production results to date against the new resource estimate indicates a strong correlation of tonnage, grade and ounces.  Mining in 2012 will include longhole mining on the Rusk Zone on 20 metre sublevels between the 330, 350, and 370 metre Levels.  Four stopes are planned for the Rusk/Porphyry Zones between the 695-765 metre Levels at Thunder Creek.

 

The Mineral Resource estimates for the Timmins West Mine are based on historical diamond drilling dating back to March 1984 and drilling completed by LSG between July 2003 and January 31, 2012.  A total of 167 surface holes (118,141 metres) and 777 underground holes (115, 439 metres) were used in the Resource Estimate.  The Mineral Resource for the Timmins Deposit has been modeled into forty-three sub-zones which refine the broader mineralized Ultramafic, Footwall and Vein Zones.  The Thunder Creek Deposit has been modeled into eleven sub-zones which split the broader mineralized Rusk and Porphyry Zones into higher grade zones more suitable for underground mining.

 

The Timmins West Mine Resource totals 5.83 Mt at 5.99 g/t Au, amounting to 1,122,500 ounces of gold in the Indicated category and 4.27 Mt at 5.76 g/t Au amounting to 791,500 ounces of gold in the Inferred category (Table 1.1).  The base case resources are estimated at a 1.5 g/t Au cut-off for the Timmins deposit and a 2.0 g/t Au cut-off for the Thunder Creek deposit.

 

The Timmins Deposit resource totals 2.95 Mt at 6.34 g/t Au, amounting to 600,900 ounces of gold in the Indicated category and 1.58 Mt at 5.54g/t Au amounting to 281,500 ounces of gold in the Inferred category.  The Resources were estimated using Inverse Distance to the power 3 (ID3) interpolation method with all gold assays capped to 70 gram metres for the Ultramafic Zone and 40 gram metres for the Vein Zones.

 

The Thunder Creek Deposit resource totals 2.88 Mt at 5.64 g/t Au, amounting to 521,600 ounces of gold in the Indicated category and 2.69 Mt at 5.89g/t Au amounting to 510,000 ounces of gold in the Inferred category.  The Resource was estimated using Inverse Distance to the power 2 (ID2) interpolation method with all gold assays capped to 75 gram metres.

 

4



 

Continuity of grade and structure of the Timmins West Mine deposits’ various mineralized zones have been interpreted on 25 metre spaced sections except for the area between the 650 metre Level and 525 metre Level of the Timmins Deposit where 6.25 metre spaced sections were used due to the increased drilling density in this area.

 

The sectional interpretations were then strung together by tie lines and 3D solids or wireframes were generated that represent the mineralized zones that were used for estimation of tonnes and grade.

 

Solid intersection composites were generated from all drill holes intersecting the 3D Mineral Resource Solids.  The 1 metre composites at the Thunder Creek Deposit were then used to generate a block model grade based on an Inverse Distance Squared (“ID²”) and Inverse Distance to the power 3 (ID(3)) interpolation for the Timmins Deposit.

 

An independent review by Michel Dagbert, Eng. of SGS Geostat of the QA/QC samples routinely introduced into the Timmins West Mine drill hole sample stream, has concluded that the quality of the assaying incorporated into the block model is satisfactory, demonstrating no significant bias and adequate precision and reproducibility.

 

Validation of the block model was performed visually through a comparison of drill intercepts and block model results on plans and section between the geologic model and domain block model.  Sill development and mining results of both the Thunder Creek and Timmins Deposits have demonstrated reasonable correlation with the 3D shapes and grades predicted by the respective block models.

 

An independent review of the resource estimate was completed by Michel Dagbert, Eng. of SGS Geostat and he is in agreement with the practices employed by Bob Kusins, P. Geo. and Ralph Koch, P. Geo. in the Mineral Resource estimate at Timmins West Mine.

 

TABLE 1.1:         TIMMINS WEST MINE RESOURCE ESTIMATES

 

Deposit

 

Resource Classification

 

Tonnes

 

Capped Grade
(g/t Au)

 

Contained Gold
(ounces)

 

Timmins

 

 

 

 

 

 

 

 

 

 

 

Indicated

 

2,949,000

 

6.34

 

600,900

 

 

 

Inferred

 

1,579,000

 

5.54

 

281,500

 

 

 

 

 

 

 

 

 

 

 

Thunder Creek

 

 

 

 

 

 

 

 

 

 

 

Indicated

 

2,877,000

 

5.64

 

521,600

 

 

 

Inferred

 

2,693,000

 

5.89

 

510,000

 

Total Timmins West Mine

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

5,826,000

 

5.99

 

1,122,500

 

 

 

Total Inferred

 

4,272,000

 

5.76

 

791,500

 

 

(Prepared by Lake Shore Gold, January 31, 2012)

 

Notes:

 

1.              CIM definitions were followed for classification of Mineral Resources.

2.              Mineral Resources are estimated at a cut-off grade of 1.5 g/t Au for the Timmins Deposit and 2.0 g/t Au for Thunder Creek.

 

5



 

3.              Mineral Resources are estimated using an average long-term gold price of US $1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.              A minimum mining width of 2 metres was used.

5.              Capped gold grades are used in estimating the Mineral Resource average grade.

6.              Sums may not add due to rounding.

7.              Mineral Reserve estimates for the Timmins West Mine are currently in progress.

8.              Metallurgical recoveries are assumed to average 96.5%.

9.     Mining costs are assumed to average $82.00/tonne.

10.       Mr. Robert Kusins, B. Sc., P. Geo. and Mr. Ralph Koch, B. Sc., P. Geo, are the Qualified Persons for this Resource estimate.

 

A sensitivity analysis was carried out to examine the impact upon the tonnage, average grade and contained ounces by increasing the cut-off grade up to 3.0 g/t Au for the Timmins West Mine; Timmins and Thunder Creek Deposits.  The results are graphically presented in Figure 1.1 and Figure 1.2 for the Timmins Deposit and Thunder Creek Deposit respectively.  By increasing the cut-off grade, (refer to Figure 1.1 and Figure 1.2) the model demonstrates opportunity to optimize target grade by carving out the fringe, lower grade mineralization while maintaining grade and geological continuity and the loss of minimal total ounces.  The application of grade control practices using a higher cut-off grade has been challenging due to the irregular geometry of the quartz stringer zones within the mineralized envelopes and the practical separation of higher grade mineralization at the face.  Detailed mapping, chip channel sampling, and muck samples in addition to tighter definition drilling will be required to delineate the higher grade mineralized outlines and 3-D solids.

 

FIGURE 1.1:       GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE FOR THE TIMMINS DEPOSIT

 

 

6



 

FIGURE 1.2:       GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE FOR THE THUNDER CREEK DEPOSIT

 

 

Although limited additional metallurgical testing has been conducted on the Timmins Deposit and Thunder Creek mineralization since the previous respective technical reports, the best large scale testing was achieved through batch milling of the various sources over a period between September 2010 and June 2011, when capacity at the LSG Bell Creek mill was available.  Rusk Shear Zone and Porphyry Zone bulk samples were largely extracted from the 300 metre Level and 730 metre Level elevations respectively during this period (refer to Table 1.2) and returned greater than 96.5 % recovery.  The 650-610 metre Level longhole stope comprising the UM1 and UM1a Zones was almost exclusively processed between September and December 2010 returning greater than 96% Au recovery.  For most of 2011, and especially after June 2011 the mill production was increased to capacity and run of mine feed was blended from multiple sources; Timmins Mine, Bell Creek and Thunder Creek Deposits achieving similar gold recoveries averaging in excess of 96%.

 

7



 

TABLE 1.2:         BATCH MILLING RESULTS FOR THUNDER CREEK DEPOSIT MINERALIZATION

 

Thunder Creek Batch Mill Processing Results

 

Year

 

Month

 

Tonnes

 

Grade
(g/t Au)

 

Recovery

 

Head Ounces

 

Ounces Produced

 

2010

 

September

 

2824.94

 

5.21

 

96.87

%

473.11

 

458.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011

 

March

 

24028.8

 

3.75

 

97.32

%

2894.11

 

2816.62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011

 

May

 

13213.3

 

3.75

 

97.03

%

1593.53

 

1546.24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011

 

June

 

5631.9

 

3.984

 

97.21

%

721.43

 

701.31

 

 

TABLE 1.3:         BATCH MILLING RESULTS FOR TIMMINS DEPOSIT MINERALIZATION

 

Timmins Deposit Batch Processing Results

 

Year

 

Month

 

Tonnes

 

Grade
(g/t Au)

 

Recovery

 

Head Ounces

 

Ounces Produced

 

2010

 

September

 

8,475

 

4.69

 

96.52

 

1,279

 

1,234.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2010

 

October

 

21,893

 

7.71

 

96.97

 

5,428

 

5,263.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2010

 

November

 

53,833

 

7.53

 

96.83

 

13,035

 

12,622

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2010

 

December

 

45,483

 

8.57

 

97.31

 

12,528

 

12,191

 

 

Based on the recent surface and underground diamond drilling programs incorporating 440 holes totaling 131,431 metres, the first Mineral Resource at Thunder Creek has identified a significant resource, of which approximately 65% of the contained ounces are located between an elevation roughly 100 metres above and below the 730 metre Level elevation.  The concentration of a Mineral Resource at 3,250 ounces per vertical metre for all resource categories containing approximately 650,000 ounces, supports an attractive bulk mining scenario.  Two of the key zones in the Porphyry Zone style mineralization host approximately 75% of the total contained ounces and possess average horizontal widths of 14.7 metres and 24.4 metres respectively.

 

A budget of $8.375 M will be required to complete the recommendations listed below for the Thunder Creek project.  This estimated budget assumes an all-inclusive underground operating definition drilling budget of $95/metre and exploration drilling budget of $125/metre; and an all-inclusive cost of $150 per metre for surface diamond drilling for drill holes bored to a 1,000 metre depth:

 

1.              Detailed sectional drilling of the Rusk and Porphyry Zones from the 600 — 800 metre Level elevations on 15 metre centres comprising approximately 30,000 metres, ($2.85 M).

2.              The upper level Rusk Shear Zone delineation testing the Rusk and emerging Porphyry Zones from the 370 — 500 metre Level elevations at 25 metre centers for a total of 10,000 metres, ($0.95 M).

3.              Definition drilling from scram drifts parallel to the sill development in the hangingwall will include 2,500 metres in total over the year, ($0.237 M).

 

8



 

4.              Delineation drilling of the Rusk/Porphyry style mineralization between the 500-600 metre Level and the 750 — 850 metre Level at 15-30 metre centers from the 260 metre Level and 710 metre Level drill drifts comprising an additional 7,500 metres, ($0.713 M).

5.              Exploration drilling along strike off the ends of the 260 metre Level and the 710 metre Level drill platforms, with step-outs of approximately 100-200 metre to the northeast and southwest comprise approximately 5,000 metre, ($0.625 M).

6.              Surface exploration diamond drilling along strike of the Rusk Shear (20,000 metres) over ground held by Lake Shore Gold Corp. ($3.0 M).

 

A budget of $6.295 M will be required to complete the recommendations listed below for the Timmins deposit.  This estimated budget assumes an all-inclusive underground operating definition drilling budget of $95/metre and exploration drilling budget of $125/metre.

 

1.              Detailed sectional drilling at 10-15 metre centres of the UM complex between the 670-730 metre Levels comprising 25,000 metres ($2.37 M).

2.              Exploration Drilling of the UM complex from the 730 metre Level drill drift down to 810 metre vertical at 15-25 metre centres for a total of 10,000 metres, ($1.25 M).

3.              Delineation drilling of the FW Zone and Vein Zones between the 380-580 metre Levels from the 480 up ramp east comprising 10,000 metres ($0.95 M).

4.              Delineation drilling of the MZ between the 525-650 metre Levels from the 525 metre down ramp comprising approximately 5,000 metres, ($0.475 M).

 

In order to fully understand the impact that the revised resource model for the Timmins Deposit and the new resource model for the Thunder Creek Deposit would have on the long term mining strategy for the Timmins Mine, a Preliminary Economic Assessment (PEA) was conducted.  This assessment was conducted to identify the potential economic value of the mine as well as identify any potential bottlenecks or short comings in the capacity of the mine infrastructure.  All resource classifications were used in generating the PEA, including inferred material.  It must be noted that inferred resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves, and there is no certainty that the financial results of the PEA will be realized.

 

Some 8.6 M tonnes of resources grading 5.2 g/tonne (1.4 M ounces recovered) were included in the production stream for purposes of the PEA.  The key results of the PEA indicate a 3,000 tonne per day sustainable operation over a 10 year mine life with a NPV (5%) of $575 and an IRR of 105% using market consensus pricing.  Once at full production, the all-in operating cost runs just under $100/tonne and $600/recovered ounce.  Net cash flow for the operation becomes positive in 2013, running at approximately $100 M annually.

 

The results of the PEA indicated a very robust operation at the Timmins West Mine.

 

Subsequent to completion of the PEA, further detailed engineering design, cost analysis, and economic evaluations were completed at a Prefeasibility Study (PFS) level on the Measured and Indicated resource subset of the total resource pool.  These results are presented in this report and support a Probable Reserve of 4.9 M tonnes grading 5.2 g/tonne for the Timmins West Mine (795,000 oz. net mill recoveries), including some 2.25 M tonnes grading 5.62 g/tonne for some 406,000 oz mined (392,000 oz. net mill recoveries) at the Timmins Deposit, and a further 2.67 M tonnes grading 4.86 g/tonne at the Thunder Creek Deposit for some 417,000 oz mined (403,000 oz. net mill recoveries).

 

9



 

The high level steps involved in the development of the PFS were as follows.  Geological models of the indicated resources were isolated and rigorous assessments were made of the geometry and continuity of each of the mineralized zones.  Geomechanical information and assessments collected and conducted over the last two years were taken into account in the assessment and assignment of appropriate mining methods to these mineralized zones.  Individual stope designs were then created in three dimensions.  These stope shapes were then queried against the block models.  This allowed for fair inclusion of internal dilution from both low grade and barren mineral zones.  Additional factors were assigned for external dilution (with or without grade) dependent on the specific mining method and geometry of each stoping unit being evaluated.  Finally, a global recovery factor was assigned to the overall reserves to allow for in-stope and process losses.  Detailed mine development layouts and construction activities were then assigned to provide access to each of the stoping units.  Development, construction, and production costs were then estimated to allow an economic assessment to be made comparing the capital and operating expenses required for each area to its expected revenue stream to ensure economic viability.  All inputs were vetted thoroughly and benchmarked against current operating practices and industry norms.

 

It should also be noted that all capital costs required to complete all surface and underground facilities at the Timmins West Mine and Bell Creek Mill facility have been included in this analysis.  It should also be noted that no contributions from the Bell Creek mining operations (positive or negative) have been included in this work.

 

Key outcomes of this financial analysis indicate that the reserves support a robust 5 year mining plan at a sustained production rate of 2,400 t/d.  The reserves can be extracted at an average operating cost of $113 per tonne ($709/oz) and a total capital cost of $329 million.  At an assumed gold price of US $1,600 per ounce, the reserves generate a positive cash flow of some $344 million.  Based on executing the same mining plan, at an assumed long term gold price of US $1,300 per ounce, the cash flow drops to $112 million.

 

A series of break-even gold price sensitivities were comducted.  The break-even gold price required to cover all capital and operating costs for the reserves only mining plan has been calculated at US $1,156 per ounce.  The estimated long term (post 2012) break-even gold price has been calculated at US $972/ounce.  This information shows that the mining plan for the reserves as stated, is very robust and can withstand significant fluctuations in market conditions.

 

10



 

2.0                               INTRODUCTION

 

This Timmins West Mine Technical Report is co-authored by: Dean Crick P. Geo.; Robert Kusins, P. Geo., Brian Buss, P. Eng., Ralph Koch, P. Geo., and David Powers P. Geo. on behalf of Lake Shore Gold Corp. (“Lake Shore Gold”, “LSG”) and conforms to NI 43-101 Standards of Disclosure for Mineral Projects.  These individuals are considered QP’s under 43-101 definitions.

 

Lake Shore Gold Corp. is a publicly traded company listed on the Toronto Stock Exchange and trading under the symbol LSG with the head office at 181 University Avenue, Suite 2000, Toronto, Ontario, Canada M5H 3M7.  Lake Shore Gold Corp. was founded in 2002 to explore for precious and base metals hosted within the portions of the Canadian Shield situated in Quebec and Ontario.

 

The authors have prepared this report using a combination of publicly available and confidential information.  This report is sourced from an amalgamation of several reports listed in Section 27 — References.

 

The purpose of this technical report is to provide a summary of the total resource pool for the Timmins West Mine (“TWM”) including a high level summary of the findings of a previously completed Preliminary Economic Assessment (PEA) and a full description of the subsequent and more detailed work, completed at a prefeasibility study (PFS) level, on the mine design, cost analysis, and economic evaluation of the indicated resource subset.  This work was conducted at a PFS in order to substantiate declaration of an updated Mineral Reserve Statement for the Timmins West Mine.

 

Historical work in the Timmins West Mine area was reviewed by referencing assessment reports filed at the Ministry of Northern Development and Mines’ (“MNDM”) office at the Ontario Government Complex, Highway 101 East, Timmins (Porcupine), Ontario; and the online Assessment File Research Imaging (“AFRI”).  Option and legal agreements were reviewed at the Lake Shore Gold Exploration Office.

 

2.1                               LIST OF QUALIFIED PERSONS

 

Brian Buss (P. Eng.), VP of Project Development for Lake Shore Gold is responsible for Items: 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, and 26.

 

Dean Crick (P. Geo.), Director of Geology for Lake Shore Gold, Timmins West Mine Complex is responsible for Items: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.

 

Ralph Koch (P. Geo.), Chief Mines Resource Geologist for Lake Shore Gold Corp. is responsible for Item 14.

 

Bob Kusins (P. Geo.), Chief Resource Geologist for Lake Shore Gold Corp. is responsible for Item 14.

 

The Qualified Persons listed above are full time employees of Lake Shore Gold and reside in Timmins Ontario.  These individuals are intimately aware of the work going on at the Timmins West Mine and have visited the site on numerous occasions.

 

David Powers (P. Geo.) of David Powers Geological Services is responsible for Items 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 23, and 27.

 

11



 

David Powers visited the site on May 29, 2009.  During this visit GPS measurements of selected diamond drill casings were taken and compared with completed diamond drill logs; trench locations were observed for geology and structure and channel sampling; cut line location were noted and compared with MMI sampling and surface exploration grids.  These findings were reported in the revised and restated technical report July 29, 2009 (Powers, 2009).  Since then the author was present and observed the geological mapping by Camier (2009, report 2010); and present for summary presentations by Rhys at the Timmins Mine Site and Exploration Offices (2009, 2010, 2011).  The most recent visit to the Thunder Creek property occurred on December 08, 2011 at which time the underground workings were observed, the Timmins Mine core shack, and core processing facilities were toured and the cold storage core facility was visited.  Core logging and data entry process was observed in detail and the QA/QC and data verification procedures reviewed.

 

2.2                               UNITS AND CURRENCY

 

Metric and Imperial units are used throughout this report.  Canadian dollars (“C$”, “$”) is the currency used unless otherwise noted.  On February 29, 2012 the exchange rate was approximately $1.00 C$ to 1.011 US$.

 

Common conversions used included converting one ounce of gold to grams gold with a factor of 31.104 grams/troy ounce; and one ounce gold per ton with a conversion factor of 34.29 grams gold per tonne.

 

2.3                               LIST OF ABBREVIATIONS

 

Table 2.1 lists the common abbreviations that may be used in the report.

 

TABLE 2.1:         LIST OF ABBREVIATIONS

 

Unit or Term

 

Abbreviation or Symbol

Above mean sea level

 

amsl

Advanced Exploration Project

 

AEP

Atomic Absorption

 

AA

Arsenic

 

As

Arsenopyrite

 

aspy

Azimuth

 

AZ

Billion years ago

 

Ga

British thermal unit

 

Btu

Carbon in leach

 

CIL

Carbon in pulp

 

CIP

Centimetre

 

cm

Copper

 

Cu

Cubic centimetre

 

cm³

Cubic feet per second

 

ft³/s, cfs

Cubic foot

 

ft³

Cubic inch

 

in3

Cubic metre

 

Cubic yard

 

yd³

Day

 

d

Days per week

 

d/wk

 

12



 

Unit or Term

 

Abbreviation or Symbol

Days per year (annum)

 

d/a

Dead weight tonnes

 

DWT

Degree

 

°

Degree Celsius

 

°C

Degrees Fahrenheit

 

°F

Diamond bore hole

 

dbh, DBH

Diamond drill hole

 

ddh, DDH

Dollars Canadian

 

$C

Dry metric ton

 

dmt

Foot

 

ft

Gallon

 

gal

Gallon per minute

 

gpm

Gold

 

Au

Gold equivalent grade

 

AuEq

Gram

 

g

Gram metres

 

m.g/t

Grams per litre

 

g/l

Grams per tonne

 

g/t, gpt

Greater than

 

Hectare (10,000m²)

 

ha

Hour

 

h (not hr)

Inch

 

in, “

Kilo (1,000)

 

k

Kilogram

 

kg

Kilograms per cubic metre

 

kg/m³

Kilograms per hour

 

kg/h

Kilograms per square metre

 

kg/m²

Kilometre

 

km

Kilometres per hour

 

km/h

Less than

 

Lead

 

Pb

Life of mine

 

LoM

Litre

 

L

Litres per minute

 

L/m

Metre

 

M

Metres above sea level

 

masl

Metres per minute

 

m/min

Metres per second

 

m/s

Metric ton (tonne) (2,000 kg) (2,204.6 pounds)

 

t

Micrometre (micron)

 

µm

Miles per hour

 

mph

Milligram

 

mg

Milligrams per litre

 

mg/L

Milliliter

 

mL

Millimetre

 

mm

 

13



 

Unit or Term

 

Abbreviation or Symbol

Million

 

M

Million grams

 

M g

Million tonnes

 

Mt

Million Troy ounces

 

M oz

Million Years

 

Ma

Minute (plane angle)

 

min, ‘

Minute (time)

 

min

Month

 

mo

National Instrument 43-101 (Canadian)

 

NI 43-101

No Personal Liability

 

N.P.L.

Ounces

 

oz

Page

 

p, pg

Parts per billion

 

ppb

Parts per million

 

ppm

Percent

 

%

Percent moisture (relative humidity)

 

% RH

Potassium

 

K

Pound(s)

 

lb

Pounds per square inch

 

psi

Preliminary Economic Assessment

 

PEA

Pyrite

 

py

Pyrrhotite

 

po

Quality Assurance/Quality Control

 

QA/QC

Quart

 

qt

Revolutions per minute

 

rpm

Rock Quality Description

 

RQD

Second (plane angle)

 

sec, “

Second (time)

 

s

Short ton (2,000 lb)

 

st

Short ton (US)

 

t (US)

Short tons per day (US)

 

tpd (US)

Short tons per hour (US)

 

tph (US)

Short tons per year (US)

 

tpy (US)

Silver

 

Ag

Sodium

 

Na

Specific gravity

 

SG

Square centimetre

 

cm²

Square foot

 

ft²

Square inch

 

in²

Square kilometre

 

km²

Square metre

 

Thousand tonnes

 

kt

Tonne (1,000 kg)

 

t

Tonnes per day

 

t/d, tpd

Tonnes per hour

 

t/h

 

14



 

Unit or Term

 

Abbreviation or Symbol

Tonnes per year

 

t/a

Volt

 

V

Week

 

wk

Weight/weight

 

w/w

Wet metric ton

 

wmt

Yard

 

yd

Year (annum)

 

a

Year (US)

 

yr

 

2.4                               DEFINITIONS

 

The following definitions of Mineral Resources and Mineral Reserves have been prepared by the CIM Standing Committee on Reserve Definitions and Adopted by the CIM Council on November 27, 2010.

 

2.4.1                     Mineral Resource

 

Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories.  An Inferred Mineral Resource has a lower level of confidence than that applied to an Indicated Mineral Resource which has a lower level of confidence than a Measured Mineral Resource.

 

A “Mineral Resource” is a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized organic material including base and precious metals, coal, and industrial minerals in or on the Earth’s crust in such form and quantity and of such a grade or quality that it has a reasonable prospect for economic extraction.  The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

 

2.4.2                     Inferred Mineral Resource

 

An “Inferred Mineral Resource” is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified geological and grade continuity.  The estimate is based on limited information and sampling gathering through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes.

 

2.4.3                    Indicated Mineral Resource

 

An “Indicated Mineral Resource” is the part of the Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit.  The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

 

15



 

2.4.4                     Measured Mineral Resource

 

A “Measured Mineral Resource” is the part of the Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate applications of technical and economic parameters, to support production planning and evaluation for the economic viability of the deposit.  The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.

 

2.4.5                     Mineral Reserve

 

Mineral Reserves are sub-divided in order of increasing confidence into Probable Mineral Reserves and Proven Mineral Reserves.  A Probable Mineral Reserve has a lower level of confidence than a Proven Mineral Reserve.

 

A Mineral Reserve is the economically mineable part of the Measured or Indicated Mineral Resource demonstrated by at least a Preliminary Feasibility Study.  This Study must include adequate information on mining, processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, that economic extraction can be justified.  A Mineral Reserve includes diluting minerals and allowances for losses that may occur when the material is mined.

 

2.4.6                     Probable Mineral Reserve

 

A “Probable Mineral Reserve” is the economically mineable part of an Indicated and, in some circumstances, a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study.  This Study must include adequate information on mining, processing metallurgical, economic and other relevant factors that demonstrate, at the time of reporting that economic extraction can be justified.

 

2.4.7                     Proven Mineral Reserve

 

A “Proven Mineral Reserve” is the economically mineable part of a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study.  This Study must include adequate information on mining, processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, the economic extraction is justified.

 

2.5                               GLOSSARY

 

2.5.1                     General Glossary

 

Table 2.2 is a summary table of common technical words accompanied by a simple explanation of the term or word as the term pertains to this report.

 

16



 

TABLE 2.2:         GLOSSARY

 

Term

 

Explanation

Assay

 

The chemical analysis of mineral samples to determine the metal content.

Capital Expenditure

 

All other expenditures not classified as operating costs.

Composite

 

Combining more than one sample result to give an average result over a larger distance.

Concentrate

 

A metal-rich product resulting from a mineral enrichment process such as gravity concentration or floatation, in which most of the desired mineral has been separated from waste material in the ore.

Crushing

 

Initial process of reducing ore particle size to render it more amenable for further processing.

Cut-off Grade (CoG)

 

The grade of mineralized rock, which determines whether or not it is economic to recover its gold content by further concentration.

Dilution

 

Unwanted waste, which is mined with ore.

Dip

 

Angle of inclination of a geological feature / rock from the horizontal.

Fault

 

The surface of a fracture along which movement has occurred.

Footwall

 

The underlying side of an orebody or stope.

Gangue

 

Non-valuable components of the ore.

Grade

 

The measure of concentration of “gold” within mineralized rock.

Hangingwall

 

The overlying side of an orebody or stope.

Haulage

 

A horizontal underground excavation which is used to transport mined material.

Igneous

 

Primary crystalline rock formed by the solidification of magma.

Level

 

Horizontal tunnel with the primary purpose to transport personnel and materials.

Lithological

 

Geological description pertaining to different rock types.

LoM Plans

 

Life of mine plans.

Material Properties

 

Mining properties.

Metamorphism

 

Process by which consolidated rock is altered in composition, texture, or internal structure by conditions and forces of heat and pressure.

Milling

 

A general term used to describe the process in which the ore is crushed, ground and subjected to physical or chemical treatment to extract the valuable metals to a concentrate or finished product.

Mineral/Mining Lease

 

A lease area for which mineral rights are held.

Mining Asset

 

Material Properties and Significant Exploration Properties.

Ongoing Capital

 

Capital estimates of a routine nature, which is necessary for sustaining operations.

Ore Reserve

 

See Mineral Reserve

RoM

 

Run of Mine

Sedimentary

 

Pertaining to rocks formed by the accumulation of sediments, formed by the erosion of other rocks.

Shaft

 

An opening cut downwards from the surface for transporting personnel, equipment, supplies, ore and waste.

Smelting

 

A high temperature pyrometallurgical operation conducted in a furnace, in which the valuable metal is collected to a molten matte or doré phase and separated from gangue components that accumulate in a less dense molten slag phase.

Stope

 

Underground void created by mining.

Stratigraphy

 

The study of stratified rocks in terms of time and space.

Strike

 

Direction of line formed by the intersection of strata surfaces with the horizontal plane, always perpendicular to the dip direction.

 

17



 

Term

 

Explanation

Sulphide

 

A sulphur bearing mineral.

Tailings

 

Finely ground waste rock from which valuable minerals or metals have been extracted.

Thickening

 

The process of concentrating solid particles in suspension.

Total Expenditure

 

All expenditures including those of an operation and capital nature.

 

2.5.2                     Lake Shore Gold Mine Site Terminology

 

Timmins West Complex:                     The Company’s entire land package on the west side of the city, Extending through Bristol, Thorneloe, Carscallen, Denton townships.

 

Timmins West Mine:                                           The combined areas that are currently being mined using the shared Infrastructure, namely the Timmins Deposit and the Thunder Creek Deposit.

 

Timmins Deposit:                                                            The deposit formerly known as the Timmins Mine (now one of two deposits comprising the Timmins West Mine.

 

Thunder Creek Deposit:                           The second deposit being mined in the Timmins West Mine.

 

18



 

3.0                               RELIANCE ON OTHER EXPERTS

 

The authors have sourced the information for this report from an amalgamation of several reports listed in Section 27 labeled References.  These references include: government geological reports; press releases; company annual reports; assessment reports filed with the Ministry of Northern Development and Mines’ (“MNDM”), previously SEDAR filed NI 43-101 reports and reports both public and confidential provided by Lake Shore Gold Corp.

 

Exploration at the Timmins West Mine has continuously been overseen, and planned by professional geologists and qualified persons.  Table 3.1 summarizes the names of the Qualified Persons, the location and the dates that they supervised the exploration and advanced exploration activities.  Their knowledge, information, and documentation provided to the authors is instrumental in the preparation of this report.

 

TABLE 3.1:         QUALIFIED PERSON FOR TIMMINS WEST MINE

 

Location

 

Period

 

Qualified Person

Timmins Mine

 

2003 — 2004

 

Jacques Samson, P. Geo.

 

 

2005 — 2006

 

Dr. M.J. Byron, P. Geo.

 

 

2006 — 2009

 

Jacques Samson, P. Geo.

Mineral Resource Estimate

 

2009

 

Heather Miree, P. Geo.

 

 

2009

 

Stephen Conquer, P. Geo.

 

 

August 2010 to present

 

Dean Crick, P. Geo.

 

 

 

 

 

Thunder Creek

 

2003 — 2009

 

Jacques Samson, P. Geo.

 

 

2005 — 2006

 

Dr. M.J. Byron, P. Geo.

 

 

2006 — 2009

 

Jacques Samson, P. Geo.

 

 

2009 — March 2010

 

Pat Pope, P. Geo.

 

 

2009 — August 2010

 

Stephen Conquer, P. Geo.

 

 

August 2010 to present

 

Dean Crick, P. Geo.

 

From 2003 to the present, contributions to geology by outside consultants include: petrography, ore microscopy and scanning electron microscope investigations by Dr. Miller of Miller and Associates, of Ottawa; mineralization and structural studies comparing Thunder Creek and the Timmins Mine by Mr. David Rhys, of Panterra Geoservices Inc., petrology studies of the Timmins Mine and Thunder Creek area by Katherina Ross, Panterra Geoservices; and geological mapping of a 5 km2 area surrounding the Rusk surface showing by Mr. John Camier, P. Geo.  His report includes petrographic analysis thin sections examined by Mr. Camier and Dr. Bob Springer, Professor Emeritus at Brandon University, Manitoba.

 

Several reports have been submitted to SEDAR describing in detail and outlining the exploration history of the Timmins Mine Complex (formerly known as the Timmins West Gold Project and the Holmer Mine Property) as well as the Thunder Creek Property.  The reader is invited to review the detailed summaries and source material outlined in the following documents:

 

2002:

 

Holmer Gold Mines Limited, Annual Information Form.

2003:

 

Holmer Gold Mines Limited, Annual Information Form.

 

19



 

2004:

 

A Technical Review of Holmer Gold Property, In Bristol Township, Timmins Area, Ontario, Canada for Lake Shore Gold Corp. prepared by E. Neczkar, M.W. Kociumbas, J.R. Sullivan September 07, 2004, Watts, Griffis and McQuat Limited.

2004:

 

National Instrument 43-101 Technical Report, Timmins Gold Project, Timmins, Ontario, Lake Shore Gold Corp., L.D.S. Winter September 24, 2004.

2004:

 

National Instrument 43-101 Technical Report, Timmins Gold Project, Timmins, Ontario, Lake Shore Gold Corp., L.D.S. Winter November 26, 2004.

2006:

 

National Instrument 43-101 Technical Report, Timmins West Gold Project, Timmins, Ontario, Lake Shore Gold Corp., L.D.S. Winter January 25, 2006.

2007:

 

A Technical Review of the Timmins West Gold Project In Bristol Township, Timmins Area, Ontario, for Lake Shore Gold Corp., J.R. Sullivan, J.G. Lavigne, M.W. Kociumbas, January 03, 2007, Watts, Griffis and McQuat Limited.

2007:

 

National Instrument 43-101 Technical Report, Lake Shore Gold Corp. Timmins West Project, Timmins, Ontario, G. Darling et al. SRK Consulting, October 12, 2007.

2008:

 

Technical Report of the Thunder Creek Gold Property, Bristol township, Timmins, Ontario, Canada, D. Wagner, June 27, 2008.

2009:

 

Updated NI 43-101 Technical Report on the Timmins Mine Property, Ontario, Canada, prepared for Lake Shore Gold Corp., G. Darling et al. October 01, 2009.

2009:

 

Amended Technical Review and Report of the “Thunder Creek Property” Bristol And Carscallen Townships, Porcupine Mining Division, Ontario, Canada prepared for Lake Shore Gold Corp. and West Timmins Mining Inc. July 29, 2009.

2011:

 

Technical Report on the Initial Mineral Resource Estimate for the Thunder Creek Property Bristol Township, West of Timmins, Ontario, Canada, Prepared for Lake Shore Gold Corp. and West Timmins Mining Inc., D. Crick, R. Kusins, D. Powers, December 23, 2011.

2012:

 

43-101 Technical Report, Preliminary Economic Assessment and Updated Mineral Resource Estimate for Timmins West Mine Timmins, Ontario, Canada, prepared by Dean Crick, (P. Geo.), Ralph Kock (P. Geo.), Robert Kusins (P. Geo.), Brian Buss (P. Eng.) and David Powers (P. Geo.) on behalf of Lake Shore Gold Corp., March 29, 2012.

 

The authors rely on the professional integrity of the designated project Qualified Persons, to maintain and provide true and accurate reporting of the facts, throughout the project’s history.  Where possible the internal documents have been checked against public record filed for assessment purposes.

 

The authors have also relied on internal experts within the organization for input to certain sections of this report.  The authors have reviewed and endorsed the contributions of these experts.

 

Will Ansley, VP Corporate Development, Lake Shore Gold Corp contributed to Item 19.

 

Marcel Cardinal, Sr. Environmental Coordinator, Lake Shore Gold Corp. contributed to Items 4 and 20.

 

Mark Melanson, Mill Systems Projects Specialist contributed to Items 13 and 17.

 

The authors have also relied on external experts for input to certain sections of this report.  The authors have reviewed and endorsed the contributions of these experts.

 

Michel Dagbert, P. Eng. of SGS Geostat Limited of 10 boul. De la Seigneurie Est., Suite 203, Blainville, Quebec, provided the technical review of QA/QC data, review of the 3D modeling, selection of a

 

20



 

composite and block size for resource modeling the variography of capped composite grades, and verification of the resource block model with additional recommendations for block resource estimation.

 

Mickey Murphy, P. Eng. of Stantec (Mine Engineering Consultant) contributed to Items 15, 16, 18, 21, 22, 23, 24, 25, and 26.

 

Kathy Kalenchuk, Ph.D. of Mine Design Engineering (Geotechnical Consultant) contributed to Item 16.

 

Frank Palkovits, P. Eng. of KOVIT Engineering (Backfill Consultant) contributed to Item 21.

 

Shiu Kam, P. Eng. of Golder Associates (Tailings and Water Management Consultant) contributed to Item 16.

 

The authors have reviewed reports, drill logs, and assay certificates issued during the exploration phases and have found them to be consistent and believe the data to be reliable within testable parameters.

 

Active mining claim abstracts have been reviewed online.  The ownership on record is in the name of Lake Shore Gold Corp.

 

21



 

4.0                               PROPERTY DESCRIPTION AND LOCATION

 

4.1                               PROPERTY DESCRIPTION

 

The Timmins West Mine (“TWM”) area includes the Timmins Deposit property and the Thunder Creek property for a total area of approximately 12.9 square kilometres, or approximately 1,376 hectares situated in Bristol and Carscallen townships.  The majority of the property (97.4%) is situated within Bristol Township and approximately 36 hectares (2.6%) is located in Carscallen Township.  The Mining Land Tenure Map reference for the Timmins Mine West Complex is: Bristol Township; Plan G-3998; Porcupine Mining Division, Land Titles/Registry Division of Cochrane; and Timmins, Ministry of Natural Resources District, Ontario, Canada.

 

The Timmins Mine Deposit of the TWM consists of a block of 23 contiguous claims (395 hectares) of which there are eleven (11) individual patented claims and twelve (12) leased claims that are held pursuant to two (2) twenty-one (21) year Crown mining leases.  The Thunder Creek project portion of the property consists of 57 staked claim units and three Crown leasehold claims totaling approximately 960 hectares.  Lake Shore Gold Corp. owns a 100% interest in the Property subject to underlying royalties.  The claims and leases are all in good standing.  Figure 4.1 illustrates the Timmins West Mine property relative to local topographic and cultural features.  Table 4.1 presents the details of staked claims, numbers, ownership, size and expiry date for the Timmins West Mine property; Table 4.2 presents leased lands information; and Table 4.3 presents patent lands information.

 

4.2                               LOCATION

 

The headframe of the Timmins West Mine is collared at national topography series (“NTS”) map reference 42-A-05; at longitude 81.55° west; 48.32° north latitude.  Universal Transverse Mercator (“UTM”) co-ordinates for the project centre utilizing projection North American Datum (“NAD”) 83, Zone 17 are approximately 458,915 metres east, 5,358,043 metres north.  This location is approximately 19 kilometres west-southwest of the Timmins city center and 552 kilometres north-northwest of the City of Toronto.  Provincial Highways 101 and 144 provide all weather road access to the property.  Bush roads, quad trails, drill trails and foot paths provide access to all areas within the claim boundaries.  The junction of Highways 101 and 144 is situated 1.1 kilometres northwest of the property centre.  Figure 4.2, Location Map, illustrates the Project area relative to the highways, City of Timmins and the City of Toronto.

 

22



 

FIGURE 4.1:       TIMMINS WEST MINE PROPERTY

 

GRAPHIC

 

23



 

TABLE 4.1:         TIMMINS WEST MINE STAKED CLAIMS

 

STAKED CLAIMS

 

Claim No.

 

Township

 

Owner

 

No. of
Units

 

Recording
Date

 

Assessment
Due Date

 

Assessment Due
$

 

Banked Credits

 

Royalty To

 

P1159635

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

5,387

 

Croxall;FNV

 

P1159636

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

29,423

 

Croxall;FNV

 

P1159637

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

97,374

 

Croxall;FNV

 

P1159638

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

48,241

 

Croxall;FNV

 

P1159639

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

6,400

 

Croxall;FNV

 

P1159640

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

135,326

 

Croxall;FNV

 

P1159641

 

Bristol

 

LSG

 

1

 

1990-Dec-18

 

2016-Dec-18

 

400

 

5,646

 

Croxall;FNV

 

P1176341

 

Bristol

 

LSG

 

1

 

1991-Feb-18

 

2016-Feb-18

 

400

 

6,010

 

Croxall;FNV

 

P1177807

 

Bristol

 

LSG

 

1

 

1991-May-13

 

2016-May-13

 

400

 

0

 

Kangas;FNV

 

P1177808

 

Bristol

 

LSG

 

1

 

1991-May-13

 

2016-May-13

 

400

 

312

 

Kangas;FNV

 

P1177809

 

Bristol

 

LSG

 

1

 

1991-May-13

 

2016-May-13

 

400

 

1,637

 

Kangas;FNV

 

P1177811

 

Bristol

 

LSG

 

1

 

1991-May-13

 

2016-May-13

 

400

 

1,403

 

Kangas;FNV

 

P1177822

 

Bristol

 

LSG

 

1

 

1991-Oct-04

 

2016-Oct-04

 

400

 

190,560

 

Croxall;FNV

 

P1181409

 

Bristol

 

LSG

 

1

 

1994-Feb-14

 

2016-Feb-14

 

400

 

4,997

 

Croxall;FNV

 

P1181410

 

Bristol

 

LSG

 

1

 

1994-Feb-14

 

2016-Feb-14

 

400

 

17,851

 

Kangas;FNV

 

P1181413

 

Bristol

 

LSG

 

1

 

1994-Feb-14

 

2016-Feb-14

 

400

 

1,793

 

Kangas;FNV

 

P1181995

 

Bristol

 

LSG

 

2

 

1992-Jun-22

 

2016-Jun-22

 

800

 

4,054

 

Durham; Meikle;FNV

 

P1189528

 

Bristol

 

LSG

 

1

 

1993-Jun-18

 

2016-Jun-18

 

400

 

95,032

 

FNV

 

P1189580

 

Bristol

 

LSG

 

1

 

1993-Jan-08

 

2016-Jan-08

 

400

 

1,013

 

Durham; Meikle;FNV

 

P1189592

 

Bristol

 

LSG

 

3

 

1992-Jun-19

 

2016-Jun-19

 

1,200

 

33,248

 

Durham; Meikle;FNV

 

P1189593

 

Bristol

 

LSG

 

1

 

1992-Jun-22

 

2016-Jun-22

 

400

 

624

 

Durham; Meikle;FNV

 

P1189886

 

Bristol

 

LSG

 

6

 

1992-May-07

 

2016-May-07

 

2,400

 

58,675

 

Hutteri;FNV

 

P1193477

 

Bristol

 

LSG

 

6

 

1994-May-04

 

2016-May-04

 

2,400

 

1,793

 

FNV

 

P1198803

 

Bristol

 

LSG

 

1

 

1994-Feb-14

 

2016-Feb-14

 

400

 

0

 

Kangas;FNV

 

P1198804

 

Bristol

 

LSG

 

1

 

1994-Feb-14

 

2016-Feb-14

 

400

 

0

 

Kangas’FNV

 

P1201162

 

Bristol

 

LSG

 

1

 

1994-Jul-04

 

2016-Jul-04

 

400

 

5,621

 

Croxall;FNV

 

P1203840

 

Bristol

 

LSG

 

6

 

1995-Jul-21

 

2016-Jul-21

 

2,400

 

0

 

FNV

 

P1217601

 

Bristol

 

LSG

 

1

 

1996-Nov-26

 

2016-Nov-26

 

400

 

0

 

FNV

 

P530884

 

Bristol

 

LSG

 

1

 

1980-Oct-10

 

2016-Oct-10

 

400

 

7,227

 

CroxalL;FNV

 

P583234

 

Bristol

 

LSG

 

1

 

1980-Oct-10

 

2016-Oct-10

 

400

 

29,844

 

Croxall;FNV

 

P649964

 

Bristol

 

LSG

 

1

 

1983-Mar-25

 

2016-Mar-25

 

400

 

5,069

 

Croxall;FNV

 

P649965

 

Bristol

 

LSG

 

1

 

1983-Mar-25

 

2016-Mar-25

 

400

 

34,582

 

Croxall;FNV

 

P764945

 

Bristol

 

LSG

 

1

 

1984-Apr-19

 

2016-Apr-19

 

400

 

1,092

 

Croxall;FNV

 

P4211037

 

Bristol

 

LSG

 

2

 

2-Jun-2006

 

2-Jun-2014

 

800

 

0

 

FNV

 

P4211038

 

Bristol

 

LSG

 

1

 

2-Jun-2006

 

2-Jun-2014

 

400

 

0

 

FNV

 

P4211039

 

Bristol

 

LSG

 

1

 

2-Jun-2006

 

2-Jun-2014

 

400

 

0

 

FNV

 

P4211040

 

Bristol

 

LSG

 

2

 

2-Jun-2006

 

2-Jun-2014

 

800

 

0

 

FNV

 

 

24



 

TABLE 4.2:         LEASED LANDS

 

LEASED LANDS

 

Claim
No.

 

Township

 

Owner

 

Rights

 

Lease
No.

 

Area
(ha)

 

PIN

 

Lease Due
Date

 

Banked
Credits

 

Royalty To

 

P499933

 

Bristol

 

LSG

 

MRO

 

107874

 

108.792

 

65440- 0118

 

July 31 2027

 

 

 

FNV

 

P499934

 

Bristol

 

LSG

 

MRO

 

 

 

 

FNV

 

P499935

 

Bristol

 

LSG

 

MRO

 

 

 

 

FNV

 

P499936

 

Bristol

 

LSG

 

MRO

 

 

 

 

FNV

 

P499937

 

Bristol

 

LSG

 

MRO

 

 

 

 

FNV

 

P499938

 

Bristol

 

LSG

 

MRO

 

 

 

 

FNV

 

P55902

 

Bristol

 

LSG

 

MR & SR

 

106634

 

99.779

 

65440- 0052

 

July 31, 2013

 

 

 

FNV

 

P55903

 

Bristol

 

LSG

 

MR & SR

 

 

 

 

FNV

 

P55904

 

Bristol

 

LSG

 

MR & SR

 

 

 

 

FNV

 

P55905

 

Bristol

 

LSG

 

MR & SR

 

 

 

 

FNV

 

P55906

 

Bristol

 

LSG

 

MR & SR

 

 

 

 

FNV

 

P55907

 

Bristol

 

LSG

 

MR & SR

 

 

 

 

FNV

 

P495307

 

Bristol

 

LSGWTM

 

MRO

 

 

 

68.898

 

 

 

 

 

1,506,179

 

Croxall;FNV

 

P495308

 

Bristol

 

LSGWTM

 

MRO

 

108773

 

 

65440-

 

June 30, 2032

 

 

Croxall;FNV

 

P495309

 

Bristol

 

LSGWTM

 

MRO

 

 

 

 

0120

 

 

 

 

Croxall;FNV

 

P495307

 

Bristol

 

LSGWTM

 

SRO

 

 

 

 

 

 

 

 

 

FNV

 

P495308

 

Bristol

 

LSGWTM

 

SRO

 

108774

 

 

65440-

 

 

 

 

FNV

 

P495309

 

Bristol

 

LSGWTM

 

SRO

 

 

 

 

0132

 

June 30, 2032

 

 

FNV

 

 

Note:     FNV — Franco Nevada

 

25



 

TABLE 4.3:         PATENTED LANDS

 

PATENTED LANDS

 

Claim No.

 

Township

 

Owner

 

Rights

 

PIN

 

Area (ha)

 

Royalty To

P.19564

 

Bristol

 

LSG

 

SRO

 

65440-0038

 

16

 

FNV

P.21980

 

Bristol

 

LSG

 

SRO

 

65440-0041

 

16

 

FNV

P.21981

 

Bristol

 

LSG

 

SRO

 

65440-0044

 

16

 

FNV

P.18751

 

Bristol

 

LSG

 

SRO

 

65440-0039

 

16

 

FNV

P.18750

 

Bristol

 

LSG

 

SRO

 

65440-0042

 

16

 

FNV

P.18749

 

Bristol

 

LSG

 

SRO

 

65440-0045

 

16

 

FNV

P.9581

 

Bristol

 

LSG

 

MR & SR

 

65440-0051

 

16

 

FNV

P.9391

 

Bristol

 

LSG

 

MR & SR

 

65440-0053

 

16

 

FNV

P.9580

 

Bristol

 

LSG

 

MR & SR

 

65440-0059

 

16

 

FNV

P.9393

 

Bristol

 

LSG

 

MR & SR

 

65440-0040

 

16

 

FNV

P.9392

 

Bristol

 

LSG

 

MR & SR

 

65440-0043

 

16

 

FNV

P.4039 T.C. 613

 

Bristol

 

LSG

 

MR & SR

 

65440-0050

 

16

 

FNV

P.4227 T.C. 612

 

Bristol

 

LSG

 

MRO

 

65440-0086

 

16

 

Lebrash;FNV

 

Bristol

 

LSG

 

SRO

 

65440-0054

 

 

Lebrash;FNV

P.9389

 

Bristol

 

LSG

 

MR & SR

 

65440-0060

 

16

 

FNV

P.9587

 

Bristol

 

LSG

 

MR & SR

 

65440-0047

 

16

 

FNV

P.9586

 

Bristol

 

LSG

 

MR & SR

 

65440-0049

 

16

 

FNV

P.4040 T.C. 614

 

Bristol

 

LSG

 

MR & SR

 

65440-0046

 

16

 

FNV

P23967

 

Bristol

 

LSG

 

SRO

 

65440-0073

 

16

 

FNV

P23969

 

Bristol

 

LSG

 

SRO

 

65440-0072

 

16

 

FNV

 

Note: FNV- Franco Nevada

 

4.3                               RECENT OWNERSHIP HISTORY AND UNDERLYING AGREEMENTS

 

In May of 2003, Lake Shore Gold Corp. and Holmer Gold Mines Limited (“Holmer”) entered into an option agreement whereby Lake Shore earned a fifty percent (50%) in the Holmer Property (the present Timmins Deposit property) by March 24, 2006, subject to the following terms: incurring cumulative expenditures of $2,500,000 on the Property by May 24, 2006; making staged cash payments totaling $250,000 to Holmer by May 24, 2006; issuing 150,000 common shares of Lake Shore to Holmer by May 24, 2005; and confirming, by means of a report by a Qualified Person, that the Property contains an Indicated Mineral Resource of at least 500,000 ounces of gold.  This portion of the property consists of eleven (11) Freehold Patents with surface and mining rights; Lease 106634 (formerly lease 102611) a group of six (6) Leasehold Patents with surface and mining rights; and Lease 107874 (formerly Lease 104075) a group of six (6) Free Hold Patents mining rights as well as six (6) Lease Hold Patents of surface rights for the same area.  Lake Shore completed their requirements to earn 50% of the Holmer property in September of 2004.  On December 31st, 2004 a business combination agreement between Lake Shore

 

26



 

Gold Corp., their wholly owned subsidiary LSG Holdings Corp. and Holmer Gold Mines Limited came into effect, where Holmer became a wholly-owned subsidiary of Lake Shore.

 

Lake Shore Gold Corp. optioned a 60% interest in the Thunder Creek property from Band-Ore Resources Limited (“Band-Ore”) in November of 2003.  Under the terms of that agreement Lake Shore could earn 60% interest in the project by completing an excess of $1,705,000 C$ expenditures, $370,000 C$ in cash payments and the issuing of 100,000 shares within a four year period.  In September of 2006, Band-Ore and Sydney Resources Corporation merged into the new company West Timmins Mining Inc.  The terms of the Lake Shore Gold Corp. — Band-Ore option agreement succeeded to West Timmins Mining Inc.  In May of 2008, Lake Shore Gold Corp. informed West Timmins Mining Inc. that the obligations to earn a 60% interest in the Thunder Creek property had been fulfilled.  On November 06, 2009 Lake Shore Gold Corp. and West Timmins Mining Inc. (“WTM”) completed a business combination agreement resulting in West Timmins Mining Inc. becoming a wholly owned subsidiary of Lake Shore Gold Corp.  On Janauary 1, 2012, WTM was amalgamated into Lake Shore Gold Corp., which now holds the 100% interest.

 

Brief summaries of the underlying agreements and royalties are stated below.

 

A 1.5% NSR royalty is assigned to claim P-4227 payable to Mr. Lorne Lebrash.  This royalty may be purchased for $1 million.  The current resource model for mineralization does not extend to claim P-4227.

 

Mineral claims: 4211037, 4211038, 4211039, and 4211040 were staked by Lake Shore Gold Corp., have no underlying royalties, but were subject to the option agreement with West Timmins Mining Inc. dated November 07, 2003.  Because the claims were within the area of influence of the agreement they became part of the joint venture.  Lake Shore Gold Corp. has applied for and received the surface rights for mineral claims: 4211037 (P23967, PCL23749, PIN 65440-0073); and 4211038 (P23969, PCL 23750, PIN 65440-0072).

 

Claims 1189528, 1193477, 1203840 and 1217601 were staked by Band-Ore Resources Ltd. and are not subject to any underlying royalty agreements.

 

Mineral claims optioned from Mr. Jim Croxall (“Croxall”) were subject to a 2% Net Smelter Return (“NSR”) royalty.  One percent of this royalty may be purchased for a payment of $1,000,000 C$ plus a consumer price index adjustment.  These claims were also subject to an advanced annual royalty payment of $5,000 C$ until commercial production begins.  Lake Shore Gold Corp. purchased 1% of the NSR in November 2010 in exchange for approximately $1,500,000 C$ equivalent in Lake Shore Gold Corp. stock.  The surface rights for leased claims P495307, P495308 and P495309 (mineral rights only lease number 108773) have been acquired by West Timmins Mines Inc (surface lease number 108774).  The renewal has been received and is in good standing until June 30, 2030.

 

The claim with number 1189886 was optioned from Mr. Bruce Durham and partners (“Durham”) and has a 3% royalty attached.

 

Eight claims optioned from the late Mr. Matt Kangas (“Kangas”) (1177807,1177808, 1177809, 1177811, 1181410, 1181413, 1198803, and 1198804) are subject to a 2% NSR royalty of which 1% may be purchased for $1,000,000 C$.  An advanced royalty payment of $5,000 C$ (indexed for inflation) is paid annually to the estate of Mr. Kangas.  After the signing of the original agreement, mineral claims came open and were re-staked: claim 1181410 was former claim 1177813; claim 1181413 was former claim 1177810; claim 1198803 was former claim 1177812; and claim 1198804 was former claim 1177806.

 

27



 

Four claims, 1189593, 1181995, 1189580 and 1189592 were purchased by Bruce Durham, Robert Duess, Ken Krug and Henry Hutteri from Ray Meikle (“Meikle”) and Steve Anderson and then optioned to Band-Ore Resources Ltd.  A 3% NSR royalty is payable, 1.5% from Durham et al., and 1.5% from Meikle and Anderson.  There is not a buy down of this royalty.

 

The surface rights for claims P18913, P18916, P18917, P18918, P10920, and P10921 are held by Timmins Forest Products.

 

As of March 1, 2012, Franco-Nevada Corporation (“Franco Nevada”) entered into an agreement with Lake Shore Gold Corp. through which Franco-Nevada paid Lake Shore US$35 million for a 2.25% net smelter return (“NSR”) royalty on the sale of minerals from the Timmins West Complex.

 

All claims and leases are in good standing as of the Effective Date of this report.

 

4.4                               PAST MINING ACTIVITY, ENVIRONMENTAL LIABILITIES AND PERMITTING

 

During the period of 1911 to 1914 two shallow shafts were sunk; one on the present main mineralized zone and the second east of Vein 2 and Vein 3 zones.  Shaft one is reported to be 40 feet (12 metres) deep and the second shaft’s depth is an unspecified “shallower” depth.  The footprint of diamond drilling and exploration trenching made minimum impact on the environment.  The development of the Timmins West Mine infrastructure created a local disturbance of the terrestrial environment.  Baseline work did not identify any provincially or federally listed fauna species on the development site that would trigger a concern.  At closure, the site will be rehabilitated in accordance with closure plans filed with the Ministry of Northern Development and Mines.

 

From the Ministry of Natural Resources’ Species at Risk in Ontario (“SARO”) list, the following species could range within the Project area.

 

TABLE 4.4:         SPECIES AT RISK

 

Common Name

 

Scientific Name

 

OMNR Status

Lake Sturgeon

 

Acipenser fluvescens

 

Special concern

Golden Eagle

 

Aquila chrysaetos

 

Endangered

Short-Eared Owl

 

Asio flammeus

 

Special concern

Eastern Wolf

 

Canis lupus lycaon

 

Special concern

Black Tern

 

Chlidonias niger

 

Special concern

Yellow Rail

 

Coturnicops noveboracensis

 

Special concern

Monarch Butterfly

 

Danaus plexippus

 

Special concern

Bald Eagle

 

Haliaeetus leucocephalus

 

Special concern

Peregrine Falcon

 

Falco peregrinus

 

Threatened

Easern Cougar

 

Puma concolor

 

Endangered

 

The author is not aware of any of the species listed in the species at risk table as being present within the area of the Property.

 

The required permits and approvals for operations at the Timmins West Mine have been acquired.  Timmins Mine (Darling et al., 2009, Crick, D., 2011; Ternes, T, 2011).  These include Provincial Permits:

 

·                  Ministry of Northern Development and Mines (MNDM)

 

28



 

·      Ministry of the Environment (MOE)

·      Ministry of Natural Resources (MNR)

·      Ministry of Transportation (MTO)

·      Technical Standards and Safety Authority (TSSA)

·      Ministry of Labour (MOL)

·      Occupational Health and Safety

·      Explosives

·      Notification of Commencement of Construction and Operation

 

And Federal Permits:

 

·      Department of Fisheries and Oceans Canada (DFO)

·      Natural Resources Canada (NR CAN) — Explosives Regulatory Division (ERD)

·      Environment Canada (EC)

 

Closure plan for the bulk sampling was filed in October 2009 and the commercial production closure plan was filed in 2010.  In January 2011 Lake Shore Gold Corp. announced the Timmins Mine to be in commercial production.

 

To the best of the author’s knowledge there is no significant factor or risk that may affect access, title, or the right or ability to perform work on the property.

 

4.5                               CONSULTATION

 

Consultation has been undertaken with regulatory agencies, the general public, the Métis Nation of Ontario, Wabun Tribal Council representing the First Nation communities of Flying Post First Nation and Mattagami First Nation.  Consultation provides an opportunity to identify/address the concerns of external stakeholders and expedite the authorization process.

 

The consultations have been held in order to comply with LSG corporate policy and the provincial requirements of Ontario Regulation 240/00 and the Environmental Bill of Rights.

 

An Impact and Benefits Agreement (“IBA”) with the Mattagami and Flying Post First Nations has been negotiated and signed (February 17, 2011).  The IBA outlines how Lake Shore Gold Corp. and the First Nations communities will work together in the following areas: education and training of First Nation community members, employment, business and contracting opportunities, financial considerations and environmental provisions  (Hagan, B.; Samson, J., 2011, personal communication).

 

29



 

FIGURE 4.2:       LOCATION MAP

 

GRAPHIC

 

30



 

5.0                               ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

 

5.1                               ACCESSIBILITY

 

The headframe of the Timmins West Mine is located within national topography series (“NTS”) map reference 42-A-05; at longitude 81.55° west; 48.32° north latitude.  The offices and shops infrastructure have the street address of 8215 Highway 101 West, Timmins, Ontario.  The junction of Highways 101 and 144 is situated 1.1 kilometres northwest of the headframe.  All weather road access to the property is provided by provincial Highways 101 and 144.  Bush roads, diamond drill trail, quad trails, and foot paths provide access to the centre of the property and other locations within the claim boundaries.  A major power transmission line traverses the northwest portion of the property.  Figure 4.2, Location Map, illustrates the Project area relative to the highways, City of Timmins and the City of Toronto.

 

5.2                               CLIMATE

 

The Timmins West Mine area, and the City of Timmins experience a Continental Climate with an average mean temperature range of -17.5°C (January) to +17.4° (July) and an annual precipitation of about 831 mm.  The following table (Table 5.1) summaries the average temperatures and precipitation values for the 15 year period taken from the Timmins Airport between 1971 and 2000.

 

TABLE 5.1:         AVERAGE TEMPERATURES, PRECIPITATION AND SNOW FALL DEPTHS FOR THE TIMMINS AREA

 

 

 

Jan

 

Feb

 

Mar

 

Apr

 

May

 

Jun

 

Jul

 

Aug

 

Sep

 

Oct

 

Nov

 

Dec

 

Year

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Daily Average (°C)

 

-17.5

 

-14.4

 

-7.7

 

1.2

 

9.6

 

14.7

 

17.4

 

15.7

 

10.3

 

4.2

 

-4

 

-13.2

 

1.3

 

Daily Maximum (°C)

 

-11

 

-7.5

 

-0.9

 

7.6

 

16.6

 

21.7

 

24.2

 

22.3

 

16.1

 

8.9

 

0.1

 

-7.8

 

7.5

 

Daily Minimum (°C)

 

-23.9

 

-21.3

 

-14.5

 

-5.2

 

2.5

 

7.5

 

10.5

 

9.1

 

4.4

 

-0.6

 

-8.1

 

-18.7

 

-4.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Precipiation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rainfall (mm)

 

2.9

 

1.6

 

14.7

 

26.6

 

62.7

 

89.1

 

91.5

 

82

 

86.7

 

64

 

29.5

 

7

 

558.1

 

Snowfall (cm)

 

61.7

 

40.6

 

49.9

 

27.5

 

6.7

 

0.4

 

0

 

0

 

1.6

 

14

 

45.7

 

65.4

 

313.4

 

Precipitation (mm)

 

53.9

 

36.6

 

59.4

 

52.8

 

69.2

 

89.4

 

91.5

 

82

 

88.3

 

76.8

 

69.6

 

61.9

 

831.3

 

Average Snow Depth (cm)

 

58

 

66

 

58

 

25

 

1

 

0

 

0

 

0

 

0

 

0

 

7

 

29

 

20

 

 

Local lakes will start to freeze over approximately mid-November, and breakup will take place in early to mid May.  Work can be carried out on the Property twelve months a year.

 

5.3                               LOCAL RESOURCES AND INFRASTRUCTURE

 

The City of Timmins with an area of 3,210 square kilometres and a population of 42,455 (2006 Census) has and economic base dominated by the mining and logging industries.  The area is serviced from Toronto via Highways 400, 69 to Sudbury; and Highway 144 to Timmins; or Highway 11 from Barrie to Matheson and 101 westward to Timmins.  The Timmins Victor M. Power Airport has scheduled service provided by Air Canada Jazz, Bearskin Airlines and Air Creebec.  Porter Airways provide air service between Timmins and Toronto Island airport.  The Timmins District Hospital is a major referral health care centre for northeastern Ontario.

 

31



 

The Property is accessible by Highways 101 and 144 and is in close proximity to the main hydro grid transmission line.  An experienced mining labour pool is accessible in the Timmins area.

 

To the best of the author’s knowledge, there are sufficient surface rights, a willing labour pool, and readily available infrastructure to carry on a mining operation.

 

5.4                               PHYSIOGRAPHY

 

The Property generally exhibits low to moderate relief.  The elevation of Highway 101 as it traverses the property varies from 308 metres in the east to 320 metres in the west, at the junction of Highways 144 and 101 the elevation is approximately 312 metres.  The peak height of land on the property is 353 metres located at UTM co-ordinate 458,879.9 metres east and 5,357,321.5 metres north.  The elevation of the Tatachikapika River (historically known as the Lost and/or Redsucker River) ranges from 300 to 292 metres as it flows east-northeast to the northerly flowing Mattagami River.  Outcrop exposure varies between five (5) to fifteen (15) percent.  Figure 5.1 illustrates the claim boundary of the Timmins West Mine property; Carscallen, Thorneloe and Bristol townships draped over a landsat panchromatic image of the area.

 

The continental climate and the location on the Canadian Shield give rise to a plant hardiness Zone 2a which supports the following boreal forest tree species and a timber, pulp and paper industry.  In no particular order of significance local trees species include: American Mountain-Ash (Sorbus Americana), Balsam Fir (Abies Balsamea), Black Spruce (Pincea Mariana), Eastern White Cedar (Thuja Occidentalis), Eastern White Pine (Pinus Strobus), Jack Pine (Pinus Banksiana), Pin Cherry (Prunus Pensylvanica), Red Pine (Pinus Resinosa), Tamarack (Larix Laricina), Trembling Aspen (Populus Tremuloides), White Birch (Betula Papyrifera) and White Spruce (Pincea Glauca).

 

Hawley, J.E., (1926) points out that a large part of Ogden, Bristol and Carscallen Townships were swept by several forest fires dating back to 1911.  Darling et al. (2007) state the Provincial Forest Resources Inventory stand numbers provided by TEMBEC indicated that most of the forestry related disturbance to the Timmins Mine Complex occurred approximately 20 years ago, and that the forest communities are composed of poplar, jack pine, white birch, black spruce and white spruce.

 

32



 

FIGURE 5.1:       PHYSIOGRAPHY

 

GRAPHIC

 

33



 

6.0                               HISTORY

 

6.1                               PRIOR OWNERSHIP

 

Lake Shore Gold Corp. acquired the Timmins West Mine property by fulfilling the earn-in requirements as set out in option agreements with Holmer Gold Mines Limited and West Timmins Mining Inc. (formerly Band-Ore Resources limited and Sydney Resources Ltd.), and completing business combination agreements with those companies making them wholly-owned subsidiaries of Lake Shore Gold.  Holmer Gold Mines Limited became a wholly-owned subsidiary of Lake Shore in December of 2004 and West Timmins Mining Inc. became a wholly-owned subsidiary in November of 2009.

 

6.2                               GENERAL HISTORY

 

The discovery of gold in Bristol Township on the McAuley-Brydge property (currently Lake Shore’s Timmins West Mine) occurred in 1911.  At this time only a few claims were staked within the Bristol township area.  The 1912 geology map (ARM-21a) by A.G. Burrows and W.R. Rogers illustrated three claims (TC 612, TC613, TC614) at the McAuley-Brydge occurrence plus four claims west of the Rusk occurrence (HR 1187, HR1188, HR1189 and HR1191).  Map ARM-21a illustrates only one patented claim in the Gold River mineralized trend area.  Claim HR 1257, straddles Tatachikapika River which divides the Gold River West from the Gold River East mineralized zones on Lake Shore’s Gold River Property.  At that time, a small cluster of claims surrounded the power dam at Wawaitin Falls.  The building of the power dam resulted in flooding the Mattagami River and forming Kenogamissi Lake.  Access to the Tatachikapika River was via a couple of portages west from Kenogamissi Lake.

 

The 1911 fire storms swept large parts of Carscallen, Bristol and Ogden Townships.  The surface plants at Hollinger, Dome, West Dome, Vipond, Standard, Preston, East Dome, North Dome, were entirely destroyed.  South Porcupine, parts of Pottsville and the north part of Porcupine were also destroyed (Burrows, A.G., 1915, Hawley, J.E., 1926).

 

The following table (Table 6.1) highlights the chronology of significant exploration and provincial geological survey mapping events, surveys, and reports carried out over and surrounding the Timmins West Mine area.

 

TABLE 6.1:         CHRONOLOGY OF EVENTS FOR THE TIMMINS MINE COMPLEX AREA

 

Date

 

Description

1911 — 1914

 

Gold Discovered on the McAuley-Brydge property and sink two shafts, the deepest is 12 metres deep (Timmins Mine Main Zone)

1912

 

Ontario Bureau of Mines published map ARM-21a “Map of the Porcupine Gold Area, District of Timiskaming, A.G. Burrows and W.R. Rogers

1926

 

Ontario Bureau of Mines published map ARM35G, The Townships of Carscallen, Bristol, Ogden, District of Cochrane, Ontario, Annual Report Map, J. E. Hawley

1927

 

Ontario Department of Mines published Annual Report Volume ARM35-06.001, Geology of Ogden, Bristol, and Carscallen Townships, Cochrane District, J. E. Hawley

1938 — 1944

 

Orpit Mines Limited acquired the claims and diamond drill 7,620 metres of core

1941

 

Rusk Porcupine Mines excavated several pits and trenches across a 150 metre to 200 metre area of the Thunder Creek portion of the property. The gold discovery pit was 1.2 metres x 1.2 metres and returned values of $24.85 over 121.9 cm, $15.05 over 76.2 cm and $8.41 over 91.4 cm (T-File 542). The 1941 London Fix average price for gold was $33.85 (US) an ounce.

 

34



 

Date

 

Description

 

 

Eighteen diamond drill holes totaling 1,981 metres were also completed

1945

 

Piccadilly Porcupine Mines acquired the property and complete 4,983 metres of diamond drilling

1953

 

Standwell Oil and Gas Ltd. acquired the Property

1957

 

Ontario Department of Mines published map 1957-07, Bristol Township, District of Cochrane, S.A. Ferguson

1958

 

Hollinger Mines Ltd. completed 7 diamond drill holes in the northern portion of the Thunder Creek property area. No assays were reported

1959

 

Ontario Department of Mines published Annual Report Volume ARV66-07, Geology of Bristol Township, Annual Report Volume S.A. Ferguson

1959

 

Ontario Department of Mines published preliminary map P0029, Thorneloe Township, S.A. Ferguson, W.D. Harding

1959

 

Paul Meredith purchased the “Standwell Oil” Property

1963

 

The Property is transferred to Holmer

1964

 

United Buffadisson Mines Limited optioned the property from Holmer construct a road from Highway 101 to the Main Showing, and diamond drill 10 boreholes (2,116 metres). United Buffadison Mines Limited interpreted the gold mineralization to be associated with stacked north dipping en-ecelon quartz veins. The property was returned to Holmer Gold Mines Ltd.

1968 — 1981

 

Holmer diamond drilled 45 bore holes totaling 10,512 metres. The geological interpretation of the day indicated two mineralized zones the “Main” Zone (also referred to as the “Western Zone”) and the “Shaft” Zone (also referred to as the “Eastern Zone”). A historically significant, but non 43-101 compliant “probable reserve” of 720,000 tons grading 0.124 oz per ton gold (653,000 tonnes grading 4.25 grams per tonne gold) was estimated. Additional surface exploration included ground geophysical surveys (magnetometer and VLF) and limited diamond drilling

1980

 

Falconbridge Nickel Mines Ltd. carried out metallurgical analysis of sample provided by Jim Croxall for the Thunder Creek Property

1980

 

Ontario Geological Survey published preliminary map P2360, Quaternary geology of the Timmins Area, District of Cochrane, C.M Tucker, D. Sharpe

1981

 

Preussag Canada Limited completed geophysical surveys in Bristol and Thorneloe Townships including magnetometer, VLF-EM, HLEM and Induced Polarization (“IP”). Ten diamond drill holes (613.9 metres) were bored. Adjacent holes, 64 metres apart, intersected 2.57 grams gold per tonne 2.43 metres, and 4.46 g/tonne gold over 4.6 metres in an area of the Rusk Showing.

1982

 

Ontario Geological Survey published map, M2455, Timmins, Precambrian Geology, Map, D. R. Pyke

1982

 

Ontario Geological Survey published preliminary map P2502, Precambrian geology of Thorneloe Township, District of Cochrane, A. G. Choudhry

1984

 

Noranda Exploration Company Limited (N.P.L.), (“Norex”) optioned the Holmer property and completed a “regional” airborne magnetic and electromagnetic survey, follow up ground geophysics and drilled four boreholes totaling 1,465 metres. Norex interpreted a historical significant, non 43-101 compliant resource estimate of 785,000 tonnes grading 2.4 grams per tonne gold. This includes a core of better grade mineralized material estimated to be 159,000 tonnes grading 4.46 grams per tonne gold. The Property was returned to Holmer

1984 — 1985

 

Noranda Exploration Company Ltd. (N.P.L.) in the Thunder Creek property area completed geological mapping, humus geochemical sampling, outcrop mechanical stripping and trenching. The best assays returned in the trenching were 2.86 g/tonne Au and 5.54 g/tonne Au. Nine (9) overburden, reverse circulation drilling and three (3) diamond drill holes (332.3 metres) were also completed with no assay results reported

1987

 

Chevron Minerals Ltd. optioned the Holmer property and completed: line cutting, ground geophysics (magnetic, VLF, IP surveys), geological mapping, over the property. A large area of

 

35



 

Date

 

Description

 

 

the Main Zone was stripped, channel sampled and mapped. Twenty-nine diamond drill holes (6,115 metres) were completed testing the mineralization to a vertical depth of 360 metres. The Property was returned to Holmer

1987

 

Highwood Resources Ltd. optioned a portion of the Thunder Creek property from J. Croxall. Four diamond drill holes (400 metres) testing geophysical targets were bored. No assay results are reported

1989

 

Ontario Geological Survey published open file report OFR5699, The Geology of Keefer, Denton and Thorneloe Townships, District of Cochrane, A. G. Choudhry

1992

 

Ontario Geological Survey published open file report OFR5829, Geology of the Kamiskotia Area, T.C. Barrie

1994

 

Noranda Exploration Company Ltd. (N.P.L.) in the Thunder Creek property area completed line cutting, IP and magnetometer ground geophysical surveys. A single diamond drill hole (302 metres) was drilled with no assay results reported.

1995

 

Hemlo Gold Mines Inc. funded the Thunder Creek area project and the work was carried out by Norex. Surveys include line cutting, magnetometer and IP. Seven (7) diamond drill holes 95-2 to 95-8 (1,581 metres) were drilled with no significant assays reported

1996

 

Band-Ore Resources Ltd. makes gold discoveries on their Thorneloe Property and renewed gold exploration in the area of Bristol and Thorneloe townships

1996 — 1997

 

Holmer carried out an exploration program which included ground geophysics (VLF, magnetometer, and IP), humus sampling, geological mapping and rock sampling. A total of 66 drill holes (25,380 metres) were completed, 54 of which were directed to expand “resources” in the “Main” Zone area; 12 holes were drilled to test geophysical anomalies elsewhere on the Property

1997

 

Battle Mountain Canada Limited continued to explore the Thunder Creek — Mahoney Creek area. Fourteen (14) diamond drill holes (3,547 metres) tested stratigraphy and geophysical targets. Drill hole MC 97-20 an assay returned the value of 5.9 g/tonne Au over 1 metre. In ddh MC 97-26 there is a 2 metre interval of 1.28 g/tonne Au along with a couple of scattered intervals on a metre and similar 1 gram values. The property was returned to Band-Ore

1998

 

Holmer Gold Mines Ltd. drilled twenty-two (22) bore holes (3,923 metres) to test the continuity of mineralization at shallow depths

1999

 

St. Andres Goldfields Ltd. (“St. Andrew”) drilled 10 bore holes (1,341 metres) exploring the potential for an open pit deposit

2000

 

Ontario Geological Survey published preliminary map P3396, Geology of the Kamiskotia Area, T. C. Barrie

2000

 

Ontario Geological Survey published study geological circular S059, Geology of the Kamiskotia Area, T. C. Barrie

2001

 

Ontario Geological Survey published preliminary map P2582 Quaternary Geology of the Dana, Lake Area, Cochrane, Timiskaming area, C. M. Tucker, J. A. Richard; Map M2660, Quaternary Geology of Dana Lake Area, Map, C. M. Tucker, J. A. Richard; Map M2662 Quaternary Geology of Timmins Area, C. M. Tucker, J. A. Richard; and Preliminary map P3436, Precambrian Geology, Timmins West, Bristol and Ogden Townships, C. Vaillancourt, C.L. Pickett, E. R. Dinel

2002

 

Ontario Geological Survey published open file report OFR6101, Toward a New Metamorphic Framework for Gold Exploration in the Timmins Area, Central Abitibi Greenstone Belt, P. H. Thompson

2002

 

Holmer completed a closely spaced, 25 metre centers, twenty-two (22) hole diamond drill program totaling 5,220 metres. Holmer completed a Mineral Resource estimate which was audited and revisited by Watts, Griffis, McQuat as 422,000 tonnes grading13.68 grams per tonne gold in the Indicated category and 270,000 tonnes grading 9.0 grams per tonne gold in the Inferred category

 

36



 

Date

 

Description

2003

 

Lake Shore Gold Corp. enters into an option agreement with Holmer Gold Mines Limited that allows Lake Shore to earn fifty percent (50%) of the Holmer Property by May 26, 2006 subject to the term that are outlined in Item 6.1 of this report. In November 2003 Lake Shore enter into an agreement with Band-Ore Resources Ltd. to earn a 60% interest in the Thunder Creek property

2004

 

Lake Shore complete a 25 diamond drill holes (8,399 metres) targeting the Rusk Zone, the ultra mafic complex, and various structures; complete a MMI (mobile metal ion) soil geochemical survey; reconnaissance bed rock mapping program initiate outcrop mechanical stripping; and hydro washing and saw channel sampling program of two locations in the area of the Rusk occurrence

2004

 

Lake Shore Gold Corp. completed option requirements and business combination agreements to own 100% of the Holmer Gold Mines Ltd. property

2005

 

Ontario Geological Survey published open file report OFR6155, Geological Setting of Volcanogenic Massive Sulphide Mineralization in the Kamiskotia Area, Discovery Abitibi Initiative, B. Hathway, G. Hudak, M. A. Hamilton; OFR6154, Overview of Results from the Greenstone Architecture Project, Discover Abitibi Initiative, J. Ayer et al.; and miscellaneous release — data MRD186, Integrated GIS Compilation of Geospatial Data for the Abitibi Greenstone Belt, North-eastern Ontario, Discovery Abitibi Initiative

2006

 

Lake Shore completed additional outcrop stripping, power-washing and channel sampling at three locations

2009

 

Lake Shore completed a diamond drill program of 25 drill holes (13,760 metres) and fulfilled the term of the option agreement with West Timmins Mining Inc. (formerly Band-Ore Resources Limited and Sydney Resources Corporation) to earn 60% of the Thunder Creek Property. Lake Shore Gold and West Timmins Mining Inc. (“WTM”) signed a complete business combination agreement resulting in WTM becoming a wholly owned subsidiary of LSG. The exploration emphasis of the Thunder Creek project changes from anomaly testing to, systematic, sectional, mineralization definition stage diamond drilling

2011

 

Ontario Geological Survey published miscellaneous data — release MRD282 Geological Compilation of the Abitibi Greenstone Belt, J. A. Ayer, J. E. Chartrand; miscellaneous release — data MRD285 Lithogeochemical Data for Abitibi Subprovince Intermediate to Felsic Intrusive Rocks, G. P. Beakhouse; and open file report OFR6268 The Abitibi Subprovince Plutonic Record: Tectonic and Metallogenic Implications, G. P. Beakhouse

 

6.3                               HISTORICAL RESOURCE ESTIMATES

 

6.3.1                     Historically Significant Non-Compliant NI 43-101 Resource Estimates

 

The following mineralization estimates are not compliant with NI 43-101 but are considered historically significant in keeping exploration interest active and continuing to entice companies to explore and better define, and outline the gold bearing system at the Timmins West Mine.  These estimates have not been validated, are not considered to be current and are quoted from the documents referenced.

 

1946:                                              The earliest record found to attempt a mineralization estimate is stated in Ontario Department of Mines, Mineral Resource Circular No. 13, p. 50, which references Survey of mines 1946, p 152.  Describes the Orpit property: “Results of drill holes 32, 41, 42, 45, and 46 indicated a zone of 200 feet in length, 50 feet in width, which averaged 0.16 ounces of gold per ton.  Indicated reserves were estimated at 300,000 tons between a depth of 400 feet and 800 feet.”

 

37



 

1968-1981:              Holmer Gold Mines Ltd. estimated a “probable reserve” of 720,000 tons grading 0.124 oz per ton gold (653,000 tonnes grading 4.25 grams per tonne gold) (WGM, 2004).

 

1984:                                              Norex interpreted a resource estimate of 785,000 tonnes grading 2.4 grams per tonne gold.  This includes a core of better grade mineralized material estimated to be 159,000 tonnes grading 4.46 grams per tonne gold (WGM, 2004).

 

6.3.2                     NI 43-101 Compliant Resource Estimates

 

In 2002 a Mineral Resource Estimate completed by Holmer and audited and revised by Watts, Griffis and McQuat Limited (“WGM”) was 422,000 tonnes grading 13.68 grams gold per tonne in the indicated category and 207,000 tonnes grading 9.0 grams per tonne in the Inferred category (WGM, 2004)

 

WGM in 2004 audited a Mineral Resource estimate prepared by Lake Shore Gold Corp.  WGM modified the Resource estimate by lowering the cap on high assays in the Footwall Zone and transferring some Indicated Resource blocks into the Inferred category.  The estimate used a 6 g/t Au cut-off, a 50 gram per tonne cap, except in the Footwall Zone where a 30 g/t Au cap was employed.  An estimated Indicated Resource of 1,369,000 tonnes grading 10.96 g/t gold (cut grade) and 16.45 g/t gold (uncut grade); with an Inferred Resource of 200,000 tonnes grading 8.7 g/t gold (cut grade and 12.43 g/t gold (uncut grade); an additional Inferred Resource grading between 3 and 6 grams per tonne gold is 1.0 Mt at 4.07 g/t gold.  Total contained ounces with a cut grade of 6 g/t Au in the Inferred and Indicated categories was estimated to be 538,000 ounces gold (cut), 804,000 ounces gold (uncut), (WGM, 2004).

 

In November 2006 WGM audited the updated Mineral Resource estimate, validated the assay data, the construction of polygons and the resulting tonnages and grade.  The Indicated and Inferred Mineral Resources for the Timmins (“West”) Mine as at October 31, 2006, as estimated by Lake Shore and audited and accepted as valid by WGM is documented below.

 

TABLE 6.2:         WGM MINERAL RESOURCE ESTIMATE, OCTOBER 31, 2006

 

Classification /

 

Grade Cut to 3.00 g/t Au

 

Contained Gold

 

Uncut Grade

 

Top Cut Grade

 

Zone

 

Tonnes

 

g Au/t

 

(ounces)

 

(g Au/t)

 

(g Au/t)

 

Indicated

 

 

 

 

 

 

 

 

 

 

 

Vein Zone

 

346,000

 

9.92

 

110,000

 

17.60

 

50

 

Footwall Zone

 

1,185,000

 

7.27

 

277,100

 

7.57

 

30

 

Ultramafic Zone

 

1,737,000

 

9.27

 

517,600

 

14.46

 

50

 

Total Indicated

 

3,268,000

 

8.62

 

905,000

 

12.29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inferred

 

 

 

 

 

 

 

 

 

 

 

Vein Zone

 

543,000

 

5.68

 

99,100

 

7.27

 

50

 

Footwall Zone

 

340,000

 

5.95

 

65,000

 

6.27

 

50

 

Ultramafic Zone

 

85,000

 

3.89

 

10,600

 

3.89

 

50

 

Total Inferred

 

968,000

 

5.54

 

174,700

 

5.79

 

 

 

 

*Note: Inferred Mineral Resources are reported in addition to Indicated Mineral resources (WGM, 2007).

 

SRK Consulting Canada Inc. estimated the Probable Mineral Reserve at 3,387,000 tonnes grading an average 7.59 g/t Au, containing 826,000 oz gold (25.7M g) (SRK, 2007).

 

38



 

In August of 2009 Lake Shore Gold Corp. and West Timmins Mining Inc. agreed to a business combination which triggered an update to the NI 43-101 Technical Report on the Project.  The 2009 update was as follows:

 

TABLE 6.3:         LSG UPDATED MINERAL RESOURCE OF SRK POLYGONAL RESOURCE AND STANTEC MINERAL RESERVE, AUGUST 2009

 

 

 

Grade Cut to 3.00 g/t Au

 

Contained Gold

 

Uncut Grade

 

Classification

 

Tonnes

 

g Au/t

 

(ounces)

 

(g Au/t)

 

Indicated Resource

 

 

 

 

 

 

 

 

 

Total Indicated

 

3,200,000

 

8.56

 

893,000

 

12.24

(1,278,000 oz gold)

 

Inferred Resource

 

 

 

 

 

 

 

 

 

Total Inferred

 

890,000

 

5.74

 

165,000

 

 

 

Probable Mineral Reserve (“PMR”)

 

 

 

 

 

 

 

 

 

Total PMR

 

3,358,000

 

7.52

 

812,006

(Darling et al., 2009)

 

 

 

 

In December of 2011 the first estimation of Mineral Resources was complete for the Thunder Creek Deposit of the Timmins West Mine (Table 6.4).

 

TABLE 6.4:         LSG INITIAL MINERAL RESOURCE FOR THUNDER CREEK DEPOSIT, OCTOBER 2011

 

 

 

Grade Cut to 2.00 g/t Au

 

Contained Gold

 

Classification

 

Tonnes

 

Capped Grade (g Au/t)

 

(ounces)

 

Indicated Resource

 

2,877,000

 

5.64

 

521,600

 

Inferred Resource

 

2,693,000

 

5.89

 

510,000

 

 

6.4                               HISTORIC PRODUCTION

 

Prior to March 2009 there has been no production activity at the Timmins West Mine.  Annual production figures for the Timmins West Mine comprising the Timmins and Thunder Creek deposits are tabulated in Table 6.5 and Table 6.6 from March 2009 to the 2011 year-end.

 

Mine workings on the property are currently under development.  Access to lower areas underground was commenced in July 2008 with the excavation of a 5.5 metre (completed inside) diameter shaft (6.1 metre diameter excavation).  Access to upper areas underground was commenced in September 2008 with the development of a portal and ramp.  To this time the ramp has been developed to the 290 metre Level, accessing advanced exploration targets on the 50, 60, 80, 90, 110, 120, 140, 150, 170, 180, and 200 metre Levels.  At present, the shaft has been excavated to a 710 metre depth below surface.  Advanced exploration of several potential ore zones is presently being conducted as accessed by the ramp.  The Ultramafic Zone and Footwall Zones are the main targets being accessed from the shaft.  Shaft stations have been developed on the 200, 400, 525, 650, Levels at this time and the ramp excavated up to above the 480 metre Level and down to the 730 metre Level.

 

Ancillary to the advanced exploration underground activities, a waste water collection pond has been constructed, waste dumps are actively being accumulated on surface, and several buildings have been constructed in support of the underground operations.

 

39



 

TABLE 6.5:         TIMMINS DEPOSIT ANNUAL PRODUCTION FIGURES

 

Timmins Deposit Annual Production

 

Years

 

Deposit

 

Tonnes

 

Grade

 

Head Ounces

 

2009

 

Timmins

 

72,899

 

3.31

 

7,745

 

 

 

 

 

 

 

 

 

 

 

2010

 

Timmins

 

255,243

 

5.56

 

45,600

 

 

 

 

 

 

 

 

 

 

 

2011

 

Timmins

 

337,581

 

3.84

 

41,676

 

 

 

 

 

 

 

 

 

 

 

Totals

 

Timmins

 

665,723

 

4.44

 

95,020

 

 

TABLE 6.6:         THUNDER CREEK ANNUAL PRODUCTION FIGURES

 

Thunder Creek Annual Production

 

Years

 

Deposit

 

Tonnes

 

Grade

 

Head Ounces

 

2010

 

Thunder Creek

 

2,824

 

5.40

 

490

 

 

 

 

 

 

 

 

 

 

 

2011

 

Thunder Creek

 

159,790

 

4.00

 

20,529

 

 

 

 

 

 

 

 

 

 

 

Totals

 

Thunder Creek

 

162,614

 

4.02

 

21,019

 

 

40



 

7.0                               GEOLOGICAL SETTING AND MINERALIZATION

 

7.1                               REGIONAL GEOLOGY AND STRUCTURE

 

Supracrustal rocks in the Timmins region are assigned as members of nine (9) tectonic assemblages within the Western Abitibi Subprovince, of the Superior Province.  The seven volcanic and two sedimentary assemblages are of Archean age.  Intrusions were emplaced during Archean and Proterozoic times.  Tectonic Assemblages of the Abitibi Subprovince, east of the Kapuskasing Structural Zone, are illustrated in Figure 7.1 after Ayer J.A., Dubé, B., and Trowell, N.F. (2009).  Table 7.1, is modified after Ayer (1999, 2000, 2003, 2005, 2011) and summarizes the characteristics of the assemblages, from youngest to oldest.

 

There is 80 Ma years time span between the volcanic eruption of the lower Pacaud assemblage (2750 Ma) to the sedimentation and volcanism of the upper Timiskaming assemblage (2670 Ma).  Each of the assemblages demonstrates a melt evolution from komatiitic or tholeiitic basalt, to felsic or calc-alkaline volcanics.  In the Timmins West Mine area only the Deloro [2730 — 2724 Ma (6 Ma)], Kidd-Munro [2719 - 2711 Ma (8 Ma)], Tisdale [2710 - 2704 Ma (6 Ma)], Porcupine [2690 - 2685 Ma (5 Ma)], and Timiskaming assemblages [2676 - 2670 Ma (6 Ma)] are present.  Revised age dates for the Porcupine assemblage indicate that the felsic volcanism of the Krist Formation is coeval with emplacement of calc-alkalic felsic porphyries in Timmins (2692 ±3 to 2688 ±2 Ma).

 

Figure 7.2 The Regional Geology locates the property relative to the regional geology.

 

Rhys (2010, 2011) has modified the regional structural history interpretation by adding an additional deformation period (D2) to the earlier folding preceding the Timiskaming assemblage.  The interpretation demonstrates that there are at least two pre-Timiskaming fold events (D1 and D2), followed by two dominant syn-metamorphic, post-Timiskaming foliation forming events (D3 and D4) and a later crenulation cleavage (D5) (Rhys, 2010).

 

Regionally, deformation in the Timmins area is characterized by a sequence from early, pre-metamorphic folds lacking axial planar cleavage (D1 and D2) to a series of syn-metamorphic, fabric—forming events, which overprint the earlier folds (D3 and D4 events).  The multi-phase Destor-Porcupine fault system passes approximately 5 kilometres to the south of the property.  The fault system is a composite corridor of shear zones and faults that records at least two main stages of displacement: a) syn-Timiskaming (2680-2677 Ma) brittle faulting associated with truncation of early D1 and D2 folds, apparent sinistral displacement, and formation of half grabens that are locally filled with Timiskaming clastic sedimentary rocks; and b) syn-metamorphic D3-D4 formation of high strain zones over a broad corridor generally several hundred metres wide generally corresponding with, or developed south of, the trace of the older faults.  These shear zones record variable kinematic increments but are regionally dominated by sinistral with north side up displacements (Rhys, 2010).

 

41



 

TABLE 7.1:         TECTONIC ASSEMBLAGES

 

Timiskaming Assemblage

 

·

Unconformably deposited from 2676- 2670 Ma (6 Ma)

 

 

·

Conglomerate, sandstone, and alkalic volcanics

 

 

·

Coeval Gold mineralization occurs near regional fault zones (PDF & CLLF)

 

 

 

Two end member types

 

 

 

1.

Quartz veins (Timmins & Val d’Or)

 

 

 

2.

Sulphide rich Stockworks (Holloway Twp., Kirkland Lake, Matachewan

 

 

·

Alkali Intrusive Complex (Thunder Creek) 2687 ±3Ma (Barrie, 1992)

 

 

 

 

Procupine Assemblage

 

·

Age of 2690 — 2685 Ma (5 Ma)

 

 

·

Turbidites with minor conglomerates & iron formation locally

 

 

·

Krist Formation is coeval with calc-alkalic felsic porphyries 2691 ±3 to 2688 ±2 Ma

 

 

 

Blake River Assemblage

 

Upper and Lower Units

 

 

·

Age of 2703 — 2696 Ma (7 Ma)

 

 

·

Tholeiitic & Calc-alkaline mafic to felsic volcanics

 

 

·

VMS deposits associated with F3 felsic volcanics at Noranda

 

 

·

Syngenetic gold & base metals (Horne, Thompson Bousquet)

 

 

 

 

Tisdale Assemblage

 

·

Age of 2710 — 2704 Ma (6 Ma)

 

 

·

Tholeiitic to komatiite suite

 

 

·

Calc-alkaline suite

 

 

·

VMS Deposit: Kamiskotia — tholeiitic volcanics, gabbros & F3 felsics

 

 

 

Val d’Or — calc-alkaline volcanics & F2 felsics

 

 

 

Sheraton Township area — intermediate-felsic calc-alkaline volcanics

 

 

·

Ni-Cu-PGE: Shaw Dome, Texmont, Bannockburn

 

 

 

 

Kidd-Munro Assemblage

 

·

Age of 2719 — 2711 Ma (8 Ma)

 

 

·

Tholeiitic to komatiitic

 

 

·

Calc-alkaline suite

 

 

·

VMS deposit: F3 felsic volcanics & komatiites (Kidd Creek)

 

 

 

Tholeiitic-Komatiitic volcanism (Potter)

 

 

·

Ni-Cu-PGE (Alexo)

 

 

 

 

Stoughton-Roquemaure Assemblage

 

·

Age of about 2723 — 2720 Ma (3 Ma)

 

 

·

Magnesium and iron rich tholeiitic basalts

 

 

·

Localized komatiites and felsic volcanics

 

 

·

PGE mineralization in mafic-ultramafic intrusions and komatiites

 

 

 

(Mann & Boston Townships)

 

 

 

 

Deloro Assemblage

 

·

Age of about 2730 — 2724 Ma (6 Ma)

 

 

·

Mafic to felsic calc-alkaline volcanics

 

 

·

Commonly capped by regionally extensive chemical sediments

 

 

·

Two different types of VMS deposits

 

 

 

1.

F2 felsic volcanics and synvolcanic intrusion (Normetal)

 

 

 

2.

Localized sulfide-rich facies in regional oxide facies iron

 

 

 

 

formations (Shunsby)

 

 

 

 

Pacaud Assemblage

 

·

Age of 2750 — 2735 Ma (15 Ma)

 

 

·

Magnesium and iron rich tholeiitic basalt

 

 

·

Localized komatiites and felsic volcanics

 

42



 

FIGURE 7.1:       TECTONIC ASSEMBLAGES OF THE ABITIBI SUBPROVINCE EAST OF THE KAPUSKASING STRUCTURAL ZONE (AFTER AYER, J.A., DUBÉ, B., TROWELL, N.F.; NE ONTARIO MINES AND MINERALS SYMPOSIUM, APRIL 16, 2009)

 

 

43



 

FIGURE 7.2:       REGIONAL GEOLOGY

 

GRAPHIC

 

44



 

7.2                               PROPERTY GEOLOGY

 

7.2.1                     Timmins Mine Portion of the Timmins West Mine

 

Mr. David Rhys (P. Geo.), of Panterra Geoservices Inc. accurately describes the geology, structure and mineralization and presents a comprehensive valid interpretation of observations.  This interpretation is used in exploration planning and project development.  The following description is taken in whole and in part from internal memos and reports he has presented to Lake Shore.  The TWM area lies along the northeast trending contact zone between southeast facing mafic metavolcanic rocks of the Tisdale Assemblage, to the northwest, and unconformably overlaying, dominantly southeasterly facing metasedimentary rocks of the Porcupine Assemblage to the southeast.  The contact dips steeply to the northwest, and is modified and locally deflected by folds and shear zones that are associated with gold mineralization.  Along and within several hundred metres of the contact area, several intrusions intrude mainly the mafic metavolcanic sequence between the Timmins Deposit and the southwestern parts of the Thunder Creek property.  These include: a southwesterly-widening alkaline ultramafic set of metamorphosed intrusions comprised dominantly of pyroxenite which occur along the mafic —metasedimentary rock contact or intruding the mafic metavolcanic rocks adjacent to the contact and which are termed the “alkaline intrusive complex”; and fine-grained, equigranular to locally K-feldspar porphyritic intrusions which are dominantly monzonite but may range to syenite in composition.  The latter include lenticular northeast trending unexposed body in the Porphyry Zone adjacent to the mafic-sedimentary contact in the Rusk area, and a more irregularly shaped stock to the south which intrudes the Porcupine Assemblage here termed the “Thunder Creek Stock” (Rhys, 2010).

 

The patterns of distribution of the Holmer Shear Zone are more complex than suggested by Rhys in 2003, and that the shear zone is affected by significant folding associated with D4 strain.  On 140 metre Level most intense area of high strain which are interpreted to represent the down-dip extent of the Holmer Shear Zone from the surface showing occur along the Main Zone are folded megascopically, defining a large fold closure with plunges north-northwest.  The shear zone here comprises an approximately 20 to 30 metre wide, intensely S3 foliated phyllonitic sedimentary contact.  Consistent textures of compositional laminations, grain size laminations, higher sericite composition that the surrounding mafic rocks, and potential relic primary fragmental textures suggest that the high strain zone may be localized along an inter-flow sedimentary-fragmental unit.  Strain is most intense in this potential clastic unit, but also extends outward from it and is high in immediately adjacent mafic volcanic rocks.  Such relationships are also apparent in surface outcrops in the Main Zone as noted to be hosted by highly strained clastic sedimentary rocks at the west end of the outcrop exposures, and areas of high strain extend outward and eastward from this unit forming a core to the Holmer Shear Zone.

 

The pyroxenite body is largely massive and only weakly foliated, but is cut by areas of high strain up to several metres wide which likely formed both D3 and D4 shear zones.

 

In addition to the locally folded D3 Holmer Shear Zone, zones of high strain associated with S4 foliation are also developed.  These typically trend east-west in both the upper levels of the Mine and on the 650 Level.  In the upper mine levels for example , an intense 2 to 4 metre wide D4 high strain zone hosting the V1 Vein trends east-west at the mafic sedimentary contact on 120 metre Level where it is host to locally developed mineralized quartz veins.  This structure, and a second, narrower shear zone approximately 10 metres to the north of it record reverse, north side up displacement parallel to the L4 lineation indicated by shear bands, oblique foliation (S) fabric development, and sigmoidal shapes of peripheral quartz extension veins.  Other D4 minor shear zones were also observed on other levels, having similar north side up kinematics.  The close association of these shears with late extension veins,

 

45



 

comparable kinematics of the shear zones with the vein arrays and their crosscutting nature with early tourmaline veins suggest that the D4 shear zones are coeval with, and locally control later phase of quartz extension veins associated with gold mineralization in upper parts of the Timmins Mine.

 

On the 650 Level, D4 shear zones are also locally developed in the pyroxenite body and are spatially associated with main stage auriferous extension vein arrays.  The largest of these shear zones occurs in UM1 Vein system, coring the mineralized extension vein arrays that define that zone.  This shear zone is typically several metres wide and contains an intense internal fabric defined by compositional laminations and phyllosilicate alignment, with fabric grading outward to massive, undeformed or more weakly strained wall rocks.  Main stage quartz veins associated with these are structurally late and cut across fabrics, although display some stain in the form of open folding.  More diffuse, weaker zones of S4 foliation development were also observed in the UM2 and other zones of quartz extension veining in the 650 Level.  These structures overprint and crenulate earlier S3 foliations and shear zones.  D3 shear zones on the 650 Level are therefore associated with latter stages of vein development in the deeper parts of the deposit.  Vein geometries and local oblique fabrics on the 650 Level also imply a reverse, north side up sense as is seen on upper levels of the mine.

 

Intruding the forementioned units are diabase dykes belonging to the Paleoproterozoic age, Matachewan dyke swarm (2.45 Ga).  This unit is fine to medium grained, exhibiting a massive gabbroic texture of plagioclase, pyroxene and biotite with accessory magnetite.

 

7.2.2                     Thunder Creek Portion of the Timmins West Mine

 

Geological surface mapping of the Thunder Creek Deposit by Lake Shore Gold Corp., commenced with a survey by Michael Hocking, and Jacques Samson, under the direction of Henry Marsden, Senior Project Manager in 2004.  This program traced the contact of the Rusk Shear, the metamorphosed mafic-pyroxenite-sediment-monzonite contacts with a series of trenches staggered along the projected trace of the Rusk Shear.  Coincident with the surface, a diamond drill campaign targeting the Rusk Shear Zone and gold mineralization within and proximal to the shear zone, and geophysical magnetic, conductivity and resistivity anomalies was initiated.  The results of this program are described and discussed in the technical report prepared by Powers (2009).

 

During late summer 2009 Mr. John Camier, P. Geo. carried out a surface mapping survey confined to a 5 kilometre square area surrounding the Rusk Zone.  The scope of the program was: to concentrate on the syenite (monzonite) intrusion, and try to understand its relationship to the surrounding host metasedimentary rocks, and the hydrothermally altered pyroxenitic intrusion previously mapped and intersected in drill core.  Location control for this survey included the previously cut field grids and a Garmin hand held 76 GPS.  The “in-house” technical report prepared by Mr. Camier represents field observations, results of geochemical sampling and a petrographic study by Dr. R. Springer, P. Geo., a retired professor from Brandon University, Manitoba.

 

From 2003 to October 28th, 2011 a total of 150,466.3 metres of diamond drill core have been drilled by Lake Shore Gold Corp.  This includes 102 boreholes with 47 wedge splays and three drill hole extensions for a total of 83,656.69 metres of surface diamond drilling.  Underground diamond drilling contributes 384 drill holes with 22 restarts for 66,809.65 metres.  Underground mapping includes the outlining of major structures as the Rusk Shear; sulphide and quartz vein mineralization; alteration and rock type.  Over the course of these programs several samples have been sent for microscopic study to endeavor to determine the rock type, alteration history, accessory minerals, mineralization type, habit, style, and qualifying the geological understanding.  Mr. David Rhys, P. Geo. a structural geologist consulting to

 

46



 

Lake Shore Gold Corp. has been studying the Timmins Mine, the Thunder Creek property and the Gold River property on an individual basis comparing similarities, differences in structure, mineralization styles and placing these observations into the regional context of the geological understanding.  His work, to date, is the most inclusive and comprehensive description of the geology, structure, and mineralization.  Microscopic studies by Dr. A. Miller, Dr. B. Springer, and K. Ross have led to a more advanced understanding of the TWM property geology.

 

Table 7.2 illustrates a geological table of lithological units for the Timmins area.  The lithological units underlying the Timmins West Mine Property are presented in the table as a bold font.

 

Seven (7) lithological units have been identified underlying the Timmins West Mine property.  The Lithologies range in age from Neoarchean, Tisdale assemblage mafic metavolcanic (2.710 - 2.703 Ga) to Paleoproterozoic Matachewan diabase dykes with an age of 2.45 Ga.  The understanding of the geological environment continues to evolve.  Presented in this report is the current understanding and interpretation for surveys completed to date.  The reader is cautioned that as additional information becomes available, or known, the interpretation will be modified based upon the merits of information presented.

 

The stratigraphic basal unit of the Property is a mafic metavolcanic rock unit that is fine-grained, green in colour, and exhibits massive, pillowed and flow breccia textures and structures.  Mafic metavolcanic rocks occur in the western portion of the Property.  Metamorphism varies from mid-greenschist to lower-amphibolite facies.  Epidote and calcite alteration is common and increases to strong hydrothermal alteration as the unit is in closer proximity to the Rusk shear.  Fine-grained disseminated magnetite occurs proximal to the “alkali intrusive complex” (“AIC”).  At this location the rocks become darker in colour, chloritized and locally exhibit hematite alteration (Camier, 2009).  Felsite to feldspathic rich syenite dyklets; the alkali intrusive unit (“AIC”); quartz, ±carbonate veins with varying amounts of hematite, ±magnetite, ±pyrite, ±pyrrhotite; and diabase dykes intrude the mafic metavolcanic lithology.

 

In the eastern portion of the Thunder Creek portion of the Property, and overlying the mafic metavolcanic unit is a discontinuous sequence of biotite rich meta-greywacke, metamorphosed siltstones, metamorphosed argillite, fine grained tuff, clastic tuff, and laminated chemical metasediments containing magnetite (Camier, 2009; Samson, 2008).  This succession of metasedimentary rocks belongs to the Porcupine assemblage, ranging in age from 2690 to 2685 Ma.  It is not known if the sediments are conformable or unconformable to the mafic metavolcanic contact.  These metasedimentary units occur in the footwall to the AIC and along the Rusk shear zone.  When incorporated in the shear zone the metasedimentary rocks are tectonized to a quartz-sericite-carbonate ±hematite schist that display a crenulation fabrics.  Sericite, weak hematite and silicification is the common alteration assemblage.  Quartz veins, felsites veins and the Matachewan Diabase dyke swarm intrude the metasedimentary lithology.  Camier (2009) noted several outcrop for a felsic, dacitic metavolcaniclastic fragmental unit within the central portion of the mapping area.  Although age dates have not been acquired for this subunit, it is speculated that the subunit may be related to the Krist formation of the Porcupine assemblage.

 

The alkali intrusive complex (“AIC”) is poorly exposed on surface.  It has a very strong magnetic signature that the geophysical interpretation indicates that it extends northeasterly for at least 2 kilometres across the central portion of the Thunder Creek Property, and onto the Timmins Mine property to the north.  The AIC intrudes along the contact between the volcanic and the sediments.  The magnetic trend becomes distorted and exhibits an offset or folded character when intersected by several interpreted

 

47



 

structures.  The AIC is a poly-phase and vari-textured intrusion, of contemporaneous age with the Timmins Porphyry suite (Pearl Lake 2689 Ma, Millerton 2691 Ma, Crown 2688 Ma, and Paymaster 2690 Ma; — Barrie 1992), and is also of similar age as the Bristol Lake Quartz-Feldspar Porphyry in the eastern portion of Bristol Township (2687 ±1.4 Ma; Ayer 2003).  The intrusive shows at least three texturally and mineralogically distinct phases:  i) a fine- to coarse-grained pyroxenite; ii) a biotite-pyroxenite; and iii) a porphyritic garnet syenite.  The fine to coarse grained pyroxenite is strongly magnetic, and consists of greater than 85% pyroxene (diopside), with variable amounts of accessory biotite + magnetite + rutile + apatite, and interstitial calcite (Miller, 2004).  The intrusive is partially exposed at the Rusk Showing, and displays pegmatitic primary layering as well as cumulate-like textures.  The pyroxenite locally grades into a biotite-rich phase (possible lamprophyric affinity), characterized by the presence of large biotite “clots” and books (poikilitic biotite) up to several centimetres across.  In places, “sweats” and dykes containing 40 to over 75% dark brown to black melanite garnets (up to 1 centimetre across) are noted, contained within a fine-grained and leucocratic matrix consisting of plagioclase + orthoclase + biotite + carbonate + apatite + titanite (Miller 2004).  The different phases sometimes exhibit clear yet irregular contacts, and sometimes appear to be transitional.  Numerous “monzonitic” to “syenitic” dykes are noted throughout the main body of the pyroxenite and also within the volcanic rocks.  It is not clear if these phases are genetically related to the AIC or to the monzonite stock located in the southern portion of the property.

 

A quartz-feldspar porphyritic monzonite occurs as a nearly circular intrusion greater than 500 metres in diameter.  This intrusion presents a high topographic relief in the central portion of the property.  The composition of the intrusion varies with 10-40% quartz eyes and 10-20% tabular feldspars (commonly zoned and occasionally up to 3 centimetres across), contained within fine-grained pinkish-grey groundmass.  The variation in quartz and feldspar content presents this unit with multiple names: a quartz monzonite, monzoninte, syenite, peralkaline syenite.  Pink to brick-red, interpreted as being hematized, and generally fine-grained felsic dykes are observed within shear zones hosted by the sediments.  These dykes are possibly related to the monzonite stock.  Camier (2009) noted the presence of riebeckite in the eastern half of the intrusive and thus argues the intrusive to be a peralkaline syenite.  Although there is no age dating completed from this unit, it is speculated that the intrusive may be part of the Timiskaming assemblage (2676-2670 Ma).

 

Intruding the forementioned units are diabase dykes belonging to the Paleoproterozoic age, Matachewan dyke swarm (2.45 Ga).  This unit is fine to medium grained, exhibiting a massive gabbroic texture of plagioclase, pyroxene and biotite with accessory magnetite.

 

48



 

TABLE 7.2:         LITHOLOGICAL UNITS

                       

PHANEROZOIC (0.540 Ga-Present)

 

 

 

Cenozoic - Quaternary:

 

Recent

- Humus, swamp and stream deposits

 

 

Pleistocene

- Clay, sand, gravel, till

 

 

UNCONFORMITY

NEOPROTEROZOIC ERA (1.0-0.54 Ga)

 

 

 

 

Grenville Orogeny  -

 

Assembly of the continent of “Rodinia” 1.3-1.0 Ga

MESOPROTEROZOIC ERA (1.6-1.0 Ga)

 

 

 

Mafic Intrusive Rocks

 

INTRUSIVE CONTACT

 

 

Abitibi Diabase Dyke 1.14 Ga

 

 

INTRUSIVE CONTACT

 

 

Sudbury Diabase Dyke Swarm 1.238 Ga

 

 

INTRUSIVE CONTACT

 

 

MacKenzie Diabase Dyke Swarm 1.27 Ga

 

 

INTRUSIVE CONTACT

PALEOPROTEROZOIC ERA (2.5-1.6 Ga)

 

 

 

 

Penokean Orogeny -

 

Wisconsin, Minnesota, Michigan Ontario, 1.8-1.8 Ga

 

Hudsonian / Trans-Hudsonian Orogeny - Collision of Superior - Hearne Cratons 2.0-1.8 Ga Formation of the continent of “Nena”

 

Mafic Intrusive Rocks

INTRUSIVE CONTACT

 

 

Presissac (Biscotasing) Dyke Swarm 2.1 Ga

 

 

INTRUSIVE CONTACT

 

Wopmay Orogeny  -

 

Western edge of Canadian Shield 2.1-1.9 Ga

 

Mafic Intrusive Rocks

INTRUSIVE CONTACT

 

 

Nipissing Gabbro Suite 2.22 Ga

 

 

East Bull Lake Intrusive Suite 2.49-2.47 Ga

 

 

Matachewan Dyke Swarm 2.45 Ga

 

 

INTRUSIVE CONTACT

NEOARCHEAN ERA (2.8-2.5 Ga)

 

 

 

 

Kenoran Orogeny
continent of “Arctica”

Collision of Slave and Superior Cratons 2.72-2.68 Ga - Formation of the

UNCONFORMITY & SHEAR CONTACT

 

Timiskaming Assemblage (2676 -2670 Ma)

 

Quartz +/- tourmaline +/- ankerite +/- pyrite +/- native gold

 

Felsic Intrusive Rocks

INTRUSIVE CONTACT

 

 

Syenite - Quartz Monzonite - Perialkaline Syenite

 

 

(an interpretation, an age date is required)

 

 

INTRUSIVE CONTACT & SHEAR CONTACT

 

Porcupine Assemblage (2690-2685 Ma)

 

Mafic Intrusive Rocks

INTRUSIVE CONTACT

 

 

Alkaline Intrusive Complex (AIC) - garnetite dyke 2687 Ma+/-3Ma

 

 

INTRUSIVE CONTACT

 

Meta-sedimentary Rocks

 

 

 

Greywacke, siltstone, clastic tuff, chemical metasediments (magnetite-chert)

 

 

CONTACT IS NOT OBSERVED

 

Felsic Epiclastic Metamorphosed Tuff (possible Krist Formation)

 

 

CONTACT NOT OBSERVED

 

Tisdale Assemblage (2710-2704 Ma)

 

Mafic Metavolcanic rocks

 

 

 

Mafic metavolcanic flows, massive and pillowed, flow breccias

 

 

UNCONFORMITY

 

Kidd-Munro Assemblage (2719-2711 Ma)

 

49



 

FIGURE 7.3:       PROPERTY GEOLOGY

 

GRAPHIC

 

50



 

7.3                               STRUCTURAL GEOLOGY

 

Rhys (2010, 2011) has modified the regional structural history interpretation by adding an additional deformation period (D2) to the earlier folding preceding the Timiskaming assemblage.  The interpretation demonstrates that there are at least two pre-Timiskaming fold events (D1 and D2), followed by two dominant syn-metamorphic, post-Timiskaming foliation forming events (D3 and D4) and a later crenulation cleavage (D5) (Rhys, 2010).

 

Regionally, deformation in the Timmins area is characterized by a sequence from early, pre metamorphic folds lacking axial planar cleavage (D1, D2) to a series of syn-metamorphic, fabric —forming events, which overprint the earlier folds (D3, D4 events).  The multi-phase Destor-Porcupine fault system passes approximately 5 kilometres to the south of the property.  The fault system is a composite corridor of shear zones and faults that records at least two main stages of displacement: a) syn- Timiskaming (2680-2677 Ma) brittle faulting associated with truncation of early D1 and D2 folds, apparent sinistral displacement, and formation of half grabens that are locally filled with Timiskaming clastic sedimentary rocks; and b) syn-metamorphic D3-D4 formation of high strain zones over a broad corridor generally several hundred metres wide generally corresponding with, or developed south of, the trace of the older faults.  These shear zones record variable kinematic increments but are regionally dominated by sinistral, north side up displacements (Rhys, 2010).

 

At least two areas of high strain reflect probable intense S3 shear zones have been recognized in the Thunder Creek and Timmins Deposit areas: the west-northwest trending, but significantly folded Holmer Shear Zone; and the northeast trending Rusk Shear Zone.  Shear zones may also be significantly folded, as occurs in the Main Zone in upper proportions of the Timmins Deposit.  These closures have localized gold mineralization which plunge parallel to them, suggesting the definition of additional F4 fold closures (Rhys, 2010).

 

The oblique (clockwise) nature of the S3 foliation in the Rusk Shear Zone to the shear zone margins, and shear sense indicators in the Holmer Shear Zone surface outcrops suggest that both structures accommodated sinistral displacement during D3.  Subsequent D4 shear zone development in narrower , generally east-west trending and steeply dipping structures with dominantly reverse kinematic indicators in the Timmins Deposit would imply then the change in kinematics later in the deformation history to a more contractional setting associated with development of the stretching lineations.  Such variations in kinematics are also suggested in other deposits in the Timmins area and imply changing patterns of far field stress and regional transpression between D3 and D4 (Rhys, 2010).

 

7.4                               MINERALIZATION

 

Gold mineralization in the Timmins and Thunder Creek Deposits occurs in steep north-northwest plunging mineralized zones which plunge parallel to the local orientations of the L4 lineation features which also plunge parallel to the lineation, including folds and elongate lithologies.  Mineralization occurs within, or in favourable lithostructural settings within 100 metres of the Holmer and Rusk Shear Zones.  Mineralization comprises multiple generations of quartz-carbonate-tourmaline ±albite veins, associated pyrite alteration envelopes and disseminated pyrite mineralization.  Textural evidence suggests that veining formed progressively through D3 and D4 deformation.  All phases of gold-bearing veins cut and postdate alkali intrusive complex (AIC) and syenitic to monzonitic intrusion, although mineralization is often spatially associated with ore preferentially developed within theses intrusions. (Rhys, 2010).

 

51



 

At the Timmins Deposit the character and sequence of veining in the Main, V1 and V2 veins is similar in all of the exposures.  Rhys (2003) defined three phases of veining in the Timmins Deposit surface showings, all of which were also apparent during this study, although an additional phase of shallow dipping quartz extension veins was also recognized during this field work.  The sequence of veining observed is as follows, with most veins in the upper Timmins Deposit mineralization forming composite veins which have this paragenetic sequence.

 

1.              Early tourmaline-rich phase:  Early, tourmaline-quartz vein material forms the earliest veining phase, and comprises both dilation veins and wall rock replacement in tabular replacement vein-style zones along strike from, or parallel to dilation veins.  The veins have outer tan carbonate ±sericite alteration envelopes.  Tourmaline can comprise the majority of the vein material in these veins, forming a black matrix to later phases of veining.  These veins vary from a few centimetres to more than 2 metres wide, and may be significantly boudinaged or folded, with S4 axial planar to the folds.  Boudins, where developed are linear and shallow plunging, at high angle to the L4 stretching lineation.  Dilational veins have sharp contacts and massive central fill consistent with formation as void fill.  Replacement tourmaline comprises 5 to 40 centimetre wide replacement veins which unlike the dilational veins have gradational contacts over 0.5 to 2 centimetre and preserves relic textures of the wallrock, including relic fragmental textures in deformed potential clastic sedimentary or fragmental tuffaceous units what occur in the Holmer Shear Zone.  These may laterally grade into more dilational quartz-tourmaline veins which have sharp contacts; both vein styles are spatially associated and close in timing, with the replacement style locally enveloping dilational tourmaline veins.  Dilational tourmaline-rich vein phase locally form en echelon, moderate to steeply north dipping extension veins separate from the peripheral to the main veins.  Broad zones of veining with multiple dilational and parallel, sheeted replacement tourmaline veins may alternate with slivers of carbonate-quartz-sericite altered wall rock.  At the southwest margin of the Main Zone folded quartz-tourmaline veins there comprise composite tourmaline dilation veins where are intergrown with younger white quartz vein generations that are also folded.  Tourmaline veins may contain disseminated pyrite and arsenopyrite with tourmaline matrix.

 

2.              Quartz-rich Second phase:  Exploiting the earlier tourmaline-rich veins, this phase of quartz forms white quartz ± tourmaline ± sericite ± pyrite ± arsenopyrite vein material which overprints, but occurs along and parallel to the earlier tourmaline vein material, which with wallrock slivers create a banded appearance to the quartz-tourmaline veins.  Tourmaline coeval with this phase may occur with sulphides and carbonate as stylolites in the vein material.  Earlier tourmaline may occur as slivers, lenses and fragments in the younger white quartz, or the younger white quartz may occur on the margins of earlier tourmaline veins.  This style of quartz may also occur independent of the tourmaline veins as a separate vein generation and locally occupies minor reverse, north-side up D4 shear zones.  Sampling and local presence of visible gold in this veins phase indicate that it is auriferous.  This veining is the intermediate stage of veining discussed by Rhys (2003).  When occurring as independent shear veins, it may be joined by quartz-carbonate extension veins which are variably deformed.  Like the tourmaline veins this stage of veining is affected by boudinaged and folding, and this generation of quartz also occurs with the early tourmaline as composite folded veins which trend northwest along the southwestern margins of the Main Zone.

 

3.              Quartz extension veins, variably deformed:  Shallow to moderate southeast dipping quartz greater than tourmaline + carbonate extension veinlets from ladder-like stacked arrays which preferentially occur in, and cut across the earlier quartz-tourmaline and banded quartz-rich veins phase.  The extension veins may either terminate at the margins of the older veins, or

 

52



 

nucleate in the early tourmaline and extend outward into surrounding wallrock.  The extension veins are often closely spaced and may occur at intervals of a few centimetres to tens of centimetres apart.  They range from hairline up to 10 centimetres thick.  This set of extension veins locally occurs as en echelon, locally sigmoidal arrays which record apparent northwest side up displacement internal to the older quarts-tourmaline veining, and which also record , reverse north side up displacements.  Where not folded in sigmoidal sets, these extension veins are developed approximately orthogonal to the steep northwest plunging L4 stretching / intersection lineation, suggesting that they formed during stretching of the lithology sequence parallel to L4 in response to north-south D4 shortening — consistent with the relatively late structural timing as suggested by the generally low strain state.

 

4.              Late quartz extension veinlets:  A late set of shallow dipping, generally to the southeast quartz extension veinlets frequently occurs within the quartz-tourmaline veins, and cuts at low angles across the earlier set of extension veinlets described above, especially where they are folded into sigmoidal sets.

 

5.              These late veinlets are typically narrow (1 to 10 millimetres thick) and consequently volumetrically minor, although they can be locally very abundant.  Their similar orientation with respect to L4 as the preceding extension veins set, but generally undeformed state suggest that they represent a second, structurally late increment of extension veining late during D4.

 

Textural and timing relationships of the different, but spatially related veining generations listed above suggest that they formed incrementally spanning deformation during D3 and D4.  The early quartz-tourmaline veins, including the second phase quartz greater than tourmaline vein phase are affected by all D4 strain, exhibiting folding when development oblique to or at high angles to S4 foliation, and boudinaged in response to the stretching parallel to L4.  However, these veins also cross S3 foliation as planar veins where they trend northeast at high angles to S3 suggesting that they were affected by only minor D3 strain.  In addition, tourmaline replacement veins were they overprint potential fragmental units contain less strain relic fragments that the surrounding wallrock suggesting that they formed part way through D3 where the wallrocks were already deformed, but prior to the accommodation of all strains in the rocks.  These field relationships are consistent with the quartz-tourmaline veins and the next generation of banded quartz which is parallel to them forming and extensional veins and shear veins during D3 in response to sinistral displacement along, and shortening across the Holmer Shear Zone.  During later potentially progressive D4 deformation, additional phases of veining mainly as quartz extension vein arrays have formed exploiting the earlier rheologically competent quartz-tourmaline, and forming a high angle to the L4 lineation, suggesting vein formation in response to the stretching parallel to L4.  These extension veins and the very late set of extension veinlets may also form along the adjacent to minor east-west trending D4 shear zones which accommodate north side up displacement, and overprint the transposed fabrics associated with D3 (S3). (Rhys, 2010).

 

In the Thunder Creek area mineralization occurs in two main stages: a) the Rusk Shear Zone adjacent to and in footwall or the pyroxenite unit, and b) in the Porphyry Zone which is hosted by the quartz monzonite intrusion which is present southeast of and in the immediate footwall to the Rusk Shear Zone below approximately 500 metres below surface.  Both of these zones occur spatially related in the same steep north-northwest plunging mineralization area which has been traced over a vertical dip length to date (Rhys, 2010-03-12) of more than 1 kilometre, and within which better intercepts occur along a strike length of 100 to 600 metres (Rhys, 2010).

 

Mineralization in the Rusk Shear Zone comprises areas of either a) higher quartz-carbonate-pyrite vein density, and or b) areas of elevated medium to coarse-grained disseminated pyrite and associated

 

53



 

pyrite-quartz veinlets.  Both of these styles were observed to occur in the intensely foliated, often compositionally laminated carbonate-albite-quartz-magnetite portions of the shear zone.  Mineralization also locally preferentially overprints pink, K-feldspar-rich syenite dykes and local plagioclase-dominant probable diorite dykes in the shear zone, with clots and aggregates of coarse pyrite, often associated with which quartz-albite-carbonate veinlets.  Areas of gold mineralization occur in portions of the Rusk Shear Zone in which the shear zone matrix is variably Fe-carbonate altered.

 

Most common styles of veining comprises deformed quartz-pink carbonate/albite veins with varying pyrite content and coarse-grained pyrite envelopes/selvages, which correspond generally with higher and more continuous grades.  These early deformed veins are very similar in style and texture to the earliest phases of veining seen underground in the 650 metre Level Ultramafic Zone which are also deformed and could be coeval with the set (Rhys, 2010).

 

Veins in the Rusk Shear Zone also include a younger phase of quartz-pyrite veins which have pyrite envelopes, which cut the deformed veins and which have carbonate-pyrite envelopes that over print the shear zone matrix and sulphidized magnetite, overprinting the shear zone foliation.  The coarse pyrite in vein envelopes also overgrows the dominant shear zone foliation, which is preserved textually as inclusion trails in the pyrite (Ross, 2010).  This younger set of veinlets is likely coeval with the main stage extension vein sets on the 650 metre Level (Rhys, 2010).

 

Both of these veining phases are auriferous and can contain high gold grades.  Gold in both phases was observed in the Petrographic study occurring in association with pyrite, including as inclusions often in association with chalcopyrite and galena, on fractures in pyrite, and free in gangue adjacent to pyrite grains (Ross, 2010).  The relationship of the disseminated pyrite variety here could not be determined, but the overall style of the pyrite and local occurrence in diffuse veinlets has similarities to the second veining phase (Rhys, 2010).

 

“Porphyry Zone” mineralization is developed in the quartz monzonite intrusion that occurs at depth in the footwall of the Rusk Shear Zone immediately adjacent to areas of mineralization in the adjacent Rusk Shear Zone.  Mineralization is associated with sheeted sets of quartz extension veins which occur in abundance of up to several veins per metre within the intrusion.  Most veins are less than 3 centimetres thick and comprise white quartz with occasional pyrite grains.  Disseminated pyrite locally occurs in the wall rock to the veins and free visible gold was locally observed in association with pyrite both in veins and wallrock immediately adjacent to veins, accompanied rarely by a bluish silvery grey mineral — a possible telluride — and by local fine grained base metal sulphides (sphalerite, galena).  The intrusion is generally massive and unfoliated in areas of veining.  Veins have variable core axis angles, but angles are most commonly high (>70 degrees to core axis) consistent with a shallow dip to extension veinlets, based on known drill hole orientations.  Local irregularity in vein shapes and orientations —particularly in areas of the highest vein abundance — suggest some deformation, possibly in the cores of sigmoidal vein arrays such as is seen in the Ultramafic Zones on 650 Level.  These veins are of compatible style and probable orientation as the main stage Ultramafic Zone veins in the Timmins Mine which they may be coeval with, and consequently they may also form areas of higher grade continuity which are dictated by the morphology of the extension vein arrays.  These veins may have formed preferentially in the upper, thinner portions of the intrusion where it is less than 100 metres thick, in response to brittle behavior of the intrusive body during ductile activity of the Rusk Shear.  More isolated narrower intercepts deeper in the intrusion where it is thicker may reflect the more rigid behavior of the unit as its width strengthens it, as is seen in many other Timmins area deposits, where an optimal thickness of the host unit is common for most abundant vein development.  Modeling of the morphology and thickness of the host

 

54



 

intrusion may as a result aid in definition of the distribution of best developed mineralization (Rhys, 2010).

 

Areas of veining frequently are associated with more intense pink-red coloured and homogeneous appearance of the intrusion, obscuring the primary igneous textures.  A systematic series of samples from drill hole TC09-69a across the hosting monzonite intrusion was stained using Na-cobaltinitrate to assess whether this vein associated alteration is K-feldspar; intense yellow stain in these altered areas confirms that the reddish-orange alteration with quartz veining is secondary K-feldspar (Rhys, 2010).

 

Within the Porphyry zone, although at a local scale, no correlation between gold grade and vein density is apparent in review of assays and representative drill core.  In general areas lacking veining, the areas also lack gold grade (Rhys, 2010).

 

The observations and conclusions made by Camier (2009) and Rhys (2010, 2011) provide a valid argument for their interpretations, and the interpretation has been accepted and adopted by Lake Shore Gold Corp.  The most recent interpretations are illustrated in the accompanying figures: Figure 7.3: Property Geology; Figure 7.4: Timmins Deposit Geology 310 m Level (upper mine); Figure 7.5 Timmins Deposit Geology 525 m Level (Lower mine); Figure 7.6 Timmins Deposit Geology 790 m Level (Lower mine); Figure 7.7: Timmins Deposit Generalized Cross-Section 4575E (Timmins West Mine grid); Figure 7.8: Thunder Creek Underground Geology 300 Level (Upper Level); Figure 7.9: Thunder Creek Underground Geology 730 Level (Lower Level); Figure 7.10: Thunder Creek Generalized Cross-Section, 9550N (Thunder Creek rotated surface grid); Figure 7.11: Generalized Long-Section Illustrating Timmins Mine Shaft Ramps, Levels, and the Thunder Creek Mineralization Envelope (looking eastward); and Figure 7.12: Structural Plan 300 Level (Rhys, 2010).

 

55



 

FIGURE 7.4:       TIMMINS DEPOSIT UNDERGROUND GEOLOGY 310 M LEVEL (UPPER LEVEL)

 

GRAPHIC

 

56



 

FIGURE 7.5:       TIMMINS DEPOSIT UNDERGROUND GEOLOGY 525 M LEVEL (LOWER LEVEL)

 

GRAPHIC

 

57



 

FIGURE 7.6:       TIMMINS DEPOSIT UNDERGROUND GEOLOGY 790 M LEVEL (LOWER LEVEL)

 

GRAPHIC

 

58



 

FIGURE 7.7:       TIMMINS DEPOSIT GENERALIZED CROSS-SECTION 4575E (TIMMINS WEST MINE GRID)

 

 

59



 

FIGURE 7.8:       THUNDER CREEK UNDERGROUND GEOLOGY 300 M LEVEL (UPPER MINE)

 

GRAPHIC

 

60



 

FIGURE 7.9:       THUNDER CREEK UNDERGROUND GEOLOGY 730 M LEVEL (LOWER LEVEL)

 

GRAPHIC

 

61



 

FIGURE 7.10:     THUNDER CREEK GENERALIZED CROSS-SECTION, 9550N (THUNDER CREEK SURFACE GRID)

 

GRAPHIC

 

62



 

FIGURE 7.11:     GENERALIZED LONG-SECTION, ILLUSTRATING TIMMINS WEST MINE SHAFT, RAMPS, LEVELS, AND MINERALIZATION ENVELOPE (LOOKING EASTWARD)

 

GRAPHIC

 

63



 

FIGURE 7.12:     STRUCTURAL PLAN, 300 LEVEL (RHYS, 2010)

 

GRAPHIC

 

64



 

8.0                               DEPOSIT TYPES

 

The Porcupine area is well known for hosting two mineral deposit types: 1) Xstrata’s Kidd Creek mine, which is a volcanogenic massive sulphide deposit; and 2) several mesothermal Archean shear-hosted gold deposits.  Gold production to the end of 2006, from some 50 operational sites is reported to be 2,028,140 kilograms of gold (65,206,222 ounces of gold).  Table 8.1 highlights the twenty-one locations that exceeded production of 3,110 kilograms of gold (100,000 ounces of gold).

 

The style of mineralization at the Timmins West Mine is characteristic of mesothermal Archean shear-hosted gold deposits typical of the Timmins and Kirkland Lake gold camps.  There are detailed differences with each deposit with respect to individual: structural controls, vein density, gold tenor, gold — silver ratio, and size with deposit sited in Table 8.1, but they do have a commonality.  In his 1997 PhD thesis titled “Geological Setting of Gold Deposits in the Porcupine Gold Camp, Timmins, Ontario”, Brisbin, generalizes the ore bodies are typified by single or multiple quartz-carbonate veins with or without albite, tourmaline, sericite, pyrite, and other sulphides, and native gold hosted in carbonatized, sericitized, albitized and pyritized wallrock.  Gold occurs both in the veins and the wallrock.  The most significant gold deposits are spatially associated with quartz-feldspar porphyry stocks and dykes, and with albitite dykes both of which intrude the folded Archean supracrustal rocks.  The supracrustal rocks, porphyry intrusions, albatite dykes and gold mineralization were affected by metamorphism, and penetrative deformation during the Kenoran Orogeny (Brisbin, 1997).  He further compares the gold productivity at the time of his research with lithology.  Over seventy-five (75) percent of the gold production in the Porcupine Camp (1997) was mined from ore bodies in the Tisdale Group rocks which are thus the most important rocks in the camp.  Approximately 15%of the gold in the Porcupine Camp has been hosted by Timiskaming Group rocks making them the second most important host.  Porphyritic intrusions, hetrolithic breccia bodies and albitite dykes host nearly 10% of the gold produced in the camp.  There is little change in the proportional production distribution of gold today.

 

Gold mineralization in the Timmins West Mine occurs in steep north-northwest plunging mineralized zones which plunge parallel to the local orientations of the L4 lineation features which also plunge parallel to the lineation, including folds and elongate lithologies.  Mineralization occurs within, or in favourable lithostructural settings within 100 metres of the Holmer and Rusk Shear Zones.  Mineralization comprises multiple generations of quartz-carbonate-tourmaline ±albite veins, associated pyrite alteration envelopes and disseminated pyrite mineralization.  Textural evidence suggests that veining formed progressively through D3 and D4 deformation.  All phases of gold-bearing veins cut and postdate alkali intrusive complex (AIC) and syenitic to monzonitic intrusion, although mineralization is often spatially associated with ore preferentially developed within theses intrusions. (Rhys, 2010).

 

65



 

TABLE 8.1:         OPERATIONS OF GREATER THAN 100,000 OUNCES OF GOLD PRODUCTION IN THE PORCUPINE GOLD CAMP

 

Mine

 

Kilograms Gold Produced

 

Ounces Gold Produced

 

Hollinger

 

601,158

 

19,327,691

 

Dome

 

487,558

 

15,675,367

 

McIntyre Pamour Schumacher

 

334,423

 

10,751,941

 

Pamour # 1 (pits 3, 4, 7,Hoyle)

 

131,393

 

4,224,377

 

Aunor Pamour (#3)

 

77,828

 

2,502,214

 

Hoyle Pond

 

72,046

 

2,316,346

 

Hallnor (Pamour #2)

 

52,582

 

1,690,560

 

Preston

 

47,879

 

1,539,355

 

Paymaster

 

37,082

 

1,192,206

 

Coniarum/Carium

 

34,512

 

1,109,574

 

Buffalo Ankerite

 

29,775

 

957,292

 

Delnite (open pit)

 

28,740

 

924,006

 

Pamour (other sources)

 

21,046

 

676,645

 

Broulan Reef Mine

 

15,519

 

498,932

 

Broulan Porcupine

 

7,485

 

240,660

 

Owl Creek

 

7,368

 

236,880

 

Hollinger Pamour Timmins

 

5,663

 

182,058

 

Nighthawk

 

5,468

 

175,803

 

Moneta

 

4,642

 

149,250

 

Crown

 

4,303

 

138,330

 

Bell Creek

 

3,507

 

112,739

 

 

 

 

 

 

 

21 site Totals

 

2,009,976

 

64,622,226

 

 

 

 

 

 

 

The Porcupine Camp Total (50 sites)

 

2,028,140

 

65,206,222

 

 

(source: http://www.mndm.gov.on.ca/mines/ogs/resgeol/office)

 

66



 

9.0                               EXPLORATION

 

9.1                               GENERAL OVERVIEW

 

9.1.1                     Timmins Deposit

 

Since Lake Shore Gold optioned the Timmins Mine Property from Holmer Gold Mines in 2003, the focus of the exploration programs was to explore the along strike and down plunge extensions of the Footwall and Ultramafic Zones.  This work led to the preparation of NI 43-101 compliant Mineral Resource estimate in 2004, followed by updates in 2006, and 2009.  Between 2007 and 2009, most of the surface diamond drilling was allocated to exploring for extensions to the Vein Zones and testing new surface targets.

 

Drilling completed in 2003 consisted of 53 NQ holes and/or wedges totaling 17,146 metres.  Twenty-three holes were deep Mineral Resource expansion holes.  Nine were exploration holes completed away from the known resource and 21 short holes were drilled in an area above 100 metre vertical in a program designed to define an open pit resource.  The nine exploration holes which tested geological, structural, and alteration targets did not yield significant gold assay results.  Other work completed in 2003 included a detailed Fugro Airborne magnetic survey; a detailed structural study of the exposed portion of the Timmins Mine Deposit; and Mobile Metal Ions (“MMI”) soil sampling on the overburden-covered eastern and northeastern portions of the “Holmer” Property.  Preliminary metallurgical test work was initiated by the preparation and analysis of four composite samples of historic core by SGS Lakefield Mineral Services (“SGS”).  This work continued into early 2004.

 

In 2004, an additional 38 bore holes totaling 17,655 m were drilled, to extend the resources from 4715E to 4595E and to a depth of 850 m.  Thirty-five holes were directed towards Mineral Resource expansion and three were exploration holes directed towards various exploration targets on the Property.  The exploration holes did not return significant results.  Environmental baseline surface water sampling and diamond drill site reclamation programs continued to progress.

 

During 2005, 58 diamond drill holes totaling 28,875 metres were completed.  Forty-seven holes were directed towards Mineral Resource expansion and 11 were exploration holes targeting the sediment-volcanic contact to the north and east of the Deposit.  Only minor anomalous gold values were obtained in the northeast portion of the Property.  EHA Engineering Ltd. (“EHA”) commenced metallurgical test work and process design for a new on-site 1,500 t/d mill.  Drill core samples were forwarded to the RPC — The Technical Solutions Centre testing laboratory in Fredericton, N.B. in May and a report was issued in mid-2006.  Environmental baseline surface water sampling continued.  Preparations of a Prefeasibility Study commenced in January of 2005 with the study completed by SRK in 2007 for a 1,000 t/d underground mining operation.

 

In 2006 Lake Shore Gold completed 55 drill holes totaling 28,313 metres.  Thirty-seven holes were directed towards down plunge Mineral Resource expansion and 25 were exploration holes.  The exploration holes targeted the possible extensions of the deposit along strike and dip, as well as various other exploration models.  A small amount of outcrop stripping and diamond-saw channel sampling in the original showing stripped area was completed.  The perimeter of the Property was re-surveyed and marked out by an Ontario Land Surveyor.

 

Lake Shore drilled 20 diamond drill holes (10,959 metres) in 2007.  Most were drilling exploration targets with some testing down-plunge extensions of the vein mineralization.  No new mineralization has been

 

67



 

discovered in the exploration drilling with limited success in the attempt to follow the veins down-plunge, mainly due to deviation problems in the drill holes.  Two sub-vertical shaft pilot holes were completed, and several old holes were re-collared and extended past the proposed shaft area, in order to explore and record additional structural data.  Geotechnical core logging and packer testing was also carried out on selected holes by Golder Associates, of Sudbury.  Numerous holes drilled into the deposit and around the proposed mining infrastructure were cemented and plugged, and several casings were removed.  Lake Shore has also continued with the planning and initial implementation of the AEP throughout 2007 as covered in the 2007 SRK Technical Report.

 

A total of 47 surface diamond drill holes (9,357 metres) were completed in 2008.  Twenty-one shallow holes (877 metres) were designed to assist in the definition of a ramp area in the vicinity of the main showing.  Twenty-six holes were focused on exploring to the east and south of the mine site, mainly targeting the volcanic-to-sedimentary contact zone.  No significant mineralization was intersected.  Historical drill holes into the deposit and near mine developments were also cemented.  Underground diamond drilling using electric drill units commenced on the property in October 2008, initially via ramp access.  In 2008, a total of 41 NQ-sized (47.6 millimetre core diameter) underground drill holes were completed, totaling 3,185.5 metres, including three service holes totaling 137.5 metres.  Underground drilling during late 2008 targeted upper areas accessible from the ramp being developed at the time.  This included drilling of the Main Zone, Vein 1 and Vein 2.

 

In 2009, two surface holes (1,836 metres) targeted the volcanic-to-sediment contact zone south of the mine site.  As of August 28, 2009 three infill holes were also in progress, and one drill hole was exploring for the down-plunge extension to the deposit, on section 4300E (1750 metres in progress).  In the period from January 1, 2009 to August 28, 2009, a total of 259 drill holes were completed, totaling 21,387 metres, including ten service holes totaling 323 metres.  Of these, 214 holes (12,906 metres) were completed in the ramp area, and 45 holes (8,481 metres) were completed in the shaft area.  The majority of underground holes are BQTK in diameter (40.7 millimetres core diameter), but HQ-sized holes (77.8 millimetres core diameter) are typically drilled for service holes, and AQTK-sized (30.5 millimetre core diameter) holes are sometimes drilled using air-powered drilling units.  All underground drill holes were cemented and/or have a grout plug installed.

 

As the ramp progressed to ever deeper levels, drilling of several targets followed shortly thereafter.  Drill targets included the Main Zone, Vein 1, Vein 2, Vein 3 and Footwall Zones.  As soon as access and support were available in the shaft, drilling commenced in the shaft area with drilling on the 525 metre Level, followed shortly after by drilling on the 650 metre Level.  Drill targets in the shaft area include the Ultramafic Zone and Footwall Zones.  Underground drilling was conducted by Forage Azimut Inc. of Rouyn-Noranda from October 2008 to March 2009.  Underground diamond drilling has been conducted by Boart-Longyear since April 2009 to present. Management of all drill programs is by Lake Shore personnel and geologists under contract to Lake Shore.

 

By 2009 year-end the surface ramp development had reached a vertical depth of 200 metres and ramp development from the 650 metre Level had been driven up to the 630 metre Level.  Sill level development on the 650 metre Level UM complex was also completed by year-end.

 

In March 2010, the Timmins West Mine shaft was completed to a depth of 710 metres.

 

A total of 398 underground drill holes (53,305 metres) were completed on the Timmins Deposit mineralization in 2010.  The drilling was split practically 50:50 between upper mine ramp drilling and

 

68



 

lower mine shaft drilling.  The primary targets in the upper mine ranged from drill platforms off the ramp from the 140 metre Level down to the 270 metre Level targeting the FW and Vein Zones on the east side of the ramp and the MZ on the west end of the ramp.  The drill coverage from the 270 metre Level collar position was down to about the 400 metre Level.  The drilling was a combination of delineation/definition and exploration drilling in the case of the MZ where the Mineral Resource had not been modeled below the 260 metre Level.  Drilling from the shaft location was concentrated on the UM1 complex, primarily defining the first longhole stope, 650-610 UM1 and UM1a to be excavated in the fourth quarter.  This drilling was extended to delineate the structural hangingwall lenses UM2a, UM2b and UM3, to the north between the 650 — 525 metre Levels.  The drill spacing achieved was approaching 7.5 metre centres along the strike and dip of the UM1 mineralization as a result of the irregular geometry of the stinger zone style of veining exposed and mapped in the 650 metre Level and 630 metre Level sill development.  Exploration drilling below the 650 metre Level down-plunge of the westward plunging mineralization was delayed until a hangingwall drift filled with waste could be mucked out and dumped as backfill into the 650 UM1 longhole stope.  In the fourth quarter of 2010, a 200 metre hanging wall drill platform was developed on the 525 metre Level to allow sectional delineation drilling of the UM1 from the 610-525 metre Levels and test the 525 metre Level FW zone to the east and 525 MZ to the west of the ramp.

 

The surface ramp development had reached a vertical depth of 290 metres, the ramp down below 650 metre Level had started the decline to the 670 metre Level, the 525 metre Level had ramped up to the 500 metre Level access to the 500 FW zone, and down to the 540 MZ, and the 650 metre Level up ramp had reached the 590 metre Level by the end of 2010.

 

Commercial production was announced January 1, 2011 at the Timmins deposit.

 

A total of 297 underground holes (41,503 metres) were completed intersecting the Timmins deposit mineralization in 2011.  This was moderately less than 2010 as the focus was shifted to delineating the Thunder Creek mineralization for an initial Mineral Resource by the fourth quarter of 2011.  Very little drilling was conducted from the Timmins upper mine ramp area with the exception of the 260 metre Level MZ drilling.  The majority of the drilling was focused on shaft area drilling including delineation of the UM complex between the 610-525 metre Levels, and MZ and FW Zone drilling from the 525 metre Level.  Drilling in the fourth quarter of 2011 transitioned into drilling below the 650 metre Level, as drills were mobilized from the Thunder Creek drill platforms to the Timmins Deposit.

 

The last remnants of the 650-610 metre Level UM1 longhole stope was mucked out in February, 2011, prior to being backfilled with waste.  Sill development on the 525, 540 and 590 MZ Levels was completed in 2011.  Mining of the 525 FW Zone occurred in 2011 comprising sill development on the 500 metre Level elevation followed with 10 metre blind longhole uppers.  Sill development on the UM1 was conducted on the 585 metre, 565 metre, and 545 metre Levels, with longhole stoping of the 610 — 585 metre Level block in the second half of 2011.

 

By the end of 2011 the surface ramp was at 290 vertical metres, the 650 metre Level up ramp had broken through to the 525 metre Level down ramp, and the 500 metre Level up ramp had reached above the 480 metre Level.  The 650 metre Level down ramp had reached 725 vertical metres by year-end, with sublevels on the 670, 690 and 710 metre Levels established.

 

The underground mine geology drilling campaign for the Timmins deposit in 2012 is focused on the UM complex below the 650 metre Level.  A sill pillar of 20 metres below the 650 — 610 metre Level longhole

 

69



 

stope corresponds with a down-plunge flattening on the UM complex mineralization as it steps westward.  A series of staggered, en-echelon mineralized envelopes comprised of quartz-tourmaline stringers strike at 075 to 085 azimuth and dip at 40-60 degrees to the northwest in the ultramafic core of the volcanic sedimentary fold, while stringer/sulfide replacement zones in the altered mafic volcanic rocks are generally east-west striking and variable north dipping.  25,000 metres of delineation drilling approaching 10-15 metre centres targeting between the 670-730 metre Levels will provide immediate mining horizons working up from the 730 metre Level to the 670 metre Level on 20 metre sublevel development.  A drill drift to be established on the 730 metre Level will provide drill coverage from the structural hangingwall down to approximately the 810 metre Level on roughly 15 — 25 metre centres comprising an additional 10,000 metres for future mining.  Other Timmins deposit targets include 10,000 metres of drilling off the 480 up ramp east, targeting the structural hangingwall Vein and FW Zones between the 380 — 580 metre Levels.  On the west side of the 525 metre Level down ramp 5,000 metres of drilling has been allocated to delineation drilling of the MZ between the 525 — 650 metre Levels.

 

By the end of 2012, it is anticipated that the 650 down ramp will have reached 810 metre Level.

 

Between 1938 and 1980, 144 diamond drill holes totaling 26,285 metres were drilled on the Timmins Mine Property.  The information from this work is either missing or unreliable/incomplete and has not been considered in the LSG Mineral Resource estimates.  Table 9.1 summarizes the diamond drilling statistics from 1984 to the periods indicated within the table.

 

70



 

TABLE 9.1:         DIAMOND DRILLING STATISTICS FOR TIMMINS MINE COMPLEX

 

Company

 

Year

 

Holes

 

Metres

 

Surface Diamond Drilling (Timmins Mine)

 

 

 

 

 

 

 

Norex

 

1984

 

4

 

1,465

 

Chevron

 

1987

 

31

 

7,870

 

Holmer

 

1996 — 2002

 

114

 

46,425

 

St. Andrew

 

1999

 

10

 

1,341

 

Subtotal Others

 

 

 

159

 

57,101

 

Lake Shore

 

2003

 

53

 

17,146

 

 

 

2004

 

38

 

17,655

 

 

 

2005

 

58

 

28,875

 

 

 

2006

 

55

 

28,313

 

 

 

2007

 

20

 

10,959

 

 

 

2008

 

47

 

9,357

 

 

 

2009

 

2

 

1,836

 

Subtotal Lake Shore (to August 28, 2009)*

 

 

 

273

 

114,140

 

 


*refers to holes actually completed during the period indicated; value includes wedged and abandoned holes; an additional four holes or 1,750 metres are still in progress at present time.

 

 

 

2009

 

12

 

8,917

 

 

 

2010

 

1

 

1,107

 

 

 

2010

 

2

 

622

 

 

 

2011

 

1

 

879

 

Underground Diamond Drilling (Timmins Deposit)

 

 

 

 

 

 

 

Lake Shore

 

2008

 

41

 

3,186

 

 

 

2009

 

259

 

21,387

 

Total Lake Shore (to August 28, 2009)

 

 

 

300

 

24,573

 

After August 29

 

2009

 

50

 

12,495

 

 

 

2010

 

398

 

53,304

 

 

 

2011

 

299

 

41,503

 

To January 31

 

2012

 

20

 

4,879

 

Feb 1 to Mar 21

 

2012

 

33

 

6,551

 

Surface Diamond Drilling (Thunder Creek)

 

 

 

 

 

 

 

 

 

2003

 

6

 

1,167

 

 

 

2004

 

13

 

4,370

 

 

 

2005

 

6

 

2,359

 

 

 

2006

 

0

 

0

 

 

 

2007

 

23

 

10,841

 

 

 

2008

 

16

 

9,186

 

 

 

2009

 

35

 

25,828

 

 

 

2010

 

6

 

3,476

 

 

 

2010

 

9

 

3,931

 

 

 

2011

 

36

 

19,222

 

 

 

2011

 

1

 

599

 

 

 

2011

 

1

 

1,553

 

Underground Diamond Drilling (Thunder Creek)

 

 

 

 

 

 

 

 

 

2010

 

167

 

20,975

 

To October 28

 

2011

 

217

 

42,995

 

After October 29

 

2011

 

30

 

8,865

 

To January 31st

 

2012

 

29

 

7,940

 

February 1 to March 21

 

2012

 

26

 

6,482

 

 

71


 


 

9.1.2                     Thunder Creek Deposit

 

Exploration programs completed by Lake Shore Gold Corp. prior to May 10, 2009 are described and discussed in the restated amended technical report submitted July 29, 2009 “ A Technical Review and Report of the Thunder Creek Property, Bristol and Carscallen Townships, Porcupine Mining Division, Ontario, Canada” (Powers, 2009).  Since that time exploration efforts have focused on defining the geometry and the economic potential of the Rusk and Porphyry gold mineralized zone.  The exploration campaign is multi-focused with a surface and underground exploration diamond drill programs defining the overall, or large scale geometry by deep surface drilling and wedging; and refining the details with an underground exploration program with ramp access to the mineralization from the Timmins Mine.  Table 9.2 summarizes the details of this phase of the exploration program.

 

In 2010, an Advanced Exploration program “AEP” was initiated to open up and cross cut mineralization at Thunder Creek utilizing access from the Timmins Mine shaft on two elevations targeting the best surface drill intercepts.  Two horizons were selected for access to the Rusk Shear Zone and Porphyry Zone from the 200 metre Level and 650 metre Level shaft stations at Timmins Mine (refer to Figure 7.11).  Ramp development driven at 4.5 metres (“m”) x 4.5 m was excavated for roughly 660 m and 890 m horizontal distance south southwest of the shaft to intersect the 300 m Level and 730 m Level elevations respectively in the Rusk and Porphyry Zones.  The Rusk horizon was intersected in July 2010 at the 300 m Level elevation and the Porphyry Zone in November 2010 at the 730 m Level elevation.  Along the ramp development on both levels drill cut-outs were excavated for advanced exploration drilling completed in 2010.  A bulk sample and initial mining program was planned for the Rusk horizon on the 300 m Level elevation for the third and fourth quarter of 2010 and first quarter 2011.

 

On the 300 m Level Rusk horizon, sill development grade control was monitored using standard geologic mapping and face and wall chip channel sampling practices, supported by muck samples collected by the miners routinely on a scoop bucket frequency.  A sub-level longhole mining method on a 15 m high sub-level height was employed.  The 315 m Level sill development was driven off the down ramp, with a 4 m bench excavated prior to the longhole mining, using waste backfill to re-establish the benched out floor.

 

Prior to mining the 315 longhole stope, blind uppers for a 10 m height above the back height elevation on the 300 m Level were blasted down and mucked from the sill development access remotely.  After mining the 315 longhole stope, the down ramp was driven with sill development horizons at 20 metre increments at the 350 m Level, 370 m Levels and planned for the 330 m Level throughout 2011.

 

On the 730 m Level Porphyry horizon, a sill development drift along the strike of the outlined, mineralized, quartz monzonite intrusion with planned cross-cuts on 15 to 30 metre centers orthogonal to the strike drift was planned to refine the ore outline and geometry by transecting the hangingwall and footwall contacts.  A flat fan of drilling out of the drift face at the northeast entry to the Porphyry Zone was initiated in December 2010.  Additional drilling from inside the Porphyry Zone was afforded during the 2011 year testing a block roughly 100 m above and below the 730 m Level elevation.

 

In 2011, as many as six surface drill rigs and eight underground diamond drills were simultaneously testing the down plunge extensions of the mineralization and refining the strike extension contacts of the mineralization in preparation for a preliminary block model and Mineral Resource Estimation.

 

The drilling strategy was focused on testing the Rusk Shear and Porphyry Zones over a strike length of 300 m from surface to approximately 1,000 m depth.  Detailed, sectional fan drilling approaching a drill spacing of 30 to 50 metre centers along strike and down-dip was achieved using a combination of

 

72



 

surface and underground drill collars/platforms.  Intermediate step out drilling on 100 to 200 metre centers along the extension of the Rusk Shear Zone southwest to the Highway 144 property has also been initiated.  Tighter spaced drilling was achieved in the upper levels to a minimum of 15 m centres down to approximately the 400 m Level elevation.

 

In the first quarter of 2011, underground drill platform development was established at three separate locations to facilitate the completion of the sectional delineation drilling campaign designed to produce the first Mineral Resource.  Approximately 450 m of linear development was excavated on the 680 m Level and 710 m Level for drill platforms off the 650 m Level ramp.  Approximately 260 m of linear development was completed on the 260 m Level drill platform off the 200 m Level Ramp.

 

In May 2011, deep underground drilling collared from the 680 m Level drill platform comprising two rigs was started targeting the down plunge extension between the 1,000 to 1,500 m elevations.  Although only widely spaced drilling has been completed to date predominantly on the northeast contact of the Porphyry Zone, the alteration, veining, and quartz monzonite has demonstrated continuity to depth despite weaker than expected gold mineralization.

 

In July 2011, mining was advanced for the Rusk shear horizon on the northwest contact with the Porphyry Zone.  Two cross-cuts on the 730 m Level sill elevation were excavated to the northwest on 15 m centres for draw points, and the strike drift was ramped up from the western exit point to the 715 m Level sill elevation for overcut development, cable bolting in the hangingwall and production downholes.  The second block from the 715 — 695 m sublevels is currently being mined.

 

The underground budgeted work program for the Thunder Creek project in 2012 includes detailed sectional drilling of the Rusk and Porphyry Zones from the 600 to 800 m Level elevations on 15 metre centers comprising approximately 30,000 metres, orientated roughly along the centerline for sill development cross-cuts designed for transverse longhole stope design.  The upper level Rusk Shear Zone delineation is planned from a drill platform at the 390 m Level ramp location, testing the Rusk and emerging Porphyry Zones from the 370 - 500 m Level elevations at 25 metre centres for a total of 10,000 m.  Definition drilling from scram drifts parallel to the sill development in the hangingwall will include 2,500 m in total over the year.

 

There are two elevation ranges of poorly drilled Rusk/Porphyry style mineralization between the 500-600 m Levels and the 750-850 m Level elevations due to drill coverage challenges.  Delineation drilling planned to reduce the drill spacing to a maximum of 15 — 30 metre centres from the 260 m Level and 710 m Level drill drifts comprising an additional 7,500 metres is planned.  Exploration drilling along strike with step-outs of approximately 100 — 200 m to the northeast and southwest comprising approximately 5,000 m are planned in 2012 off the ends of the 260 m Level and the 680 m Level drill platforms.

 

73



 

TABLE 9.2:         SUMMARY OF THUNDER CREEK EXPLORATION ACTIVITIES
(MAY 10, 2009 TO OCTOBER 28, 2011)

 

Geological Mapping

 

 

Surface Geology

 

 

Camier, 2009:

 

~5 km square surrounding the Rusk surface showing

Rhys, 2009, 2010, 2011:

 

Structural studies, underground review mapping, re-logging of drill core from the West Timmins Mine Complex (Timmins Mine, Thunder Creek and Golden River projects)

K. Ross:

 

Microscope Petrographic Studies

Dr. A. Miller:

 

Microscope Petrographic Studies

Dr. B. Springer:

 

Microscope Petrographic Studies

 

 

 

Underground Geology:

 

 

Lake Shore Gold Staff:

 

Underground mapping

Lake Shore Gold Staff:

 

Underground face sampling

Lake Shore Gold Employees:

 

Underground muck sampling

Rhys, 2009, 2010, 2011:

 

Structural studies, underground review mapping, re-logging of drill core from the West Timmins Mine Complex

K. Ross:

 

Microscope Petrographic Studies

Dr. A. Miller:

 

Microscope Petrographic Studies

 

 

 

Geophysics

 

 

Borehole Gradient Array IP:

 

 

9 holes,

5370m

Borehole Dipole Array IP:

 

 

5 holes

2075m

 

 

 

Ground “tailings” IP (pole-dipole):

45 line kilometres

Ground Proton Precession Magnetometer (GSM-19):

82 kilometres

 

 

 

Diamond Drill Exploration

 

 

Diamond drilling UG:

 

66,809.65 metres from 384 diamond drill holes, and 22 re-collared/re-started holes due to unacceptable deviation; and 42 drill hole in various stages of completion

Diamond Drilling Surface:

 

83,656.69 metres from 102 surface diamond drill holes, 47 wedge splays, and 3 drill hole extensions, and 1 hole that was not completely logged and sampled at the time of the effective date.

Total Metres Drilled Between 2003 to October 28, 2011 is 150,466.34m

 

 

 

Number of samples:

 

 

63,697

Number of FA aa analysis (Au):

 

 

58,624

Number of FA g analysis (Au):

 

 

808

Number of metallic Au:

 

 

2,326

Number of As aa analysis:

 

 

9,283

Number of Diamond Drill Holes:

 

478 with 62 drill holes still being processed and not finalized

Number of analysis of blanks:

 

3711

Number of analysis of standards:

 

2899

 

74



 

Number of analysis of duplicates:

 

1721

Number of pulps submitted or re-assay:

 

2900

 

 

 

Number of face chip samples:

 

4091

Number of muck samples:

 

2752

 

 

 

Number of MMI samples:

 

160

 

 

 

Development

 

 

Ramp access to Rusk Zone

Ramp access and drill station development:

280m Level

515 metres

Ramp access to:

300m Level

894 metres

 

320m Level

193 metres

 

330m Level

194 metres

Drifting from shaft infrastructure:

710m Level

423 metres

 

730m Level

639 metres

Cross-cutting:

300m Level

11.6 metres

 

315m Level

12.2 metres

Drifting on mineralization:

300m Level

77.8 metres

 

315m Level

71.4 metres

 

730m Level

127.5 metres

 

TABLE 9.3:

SUMMARY OF TIMMINS DEPOSIT EXPLORATION ACTIVITIES
(AUGUST 29, 2009 TO JANUARY 31, 2012)

Underground Geology:

 

 

 

 

Lake Shore Gold Staff:

 

Underground mapping

 

 

Lake Shore Gold Staff:

 

Underground face sampling

 

 

Lake Shore Gold Employees:

 

Underground muck sampling

 

 

Rhys, 2009, 2010, 2011:

 

Structural studies, underground review mapping, re-logging of drill core from the Timmins West Mine

 

 

 

Diamond Drilling UG:

 

118,632.96 metres from 855 diamond drill holes, including 41 re-collared/re-started holes due to unacceptable deviation, 2 wedge splays, and 121 drill hole in various stages of completion

Diamond Drilling Surface:

 

9,546.35 metres from 1 surface diamond drill hole and 14 wedge splays.

 

 

 

 

 

Total Metres Drilled Between August 29, 2009 and January 31, 2012 is 128,179.31m.

 

 

 

 

 

Number of samples:

 

52,203

 

 

Number of FA aa analysis (Au):

 

51,524

 

 

Number of FA g analysis (Au):

 

1,080

 

 

Number of metallic Au:

 

705

 

 

Number of As aa analysis:

 

31

 

 

Number of Diamond Drill Holes:

 

856 with 121 drill holes still being processed and not finalized

Number of analysis of blanks:

 

2398

 

 

 

75



 

Number of analysis of standards:

 

2318

 

 

Number of analysis of duplicates:

 

1627

 

 

Number of pulps submitted for re-assay:

 

960

 

 

 

 

 

 

 

Development

 

 

 

 

Ore Development

 

 

 

 

 

 

140m Level

 

129.7 metres

 

 

150m Level

 

28.5 metres

 

 

170m Level

 

195.8 metres

 

 

180m Level

 

313.0 metres

 

 

200m Level

 

170.8 metres

 

 

210m Level

 

258.9 metres

 

 

230m Level

 

97.2 metres

 

 

240m Level

 

106.6 metres

 

 

260m Level

 

107.9 metres

 

 

270m Level

 

208.0 metres

 

 

480m Level

 

227.0 metres

 

 

525m Level

 

317.5 metres

 

 

540m Level

 

193.2 metres

 

 

545m Level

 

76.4 metres

 

 

550m Level

 

18.5 metres

 

 

565m Level

 

148.6 metres

 

 

585m Level

 

377.3 metres

 

 

610m Level

 

125.2 metres

 

 

630m Level

 

342.3 metres

 

 

650m Level

 

310.6 metres

 

The observations and results of the geological mapping programs are discussed in Item 7 Regional and Property Geology.  Figure 7.3 illustrates the area of geological mapping completed by Camier (2009) and modified by Samson (2010, 2011).

 

Geophysical and geochemical surveys reported in the Technical Report on the Initial Mineral Resource Estimate for the Thunder Creek Property Bristol Township, West of Timmins, Ontario, Canada, Prepared for Lake Shore Gold Corp. and West Timmins Mining Inc., D. Crick, R. Kusins, D. Powers, December 23, 2011, do not have a relevant effect on the outcome of Mineral Resources estimate and are not presented in this report.

 

76



 

10.0                        DRILLING

 

10.1.1              Lake Shore Gold Corp. Historical Drilling Timmins Deposit

 

Between 1938 and 1980, 144 diamond drill holes totaling 26,285 m were drilled on the Property.  The information from this work is either missing or unreliable/incomplete and has not been considered in the LSG Mineral Resource estimates.

 

Since 1984, exploration on the Property has been covered by the same north-south cut-grid, which has been refurbished as required.  The portion of the grid on which deep holes have been and are being drilled has been transit surveyed.

 

From 1984 to August 28, 2009, 432 surface holes (including wedged and abandoned holes) totaling 171,241 m have been drilled on the Property.

 

The vast majority of the drilling, including that of LSG, has been NQ-sized (47.6 mm diameter core).  Chevron and Holmer drilled a total of 37 BQ-sized holes (36.5 mm diameter core).  LSG has occasionally reduced to BQ-size in cases of difficult ground conditions.  Bradley Bros. Limited of Timmins carried out all the diamond drilling on the Property for St. Andrew, Holmer and LSG using a variety of drill rigs.  Core recovery has consistently been close to 100%.

 

Casings were generally left in the hole and capped.  The hole number was stamped on the cap or indicated by a labeled steel bar emplaced at the collar.  Most of the holes were initially not cemented; in 2007 and 2008, cement was pumped down all of the casings which were relatively easy of access.

 

Please refer to Figure 10.1 for the surface drill collar locations.

 

9,546.35 metres from one surface diamond drill hole and 14 wedge splays have been completed since the effective date of the previous technical report, August 29th, 2009.  Table 10.1b located in Appendix 1, provides collar locations relative to mine grid locations, azimuth and inclination of the collar, as well as the number of metres drilled per hole for the surface drilling.

 

855 diamond drill holes, including 41 re-collared/re-started holes due to unacceptable deviation, two wedge splays, and 121 drill holes in various stages of completion totaling 118,632.96 metres from underground have been completed since the effective date of the last technical report, August 29th, 2009.  These drill holes are tabulated in Table 10.2b in Appendix 2.  Drill holes in various stages of completeness with respect to core logging or pending assay results are highlighted in blue in Table 10.2b.

 

A total of 52,203 core sample intervals have been submitted for assay analysis since the effective date of August 29, 2009.  Table 10.3b (Appendix 3) summarizes the diamond drill hole number, the number of samples taken per hole, the number of returned assay results greater than or equal to 1 gram per tonne, the number of returned assay results greater than 34.29 grams per tonne, as well as the number of fire assays with atomic absorption or gravimetric finishes, the number of metallic assays for gold and the number of assays and hole numbers that have arsenic assay results.  The numbers reflected in this table do not include the samples submitted for QA/QC purposes.

 

77



 

The drill hole database for the Timmins Deposit was locked down on January 31st, 2012.  Drill holes that were not completely logged and sampled or assay results were pending are not used in the block modeling.  Diamond drill holes not used in the block model are tabulated in Table 10.4 (Appendix 4).

 

10.1.2              Lake Shore Gold Corp. Historical Drilling Thunder Creek Deposit

 

For the purpose of this report and the resource estimation only diamond drill holes initiated and completed by Lake Shore Gold Corp. are relevant and used in the block model and resource calculation.  Between the period of 2003 and June 24, 2009 approximately 75 drill holes and seven wedge splays were in various stages of completion for a total of 40,689 metres of diamond drilling.  This diamond drilling and the other surface exploration programs completed during this period are the subject of the second technical report for the Thunder Creek property (Powers, 2009).  The objectives of the early Lake Shore Gold Corp. diamond drill campaigns was to test: a) the historical showings by twinning the Preussag 1981 hole; b) test MMI soil geochemistry anomalies; c) test geophysical interpreted structure; d) test lithologies and stratigraphy; and definition drilling of mineralization intersected.  The emphasis and targeting of the diamond drill programs evolved to the definition drilling of gold mineralization associated with gold zones hosted in the Rusk and Porphyry Zones.

 

To date (effective date October 28, 2011) Lakeshore Gold Corp. has bored 102 surface diamond drill holes, 47 wedged splays, and three drill hole extensions for a total of 83,656.69 cumulative metres.  Table 10.1a located in Appendix 1, provides collar locations relative to mine grid locations, azimuth and inclination of the collar, as well as the number of metres drilled per hole for the surface drilling.  The alpha name, after the numerical number of the hole indicates a wedge cut.  Drill holes highlighted in blue are considered incomplete for inclusion in the Mineral resource estimate.  These drill holes are not relevant to the block modeling presented in this report.

 

Three-hundred-eighty-four (384) underground diamond drill holes totaling 66,809.65 metres have been drilled, of which 22 were re-collared due to unacceptable deviation (to the effective date of October 28, 2011).  Table 10.2a located in Appendix 2, provides collar locations relative to mine grid locations, azimuth and inclination of the collar, as well as the number of metres drilled per hole for the underground drilling.  Forty-two (42) drill holes remain in various stages of completeness with respect to core logging or pending assay results.  These holes are blue highlighted in Table 10.2a.  For underground diamond drilling, the alpha name attached to the hole number indicates a re-collared or re-started hole.

 

A total of 67,949 core sample intervals have been submitted for assay analysis.  Table 10.3a (Appendix 3) summarizes the diamond drill hole number, the number of samples taken per hole, the number of returned assay results greater than or equal to 1 gram per tonne, the number of returned assay results greater than 34.29 grams per tonnes, as well as the number of fire assays with atomic absorption or gravimetric finishes, the number of metallic assays for gold and the number of assays and hole numbers that have arsenic assay results.  The numbers reflected in this table do not include the samples submitted for QA/QC purposes.

 

The drill hole database for the Thunder Creek project was locked down on October 28th, 2011.  Drill holes that were not completely logged and sampled or assay results were pending are not used in the block modeling.  Diamond drill holes not used in the block model are tabulated in Table 10.4 (Appendix 4).

 

78



 

FIGURE 10.1:     SURFACE DIAMOND DRILL HOLE COLLAR LOCATIONS AND VERTICAL PROJECTION TO SURFACE OF THE OUTER PERIMETER OF THE RESOURCE ESTIMATION

 

GRAPHIC

 

79



 

11.0                        SAMPLING PREPARATION, ANALYSIS AND SECURITY

 

11.1                        LAKE SHORE GOLD CORP. SAMPLING METHOD AND APPROACH

 

11.1.1              Surface Diamond Drill Program

 

The sampling preparation, analysis and security for the period of 1998 to 2009 are described in the updated NI 43-101 Technical Report on the Timmins West Mine Property by Darling et al (2009); by Powers (2009) in the Amended Technical Review and Report of the “Thunder Creek Property” Bristol and Carscallen Townships; and by Crick et al (2011) in the Technical Report on the Initial Mineral Resource Estimate for the Thunder Creek Property Bristol Township.  All of these reports are referenced in Item 27 and are filed on SEDAR.

 

Described herein are the protocols used for both the surface and underground exploration programs during the period post the last technical report to the current effective date.

 

11.1.2              Core Handling and Logging Protocols

 

The diamond drill company employees secure the drill core boxes, at the drill site, for shipment from the field to the core logging facilities located at Lake Shore Gold’s exploration office complex at 1515 Government Road South, Timmins, Ontario and a second facility at 216 Jaguar Drive Timmins Ontario.  The drill core is delivered to the core shacks by the Bradley Bros. Ltd., and Norex Diamond Drilling Limited (“Norex”) drill foremen, or in the case of the Timmins West Mine for both the Timmins and Thunder Creek Deposits, to the mine site core logging and cutting facility at 8215 Highway 101 West.  Under the direct supervision of qualified persons Mr. Dean Crick, P. Geo, and Mr. Jacques Samson, P. Geo., Lake Shore personnel open the boxes; check the metre markers for accuracy; label the boxes for hole number, box number and footage; prepare a quick log; take rock quality designation (“RQD”) measurements; photograph and log the core.  Approximately 20% of all underground holes are geotechnically (RQD) logged.  Geological logging, sample number and location are entered directly into a computer using GEMCOM GEMS custom Drill Logger software.  Diamond drill logs are then printed, reviewed and edited where required.  The logs are detailed, and describe geology, structure, alteration, mineralization and do address lithological transition problem areas where naming nomenclature presents difficulties.  After geological logging and photography is complete the core is given to a trained and supervised core sawing technician.  The technician saws the core along the designated lines and sample intervals prescribed by the Lake Shore geologist.  The core sample length is determined by the geologist based upon lithology, alteration, percent sulphides, the presence of visible gold, and geological contacts.  Core to be sent for analysis is cut in half using a diamond blade core saw.  The core half not bagged and tagged for assay is returned to the core box with a sample tag number stapled into the core box.  All diamond drill core is stored in racks or square piled in a secure compound at the core logging facilities or at the Timmins Mine compound.  Drill core from the Thunder Creek project and diamond drill core from the Timmins Mine that has not been whole core sampled is easily accessible for inspection, or re-logging.

 

11.1.3              Hole Collar and Down-Hole Attitude Surveys

 

The proposed drill hole locations are pegged on the ground referenced to a 63 kilometre control grid established by Vision Exploration in 2008.  Chainsaw cut lines on 50 to 100 metre spacing with labeled pickets every 25 metres provide adequate field control for exploration anomaly drill testing.  The “false origin” of the grid is coincident with the number three post of patented claim P4040 (458,854.168 m

 

80



 

East, 5,358,786.3 m North, NAD 83, Zone 17).  The surveyed post is the departure point for the baseline co-ordinate 65+00E / 100+25N and corresponds to Timmins Mine co-ordinate 4645.777 East by 7508.233 North.  The azimuth of the base line is 40 degrees from true north.  Grid line designation decreases southward.  All drill holes are spotted on the field grid co-ordinate system, initially using a hand held GPS.  On a regular basis or as required the collars are surveyed by L. Labelle Surveys of Timmins for a final collar location.  Table 10.1a, 1b, 2a, 2b (Appendix 1 and 2) lists the collar location, drill azimuth, hole inclination (drill dip) end of hole and the number of samples per hole.  The underground and surface grid for the Timmins Mine is different than the exploration surface grid at Thunder Creek.  The origin of the Timmins Mine grid is the number one claim post of claim P4040, a surveyed claim that was assigned an arbitrary co-ordinate of 5000 East by 8000 North with an elevation of 1,000 metres elevation.  This point is actually 300.25 metres above mean sea level and has been reassigned an elevation of 10,000 metres to ensure that underground elevations are not reported as negative numbers.  An in-house grid transformation equation allows for the conversion of from one grid to the other grid in local grid co-ordinates or in UTM co-ordinates.

 

As the holes are being drilled, changes in azimuth and inclination are monitored at 30 to 50 metres intervals using an EZ-shot Reflex instrument.  Upon completion of a hole it is normal practice to have the holes resurveyed using a north-seeking gyro by Halliburton/Sperry Drilling Services of North Bay, Ontario.  If the north-seeking gyro is not available for surveying, a Maxibor instrument from Reflex Instruments of Timmins is used for the final direction and dip orientation survey.

 

Underground drill hole collar locations and azimuths are established using survey control.  The same grid coordinate system is utilized underground in the ramp and shaft areas as is used on surface.  Drill hole collars are surveyed after completion.  Down hole directional surveying is completed on all BQTK to HQ-sized drill holes using “Reflex” or “EZ-Shot” instruments.  Azimuth and dip information is collected at 9 to 15 m intervals downhole, along with magnetic susceptibility readings.  Magnetic susceptibility is assessed for each directional reading data point to ensure azimuth readings have not been made inaccurate by highly magnetic materials in proximity to the azimuth data point.

 

11.1.4              Security

 

The Timmins West Mine secure chain of custody for diamond drill core and samples starts at the drill and is completed with the safe return and storage of sample pulp and sample rejects locked garage storage facility.  Unscheduled visits to the diamond drill sites are made to ensure safety, good working practices and drill core security.  The core is transported from the field to the core logging facility by the drill foreman.  Lake Shore Gold’s personnel receive the core and carry out the logging and sample preparation procedures as previously described.  The samples are enclosed within sealed shipping bags are delivered to the ALS Canada Ltd. (“ALS”) preparation laboratory facility located at 2090 Riverside Drive in Timmins by Lake Shore Gold Corp. employees.   The ALS employee that receives the sample shipment signs a chain of custody document that is returned to Lake Shore’s office for reference and filing.  The return assay results are reviewed by Mr. Dean Crick, P. Geo. and/or Mr. Jacques Samson, P. Geo., Ms. Christina Riddell, the database manager, and selected members of the Lake Shore management group, on a need to know basis.

 

11.1.5              Surface Diamond Drill Core Sample Preparation, Analysis and Analytical Procedures

 

Holmer 1996 to 2002

 

All core was delivered by the contractor to a secured location at the Holmer core shack.  The core was logged and samples marked on the basis of geological divisions.  All core to be sampled except for the

 

81



 

quartz-tourmaline veins of the Main Zone and Hangingwall Zone mineralization in which visible gold was observed was split mechanically.  The suspected higher-grade intercepts with visible gold were sent for assay as whole core (Darling et al., 2009).

 

During the period 1998 to 2002 sample length averaged 1.2 m but was shorter in the well-mineralized sections.  Prior to1998 sample lengths ranged from 0.14 to 4 metres.  The entire drill core was split, and half the core was submitted to the laboratory for holes 96-01 to 96-10 and 97-01 to 97-06.  Sample intervals for holes 97-07 to 97-57 ranged between 0.14 and 1.75 metres in length.  The samples remained at the secure site until delivery to the shipping company.  The samples were then transported to Accurassay Laboratories (Div. of Assay Laboratory Services Inc.) (“Accurassay”) in Thunder Bay by BPX.

 

Lake Shore Gold Corp. 2003 to August 28, 2009

 

Sample lengths within the well-mineralized sections of core are 0.5 m with minor variations determined on the basis of lithologies and vein contacts.  Sample intervals are increased up to as much as 1.5 m where sparse mineralization is encountered.  The sample intervals are determined by the logging geologist, then marked on the core, and recorded in the drill log.  The core is split by LSG technicians using a diamond saw and half of the core is placed in a plastic sample bag.  The remaining half is returned to the core box and retained for future use and to serve as a permanent record.  The archived core is stored in racks adjacent to the field office, which is within a gated compound adjacent to the office and warehouse of Bradley Bros. Limited.  This facility is located on the north side of Highway 101, about halfway between downtown Timmins and the Property.  LSG uses sequentially numbered triplicate sample tags.  One portion goes in the sample bag, one goes into the core box at the end of the sample interval and the third stays in the sample book (Darling et al., 2009).

 

Prior to early 2007, the samples were transferred in security-sealed bags and transported by Manitoulin Transport to the ALS Chemex Prep Lab in Mississauga (2003 to 2005), and then to Sudbury (2006 to 2007) (Darling et al., 2009).

 

Since early 2007, samples are being delivered by LSG personnel or commercial couriers directly to the ALS Chemex Prep Lab in Timmins.  The pulps created in Timmins are then shipped to the ALS Chemex Assay Laboratory in Vancouver, B.C or Rouyn-Noranda, PQ (Darling et al., 2009).

 

Lake Shore Gold Corp Thunder Creek Project 2009 to 2011

 

The following description outlines the method of treatment and procedures utilized by ALS Canada Ltd., to process and analyze surface diamond drill core from Lake Shore Gold Corp.’s Thunder Creek property.  Lake Shore Gold Corp. employees are not involved in the sample preparation or analysis of samples once they have been delivered to the assay preparation laboratory in Timmins.  Each project analysis sample program submitted to ALS Canada Ltd. (“ALS Canada”, “ALS”) is given a separate client number.  The laboratory is instructed to maintain the sample stream, the processing and analysis by keeping the samples in sequential order as they are shipped to the lab.  Samples are entirely crushed to 70% passing 2 millimetres mesh.  The crushed samples were split and 250 gram sub-samples are pulverized to 85% passing less than 75 microns using a ring and puck pulverize (PREP-31).  During the period of 2004 to 2007, a 50 grams aliquot was taken from the pulp and analyzed by fire assay and atomic absorption methods (Au-AA24).  For samples that returned an assay value greater than three grams per tonne gold, another pulp sample was taken and analyzed using a gravimetric finish (Au-GRAV22).  In October of 2007, the fusion weights were reduced from 50 grams to 30 grams (Au-AA23 and Au-GRAV21), in order to avoid delays with occasional “incomplete fusions” reported by the lab.  If visible gold was noted in the core sample, the samples may be analyzed by the Pulp and Metallic method (Au-SCR21).  The entire

 

82



 

samples were crushed to 70% passing 6 millimetres mesh, and the entire sample was then pulverized to 85% passing 75 microns (PREP-32).  The pulp is passed through a 100 microns stainless steel screen and the entire (+) fraction is analyzed by fire assay and gravimetric finish.  The (-) fraction is homogenized and two 30 gram aliquots are analyzed by fire assay and atomic absorption finish (Au-AA25 and Au-AA25D).  The total gold content is then calculated by combining the weighted averages of the two fine fractions with the grade of the coarse fraction.

 

Drill core from the first 50 holes (10,713 samples) were analyzed for arsenic (As) by Aqua Regia digestion and atomic absorption scanning (AA-45).  In late 2007, No significant levels were reported and there does not seem to be a correlation with returned value and gold mineralization for the Thunder Creek Property.

 

As part of ALS Canada Limited’s internal QA/QC program, a duplicate reject sample was prepared every 50th sample.  The number of internal blanks, standards and duplicate control samples inserted into the sample stream depends upon rack size.  For regular AAS, ICP-AES and ICP MS methods the rack holds 40 positions, of which, there are two laboratory standards, one laboratory duplicate and one laboratory blank.  For regular fire assay methods the rack contains 84 positions, for which there are two laboratory standards, three laboratory duplicates and one blank sample.

 

Lake Shore Gold Corp. blank samples are prepared from a 0.5 metre, known gold barren diamond drill core samples of diabase.  These blank samples are blindly packaged as regular core samples with sequential to the sample stream assay tags and inserted into the sample stream at a random frequency of one every 1 to 20 samples.  Blank samples, are used to check for possible contamination in the crushing circuit and are not placed after a standard sample.

 

Certified gold standards individually wrapped in 60 gram sealed envelopes were prepared by Ore Research and Exploration Pty. Ltd. of 6-8 Gatwick Road, Bayswater North, Victoria, Australia (“OREA”) and provided by Analytical Solutions Ltd.  Several standards are used in order to vary the expected value and depending on availability of the standard.  These Certified Standards are purchased from Ms. Lynda Bloom, Analytical Solutions Ltd., at 1214-3266 Yonge Street, Toronto, Ontario.  Standard samples are inserted into the sample stream at a frequency of one per 20 samples and are used to check the precision of the analytical process.  Table 11.1 lists the standards utilized by Lake Shore for the Thunder Creek project.

 

83



 

TABLE 11.1:       OREAS STANDARDS USED BY LAKE SHORE GOLD CORP.

 

 

 

Mean

 

 

 

1 Std. Dev.

 

2 Std. Dev.

 

3 Std. Dev.

 

Standard

 

Au (g/t)

 

Std. Dev

 

Min

 

Max

 

Min

 

Max

 

Min

 

Max

 

O-2Pd

 

0.885

 

 

 

0.855

 

0.914

 

0.826

 

0.943

 

0.797

 

0.973

 

O-4Pb

 

0.049

 

 

 

0.047

 

0.051

 

0.044

 

0.054

 

0.042

 

0.056

 

O-6Pc

 

1.520

 

 

 

1.460

 

1.590

 

1.390

 

1.660

 

1.320

 

1.720

 

O-7Pb

 

2.770

 

0.050

 

2.720

 

2.820

 

2.660

 

2.880

 

2.610

 

2.930

 

O-10c

 

6.660

 

 

 

 

 

 

 

6.270

 

6.920

 

6.110

 

7.080

 

O-10Pb

 

7.150

 

0.190

 

6.960

 

7.340

 

6.770

 

7.530

 

6.570

 

7.730

 

O-15h

 

1.019

 

0.025

 

 

 

 

 

0.970

 

1.068

 

0.945

 

1.093

 

O-15Pa

 

1.020

 

0.030

 

0.990

 

1.050

 

0.960

 

1.080

 

0.940

 

1.100

 

O-15Pb

 

1.060

 

 

 

1.030

 

1.090

 

1.000

 

1.120

 

0.970

 

1.140

 

O-17c

 

3.04

 

0.08

 

 

 

 

 

2.870

 

3.210

 

2.790

 

3.290

 

O-18c

 

3.52

 

 

 

 

 

 

 

3.310

 

3.730

 

3.200

 

3.840

 

O-18Pb

 

3.630

 

0.070

 

3.560

 

3.700

 

3.490

 

3.770

 

3.420

 

3.840

 

O-50Pb

 

0.841

 

0.031

 

0.810

 

0.872

 

0.778

 

0.904

 

0.746

 

0.936

 

O-52Pb

 

0.307

 

 

 

0.290

 

0.324

 

0.272

 

0.342

 

0.255

 

0.359

 

O-53Pb

 

0.623

 

 

 

0.602

 

0.644

 

0.581

 

0.666

 

0.559

 

0.687

 

O-54Pa

 

2.900

 

 

 

2.790

 

3.010

 

2.680

 

3.120

 

2.570

 

3.230

 

O-60b

 

2.570

 

 

 

2.460

 

2.680

 

2.350

 

2.780

 

2.250

 

2.890

 

O-61d

 

4.760

 

0.140

 

 

 

 

 

4.470

 

5.040

 

4.330

 

5.190

 

O-62c

 

8.790

 

0.210

 

 

 

 

 

8.360

 

9.210

 

8.150

 

9.420

 

O-62d

 

10.500

 

0.330

 

 

 

 

 

9.840

 

11.160

 

9.510

 

11.490

 

O-65a

 

0.520

 

0.017

 

 

 

 

 

0.486

 

0.554

 

0.469

 

0.571

 

O-66a

 

1.237

 

0.054

 

 

 

 

 

1.129

 

1.345

 

1.075

 

1.399

 

O-67a

 

2.238

 

0.096

 

 

 

 

 

2.046

 

2.430

 

1.950

 

2.526

 

O-68a

 

3.890

 

0.150

 

 

 

 

 

3.600

 

4.180

 

3.450

 

4.330

 

 

Prior to May, 2010, ALS had been instructed to take one reject duplicate Lake Shore Gold sample for every 25 samples processed.  This procedure was revised to take the duplicate sample immediately preceding the 25th sample and crush it to -6 mesh, run it through a riffle splitter to create two samples of approximately equal proportions.  One of the halves is then assigned the sample number and the other duplicate sample is placed in a separate plastic bag and labeled with the same sample number and the suffix “dup”.  The two samples are then treated as two entirely separate samples through the rest of the sample preparation and assaying process.  The method of selecting reject duplicates was further modified starting May 2010 in order to make a blind duplicate sample.  Currently one reject duplicate is selected every 20 samples by the geologist logging the drill core.  The geologist gives the duplicate sample a sample number and places it in an empty bag; sequentially behind the sample from which it will be cut.  When received by the lab, the preceding sample to the duplicate is crushed to -6 mesh, then run through a riffle splitter to create two samples of approximately equal proportions.  One half is returned back into the original sample bag and the other half is placed into the empty bag, now as a separate sample with a different sample number.  From this point on, the sample is blind to the analytical process.  The insertion of a duplicate sample is to monitor the integrity of the assay results.

 

84



 

11.1.6              Data Management

 

Copies of assay certificates are either downloaded from the external lab LIMS system and/or sent via mail to the LSG database manager, and to the project’s Qualified Person.  The digital assay data, in the form of “csv” files are checked manually against the final paper assay certificates for clerical errors, and the results interrogated by a Lab Logger Version 2.0 program created by Gemcom.  The use of the software program ensures that the results from the QA/QC samples fall within the approved limits of the standard before this data is imported into the database.

 

11.1.7              Accuracy Analysis - Standards and Blanks

 

Beginning in March 2009, sample results were entered into an Excel spreadsheet to determine if the assay value for the standards falls outside the control limits, if this occurred then these samples would be highlighted for check analysis.  Since April 2010 this process has been handled using an ACCESS application developed by Gemcom Software International Inc. called Lab Logger (V.2.0).  Sample assay results, internal QC information, shipping data, standards, and duplicate samples were each stored in separate QC database tables, and data can be merged into relevant plot files as needed.

 

The QC samples in each group were subjected to specific pass or failure criteria, which determined whether a re-assay of the batch was required.  A sample group failure was identified whenever the analytical result for any certified standard in the group of 20 was greater than three standard deviations (the control limit) from the certified mean value for the standard and for any blank material, a value greater than 0.100 ppm.  All failed groups of samples were investigated to attempt to determine the cause of the erroneous result (analytical or clerical).  Potential clerical errors are sometimes reconciled by checking against original drill log records or original laboratory data sheets.  After the batch pass/failure criteria was applied, a geological override may be applied by the project QP on batches for which re-assay would be of no benefit (i.e. completely barren of gold assay values and mineralization indicators).  Sample groups given a geological override were not re-assayed.

 

Sample groups in which the QC samples were outside the established control limits that did not receive a geological override are not imported into the database. Instead, these samples were requested to be re-run at the analytical lab.  In the case that the standard failed, all samples back to either: a) the last blank or standard that passed; or b) the first sample for the project in the sequence of samples being analyzed, were re-run from the pulp.  In the case that the blank failed, all samples back to either: a) the last blank or standard that passed; or b) the first sample for the project in the sequence of samples being analyzed, were re-run from the reject material as this indicates contamination in the sample preparation stage.  If a request is made for re-analysis due to a standard failure then a new standard is sent to the lab to be analyzed with the samples in question.

 

11.1.8              Precision Analysis — Duplicates

 

Prior to April 2010 internal laboratory pulp duplicate data and reject duplicate data were statistically followed and analyzed using EXCEL and after April 2010 using the Lab Logger software and were used for comparative statistical analysis.  Comparison was made using descriptive statistics and scatter plots.  These plots were used primarily to identify project specific problems in assay reproducibility (precision), and individual erratic results, indicating potential sampling problems or clerical errors in the sample order within the batch.  When problems were identified in the data precision, the labs were notified and asked to investigate and report back their findings.  Erratic sampling results are then noted in monthly reports so that the geologist would be aware of the uncertainty in the sample value and be able to check

 

85



 

for potential clerical errors within the samples then as per standard procedures, the first assay result from the pair was accepted into the database.

 

11.1.9              Reporting and Plotting

 

Brief monthly reports are completed during the year to include the number of samples sent to each lab for each project, the number of QC samples that failed, together with the reason why.  As well, on a monthly basis, graphs are generated of each individual blind standard and blank, as well as the non-blind reject pairs and pulp duplicate pairs to check for sample bias at the assay lab.  All major projects are summarized individually, either at year end or at the end of the program, as soon as reasonably possible.

 

11.2                        CHECK ASSAY PROGRAM

 

11.2.1              General Statement

 

For major programs, or programs leading to resource or reserve calculations, a check assay program is implemented either during or following completion of drilling.  In this program, approximately 5% of the pulps form previously analyzed samples will be selected for re-assay at a neutral assay facility.  In order to select these check assays, groups of samples that passed QC but excluding QC samples are picked randomly from samples from a specific program.

 

The pulps were selected randomly by hole ensuring that a wide range of original assay values, from trace to high grade were represented.  The samples selected for check analysis were sent to SGS Mineral Services of Toronto for analysis.  The pulps were initially analyzed using the fire assay with an AA finish (SGS analysis code FAA313) method and for results greater than 5 grams per tonne a re-assay was conducted by fire assay using a gravimetric finish.

 

11.2.2              Procedures

 

Pulps will be selected by LSG project personnel and an electronic list of selected sample numbers will be prepared for the samplers.  The samples will be submitted to the analytical facility in groups of 20, with the blind QC consisting of one standard and one previously analyzed blank pulp.  The laboratory will report their internal pulp duplicate results as part of the assay report.  The old and new sample numbers and the positions of the standard and blank pulps will be recorded on the Check Assay excel table as the samples are packed and shipped to the lab for analysis.  Once analysis has been completed, the assay lab will report their findings in the standard LSG assay file format, including all of their internal QC data as part of the electronic assay file and will also provide a complete documentation of the means and standard deviation values for all internal reference materials used for the analyses.

 

When the check assay results are returned, the QC inserted in the check assay batches will be analyzed and comparative statistical analysis will be completed on all possible pairs of data, including, internal non-blind pulp duplicates and original assay versus check assay.

 

Reporting will be completed, after all assays are received, and have passed quality control checks.  A master report for each project will be issued documenting the procedures implemented and the QC results for all of the analyses.  The check assay results will be reported under separate cover for each individual project.

 

86



 

11.3                        UNDERGROUND DIAMOND DRILL PROGRAM

 

11.3.1              General Description

 

Boart Longyear from Haileybury, Ontario is the contractor for the underground drilling at the Thunder Creek project.  Three different core diameter size holes are bored underground at Thunder Creek: NQ with a core diameter of 47.6 mm; AQTK with a core diameter of 30.5 mm; and BQTK which has a 40.7 mm core diameter.  The diameter of hole bored depended on the distance to target, the detail of sectional drilling, and the availability of diamond drill equipment.  The more distant underground exploration targets will be tested with the 47.6 mm diameter core, some holes were bored using the 40.7 mm core size.  Mineralization definition and delineation drilling utilizes both the 30.5 mm, and 40.7 mm core sizes.  Core is placed in core boxes with metreage tags at the drill site and secured for transportation to the shaft station by the diamond drillers.  The core boxes are hoisted to surface at the Timmins Mine and delivered to the onsite core logging facility by the Timmins Mine’s Senior Core Technician.  Depending on the location of the drill collar the core may be transported via the ramp system to the Timmins Mine core logging facility by the diamond drillers.  Once the core is received at the logging facility the boxes are open and the core placed into core racks according to drill hole number, box number and metreage in preparation for logging.

 

Under the direction of the project qualified person (Mr. Stephen Conquer, P. Geo. from April 2010 to August 2010 and Mr. Dean Crick, P. Geo., September 2010 to present) underground diamond drill core is processed by geologist and geological technicians that are employees of Lake Shore Gold Corp.  The drill logs are recorded directly into a computer database with the logger recording: rock type, alteration, veining, and amount of mineralization.  Sample location and widths are based upon the distribution of sulphides, visible gold, lithology and alteration.  Sample lengths will vary from 0.3 to 1.5 metres with samples not crossing a lithological, alteration or mineralization boundary.  Samples are identified by marking both the start and finish ends with a “china” marker and placing a sample tag under the core at the end of the sample.  Three part tags are used in the sampling process.  Each part of these tags come pre labeled with a sample number that is sequential for each tag.  The geologist adds the date, hole number, the from and to intervals on the first part of each tag, which will stay in the book and the from/to intervals on the second part of the tag, which will be stapled into the core box at the end of the sample.  The third portion of the tag will be placed in the sample bag with the core.  After logging and sampling is complete the core is stored in racks or on cross piles onsite at the Timmins Mine.

 

After logging and sample selection the core is moved back to a core rack to be sampled.  Three different processes are used to sample core at the mine site: core is split, saw cut and “whole cored”.  Splitting and cutting is completed by trained and supervised core technicians along pre-marked lines.  “Whole core” sampling is applied to drill core considered to be production definition drilling.  The whole core sampling is completed by trained and supervised core technicians who sample the entire length of core sample instead of the core being cut or split.  Cut core is sawn using a diamond impregnated core cutting saw blade and saw.  Each sample is cut independently of the following sample and placed with the sample tag in a pre-numbered (to match the tag) sample bag.  Sample bags are stapled shut and placed in a “rice” bag, “rice” bags are filled with ten cut or split samples or five whole cored samples.  Attached to one of the bags is one copy of the “Chain of Custody” document on which the security tag and sample numbers included in the order have been entered.

 

Four analytical laboratories have been used for the gold analysis of underground diamond drill core: ALS Canada Ltd. between the period of April 2010 to August 2011; Accurassay Laboratories. (150A Jaguar Drive Timmins and 1046 Gorham Street, Thunder Bay) between June 2011 to present for all diamond

 

87



 

drilling considered to be “exploration drilling”.  Cattarello Assayers Inc. located at 475 Railway Street, Timmins and Lake Shore Gold Corp.’s Bell Creek Complex mill laboratory are used for assaying samples considered to be production oriented drilling.

 

“The Messenger Service” located at 108 Polaris Road, Timmins is contracted by Lake Shore Gold Corp. to transport the secured, sealed samples from the Timmins Mine to ALS (Timmins), Cattarello and Bell Creek laboratories.  Secure, sealed samples are picked up and delivered by Barry’s Freight contracted to Accurassay’s Timmins preparation laboratory.

 

11.3.2              Underground Sample Preparation and Analytical Procedures

 

A total of 27,737 diamond drill core samples for gold assay have been taken up to the effective date.  The laboratory distribution of the samples is 71.4% to ALS Canada Ltd, 13.4% to Accurassay Laboratories Limited, 4.9 % to Cattarello Assayers Inc. and 3.8% to the Bell Creek Laboratories.  Assay results for 1,935 samples remained outstanding on the effective date of October 28th, 2011.

 

ALS Canada Ltd.

 

The protocols and procedures for the preparation and analysis of  Lake Shore Gold Corp.’s underground diamond drill core samples by ALS Canada Ltd. is the same procedures as for surface diamond drill core samples described above with the exception that the aliquot sample size is 50 grams rather than 30 grams.  In August 2011 the aliquot sized was changed to a 30 gram aliquot.

 

The ALS procedures and the Lake Shore Gold practice of insertion of blanks, standards and duplicates is the same for the underground drilling program as it is for the surface exploration diamond drill program.

 

Accurassay Laboratories Limited

 

Accurassay Laboratories Limited, operate a preparation laboratory at 150A Jaguar Drive Timmins, Ontario.  Lake Shore Gold Corp.’s samples are crushed to greater than 70% passing through a -8 mesh (2 mm).  A 500 gram split is taken and pulverized so 90% passing through a -150 mesh (106 µm).  Silica abrasive clean is routinely completed between each sample preparation.  The samples are analyzed by fire assay for gold from a 30 gram aliquot using an atomic absorption finish (code ALFA1).  The detection limit is between 0.005 grams and 30 grams.  Sample assay results greater than 10 grams per tonne gold are fire assayed again using a 30 gram aliquot from the original pulp portion of the sample and a gravimetric finish.  The internal laboratory QA/QC program places a duplicate sample every ten samples of an assay batch.  The assay trays consist of 25 to 27 positions for samples.  A standard and blank control sample positioned at random by computer for a position within the 25 — 27 sequence.

 

Bell Creek Complex Mill Laboratory

 

The diamond drill core samples sent to the Bell Creek mill laboratory are sorted, dried, and then individually crushed to greater than 85% passing 10 mesh [(Tyler) 1.68 mm].  A 150 gram to 200 gram sample split is pulverized to greater than 95% passing 200 mesh [(Tyler) 0.075mm].  All equipment is cleaned between samples using compressed air.  A 30 gram aliquot is prepared and fire assayed with an AA finish.  Assay results that exceed 10 grams per tonne are automatically re-run using a sample from the pulverized portion of the sample and a gravimetric finish.

 

Cattarello Assayers Inc.

 

Diamond drill core samples are sorted into numerical order and dried.  Samples are then crushed using two terminator jaw crushers.  A 200 gram sample is split out of the crushed fraction and pulverized using two vibrator ring pulverizers.  A 30 gram aliquot is weighed out for Fire Assay with an AA finish.  Sample

 

88



 

results greater than 10 grams per tonne are re-fire assayed using a gravimetric finish from a sample of the pulverized sample portion.  The sample rack holds 24 positions of which a laboratory standard is inserted on every 24 samples and one duplicate sample every 24 samples.  Laboratory blank samples are inserted less frequently.

 

11.4                        DATA MANAGEMENT

 

The procedures for handling and managing the assay data for underground diamond drill core assay samples is the same as described above for surface exploration diamond drill core.

 

11.4.1              Accuracy Analysis — Standards and Blanks

 

Underground and surface ALS procedures are the same. For all laboratories the underground operation utilizes an Excel spreadsheet to check whether or not QA/QC samples pass.  The Lab Logger program is not used to import the assays, instead two separate “.csv” files are created; one for assays and one for QC samples, and then the results are imported into the database through Gemcom.

 

11.4.2              Precision Analysis — Duplicates

 

The underground project has used the Lab Logger program in the past but now does all statistical analysis with Excel.

 

11.4.3              Reporting and Plotting

 

The reporting and plotting procedures are the same as stated above for surface exploration samples.

 

11.4.4              Check Assay Program

 

Check assays, for the underground project, for 2010 and the first six months of 2011 were sent to Accurassay and run through the same process as mentioned above (ALFA1, ALFA5).  As well at the time it was decided to change from a 50 gram aliquot to a 30 gram aliquot check assays were sent back to the original lab (ALS) to determine if there was any significant change in assay value.

 

11.4.5              Procedures

 

The procedures for sample submission have been described above.

 

11.5                        UNDERGROUND FACE CHIP CHANNEL AND MUCK SAMPLES

 

11.5.1              Procedure for Taking Face Chip Channel Samples

 

Channel samples are taken across the face honoring changes in rock type, alteration, vein style, vein intensity, amounts and types of sulphides.  The chip sample is designed to cross-cut a sub-vertical vein, sulphide mineralized envelope or mineralized structures situated in the central portion of the 4 metre by 4 metre development heading at approximately 1.3 to 1.5 metres above the floor.  Samples are taken from left to right of the left wall-face bracket, across the face, and ending with the right face-wall bracket.  The maximum length of the wall rock (waste bracket) is 0.5 metre, another waste sample taken after the initial waste sample may have a length of 1.0 metres.  Samples of mineralization have a maximum length of 0.5 metre.  Each channel sample extends 50 cm above and 50 cm below the designated sample height resulting in a 100 cm wide panel.  The resultant sample should weigh approximately 2 kilograms.

 

89



 

Descriptions of the samples are recorded and a photo is taken of the face illustrating the geology, mineralization, and sample panels.

 

Samples are submitted for assay as described in the diamond drill core protocols section of this report.

 

11.5.2              Procedure for Taking Muck Samples

 

Underground miners and muckers are charged with taking muck samples at the request of Lake Shore Gold’s Geology department staff.  Samples may be taken from either “ore” or “waste” headings.  Six muck samples representative of one jumbo round, taken “from the ground after dumping the bucket” at three time intervals are taken during the mucking cycle.  Two samples are taken at the beginning of the cycle, two samples taken in the middle of the cycle and two samples taken at the end of the mucking cycle.  The muck samples taken during a shift along with the appropriately filled out sample description tags are brought up from underground and deposited in designated locations.  The sample number, date, shift, workplace, employee and comments are recorded and the information given to the geology department.

 

When mining from longhole stopes, the scoop operator is instructed to take a sample every 20 tonnes of muck (i.e. truckload, or 2nd bucket depending on equipment configuration).

 

Samples are submitted for assay as described in the diamond drill core protocols section of this report.

 

11.6                        DISCUSSION

 

Table 11.2 summarizes the QA/QC statistics for the Timmins West Mine, comprising surface and underground QA/QC programs for both the Timmins and Thunder Creek Deposits.  Graphs of the QA/QC results for Standards and Blanks are located in Appendix 6.  Michel Dagbert, P. Eng. of SGS Geostat reviewed the QA/QC results, his observations, discussion of results and recommendations are contained in the SGS report located in Appendix 7 and 8 for the Thunder Creek Deposit and Timmins Deposit respectively.

 

TABLE 11.2:       TIMMINS WEST MINE QA/QC DIAMOND DRILL CORE SAMPLING PROGRAM

 

Sample Type

 

Surface Diamond Drilling

 

Underground Diamond Drilling

 

Thunder Creek Deposit QA/QC

 

 

 

 

 

Number of blank samples

 

2,244

 

1,467

 

Number of duplicate samples

 

454

 

1,267

 

Number of standard samples

 

1,564

 

1,335

 

Total QA/QC Samples

 

4,262

 

4,069

 

Number of QA/QC failures

 

159

 

198

 

Number of QA/QC failures overridden

 

58

 

157

 

Number of QA/QC failures sent for re-assay

 

101

 

41

 

 

 

 

 

 

 

Timmins Deposit QA/QC

 

 

 

 

 

Number of blank samples

 

202

 

2,196

 

Number of duplicate samples

 

12

 

1,615

 

Number of standard samples

 

186

 

2,124

 

Total QA/QC Samples

 

400

 

6,025

 

Number of QA/QC failures

 

0

 

231

 

Number of QA/QC failures overridden

 

0

 

197

 

Number of QA/QC failures sent for re-assay

 

0

 

34

 

 

90



 

Reasons for a geological override include:

 

1.              If a standard or a blank fails by less than 0.05 grams per tonne as this is very close to the cut-off for a pass.

2.              If a standard or a blank fails by more than 0.05 grams per tonne and there are no ore grade samples, and no ore grade sample was anticipate within the area of the QC failure the sample is overridden as it is believed that no significant assay is affected.

3.              Occasionally a failure is due to the wrong standard being recorded as sent or two QC samples being switched at some point in the shipping process.  If this occurs and the error can be absolutely proven but corrections cannot be made and the failure is overridden.

4.              In the situation of a standard or blank failing but the drill hole is in an area that is actively being mined or developed before a re-assay can be returned the failure is overridden.

5.              Any time there is a failure of a blank ore standard that does not fall into one of the criteria it can still be overridden if the qualified person believes the error is forgivable.  In this case a comment stating the override is added to the database.  An example of this is the QP noted that one standard was consistently failing by the same extent of an error.  The error was overridden and the standard replaced in future sample shipments.

6.              All other failures are pulp re-assayed by the laboratory they were initially assayed.

 

91



 

12.0                        DATA VERIFICATION

 

12.1                        GENERAL TIMMINS WEST MINE

 

Historical assay data from assessment T-Files or AFRI files has been accepted at face value.  In some cases, but not all copies of assay certificates have been submitted with the historical reports. Lake Shore has twinned historical holes and re-sampled showings for qualitative controlled assay results.  All diamond drill core is archived in core racks or cross piled in a secure systematic indexed core farm.  The sawn core half not sent for assay is available for check assay results.  Drill core from the Timmins and Thunder Creek Deposits are easily accessible for inspection, or re-logging.  Table 10.3 (Appendix 3) summarizes the diamond drill holes sample statistics, illustrating the number of samples, the number of returned assay results per drill hole equal or greater than 1 gram per tonne gold, the number of sample analysis equal to or greater than 34.29 grams per tonne gold (1 ounce per ton gold) plus the number of assay samples taken and the method of analysis.

 

Lake Shore Gold Corp. have provided detailed information of the exploration programs at Timmins West Mine in the form of: GIS data base, diamond drill logs, assay results spreadsheets, assay certificates, MMI sample sites and lab analysis results, and maps.  From the public domain, SEDAR filings of press releases, and technical reports for Band-Ore Resources, West Timmins Mining Inc. and Lake Shore.  Historical assessment report files have been reviewed by the author both at the MNDM office in Porcupine and the AFRI files on line.

 

Co-author (Powers, D.) has checked the MNDM claim registry for the Timmins West Mine ownership and found it to be as described by Lake Shore and West Timmins Mining.

 

For the 2009 technical report (Powers, D.) author has reviewed, and compared, finalized ALS Chemex Webtrieve analysis worksheets with Lake Shore’s surface diamond drill database for the mineralized zones.  This comparison totaled 979 samples from 43 drill holes.  The database is true to the assay certificates reviewed.

 

Lake Shore Gold Corp.’s database managers at the Timmins Mine and Lake Shore Gold exploration office have reviewed the diamond drill assay input against assay certificates from August 2011 to the effective date of this report and have verified that the input of assay values within the database is correct.  A review of 10% of the diamond drill logs took place between September 2011 and the effective date.  No critical errors were found that would affect the geological or mineralization model.  The most common errors are related to the completeness of the descriptive header data, such as township, start and finish dates of drilling, notes of the hole was making water, and surveyor for the drill hole.  More time spent editing printed diamond drill logs and having the logger sign off of the log will eliminate these non-critical input errors.  Six surface diamond drill holes were re-surveyed to verify the survey accuracy.  The results of the survey made no changes to the drill collar locations.

 

Lakeshore Gold Corp.’s mine site geology personnel reviewed 10% of the Timmins deposit underground drill holes from the previous cut-off date of Aug 29th, 2009 to January 31, 2012.  No critical errors were found that would affect the geological or mineralization model.  Majority of the errors are related to the header data not being completed.  The information included in the claim number, UTM Zone and NAD, start and finish dates, reflex data, townships. and if the hole was making water. was also not being completely filled out.  Editing and/or changes to the logs will be completed in the summer of 2012.  A

 

92



 

written logging procedure/training program for all new core loggers to Timmins West complex are being drafted.

 

A site visit of the Timmins West Mine, confirming field work discussed in this report took place May 29, 2009.  A review of the core shack, drill core geology, core logging and assay sampling procedures, core, pulp and reject storage facilities took place on May 5th, June 1st, and June 29th, 2009 (Powers, D).  An additional site visit took place December 08, 2011 with Mark Ross (P. Geo. and Lake Shore Gold’s Mine Geologist) and David Powers (P. Geo.) reviewing underground development, workings, plans, sections, logging facilities and core storage.

 

Michel Dagbert, P. Eng. of SGS Geostat reviewed the QA/QC results for the Thunder Creek Deposit and concluded: “Despite the high variability of gold grades from Thunder Creek samples, the QA/QC data available tends to indicate that the quality of the sample grade values used in the resource estimation is satisfactory.  Although we have significant differences between mean results and target values for some standards as well as a rather high proportion of results beyond the quoted gates of standards, we do not see any overall bias from the results of standards.  Blanks show a few cases of likely contamination but the proportion of real failures keeps reasonably low (0.8%) at the main ALS Lab.  Lab and coarse duplicates show expected sample errors i.e. about 10% relative difference for pulp duplicates and 40% relative difference for coarse duplicates” (Dagbert, M., 2011).  His complete report of Statistical Analysis of QA/QC assay data is appended in Appendix 7.

 

Michel Dagbert, P. Eng. of SGS Geostat reviewed the QA/QC results for the Timmins Deposit between 2009 and 2011 and concluded: “For standards, the performance of the four labs is acceptable although some improvement could be achieved in the reduction of odd returns for the standards in the four labs”.  Samples from 2009-2011 holes at Timmins West have been processed and assayed at four different labs, mostly ALS and Bell Creek with the balance at Accurassay and Cattarello.  His complete report of Statistical Analysis of QA/QC assay data is appended in Appendix 8.

 

12.2                        HISTORICAL TREATMENT

 

Historical treatment of diamond drill data not drilled by Lake Shore Gold Corp. is not relevant to this report.  No historical diamond drill holes are used in the modeling or resource calculated.

 

93



 

13.0                        MINERAL PROCESSING AND METALLUGICAL TESTING

 

13.1                        HISTORICAL TEST WORK

 

Extensive metallurgical test work was completed prior to processing any material from the Timmins West Mine.  The following companies were involved with various aspects of metallurgical evaluations.

 

·                  SGS Lakefield Research Limited, Lakefield, Ontario (SGS)

·                  EHA Engineering Ltd., Richmond Hill, Ontario (EHA)

·                  RPC Engineering, Fredericton, New Brunswick (RPC)

·                  Pocock Industrial, Inc., Salt Lake City, Utah, USA (Pocock)

·                  Golder Associates, Sudbury, Ontario (Golder)

 

RPC and SGS tested samples of the ore types as composites as well as individual samples.  The test programs consisted of bottle rolls to determine the metallurgical response of the ore types to cyanide recovery along with tests to determine gravity concentration, pulp agglomeration, flotation and cyanide leaching of the flotation tailings and concentrates.  RPC performed crushing, grinding and abrasion indices determinations.  Pocock and Golder performed flocculent screening, gravity sedimentation, and pulp rheology on leached tailings samples.  SGS also performed preliminary sag mill testing.  EHA evaluated work completed by RPC.

 

The test work results indicated that the ore will be very amenable to the Bell Creek Mill conventional gold milling processes.  Specifically, the ore was free milling and the gold responded well to cyanide leaching and CIP recovery.

 

In general, there was found to be good correlation between the results expected based on test work and the actual operating results.  In some cases, the actual results exceeded expectations.

 

13.2                        RECENT TEST WORK

 

The Bell Creek Mill Phase 1 expansion was completed in October 2010.  Planning for Phase 2 of the mill expansion (increasing throughput capacity to 3,000 tonnes per day) was started in the first quarter of 2011 and construction is expected to be completed during the fourth quarter of 2012.  Prior to launching the Phase 2 expansion project more comprehensive test work was completed.  The following companies were involved with this test work.

 

·                  G&T Metallurgical Services LTD. Kamloops, BC (G&T)

·                  Starkey & Associates Inc., Oakville, Ontario

·                  Xstrata Process Support, Falconbridge , Ontario (XPS)

·                  Outotec Canada Inc.

·                  FLSmidth Knelson, Langley, BC (Knelson)

 

G&T Metallurgical completed Bond work indices on four different types of mineralized material from the Timmins West Mine.  These samples included:

 

·                  Timmins Deposit — Shaft (material from the lower areas of the mine)

·                  Timmins Deposit — Ramp (material from the upper areas of the mine)

·                  Thunder Creek Deposit - Non-Porphyritic and Porphyritic

 

94



 

The Bond ball mill work index for these ores ranged from 12.4 kWh/tonne for the shaft ore to 17.0 kWh/tonne for Non-Porphyritic Thunder Creek ore.  Sag mill (SMC) tests were also completed on these samples with the test data indicating that the ore ranged in hardness from moderately hard to very hard.  The objective of Starkey and Associates’ test work was to size a sag mill that would enable the throughput to be increased to 3,000 tonnes per day using the two existing mills.  Starkey also verified that a mill (which was available on the market at the time) was suitable for 3,000 tonnes per day and also had the capability to process up to 6,000 tonnes per day.  All the different material types were used for the test work.  XPS used Starkey and Associates’ data and ran JKSimMet simulations of the sag circuit with tonnage set at 250 tonnes per hour and using the hardest of the four materials.  These results were used to establish the best operating conditions and obtain circulating load, pulp density, cyclone feed, and cyclone overflow data which were used to help suppliers in the sizing of the cyclones.  Outotec tested the material types for settling characteristics to size a new high efficiency thickener rated for 6,000 tonnes per day.  Knelson tested the Shaft and Thunder Creek material to establish data points for gravity recoverable gold (GRG).  Shaft ore GRG was 78.6% and the Thunder Creek GRG was 53.5%.  This information is being used as the basis for increasing the efficiency of the gravity circuit.

 

Overall, the combination of Lake Shore’s operating history and the extensive amount of test work conducted provides confidence that the process design and equipment selection will result in achieving the targeted recovery and throughput levels.

 

95



 

14.0                        MINERAL RESOURCE ESTIMATES

 

14.1                        SUMMARY

 

Lake Shore Gold has prepared an updated and combined Resource Estimate for the Timmins West Mine which includes mineralized zones from the Timmins and Thunder Creek Deposits.  The report updates the Timmins Mine Resources as reported in the National Instrument 43-101 Technical Report, Updated NI 43-101 Technical Report on the Timmins Mine Property, Ontario, Canada, October 1, 2009 and re-states the Technical Report on the Initial Mineral Resource Estimate for the Thunder Creek Property, Bristol Township, West of Timmins, Ontario, December 23, 2011.  The estimate for the Timmins West Mine is based on historical diamond drilling dating back to March 1984 and drilling completed by LSG between July 2003 and January 31, 2012. Detailed, sectional fan drilling approaching a drill spacing of 30 to 50 metre centres along strike and down-dip was achieved using a combination of surface and underground drilling.  A total of 167 surface holes (118,141 metres) and 777 underground holes (115,439 metres) were used in the Resource Estimate.

 

The Resources are roughly equally split between the Timmins and Thunder Creek Deposits and are centered on 9700E (4425E mine grid) section and extend from 9900 to 8670 elevation (115 to 1,345 metres below surface) for the Timmins Deposit and centered on 9550N (4675E mine grid) section and extend from 9850 to 9060 elevation (165 to 955 metres below surface) for the Thunder Creek Deposit.  The Mineral Resource for the Timmins Deposit has been modeled into 43 sub-zones which refines the broader mineralized Ultramafic, Footwall and Vein Zones.  The Thunder Creek Deposit has been modeled into eleven sub-zones which split the broader mineralized Rusk and Porphyry Zones into higher grade zones more suitable for underground mining.  The Mineral Resource estimate by category is tabulated in Table 14.1 and by zone for the Timmins Deposit in Table 14.2.

 

The Timmins West Mine Resource totals 5.83 Mt at 5.99 g/t Au, amounting to 1,122,500 ounces of gold in the Indicated category and 4.27 Mt at 5.76 g/t Au amounting to 791,500 ounces of gold in the Inferred category.  Details of the individual deposit calculations are summarized below.

 

The Timmins Deposit totals 2.95 Mt at 6.34 g/t Au, amounting to 600,900 ounces of gold in the Indicated category and 1.58 Mt at 5.54 g/t Au amounting to 281,500 ounces of gold in the Inferred category.  The Resources were estimated using Inverse Distance to the power 3 (ID(3)) interpolation method with all gold assays capped to 70 gram metres for the Ultramafic Zone and 40 gram metres for the Vein Zones, and an assumed long-term gold price of US $1,200 per ounce.  The base case estimate assumes a cut-off grade of 1.5 g/t Au to maintain zone continuity.

 

The Thunder Creek Resource totals 2.88 Mt at 5.64 g/t Au, amounting to 521,600 ounces of gold in the Indicated category and 2.69 Mt at 5.89 g/t Au amounting to 510,000 ounces of gold in the Inferred category.  The Resource was estimated using Inverse Distance to the power 2 (ID(2)) interpolation method with all gold assays capped to 75 gram metres, and an assumed long-term gold price of US $1,200 per ounce.  The base case estimate assumes a cut-off grade of 2.0 g/t Au which includes a 10% internal dilution at 1.75g/t Au.  This base case is equivalent to the 1.5 g/t Au cut-off, which takes into account mining of 299,000 tonnes of incremental material between the 1.5 and 2.0 g/t cut-off.  This internal dilution is included in the total, as it is not known if mining of the zone can be accomplished without mining this material.

 

96



 

TABLE 14.1:       TIMMINS WEST MINE RESOURCE ESTIMATES

 

(Prepared by Lake Shore Gold — January 31, 2012)

 

Deposit

 

Resource
Classification

 

Tonnes

 

Capped Grade
(g/t Au)

 

Contained Gold
(ounces)

 

Timmins

 

 

 

 

 

 

 

 

 

 

 

Indicated

 

2,949,000

 

6.34

 

600,900

 

 

 

Inferred

 

1,579,000

 

5.54

 

281,500

 

 

 

 

 

 

 

 

 

 

 

Thunder Creek

 

 

 

 

 

 

 

 

 

 

 

Indicated

 

2,877,000

 

5.64

 

521,600

 

 

 

Inferred

 

2,693,000

 

5.89

 

510,000

 

Total Timmins West Mine

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

5,826,000

 

5.99

 

1,122,500

 

 

 

Total Inferred

 

4.272,000

 

5.76

 

791,500

 

 

Notes:

 

1.              CIM definitions were followed for classification of Mineral Resources.

2.              Mineral Resources are estimated at a cut-off grade of 1.5 g/t Au for the Timmins Deposit and 2.0 g/t Au for Thunder Creek.

3.              Mineral Resources are estimated using an average long-term gold price of US $1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.              A minimum mining width of 2 metres was used.

5.              Capped gold grades are used in estimating the Mineral Resource average grade.

6.              Sums may not add due to rounding.

7.              Mineral Reserve estimates for the Timmins West Mine are currently in progress.

8.              Metallurgical recoveries are assumed to average 96.5 percent.

9.              Mining costs are assumed to average $82/tonne.

10.       Mr. Robert Kusins, B. Sc., P. Geo. and Mr. Ralph Koch, B. Sc., P. Geo, are the Qualified Persons for this Resource estimate.

 

Mineral Reserve estimates are currently in progress on the property as of the date of this Technical Report.

 

97



 

TABLE 14.2:       TIMMINS DEPOSIT RESOURCE ESTIMATES

 

(Prepared by Lake Shore Gold — January 31, 2012)

 

Timmins Deposit

 

Classification

 

Level

 

Zone

 

Tonnes

 

Capped Grade
(g/t Au)

 

Contained Gold
(ounces)

 

Indicated

 

260 to Surface

 

Veins

 

71,000

 

4.21

 

9,600

 

 

 

 

 

Footwall

 

8,000

 

6.30

 

1,700

 

 

 

 

 

Ultramafic

 

 

 

 

 

 

 

 

All zones

 

79,000

 

4.44

 

11,300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525 to 260

 

Veins

 

331,000

 

5.45

 

58,000

 

 

 

 

 

Footwall

 

249,000

 

4.23

 

33,900

 

 

 

 

 

Ultramafic

 

 

 

 

 

 

 

 

All zones

 

580,000

 

4.93

 

91,900

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650 to 525

 

Veins

 

9,000

 

6.75

 

2,000

 

 

 

 

 

Footwall

 

161,000

 

3.99

 

20,600

 

 

 

 

 

Ultramafic

 

320,000

 

5.94

 

61,100

 

 

 

 

 

All zones

 

490,000

 

5.32

 

83,700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Below 650

 

Veins

 

 

 

 

 

 

 

 

Footwall

 

144,000

 

6.02

 

27,900

 

 

 

 

 

Ultramafic

 

1,655,000

 

7.25

 

386,000

 

 

 

 

 

All zones

 

1,799,000

 

7.16

 

413,900

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All Levels

 

Veins

 

411,000

 

5.26

 

69,600

 

 

 

 

 

Footwall

 

562,000

 

4.65

 

84,100

 

 

 

 

 

Ultramafic

 

1,975,000

 

7.04

 

447,100

 

 

 

 

 

All zones

 

2,949,000

 

6.34

 

600,900

 

 

 

 

 

 

 

 

 

 

 

 

 

Inferred

 

260 to Surface

 

Veins

 

 

 

 

 

 

 

 

Footwall

 

 

 

 

 

 

 

 

Ultramafic

 

 

 

 

 

 

 

 

All zones

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525 to 260

 

Veins

 

41,000

 

6.33

 

8,300

 

 

 

 

 

Footwall

 

 

 

 

 

 

 

 

Ultramafic

 

 

 

 

 

 

 

 

All zones

 

41,000

 

6.33

 

8,300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650 to 525

 

Veins

 

 

 

 

 

 

 

 

Footwall

 

64,000

 

4.38

 

9,000

 

 

 

 

 

Ultramafic

 

2,000

 

3.73

 

200

 

 

 

 

 

All zones

 

66,000

 

4.36

 

9,300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Below 650

 

Veins

 

 

 

 

 

 

 

 

Footwall

 

94,000

 

7.51

 

22,800

 

 

 

 

 

Ultramafic

 

1,378,000

 

5.44

 

241,100

 

 

 

 

 

All zones

 

1,472,000

 

5.57

 

263,900

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All Levels

 

Veins

 

41,000

 

6.33

 

8,300

 

 

 

 

 

Footwall

 

159,000

 

6.24

 

31,800

 

 

 

 

 

Ultramafic

 

1,380,000

 

5.44

 

241,300

 

 

 

 

 

All zones

 

1,579,000

 

5.54

 

281,500

 

 

98



 

14.2                        ESTIMATION METHOD

 

14.2.1              Estimation Method and Parameters

 

The following general procedure was used to develop the block model Mineral Resource estimate for the Timmins Deposit and Thunder Creek Deposit and includes:

 

·                  Database compilation and verification in Gemcom GEMS (“GEMS”).

·                  Interpretation of the zones on 25 metre spaced sections taking into account continuity of lithology, alteration and mineralization except for the area between 650 and 525 of the Timmins Deposit where 6.25 metre spaced sections were used due to the increased drilling in this area.  Limits of the zone were defined by a lower cut-off of about 1.0 to 2.0 g/t Au to provide continuity of zones.  Mineralization often extends across lithological contacts.  A minimum mining width of approximately 2 metres was used.  Closed 3D rings were constructed and assigned an appropriate rock type and stored with its section definition in the GEMS polyline workspace.

·                  Zones are defined by three or more intersections that form a continuous band of mineralization.

·                  The sectional interpretations are then strung together by tie lines and 3D solids or wireframes are generated that represent the mineralized zones that are used for estimation of tonnes and grade.  Outside edges of the 3D model are extruded half the distance to the next section in areas with drilling, or 50 metres in areas with no drilling.  Forty-three 3D solids for the Timmins Deposit and eleven solids for the Thunder Creek Deposit were constructed to enable individual volumes, tonnages and grades to be reported.  All solids were validated using GEMS validation tools to insure valid solids had been generated.  A 3D view of the interpreted zones is shown in Figure 14.1.

·                  Solid intersection composites are generated from all drill holes intersecting the 3D Mineral Resource Solids.  Corresponding entry and exit points are saved to the drill hole workspace and back coded with a zone identifier.

·                  Individual 1 metre composites are generated from the assay table based on down-the-hole averaging within the limits of the solid intersection composites.  Composites whose widths are less than 0.5 metres are removed from the composite table.  The composites are stored in a GEMS point area table along with a corresponding rock code for each composite.

·                  The 1 metre composites at the Timmins Deposit are then used to generate a block model grade based on an Inverse Distance to the power 3 (ID3) interpolation that encompasses the 3D wireframes that were assigned a unique rock code.  Blocks were interpolated utilizing five passes.  The first pass populated blocks within a 15 metre search radius requiring two holes within the search radius with a maximum of two composites from any one hole and a maximum of ten composites.  The second pass populated blocks within a 30 metre search radius requiring two holes within the search radius with a maximum of two composites per hole and a maximum of ten composites.  The third pass populated blocks within a 60 metre search radius requiring two holes within the search radius with a maximum of two composites per hole and a maximum of ten composites.  The fourth pass populated blocks within a 60 metre search radius requiring one hole within the search radius with a maximum of two composites per hole and a maximum of ten composites.  The final pass was populated within a 120 metre search radius requiring a minimum of one hole, a maximum of two composites per hole and a maximum of ten composites.

·                  The 1 metre composites at the Thunder Creek Deposit are then used to generate a block model grade based on an Inverse Distance Squared (“ID²”) interpolation that encompasses the 3D

 

99



 

wireframes that were assigned a unique rock code (PZ1A, PZ1B, PZ1C, PZ3, RZ2, RZ2A, RZ3, RZ3A, RZ3A1, RZ3B and RZ5). Blocks were interpolated utilizing four passes.  The first pass populated blocks within a 15 metre search radius requiring three holes within the search radius with a maximum of two composites from any one hole and a maximum of ten composites.  The second pass populated blocks within a 30 metre search radius requiring three holes within the search radius with a maximum of two composites per hole and a maximum of ten composites.  The third pass populated blocks within a 60 metre search radius requiring three holes within the search radius with a maximum of two composites per hole and a maximum of ten composites.  The final pass was populated within a 130 metre search radius requiring a minimum of three holes, a maximum of two composites per hole and a maximum of ten composites.

·                  The Resources were categorized on longitudinal section by grouping of areas of predominately pass 1 and 2 as Indicated and the remaining areas of largely pass 3, 4 or 5 as Inferred Resources.  A final category field was added to the block model to track this categorization.

 

FIGURE 14.1:       3D VIEW OF RESOURCE SOLIDS, LOOKING NORTHEAST

 

GRAPHIC

 

100



 

14.2.2              Database

 

The database used for the current resource estimate is comprised of a Gemcom GEMS (Microsoft SQL) database which was compiled from data received from West Timmins Mining Inc., Holmer Gold Mines Ltd. and work completed by LSG since acquisition of the properties.  The GEMS database was used for the Mineral Resource estimation process and consists of tables including header, survey, lithology, and assay data with pertinent fields summarized in Table 14.3.  Other tables and additional fields within the above tables are currently being utilized by Lake Shore in logging of the drill core and final resource estimation.

 

The following validation steps were taken to ensure the integrity of the database:

 

1.               Plotting of plans and sections to check for location, elevation and downhole survey errors.

2.               Checking for any gaps, overlaps and out of sequence intervals for assay and lithology data using the GEMS validation tools.

3.               Thorough review of all historical data available to ensure assay and survey (collar and down hole) information were properly presented in the database.

4.               Random validation of approximately 5% of the assay and lithology data against the drill logs and assay certificates.

 

Only minor discrepancies were noted and corrected prior to the estimation of the resources.  None of the errors detected would have a significant impact on the Mineral Resource estimate.  The database, in the writer’s opinion, is appropriate for reporting of the Timmins West Mine Resource.

 

In addition to the drill-hole data, other data such as cross-sectional geological interpretation strings, section and level plan definitions, 3D geological solids, point area data of assays and composites, as well as the block model, are stored within the GEMS database.

 

101



 

TABLE 14.3:       SUMMARY OF GEMS SQL DRILL HOLE DATABASE

 

Table Name

 

Table Description

 

Fields

Header

 

Drill hole collar location data inlocal grid co-ordinates

 

Hole-ID

Location X

Location Y

Location Z

Length

Collar_Az

Collar_ Dip

 

 

 

 

 

Survey

 

Down hole survey data of direction measurements at down hole distances

 

Hole-ID

Distance

Azimuth

Dip

 

 

 

 

 

Assays

 

Sample interval assay data with Au units grams per tonne

 

Hole-ID

From

To

Sample_NO

Au_GPT_FIN

Au_GPT_AA

Au_GPT_GRA

Au_GPT PM

 

 

 

 

 

Lithomaj

 

Major logged rock type intervals down hole

 

Hole-ID

From

To

Rocktype

 

 

 

 

 

Lithomin

 

Minor logged rock type intervals down hole

 

Hole-ID

From

To

Rocktype

 

14.2.3              Grade Capping

 

Lake Shore Gold has utilized grade capping in its estimation of the Mineral Resources for the Timmins West Mine.  To evaluate potential cutting factors, assay values were extracted from the database into a GEMS point area cloud and only those assays within the limits of the solid were used in plotting of cumulative distribution plots and log distribution plots.  Individual statistical reports based on the raw gold assays were generated for each of the resource solids and are tabulated in Table 14.4 for the Timmins and Thunder Creek Deposits.  Due to a number of zones having a limited number of samples, the zones were grouped into those displaying similar mineralization characteristics to evaluate potential grade caps.

 

The grouped data for the Timmins Deposit showed that the Footwall Zone, with a coefficient of variation of less than 2.00, did not require grade capping.  The Vein and Ultramafic Zones with coefficient of variation of 5.26 and 3.66 respectfully, indicated that gold grade capping of these zones is required.

 

102



 

TABLE 14.4:       BASIC STATISTICS OF RAW AU ASSAYS RESOURCE SOLIDS

 

TIMMINS DEPOSIT

 

Zone

 

Total #
Samples

 

Minimum
(gpt Au)

 

Maximum
(gpt Au)

 

Mean
(gpt Au)

 

99th
Percentile

 

Coefficient of
Variation

 

FW1

 

242

 

0.003

 

61.39

 

4.27

 

40.20

 

1.72

 

FW2

 

45

 

0.014

 

31.90

 

4.39

 

31.90

 

1.25

 

FW2A

 

415

 

0.003

 

31.40

 

3.33

 

25.65

 

1.62

 

FW2B

 

534

 

0.003

 

37.00

 

2.37

 

19.11

 

1.67

 

FW2C

 

172

 

0.003

 

22.53

 

2.32

 

17.25

 

1.43

 

FW3

 

85

 

0.013

 

22.00

 

3.36

 

19.77

 

1.19

 

FW4

 

22

 

0.050

 

24.00

 

4.99

 

24.00

 

1.07

 

UM2A

 

221

 

0.003

 

59.30

 

3.98

 

47.75

 

1.98

 

UM2B

 

582

 

0.003

 

53.20

 

3.87

 

34.25

 

1.74

 

UM2C

 

28

 

0.011

 

14.30

 

2.64

 

14.30

 

1.30

 

UM2D

 

177

 

0.003

 

18.15

 

2.56

 

16.45

 

1.51

 

Total Footwall

 

2,523

 

0.003

 

61.39

 

3.30

 

26.82

 

1.74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MZ1A

 

244

 

0.003

 

523.27

 

8.80

 

201.50

 

4.45

 

MZ1B

 

54

 

0.021

 

28.10

 

4.04

 

21.90

 

1.33

 

MZ1C

 

18

 

0.040

 

28.97

 

4.05

 

28.97

 

1.67

 

MZ2

 

72

 

0.003

 

725.00

 

21.43

 

531.50

 

4.35

 

V1

 

41

 

0.010

 

125.00

 

7.43

 

125.00

 

2.66

 

V2

 

288

 

0.003

 

113.23

 

3.39

 

39.20

 

2.79

 

V3

 

304

 

0.003

 

201.46

 

4.29

 

78.11

 

3.50

 

V3A

 

71

 

0.025

 

394.91

 

9.12

 

211.85

 

5.10

 

V3B

 

78

 

0.003

 

32.11

 

2.43

 

26.52

 

1.99

 

Total Veins

 

1,170

 

0.003

 

725.00

 

6.33

 

79.91

 

5.26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UM1

 

2,612

 

0.002

 

1340.00

 

8.44

 

91.10

 

4.00

 

UM1A

 

11

 

0.003

 

6.73

 

2.21

 

6.73

 

0.90

 

UM1B

 

1,148

 

0.003

 

196.50

 

5.29

 

52.20

 

2.51

 

UM2

 

1,069

 

0.003

 

74.40

 

4.07

 

36.15

 

1.95

 

UM2E

 

52

 

0.003

 

331.00

 

12.42

 

236.50

 

3.92

 

UM3

 

42

 

0.003

 

19.00

 

4.40

 

19.00

 

1.03

 

UM4

 

435

 

0.003

 

120.91

 

4.68

 

52.72

 

2.26

 

UM5

 

263

 

0.003

 

75.50

 

5.49

 

42.80

 

1.70

 

UM5A

 

199

 

0.003

 

135.00

 

6.55

 

77.14

 

2.32

 

UM5B

 

62

 

0.003

 

74.70

 

5.22

 

54.65

 

2.04

 

UM5C

 

62

 

0.005

 

58.40

 

8.34

 

54.60

 

1.47

 

D1

 

285

 

0.003

 

143.50

 

4.84

 

70.43

 

2.52

 

D1A

 

106

 

0.003

 

369.00

 

11.15

 

325.50

 

3.99

 

D1B

 

102

 

0.003

 

53.00

 

6.16

 

47.50

 

1.42

 

D1C

 

15

 

1.15

 

23.50

 

7.29

 

23.50

 

0.89

 

D1D

 

130

 

0.025

 

121.50

 

7.59

 

85.35

 

1.82

 

D2

 

204

 

0.003

 

227.00

 

6.83

 

87.90

 

2.91

 

D2A

 

52

 

0.003

 

209.00

 

7.94

 

114.45

 

3.60

 

D3

 

160

 

0.003

 

324.00

 

6.90

 

124.00

 

4.25

 

Total Ultramafic

 

7,009

 

0.002

 

1340.00

 

6.58

 

70.85

 

3.66

 

 

103



 

THUNDER CREEK DEPOSIT

 

Zone

 

Total #
Samples

 

Minimum
(gpt Au)

 

Maximum
(gpt Au)

 

Mean
(gpt Au)

 

99th
Percentile

 

Coefficient of
Variation

 

PZ1A

 

1,733

 

0.0025

 

140.50

 

5.61

 

55.72

 

1.98

 

RZ2

 

61

 

0.0080

 

91.10

 

5.98

 

67.09

 

2.22

 

RZ2A

 

129

 

0.0025

 

273.00

 

5.80

 

190.00

 

4.55

 

RZ3

 

265

 

0.0025

 

87.20

 

4.31

 

46.10

 

2.16

 

RZ3A

 

1,051

 

0.0025

 

112.00

 

3.82

 

33.57

 

2.04

 

RZ3A1

 

32

 

0.0025

 

29.70

 

3.61

 

29.70

 

1.74

 

RZ3B

 

37

 

0.0025

 

35.77

 

5.60

 

35.77

 

1.67

 

RZ5

 

101

 

0.0025

 

38.90

 

3.61

 

31.35

 

1.79

 

Total Rusk

 

3,409

 

0.0025

 

273.00

 

4.89

 

49.10

 

2.25

 

PZ1B

 

2,882

 

0.0025

 

1,600.00

 

5.30

 

68.10

 

6.84

 

PZ1C

 

358

 

0.0025

 

725.00

 

4.88

 

38.30

 

7.93

 

PZ3

 

55

 

0.0350

 

147.50

 

5.53

 

85.00

 

3.58

 

Total Porphyry

 

3,295

 

0.0025

 

1,600.00

 

5.26

 

66.60

 

6.90

 

Total Thunder Creek Zones

 

6,704

 

0.0025

 

1,600.00

 

5.07

 

56.20

 

5.25

 

 

The individual sub-zones were grouped into Footwall, Vein and Ultramafic Zones for the Timmins Deposit and into the Rusk and Porphyry Zones for the Thunder Creek Deposit to reflect the different styles of mineralization.  Cumulative frequency plots were generated for the grouped zones to determine discrete breaks in the population at the upper level of the assay data.  These breaks were used as an aid to determine appropriate cutting levels for the zones.  The GEMS statistical reports were also examined to determine breaks in the populations.  Gram metre values were used in the capping exercise to better represent the higher grade samples which are often taken over narrow intervals.  Plots of the individual zones requiring capping were created for each of the mineralization styles for gram metre gold values above a 0.1 g/t Au lower cut-off and are shown in Figure 14.2 to Figure 14.5 for the Timmins Deposit and Figure 14.6 to Figure 14.7 for the Thunder Creek Deposit.

 

The Vein and Ultramafic Zones of the Timmins Deposit were determined to require capping of the gold grades.  Evaluating the plots and grade distribution, a 40 m.g/t cap was determined appropriate for the Vein Zone and 70 m.g/t for the Ultramafic Zone.  This capping level results in 44 assay values being capped out of a total of 10,702 assays occurring within the limits of the resource solids.  This represents 0.41% of the total population.

 

104



 

FIGURE 14.2:       CUMULATIVE FREQUENCY TIMMINS DEPOSIT — VEIN ZONES

 

 

FIGURE 14.3:       LOG CUMULATIVE FREQUENCY TIMMINS DEPOSIT — VEIN ZONES

 

 

105



 

FIGURE 14.4:       CUMULATIVE FREQUENCY TIMMINS DEPOSIT — ULTRAMAFIC ZONE

 

 

FIGURE 14.5:       LOG CUMULATIVE FREQUENCY TIMMINS DEPOSIT — ULTRAMAFIC ZONE

 

 

106



 

FIGURE 14.6:       CUMULATIVE FREQUENCY THUNDER CREEK DEPOSIT — ALL ZONES

 

 

FIGURE 14.7:       LOG CUMULATIVE FREQUENCY THUNDER CREEK DEPOSIT — ALL ZONES

 

 

107



 

Grouped data from the Thunder Creek Deposit indicated that a gram metre value of 75 m.g/t Au was appropriate for both the Rusk and the Porphyry Zones.  This capping level results in 24 assay values being capped out of a total of 6,704 assays occurring within the limits of the resource solids.  This represents 0.36% of the total population.  Table 14.5 summarizes the values for each of the individual zones for the Timmins and Thunder Creek Deposits.

 

TABLE 14.5:       SAMPLES ABOVE GRADE CAP BY ZONE

 

Zone

 

Capped Grade
(m. g/t Au)

 

# of Samples
Above Cap

 

Total # of Samples

 

Footwall

 

 

0

 

2,523

 

Vein

 

40

 

10

 

1,170

 

Ultramafic

 

70

 

34

 

7,009

 

Timmins Deposit

 

 

 

44

 

10,702

 

 

 

 

 

 

 

 

 

Rusk

 

75

 

20

 

3,409

 

Porphyry

 

75

 

4

 

3,295

 

Thunder Creek Deposit

 

75

 

24

 

6,704

 

 

Block Model Assay Compositing

 

Each 3D solid was assigned a unique numeric rock code and name which were used to back code a name and rock code into all drill hole solid intersections.  A total of 1,439 solid intersections were used in the resources estimate from 817 unique holes and are summarized in Appendix 5, Timmins and Thunder Creek Deposit Solid Intersections.  This solid intersection table was used to generate a set of equal length composites of 1 metre in length within the limits of the 3D solid.  The 1 metre composites are stored in a GEMS table and extracted out into a point area cloud for interpolation purposes for each of the Deposits.  Both capped and uncapped composite grades are stored in the point area file.

 

A total of 1,104 solid intersections from 562 unique holes were used in the estimation of the Timmins Deposit Resources, which produced at total of 9,483 1 metre composites.  The Thunder Creek Resource utilized 335 solid intersections from 255 unique holes, which resulted in a total of 5,158 1 metre composites being generated.  Basic statistics of the 1 metre composites were compiled for the solids used in the Resource estimate and are tabulated in Table 14.6 through Table 14.10 for the Timmins and Thunder Creek Deposits respectively.

 

108



 

TABLE 14.6:       SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT

 

TIMMINS DEPOSIT

 

 

 

FW1

 

FW2

 

FW2A

 

FW2B

 

Statistic

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

# Samples

 

231

 

231

 

34

 

34

 

315

 

315

 

437

 

437

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

57.94

 

40.00

 

12.39

 

12.39

 

22.91

 

22.91

 

21.05

 

21.05

 

Mean

 

3.37

 

3.29

 

3.64

 

3.64

 

2.83

 

2.83

 

2.15

 

2.15

 

Median

 

1.41

 

1.41

 

2.52

 

2.52

 

1.00

 

1.00

 

1.10

 

1.10

 

Variance

 

39.28

 

32.19

 

9.73

 

9.73

 

18.29

 

18.29

 

9.32

 

9.32

 

Std Dev

 

6.27

 

5.67

 

3.12

 

3.12

 

4.28

 

4.28

 

3.05

 

3.05

 

CV

 

1.85

 

1.72

 

0.86

 

0.86

 

1.51

 

1.51

 

1.42

 

1.42

 

 

 

 

FW2C

 

FW3

 

FW4

 

UM2A

 

Statistic

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

# Samples

 

132

 

132

 

71

 

71

 

11

 

11

 

236

 

236

 

Minimum

 

0.00

 

0.00

 

0.01

 

0.01

 

1.55

 

1.55

 

0.00

 

0.00

 

Maximum

 

15.82

 

15.82

 

13.06

 

13.06

 

18.17

 

18.17

 

33.00

 

33.00

 

Mean

 

2.22

 

2.22

 

3.33

 

3.33

 

5.11

 

5.11

 

2.82

 

2.82

 

Median

 

1.10

 

1.10

 

2.59

 

2.59

 

4.11

 

4.11

 

0.32

 

0.32

 

Variance

 

8.67

 

8.67

 

9.07

 

9.07

 

19.99

 

19.99

 

26.47

 

26.47

 

Std Dev

 

2.94

 

2.94

 

3.01

 

3.01

 

4.47

 

4.47

 

5.14

 

5.14

 

CV

 

1.32

 

1.32

 

0.90

 

0.90

 

0.87

 

0.87

 

1.83

 

1.83

 

 

 

 

UM2B

 

UM2C

 

UM2D

 

All FW Zones

 

Statistic

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

# Samples

 

595

 

595

 

31

 

31

 

178

 

178

 

2,034

 

2,034

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

32.79

 

32.79

 

8.86

 

8.86

 

13.89

 

13.89

 

57.94

 

40.00

 

Mean

 

2.67

 

2.67

 

1.66

 

1.66

 

1.82

 

1.82

 

2.52

 

2.51

 

Median

 

0.22

 

0.22

 

0.59

 

0.59

 

0.38

 

0.38

 

0.96

 

0.96

 

Variance

 

22.66

 

22.66

 

5.03

 

5.03

 

9.39

 

9.39

 

16.88

 

16.06

 

Std Dev

 

4.76

 

4.76

 

2.24

 

2.24

 

3.06

 

3.06

 

4.11

 

4.01

 

CV

 

1.78

 

1.78

 

1.35

 

1.35

 

1.68

 

1.68

 

1.63

 

1.60

 

 

109



 

TABLE 14.7:       SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT CONTINUED

 

TIMMINS DEPOSIT

 

 

 

MZ1A

 

MZ1B

 

MZ1C

 

MZ2

 

Statistic

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

# Samples

 

383

 

383

 

53

 

53

 

12

 

12

 

49

 

49

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.61

 

0.61

 

0.00

 

0.00

 

Maximum

 

166.81

 

40.00

 

15.52

 

15.52

 

14.62

 

14.62

 

211.72

 

40.00

 

Mean

 

4.37

 

3.65

 

2.80

 

2.80

 

3.58

 

3.58

 

10.39

 

4.92

 

Median

 

1.46

 

1.46

 

1.80

 

1.80

 

2.29

 

2.29

 

2.31

 

2.31

 

Variance

 

154.10

 

40.79

 

13.08

 

13.08

 

15.28

 

15.28

 

1071.02

 

48.65

 

Std Dev

 

12.41

 

6.39

 

3.62

 

3.62

 

3.91

 

3.91

 

32.73

 

6.98

 

CV

 

2.84

 

1.75

 

1.29

 

1.29

 

1.09

 

1.09

 

3.15

 

1.42

 

 

 

 

V1

 

V2

 

V3

 

V3A

 

Statistic

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

# Samples

 

50

 

50

 

220

 

220

 

382

 

382

 

184

 

184

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.01

 

0.01

 

Maximum

 

125.00

 

34.25

 

59.90

 

40.00

 

171.28

 

40.00

 

161.92

 

40.00

 

Mean

 

7.19

 

4.50

 

2.74

 

2.64

 

3.07

 

2.38

 

4.01

 

2.93

 

Median

 

1.79

 

1.79

 

0.93

 

0.93

 

0.77

 

0.77

 

1.23

 

1.23

 

Variance

 

361.35

 

48.74

 

40.20

 

30.67

 

137.33

 

22.97

 

185.68

 

29.43

 

Std Dev

 

19.01

 

6.98

 

6.34

 

5.54

 

11.72

 

4.79

 

13.63

 

5.42

 

CV

 

2.64

 

1.55

 

2.31

 

2.10

 

3.81

 

2.01

 

3.40

 

1.85

 

 

 

 

V3B

 

All Vein Zones

 

Statistic

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

Au g/t

 

Au g/t Cap
(40m.g/t)

 

# Samples

 

74

 

74

 

1,407

 

1,407

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

24.82

 

24.82

 

211.72

 

40.00

 

Mean

 

1.95

 

1.95

 

3.83

 

2.99

 

Median

 

0.64

 

0.64

 

1.16

 

1.15

 

Variance

 

12.06

 

12.06

 

163.76

 

31.24

 

Std Dev

 

3.47

 

3.47

 

12.80

 

5.59

 

CV

 

1.78

 

1.78

 

3.34

 

1.87

 

 

110



 

TABLE 14.8:       SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT CONTINUED

 

TIMMINS DEPOSIT

 

 

 

UM1

 

UM1A

 

UM1B

 

UM2

 

Statistic

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

# Samples

 

2,272

 

2,272

 

8

 

8

 

972

 

972

 

1,065

 

1,065

 

Minimum

 

0.00

 

0.00

 

0.09

 

0.09.

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

696.61

 

70.00

 

3.97

 

3.97

 

122.30

 

70.00

 

62.83

 

62.83

 

Mean

 

7.16

 

6.10

 

1.99

 

1.99

 

4.58

 

4.47

 

3.05

 

3.05

 

Median

 

2.18

 

2.18

 

2.29

 

2.29

 

1.48

 

1.48

 

0.33

 

0.33

 

Variance

 

563.74

 

115.15

 

2.26

 

2.26

 

88.04

 

69.94

 

36.12

 

36.12

 

Std Dev

 

23.74

 

10.73

 

1.50

 

1.50

 

9.38

 

8.36

 

6.01

 

6.01

 

CV

 

3.31

 

1.76

 

0.76

 

0.76

 

2.05

 

1.87

 

1.97

 

1.97

 

 

 

 

UM2E

 

UM3

 

UM4

 

UM5

 

Statistic

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

# Samples

 

39

 

39

 

30

 

30

 

410

 

410

 

138

 

138

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

113.34

 

70.00

 

16.77

 

16.77

 

67.89

 

67.89

 

37.17

 

37.17

 

Mean

 

6.76

 

5.65

 

4.40

 

4.40

 

3.67

 

3.67

 

5.20

 

5.20

 

Median

 

1.56

 

1.56

 

2.83

 

2.83

 

0.92

 

0.92

 

2.89

 

2.89

 

Variance

 

400.40

 

210.44

 

17.29

 

17.29

 

61.72

 

61.72

 

48.53

 

48.53

 

Std Dev

 

20.01

 

14.51

 

4.16

 

4.16

 

7.86

 

7.86

 

6.97

 

6.97

 

CV

 

2.96

 

2.57

 

0.94

 

0.94

 

2.14

 

2.14

 

1.34

 

1.34

 

 

 

 

UM5A

 

UM5B

 

UM5C

 

D1

 

Statistic

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

# Samples

 

163

 

163

 

41

 

41

 

38

 

38

 

161

 

161

 

Minimum

 

0.00

 

0.00

 

0.03

 

0.03

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

105.23

 

65.16

 

53.93

 

53.92

 

43.61

 

43.61

 

143.48

 

69.99

 

Mean

 

5.40

 

4.98

 

5.16

 

5.16

 

7.67

 

7.67

 

5.40

 

4.95

 

Median

 

1.40

 

1.40

 

3.22

 

3.22

 

3.76

 

3.76

 

2.34

 

2.34

 

Variance

 

139.17

 

87.31

 

81.74

 

81.74

 

101.10

 

101.10

 

175.10

 

82.38

 

Std Dev

 

11.80

 

9.34

 

9.04

 

9.04

 

10.05

 

10.05

 

13.23

 

9.08

 

CV

 

2.18

 

1.88

 

1.75

 

1.75

 

1.31

 

1.31

 

2.45

 

1.83

 

 

111



 

TABLE 14.9:       SAMPLE COMPOSITE STATISTICS TIMMINS DEPOSIT CONTINUED

 

TIMMINS DEPOSIT

 

 

 

D1A

 

D1B

 

D1C

 

D1D

 

Statistic

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

# Samples

 

68

 

68

 

65

 

65

 

8

 

8

 

72

 

72

 

Minimum

 

0.01

 

0.01

 

0.00

 

0.00

 

3.38

 

3.38

 

0.04

 

0.04

 

Maximum

 

177.85

 

70.00

 

27.52

 

27.52

 

12.36

 

12.36

 

55.39

 

55.39

 

Mean

 

9.76

 

6.82

 

6.39

 

6.39

 

7.69

 

7.69

 

7.36

 

7.36

 

Median

 

3.78

 

3.78

 

4.00

 

4.00

 

7.87

 

7.87

 

5.14

 

5.14

 

Variance

 

746.19

 

119.76

 

42.58

 

42.58

 

7.51

 

7.51

 

84.51

 

84.51

 

Std Dev

 

27.32

 

10.94

 

6.53

 

6.53

 

2.74

 

2.74

 

9.19

 

9.19

 

CV

 

2.80

 

1.61

 

1.02

 

1.02

 

0.36

 

0.36

 

1.25

 

1.25

 

 

 

 

D2

 

D2A

 

D3

 

All UM Zones

 

Statistic

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

Au g/t

 

Au g/t Cap
(70m.g/t)

 

# Samples

 

105

 

105

 

28

 

28

 

85

 

85

 

6,042

 

6,042

 

Minimum

 

0.00

 

0.00

 

0.13

 

0.13

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

114.02

 

70.00

 

108.30

 

70.00

 

154.98

 

70.00

 

696.61

 

70.00

 

Mean

 

7.16

 

6.04

 

7.70

 

6.34

 

6.27

 

4.68

 

5.44

 

4.91

 

Median

 

2.92

 

2.92

 

2.24

 

2.24

 

1.92

 

1.92

 

1.59

 

1.59

 

Variance

 

235.59

 

98.10

 

389.15

 

164.49

 

387.43

 

93.43

 

276.24

 

83.48

 

Std Dev

 

15.35

 

9.90

 

19.73

 

12.83

 

19.68

 

9.67

 

16.62

 

9.14

 

CV

 

2.14

 

1.64

 

2.56

 

2.02

 

3.14

 

2.07

 

3.054

 

1.86

 

 

112



 

TABLE 14.10:    SAMPLE COMPOSITE STATISTICS THUNDER CREEK DEPOSIT

 

THUNDER CREEK DEPOSIT

 

 

 

PZ1A

 

PZ1B

 

PZ1C

 

PZ3

 

Statistic

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

# Samples

 

1,183

 

1,183

 

2,362

 

2,362

 

230

 

230

 

37

 

37

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.09

 

0.09

 

Maximum

 

101.71

 

101.71

 

1,120.80

 

134.90

 

363.13

 

75.63

 

96.80

 

96.80

 

Mean

 

5.36

 

5.36

 

5.15

 

3.95

 

4.20

 

2.95

 

6.00

 

6.00

 

Median

 

2.34

 

2.34

 

1.11

 

1.11

 

0.86

 

0.86

 

1.55

 

1.55

 

Variance

 

69.98

 

69.98

 

882.16

 

87.76

 

591.04

 

51.53

 

249.82

 

249.82

 

Std Dev

 

8.37

 

8.37

 

29.70

 

9.37

 

24.31

 

7.18

 

15.81

 

15.81

 

CV

 

1.56

 

1.56

 

5.75

 

2.37

 

5.78

 

2.43

 

2.82

 

2.82

 

 

 

 

RZ2

 

RZ2A

 

RZ3

 

RZ3A

 

Statistic

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

# Samples

 

51

 

51

 

103

 

103

 

204

 

204

 

840

 

840

 

Minimum

 

0.01

 

0.01

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

45.73

 

45.73

 

106.94

 

74.96

 

82.84

 

71.81

 

67.25

 

56.30

 

Mean

 

5.15

 

5.15

 

5.51

 

4.60

 

4.17

 

4.11

 

3.63

 

3.61

 

Median

 

1.74

 

1.74

 

1.21

 

1.21

 

1.36

 

1.36

 

1.02

 

1.02

 

Variance

 

81.68

 

81.68

 

254.90

 

129.52

 

74.88

 

66.74

 

41.43

 

39.62

 

Std Dev

 

9.04

 

9.04

 

15.97

 

11.38

 

8.65

 

8.17

 

6.44

 

6.29

 

CV

 

1.76

 

1.76

 

2.89

 

2.47

 

2.07

 

1.99

 

1.77

 

1.74

 

 

 

 

RZ3A1

 

RZ3B

 

RZ5

 

All Zones

 

Statistic

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

Au g/t

 

Au g/t Cap
(75m.g/t)

 

# Samples

 

29

 

29

 

32

 

32

 

87

 

87

 

5,158

 

5,158

 

Minimum

 

0.00

 

0.00

 

0.01

 

0.01

 

0.00

 

0.00

 

0.00

 

0.00

 

Maximum

 

29.54

 

29.54

 

34.61

 

34.61

 

23.77

 

23.77

 

1,120.80

 

134.90

 

Mean

 

3.32

 

3.32

 

5.11

 

5.11

 

3.41

 

3.41

 

4.84

 

4.21

 

Median

 

1.16

 

1.16

 

1.86

 

1.86

 

0.81

 

0.81

 

1.27

 

1.27

 

Variance

 

33.29

 

33.29

 

64.46

 

64.46

 

29.56

 

29.56

 

465.30

 

74.41

 

Std Dev

 

5.77

 

5.77

 

8.03

 

8.03

 

5.44

 

5.44

 

21.57

 

8.63

 

CV

 

1.74

 

1.74

 

1.57

 

1.57

 

1.59

 

1.59

 

4.46

 

2.05

 

 

113



 

14.3                        SPECIFIC GRAVITY

 

Specific gravity (“SG”) was determined on 994 samples representative of different style of mineralization from the Timmins and Thunder Creek Deposits.  Specific gravity measurements were completed at the Lake Shore exploration office or Timmins Mine core shack using the conventional approach of weighing the samples dry and immersed in water.  The results were grouped into styles of mineralization which represented the forty-three resource solids for the Timmins Deposit and the eleven resource solids for the Thunder Creek Deposit.

 

Specific gravity (“SG”) was determined on 473 samples of Footwall, Vein and Ultramafic styles of mineralization for the Timmins Deposit.  The Footwall zones were represented by 231 samples with an average of 2.81.  This value was substantially less than the historical value of 2.88 and so the current average of 2.81 was used in the Resource Estimate.  The Vein zones were represented by 19 samples averaging 2.79 while the Ultramafic zones were represented by 223 samples which averaged 2.90 which were in line with historical determinations of 2.81 and 2.92 respectively.  The historical values for these two zones were used in the current Resource Estimate.

 

The Thunder Creek data was similarly grouped into mineralization styles with the Porphyry zone represented by 521 samples with an average value of 2.66.  The Rusk zone was represented by 284 samples with an average value of 2.92.  The eleven resource solids were grouped into Rusk or Porphyry style mineralization based on the dominant mineralization style within the solid.  Table 14.11 summarizes the specific gravity values that were used in the Resource estimate by deposit and zone.

 

TABLE 14.11:      SPECIFIC GRAVITY BY ZONE

 

Deposit

 

Zone

 

Historical
Specific Gravity

 

Number of
Readings

 

Average of
Readings

 

Final Specific
Gravity

 

Timmins

 

Footwall

 

2.88

 

231

 

2.81

 

2.81

 

 

 

Veins

 

2.81

 

19

 

2.79

 

2.81

 

 

 

Ultramafic

 

2.92

 

223

 

2.90

 

2.92

 

 

 

 

 

 

 

 

 

 

 

 

 

Thunder Creek

 

Rusk

 

 

284

 

2.92

 

2.92

 

 

 

Porphyry

 

 

521

 

2.66

 

2.66

 

 

14.4                        VARIOGRAPHY

 

Semi-variograms were created for the Resource solids using the 1 metre composites with the assay intervals capped at 70 m.g/t Au for the Timmins Deposit and 75 m.g/t Au for the Thunder Creek Deposit.  A spherical model with one or two structures was fitted to each variogram.

 

The variograms for the Timmins Deposit are shown in Figure 14.8.

 

In general the variography confirmed the general orientation of the models with the primary direction along the strike of the zones between 75 and 85 degrees azimuth.  The models typically produced a range for the primary structure of 15 metres with ranges between 25 to 35 metres for the secondary structure.  Sill values ranged from 22 to 87 gammas with high nugget values.

 

114



 

Insufficient data points were available to create suitable variograms for the FW zone below 650 or above 525 Level.  For estimation purposes it is assumed that ranges would be similar to the FW zone between 650 and 525 Level.

 

The variograms for the Rusk and Porphyry zones are shown in Figure 14.9.

 

In general the variography confirmed the general orientation of the models with the primary direction along the strike of the zones between 30 and 50 degrees azimuth.  The models typically produced a range for the primary structure from 20 to 40 metres with sill values from 20 to 60 gammas and high nugget values.

 

FIGURE 14.8:       VARIOGRAMS — TIMMINS DEPOSIT

 

 

 

115



 

 

 

 

116



 

FIGURE 14.9:       VARIOGRAMS — THUNDER CREEK DEPOSIT

 

 

 

117



 

14.5                        BLOCK MODEL MINERAL RESOURCE MODELING

 

14.5.1              General

 

The grade of the Mineral Resources is estimated by using the ID3 interpolation method for the Timmins Deposit and IDinterpolation method for the Thunder Creek Deposit.  This method interpolates the grade of a block from several composites within a defined distance range from the block.  The estimation uses the inverse of the distance between a composite and the block as the weighting factor to determine the grade.

 

14.5.2              Block Model Parameters

 

The Mineral Resources for the Timmins Deposit were estimated using three separate block models based on elevation and have been combined into a single block model for reporting purposes which form the Timmins Deposit Resource.  The Thunder Creek Deposit was estimated within a single block model.  A summary of the Timmins Mine and Thunder Creek block model grid parameters are shown in Table 14.12.

 

TABLE 14.12:    BLOCK MODEL GRID PARAMETERS

 

Timmins Deposit

 

Model Origin

 

Grid

 

Model Dimension

 

Block Dimension

 

X

 

4200 E

 

Columns

 

450

 

Column width

 

2.0 m

 

Y

 

7750 N

 

Rows

 

280

 

Row width

 

2.0 m

 

Z

 

10020 el

 

Levels

 

700

 

Level height

 

2.0 m

 

 

 

 

 

Orientation

 

No rotation

 

 

 

 

 

 

Thunder Creek Deposit

 

Model Origin

 

Grid

 

Model Dimension

 

Block Dimension

 

X

 

4250 E

 

Columns

 

210

 

Column width

 

2.0 m

 

Y

 

6730 N

 

Rows

 

275

 

Row width

 

2.0 m

 

Z

 

9960 el

 

Levels

 

490

 

Level height

 

2.0 m

 

 

 

 

 

Orientation

 

No rotation

 

 

 

 

 

 

14.5.3              Grade Interpolation

 

Blocks within the Timmins Deposit block models were interpolated by a five pass system with the first pass requiring that composites from at least two holes be used in determining the block grade.  The primary search distance for this pass was set to 15 metres which is roughly equivalent to half the range as determined from the variography.  This pass resulted in the interpolation of 130,687 blocks or 32.5 percent of the total.  The second pass was based again on two holes required within the search distance and the distance was expanded to 30 metres, or equivalent to the range as determined from the variography.  This pass resulted in 123,416 blocks estimated or 30.67% of the total.  The third pass required two holes within the search distance which was expanded to 60 metres.  This pass resulted in 136,719 blocks being interpolated or 34.0% of the total.

 

118



 

The final two passes both required a minimum of one hole within the search radius of 60 metres and 120 metres to fill in the resource solids.  The fourth pass interpolated 11,484 blocks or 2.9% of the total, while the final pass estimated a mere 102 blocks or 0.03% of the total.

 

Blocks within the Thunder Creek block model were interpolated by a four pass system with the first pass requiring that composites from at least three holes be used in determining the block grade.  The primary search distance for this pass was set to 15 metres which is equivalent to half the range as determined from the variography.  This pass resulted in the interpolation of 38,195 blocks or 10.4% of the total.  The second pass was based again on three holes required within the search distance and the distance was expanded to 30 metres, or equivalent to the range as determined from the variography.  This pass resulted in 144,770 blocks estimated or 39.5% of the total.

 

The final two passes both required a minimum of three holes within the search radius of 60 metres and 130 metres to fill in the resource solids.  The third pass interpolated 163,151 blocks or 44.5% of the total, while the final pass estimated 20,555 blocks or 5.6% of the total.

 

The variography as well as the general geometry of zones, alteration and mineralization were used to establish the search ellipse parameters.  The similar nature of the variography and attitude of the mineralization between the Rusk and Porphyry style mineralization allowed a single orientation of the search ellipse to be used.  Search ellipse parameters for the Timmins and Thunder Creek Deposits are summarized in Table 14.13.

 

TABLE 14.13:    SEARCH ELLIPSE PARAMETERS

 

Timmins Mine Deposit

Zone: UM1B, UM2A, UM2B, UM3, UM5, UM5A, UM5B, UM5C, D1, D1A, D1B, D1C, D2, D2A, D4, FW1, FW1A, FW3, 525_FW1, 525_FW2, 525_FW2A, 525_FW3, 525_FW4, 525_MZ1C, 525_MZ2, 525_V3A, 525_V3B

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

5

 

-48

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

5

 

-48

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

5

 

-48

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-48

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-48

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

Zone: 650_UM1, 650_UM1A, 650_UM2, 650_UM2, 650_UM2E

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

15

 

-75

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

15

 

-75

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

15

 

-75

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

15

 

-75

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

15

 

-75

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

119



 

Zone: 650_UM2A, 650_UM2B, 650_UM2C, 650_UM2D

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

5

 

-75

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

5

 

-75

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

5

 

-75

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-75

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-75

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

Zone: 525_MZ1A, 525_MZ1B, 525_V1, 525_V3

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

5

 

-70

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

5

 

-70

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

5

 

-70

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-70

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-70

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

Zone: UM3, D3, 525_FW2B, 525_V2

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

5

 

-60

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

5

 

-60

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

5

 

-60

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-60

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-60

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

Zone: D1D, FW2

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

5

 

-40

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

5

 

-40

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

5

 

-40

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-40

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-40

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

120



 

Zone: UM4, 525_FW2C

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

1

 

5

 

-30

 

-65

 

15

 

15

 

8

 

3

 

10

 

2

 

2

 

5

 

-30

 

-65

 

30

 

30

 

20

 

3

 

10

 

2

 

3

 

5

 

-30

 

-65

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-30

 

-65

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-30

 

-65

 

120

 

120

 

60

 

2

 

10

 

2

 

 

Thunder Creek Deposit

 

 

 

 

 

Search Ellipse
Orientation (ZXZ)

 

Search Ellipse Range

 

Number of Samples

 

Zone

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

Porphyry

 

1

 

40

 

-61

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

 

 

2

 

40

 

-61

 

0

 

30

 

30

 

20

 

5

 

10

 

2

 

 

 

3

 

40

 

-61

 

0

 

60

 

60

 

45

 

5

 

10

 

2

 

 

 

4

 

40

 

-61

 

0

 

130

 

130

 

65

 

5

 

10

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rusk

 

1

 

40

 

-61

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

 

 

2

 

40

 

-61

 

0

 

30

 

30

 

20

 

5

 

10

 

2

 

 

 

3

 

40

 

-61

 

0

 

60

 

60

 

45

 

5

 

10

 

2

 

 

 

4

 

40

 

-61

 

0

 

130

 

130

 

65

 

5

 

10

 

2

 

 

14.6                        BLOCK MODEL VALIDATION

 

Plans and sections were cut through the block model and Resource solids to visually compare the block grades to the drill-hole grades.  The grade and distribution of the block grade is consistent with drill hole assay data and the interpolation parameters that were used.  A typical section through the Timmins Deposit Resource solids is illustrated in Figure 14.10.  Plan views of models cut at the 310 Level, 525 Level and the 790 Level of the Timmins Deposit are shown in Figure 14.11, Figure 14.12, and Figure 14.13.

 

A typical section through the Thunder Creek Deposit Resource solids is illustrated in Figure 14.14 and plan view of the model at the 730 Level shown in Figure 14.15.

 

Volumes of the individual solids were compared to volumes of the individual solids from the block model to ensure proper coding of the solid.

 

A nearest neighbor interpolation of the block model using the same parameters and search ellipse as the ID3 and ID2 interpolation was completed and compared.  Results showed local variations in the ounce totals but no significant differences between the two interpolation methods for the combined totals which are tabulated in Table 14.14 for the Timmins Deposit and Table 14.15 for the Thunder Creek Deposit.

 

An independent review of the resource estimate was completed by Michel Dagbert, P. Eng of SGS Geostat.  A copy of the review titled “Resource Modeling and Estimation of the Thunder Creek Gold Deposit” and “Resource Modeling and Estimation of the Timmins Gold Deposit below 650 Level” are attached in Appendix 7 and 8.

 

121



 

Only the portion of the Resource below the 650 Level for the Timmins Deposit was reviewed. A similar method of modeling and estimation was used in the upper portion of the Deposit.

 

FIGURE 14.10:     SECTION 4575E — TIMMINS DEPOSIT, RESOURCE BLOCK MODEL

 

 

122



 

FIGURE 14.11:     310 LEVEL PLAN — TIMMINS DEPOSIT, BLOCK AND DRILL HOLE GRADES

 

GRAPHIC

 

123



 

FIGURE 14.12:     525 LEVEL PLAN — TIMMINS DEPOSIT, BLOCK AND DRILL HOLE GRADES

 

GRAPHIC

 

124



 

FIGURE 14.13:     790 LEVEL PLAN — TIMMINS DEPOSIT, BLOCK AND DRILL HOLE GRADES

 

GRAPHIC

 

125



 

FIGURE 14.14:   SECTION 9550N — THUNDER CREEK DEPOSIT, BLOCK AND DRILL HOLE GRADES

 

GRAPHIC

 

126



 

FIGURE 14.15:   730 LEVEL PLAN — THUNDER CREEK DEPOSIT, BLOCK AND DRILL HOLE GRADES

 

GRAPHIC

 

127



 

TABLE 14.14:    COMPARISON OF ID3 AND NEAREST NEIGHBOUR INTERPOLATIONS, BLOCKS ABOVE 0.0 GPT AU — TIMMINS DEPOSIT

 

Interpolation
Method

 

Model

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

 

 

 

 

 

 

 

 

 

 

ID3

 

Above 525

 

1,113,178

 

3.89

 

139,235

 

 

 

 

 

 

 

 

 

 

 

NN

 

Above 525

 

1,113,378

 

4.21

 

150,830

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative difference

 

0

%

-8

%

-8

%

 

Interpolation
Method

 

Model

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

 

 

 

 

 

 

 

 

 

 

ID3

 

650 to 525

 

693,805

 

3.49

 

77,757

 

 

 

 

 

 

 

 

 

 

 

NN

 

650 to 525

 

577,027

 

4.32

 

80,114

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative difference

 

17

%

-24

%

-3

%

 

Interpolation
Method

 

Model

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

 

 

 

 

 

 

 

 

 

 

ID3

 

Below 650

 

3,913,790

 

5.53

 

695,835

 

 

 

 

 

 

 

 

 

 

 

NN

 

Below 650

 

3,032,000

 

5.60

 

702,451

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative difference

 

0

%

-1

%

-1

%

 

Interpolation
Method

 

Model

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

 

 

 

 

 

 

 

 

 

 

ID3

 

Total

 

5,720,973

 

4.96

 

912,827

 

 

 

 

 

 

 

 

 

 

 

NN

 

Total

 

5,594,472

 

5.19

 

933,395

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative difference

 

2

%

-5

%

-2

%

 

TABLE 14.15:    COMPARISON OF ID² AND NEAREST NEIGHBOUR INTERPOLATIONS, BLOCKS ABOVE 1.5 GPT AU — THUNDER CREEK DEPOSIT

 

Interpolation
Method

 

Resource
Category

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

 

 

 

 

 

 

 

 

 

 

ID²

 

Indicated

 

2,877,000

 

5.64

 

521,600

 

 

 

 

 

 

 

 

 

 

 

NN

 

Indicated

 

3,032,000

 

5.42

 

528,600

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative difference

 

5

%

-4

%

1

%

 

Interpolation
Method

 

Resource
Category

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

 

 

 

 

 

 

 

 

 

 

ID²

 

Inferred

 

2,693,000

 

5.89

 

510,000

 

 

 

 

 

 

 

 

 

 

 

NN

 

Inferred

 

2,816,000

 

5.55

 

502,100

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative difference

 

5

%

-6

%

2

%

 


*Rounded to nearest thousand - ** Rounded to nearest hundred

 

128



 

Development work on the Timmins Deposit has intersected portions of the resource solids on eight levels.  Chip sampling results from this development work was compared to the block model grades as interpolated from the diamond drilling and are summarized in Table 14.16.  Only chip samples falling within the limits of the Resource solids were used in the estimation of grade. Individual level comparisons show quite a large relative difference both positive and negative due to the limited amount of samples involved.  The total grades show slightly higher chip sample grades versus the block grades with a relative difference of -12 percent.

 

Initial development work on the Thunder Creek Property has intersected portions of the Resource solids on six levels as part of the advanced exploration program on the property.  Chip sampling results from this development work was compared to the block model grades as interpolated from the diamond drilling and are summarized in Table 14.16.  Only chip samples falling within the limits of the Resource solids were used in the estimation of grade.  Individual level comparisons show quite a large relative difference both positive and negative due to the limited amount of samples involved.  The total grades show a good correlation of grades between the chips and the block grades with a relative difference of 9 percent.

 

TABLE 14.16:    COMPARISON OF CHIP SAMPLE DEVELOPMENT GRADES AGAINST BLOCK MODEL GRADES

 

Timmins Deposit

 

Level

 

Zone

 

Chip Grade
(g/t)

 

Number of
Chips

 

Block Grade
(g/t)

 

Tonnes
 (t)

 

Relative
Difference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

480 Level

 

FW2A

 

2.60

 

178

 

2.45

 

1,708

 

-6

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FW2B

 

7.62

 

35

 

2.88

 

157

 

-165

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525 Level

 

FW2B

 

1.32

 

94

 

2.26

 

3,005

 

42

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FW2C

 

2.74

 

31

 

2.54

 

963

 

-8

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FW3

 

4.05

 

29

 

2.63

 

1,249

 

-54

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MZ1A

 

0.72

 

15

 

3.67

 

782

 

80

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

540 Level

 

MZ1A

 

1.55

 

8

 

3.06

 

206

 

49

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

545 Level

 

UM1

 

6.94

 

90

 

3.10

 

712

 

-124

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

585 Level

 

UM1

 

4.97

 

312

 

6.60

 

8,050

 

25

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

610 Level

 

UM2A

 

4.56

 

156

 

4.78

 

5,592

 

5

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

630 Level

 

UM1-UM1A

 

5.64

 

432

 

5.49

 

12,264

 

-3

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UM2

 

3.85

 

120

 

3.14

 

3,581

 

-23

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650 Level

 

UM1-UM1A

 

6.77

 

459

 

5.54

 

17,415

 

-22

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UM2

 

4.72

 

121

 

1.66

 

4,353

 

-184

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total

 

 

 

5.23

 

2,080

 

4.68

 

62,514

 

-12

%

 

129



 

Thunder Creek Deposit

 

Level

 

Zone

 

Chip Grade
(g/t)

 

Block Grade
(g/t)

 

Tonnes
 (t)

 

Relative
Difference

 

 

 

 

 

 

 

 

 

 

 

 

 

280 Level

 

RZ2A

 

3.38

 

4.87

 

2,600

 

-31

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RZ3A

 

0.95

 

2.21

 

811

 

-57

%

 

 

 

 

 

 

 

 

 

 

 

 

300 Level

 

RZ3A

 

4.29

 

6.24

 

3,278

 

-31

%

 

 

 

 

 

 

 

 

 

 

 

 

315 Level

 

RZ3A

 

4.01

 

4.33

 

1,666

 

-7

%

 

 

 

 

 

 

 

 

 

 

 

 

350 Level

 

RZ3A

 

3.05

 

2.35

 

3,864

 

30

%

 

 

 

 

 

 

 

 

 

 

 

 

715 Level

 

PZ1A

 

12.01

 

7.30

 

4,034

 

64

%

 

 

 

 

 

 

 

 

 

 

 

 

730 Level

 

PZ1A

 

5.43

 

7.15

 

1,824

 

-23

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PZ1B

 

4.65

 

4.17

 

13,863

 

12

%

 

 

 

 

 

 

 

 

 

 

 

 

Total

 

 

 

5.17

 

4.74

 

31,940

 

9

%

 

Thirty-seven stoping blocks have been initiated or completed at the Timmins Mine since August 2009 amounting to 568,358 tonnes at 4.74 g/t Au. The Timmins Deposit totals are comprised of thirty-two stopes totaling 504,426 tonnes at 4.77 g/t Au, while the Thunder Creek Deposit accounts for five stopes totaling 63,932 tonnes at 4.51g/t Au.  Table 14.17 compares the stope muck sampling tonnes and grades versus the block model tonnes and grade for a number of stopes.  Muck sample grades at the Timmins Deposit tend to be slightly higher than the block model grades potentially indicating a partial sampling bias of finer material with better grade.  Insufficient stoping data is available for the Thunder Creek to make any meaningful conclusions, although currently muck sample grades are tending to be slightly lower grade than the block model grades.

 

TABLE 14.17:    COMPARISON OF MUCK SAMPLE STOPE GRADES AGAINST BLOCK MODEL GRADES

 

Timmins Deposit

 

Stope

 

Zone

 

Muck Grade
(g/t)

 

Tonnes
(t)

 

Block Grade
(g/t)

 

Tonnes
 (t)

 

Relative
Difference
(g/t)

 

Relative
Difference
(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525 FW*

 

FW

 

2.18

 

74,386

 

2.20

 

79,913

 

-1

%

-7

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

585 UM1

 

UM

 

2.98

 

487

 

2.09

 

588

 

42

%

-17

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

610 UM1

 

UM

 

5.24

 

74,388

 

4.85

 

93,591

 

8

%

-21

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

610 UM2a

 

UM

 

2.53

 

11,801

 

3.52

 

25,986

 

-28

%

-55

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

630 UM1a

 

UM

 

5.61

 

16,364

 

4.66

 

11,718

 

20

%

40

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

630 UM2

 

UM

 

3.93

 

36,795

 

2.54

 

16,815

 

55

%

119

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650 UM1

 

UM

 

8.06

 

128,943

 

6.96

 

107,468

 

16

%

20

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650 UM1A

 

UM

 

6.01

 

6,843

 

2.78

 

9,898

 

117

%

-31

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650 UM2

 

UM

 

3.461

 

8,209

 

3.04

 

2,953

 

14

%

178

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total

 

 

 

5.38

 

358,216

 

4.60

 

348,930

 

17

%

3

%

 


*Stope has not been completely mucked out

 

130



 

Thunder Creek Deposit

 

Stope

 

Zone

 

Muck Grade
(g/t)

 

Tonnes
(t)

 

Block Grade
(g/t)

 

Tonnes
 (t)

 

Relative
Difference
(g/t)

 

Relative
Difference
(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

280 LH

 

RZ2A

 

3.26

 

18,349

 

4.62

 

14,479

 

-29

%

27

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

315 LH

 

RZ3A

 

4.42

 

7,425

 

6.07

 

8,455

 

-27

%

-12

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

730 LH

 

PZ1A

 

6.09

 

29,338

 

6.42

 

39,296

 

-5

%

-25

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total

 

 

 

5.43

 

42,979

 

5.95

 

62,230

 

-17

%

-11

%

 

14.7                        MINERAL RESOURCES AND CLASSIFICATION

 

14.7.1              General

 

Lake Shore has separated the Resources at the Timmins Deposit into forty-three Resource solids between 4250E and 5100E (Timmins Deposit grid), a horizontal distance of 850 metres. Vertically, the zones have been defined from the 9,900 metre elevation (115 metres below surface) to 8,670 metre elevation (1,345 metres below surface).  Similarly at the Thunder Creek Deposit the Resources have been separated into eleven Resource solids between 9325N and 9675N (Thunder Creek grid), a horizontal distance of 350 metres.  Vertically, the zones have been defined from 9,850 metre elevation (165 metres below surface) to 9,075 metre elevation (940 metres below surface).  Details of the Resources by type and Deposit are summarized in the following sections and views of the block models are illustrated in Figure 14.16 and Figure 14.17.

 

14.7.2              Mineral Resources

 

The Indicated Resources for the Timmins West Mine totals 5.8 million tonnes at 5.99 g/t Au amounting to 1,122,500 ounces of gold.  This total is comprised of Resources for the Timmins and Thunder Creek Deposits and is summarized in Table 14.18.  The effective date of this resource is January 31, 2012.

 

Inferred Resources are as well summarized in Table 14.18 and amount to 4.3 million tonnes at 5.76 g/t Au totaling 791,500 ounces of gold.

 

The totals for the Timmins Deposit have been adjusted for development and stoping carried out to date which amounts to 154,517 tonnes of development at 3.68 gpt Au and 504,400 tonnes of stoping at 4.77 g/t Au.  Development and stoping was removed from the block models by zeroing of the grades and tonnes for those blocks that have been mined.

 

The totals for the Thunder Creek Deposit have not been adjusted for development and initial stoping that has been carried out to date, which would amount to 130,904 tonnes of development at 3.60 g/t Au and 63,932 tonnes of test stoping at 4.51 g/t Au.

 

131



 

FIGURE 14.16:     3D VIEW OF RESOURCES TIMMINS DEPOSIT LOOKING SOUTHEAST

 

GRAPHIC

 

132



 

FIGURE 14.17:     3D VIEW OF THUNDER CREEK DEPOSIT LOOKING SOUTHEAST

 

GRAPHIC

 

133



 

TABLE 14.18:      TIMMINS WEST MINE RESOURCES

 

(Prepared by Lake Shore Gold — January 31, 2012)

 

Timmins Deposit

 

Category

 

Tonnes

 

Capped Grade
(g/t Au)

 

Capped Ounces
Au

 

Measured

 

 

 

 

Indicated

 

2,949,000

 

6.34

 

600,900

 

Measured and Indicated

 

2,949,000

 

6.34

 

600,900

 

 

 

 

 

 

 

 

 

Inferred

 

1,579,000

 

5.54

 

281,500

 

 

Thunder Creek Deposit

 

Category

 

Tonnes

 

Capped Grade
(g/t Au)

 

Capped Ounces
Au

 

Measured

 

 

 

 

Indicated

 

2,877,000

 

5.64

 

521,600

 

Measured and Indicated

 

2,877,000

 

5.64

 

521,600

 

 

 

 

 

 

 

 

 

Inferred

 

2,693,000

 

5.89

 

510,000

 

 

Total Timmins West Mine

 

Category

 

Tonnes

 

Capped Grade
(g/t Au)

 

Capped Ounces
Au

 

Measured

 

 

 

 

Indicated

 

5,826,000

 

5.99

 

1,122,500

 

Measured and Indicated

 

5,826,000

 

5.99

 

1,122,500

 

 

 

 

 

 

 

 

 

Inferred

 

4,272,000

 

5.76

 

791,500

 

 

Notes:

 

1.               CIM definitions were followed for classification of Mineral Resources.

2.               Mineral Resources are estimated at a cut-off grade of 1.5 g/t Au.

3.               Mineral Resources are estimated using an average long-term gold price of US $1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.               A minimum mining width of 2 metres was used.

5.               Capped gold grades are used in estimating the Mineral Resource average grade.

6.               Sums may not add due to rounding.

7.               Mineral Reserve estimates for the Timmins West Mine are currently in progress.

 

134



 

8.               Metallurgical recoveries are assumed to average 96.5 percent.

9.               Mining costs are assumed to average $82/tonne.

10.         Mr. Robert Kusins, B. Sc., P. Geo. and Mr. Ralph Koch, B. Sc. P. Geo., are the Qualified Persons for this resource estimate.

 

Resources were classified by plotting of the individual Resource solids on longitudinal section by pass. Pass 1 and 2 were grouped together while the remaining passes were grouped as a separate colour code.  Twenty-five metre radius polygons were generated about the drill hole solid intersections to aid in determining continuity and drill hole spacing.  Those areas deemed to form a continuous zone with blocks of largely Pass 1 and 2 (30 metre search) were clipped out of the Resource Solid to facilitate re-coding of the resource category as illustrated in Figure 14.18.  These areas were re-classified in the block model as Indicated, while the remaining blocks within the Resource solid were classified as Inferred.

 

FIGURE 14.18:     RESOURCE CLASSIFICATION, LONGITUDINAL VIEW OF INTERPOLATION PASSES

 

For UM5 — Timmins Deposit

 

GRAPHIC

 

135



 

Uncut gold values were carried for the Resource to determine the effect of the capped grade and are tabulated in Table 14.19.  The uncut gold grade for the Indicated Resource at the 1.5 g/t Au lower cut-off is 6.75 g/t Au amounting to 1,264,000 ounces.  The grade capping for the Indicated Resource has reduced the total by 141,600 ounces or 11% of the total resource.  Similarly, the uncut gold grade for the Inferred Resource at the 1.5 g/t Au lower cut-off is 6.10 g/t amounting to 837,600 ounces which has been reduced by capping by 46,100 ounces or 6% of the total resource.

 

TABLE 14.19:      TIMMINS WEST MINE MINERAL RESOURCE ESTIMATES

 

(Prepared by Lake Shore — January 2012)

 

Category

 

Deposit

 

Tonnes
(t)

 

Uncapped
Grade

(g/t Au)

 

Uncapped
Ounces

(oz)

 

Capped Grade
(g/t Au)

 

Capped Ounces
(oz)

 

Indicated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timmins

 

2,949,000

 

7.31

 

690,600

 

6.34

 

600,900

 

 

 

Thunder Creek

 

2,877,000

 

6.20

 

573,500

 

5.64

 

521,600

 

 

 

Total Indicated

 

5,826,000

 

6.75

 

1,264,100

 

5.99

 

1,122,500

 

 

Category

 

Deposit

 

Tonnes
(t)

 

Uncapped
Grade

(g/t Au)

 

Uncapped
Ounces

(oz)

 

Capped Grade
(g/t Au)

 

Capped Ounces
(oz)

 

Inferred

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timmins

 

1,579,000

 

5.77

 

292,900

 

5.54

 

281,500

 

 

 

Thunder Creek

 

2,693,000

 

6.29

 

544,700

 

4.77

 

510,000

 

 

 

Total Inferred

 

4,272,000

 

6.10

 

837,600

 

5.76

 

791,500

 

 

Notes:

 

1.               CIM definitions were followed for classification of Mineral Resources.

2.               Mineral Resources are estimated at a cut-off grade of 1.5 g/t Au.

3.               Mineral Resources are estimated using an average long-term gold price of US $1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.               A minimum mining width of 2 metres was used.

5.               Capped gold grades are used in estimating the Mineral Resource average grade.

6.               Sums may not add due to rounding.

7.               Mineral Reserve estimates for the Timmins West Mine are currently in progress.

8.               Metallurgical recoveries are assumed to average 96.5 percent.

9.               Mining costs are assumed to average $82/tonne.

10.         Mr. Robert Kusins, B. Sc., P. Geo. and Mr. Ralph Koch, B. Sc., P. Geo., are the Qualified Persons for this resource estimate.

 

Sensitivities to lower cut-off were run at 0.50 g/t Au increments from 0.00 g/t Au to 3.00 g/t Au and are summarized in Table 14.20 for the Indicated and Inferred Resources.  The higher cut-off grades result in only a slight decrease in total ounces.  At the higher cut-offs, the zones become patchier and less continuous and it has not been demonstrated that these higher grades would be achievable in a more selective mining approach.  The base case of 1.5 g/t Au attempts to introduce some level of selectivity to the mining of the resource, but yet maintain continuity of the zone.  At lower cut-offs, the zones become more continuous, but it becomes apparent that there would be opportunities to not mine portions of the resource.

 

136



 

TABLE 14.20:      TIMMINS WEST MINE RESOURCE SENSITIVITIES

 

Timmins Deposit

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Cut-off Grade
(gpt Au)

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

0.00

 

3,769,000

 

5.12

 

620,100

 

1,915,000

 

4.71

 

290,100

 

0.50

 

3,480,000

 

5.52

 

618,000

 

1,817,000

 

4.96

 

289,500

 

1.00

 

3,219,000

 

5.91

 

611,700

 

1,716,000

 

5.20

 

287,000

 

1.50

 

2,949,000

 

6.34

 

600,900

 

1,579,000

 

5.54

 

281,500

 

2.00

 

2,667,000

 

6.82

 

585,100

 

1,426,000

 

5.95

 

272,800

 

2.50

 

2,386,000

 

7.36

 

564,700

 

1,296,000

 

6.32

 

263,500

 

3.00

 

2,124,000

 

7.93

 

541,700

 

1,124,000

 

6.87

 

248,200

 

 

Thunder Creek Deposit

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Cut-off Grade
(gpt Au)

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

0.00

 

3,576,000

 

4.71

 

541,900

 

3,134,000

 

5.20

 

524,300

 

0.50

 

3,451,000

 

4.87

 

540,800

 

3,093,000

 

5.27

 

523,800

 

1.00

 

3,196,000

 

5.20

 

534,400

 

2,934,000

 

5.51

 

519,900

 

1.50

 

2,877,000

 

5.64

 

521,600

 

2,693,000

 

5.89

 

510,000

 

2.00

 

2,578,000

 

6.09

 

504,800

 

2,398,000

 

6.40

 

493,400

 

2.50

 

2,297,000

 

6.56

 

484,600

 

2,150,000

 

6.88

 

475,600

 

3.00

 

2,053,000

 

7.02

 

463,000

 

1,929,000

 

7.35

 

456,000

 

 

Total Timmins West Mine

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Cut-off Grade
(gpt Au)

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

0.00

 

7,345,000

 

4.92

 

1,162,000

 

5,049,000

 

5.02

 

814,400

 

0.50

 

6,931,000

 

5.20

 

1,158,800

 

4,910,000

 

5.15

 

813,300

 

1.00

 

6,415,000

 

5.56

 

1,146,200

 

4,651,000

 

5.40

 

806,900

 

1.50

 

5,826,000

 

5.99

 

1,122,500

 

4,272,000

 

5.76

 

791,500

 

2.00

 

5,245,000

 

6.46

 

1,089,900

 

3,823,000

 

6.23

 

766,200

 

2.50

 

4,684,000

 

6.97

 

1,049,400

 

3,446,000

 

6.67

 

739,100

 

3.00

 

4,177,000

 

7.48

 

1,005,000

 

3,053,000

 

7.18

 

704,300

 

 


*Rounded to nearest thousand - ** Rounded to nearest hundred

 

137



 

14.8                        RECONCILIATION TO PREVIOUS RESOURCE TIMMINS DEPOSIT

 

The previous resource estimate for the Timmins Deposit amounted to 3,245,000 tonnes at 8.56 g/t Au for 892,700 ounces in the Indicated category and 894,000 tonnes at 5.74 g/t Au in the Inferred category.

 

Table 14.21 below compares the current Resource estimate with the estimate completed on September 2009.

 

TABLE 14.21:      COMPARISON OF NEW VS. SEPTEMBER 2009 RESOURCE ESTIMATE — TIMMINS DEPOSIT

 

September 2009 Resource

 

 

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Level

 

Tonnes*

 

Grade

 

Ounces**

 

Tonnes*

 

Grade

 

Ounces**

 

From

 

To

 

(t)

 

(g/t Au)

 

Au

 

(t)

 

(g/t Au)

 

Au

 

Surface

 

260

 

265,000

 

8.92

 

76,000

 

121,000

 

4.44

 

17,200

 

260

 

525

 

339,000

 

7.83

 

85,300

 

250,000

 

4.92

 

39,500

 

525

 

650

 

681,000

 

9.57

 

209,500

 

164,000

 

5.50

 

29,000

 

650

 

1300

 

1,960,000

 

8.28

 

521,900

 

360,000

 

6.85

 

79,200

 

Total

 

3,245,000

 

8.56

 

892,700

 

894,000

 

5.74

 

164,900

 

 

New Resource Estimate

 

 

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Level

 

Tonnes*

 

Grade

 

Ounces**

 

Tonnes*

 

Grade

 

Ounces**

 

From

 

To

 

(t)

 

(g/t Au)

 

Au

 

(t)

 

(g/t Au)

 

Au

 

Surface

 

260

 

79,000

 

4.44

 

11,300

 

 

 

 

260

 

525

 

580,000

 

4.93

 

91,900

 

41,000

 

6.33

 

8,300

 

525

 

650

 

490,000

 

5.32

 

83,700

 

66,000

 

4.36

 

9,300

 

650

 

1300

 

1,799,000

 

7.16

 

413,900

 

1,472,000

 

5.57

 

263,900

 

Total

 

2,949,000

 

6.34

 

600,900

 

1,579,000

 

5.54

 

281,500

 

 

Net Difference

 

 

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Level

 

Tonnes*

 

Grade

 

Ounces**

 

Tonnes*

 

Grade

 

Ounces**

 

From

 

To

 

(t)

 

(g/t Au)

 

Au

 

(t)

 

(g/t Au)

 

Au

 

Surface

 

260

 

-186,000

 

-4.48

 

-64,700

 

-121,000

 

-4.44

 

-17,200

 

260

 

525

 

241,000

 

-2.90

 

6,600

 

-209,000

 

1.41

 

-31,200

 

525

 

650

 

-191,000

 

-4.25

 

-125,800

 

-98,000

 

-1.14

 

-19,700

 

650

 

1300

 

-161,000

 

-1.12

 

-108,000

 

1,112,000

 

-1.28

 

184,700

 

Total

 

-296,000

 

-2.22

 

-291,800

 

684,000

 

-0.20

 

116,600

 

 

138



 

The net difference since the last estimate, results in a drop in Indicated Resources of 296,000 tonnes, a reduction of grade by 2.22 g/t Au and a reduction of 291,800 ounces.  Inferred Resources have seen an increase of 684,000 tonnes, a slight reduction in grade by 0.20 g/t Au and an increase of 184,700 ounces.  The changes to the Resources are largely attributed to the mining that has been carried out since the last estimate amounting to 658,943 tonnes at 4.51 g/t Au totaling 95,600 ounces of gold.  The remaining differences are a reflection of a more rigorous re-classification and interpretation of resources based on our current understanding of the mineralization at the Timmins Deposit.  The previous estimate based largely on polygons, assumed continuity of mineralization at the 3 g/t Au cut-off.  Detailed underground drilling and development work has demonstrated the lack of grade continuity at this grade range, with the necessity to reduce the cut-off to 1.5 g/t Au to insure continuity, resulting in a net decrease in overall grade.

 

14.9                        ADDITIONAL DRILL HOLE INFORMATION EVALUATION

 

Subsequent to the closing of the database on January 31, 2012, additional assays were received for eighteen holes on the Timmins Deposit.  Six of these holes were from the area above the 525 Level, with three holes intersecting Resource solids resulting in six solid intersections.  The remaining twelve holes were from the area below 650 Level and resulted in eight holes intersecting Resource solids with a total of twenty-five solid intersections.  The majority of intersections confirmed the location and grade of the Resource solids and would have minimal impact on the Resource in this area.

 

Subsequent to the closing of the Thunder Creek Deposit database on October 28, 2011, additional assays were received for thirty-four additional holes.  Twenty-one of these holes were from the lower portion of the Resource below the 500 metre Level.  Fourteen of these holes intersected Resource solids resulting in eighteen solid intersections.  Assays from thirteen holes were received for drilling above the 500 metre Level, three of which intersected Resource solids producing four solid intersections.  Minor local adjustments to the models would be required in a few instances but these are expected to have minimal impact on the Resource.

 

14.10                 RECOMMENDATIONS

 

The following items are recommended for further study and evaluation:

 

1.               Evaluate the replacing of the ID3 and ID2 interpolation method by ordinary kriging.

2.               Continue monitoring of specific gravity and grade capping, as additional drill hole information is added to the database, to ensure appropriate values are being used.

3.               Continue stope reconciliations to monitor the grade predictability of the block model.

4.               Additional drilling, particularly in areas of the Inferred Resources, to better delineate the extent of the Resource and increase its confidence level.

5.               Reduce the amount of off azimuth and oblique drilling which become problematic in modeling and grade estimation.

 

14.11                 RESOURCE BASE USED FOR THE PRELIMINARY ECONOMIC ASSESSMENT

 

A Preliminary Economic Assessment (PEA) that included both indicated and inferred resources was completed for the Timmins West Mine to better understand the combined economic potential of the Timmins Deposit and Thunder Creek Deposit resources.  Prior to the PEA, previous study work included the Timmins Deposit only as the Thunder Creek Deposit had not been discovered.

 

139



 

The resource base used for the PEA has been summarized in Table 14.22 (Timmins Deposit) and Table 14.23 (Thunder Creek Deposit).

TABLE 14.22:    TIMMINS DEPOSIT RESOURCE BASE USED FOR PEA

 

 

 

Block Model In-Situ Resource
(3.0 g/t COG)

 

Resource used for PEA
(Mining Dilution & Recovery)

 

Classification

 

Tonnes

 

Grade
(g/t)

 

Ounces

 

Tonnes

 

Grade
(g/t)

 

Ounces

 

Indicated

 

2,124,000

 

7.93

 

541,700

 

2,169,353

 

6.1

 

419,432

 

Inferred

 

1,124,000

 

6.87

 

248,200

 

1,229,009

 

5.2

 

206,392

 

Total

 

3,248,000

 

7.56

 

789,900

 

3,398,362

 

5.8

 

625,824

 

 

TABLE 14.23:    THUNDER CREEK DEPOSIT RESOURCE BASE USED FOR PEA

 

 

 

Block Model In-Situ Resource
(3.0 g/t COG)

 

Resource used for PEA
(Mining Dilution & Recovery)

 

Classification

 

Tonnes

 

Grade
(g/t)

 

Ounces

 

Tonnes

 

Grade
(g/t)

 

Ounces

 

Indicated

 

2,053,000

 

7.02

 

463,000

 

2,747,936

 

4.7

 

415,781

 

Inferred

 

1,929,000

 

7.35

 

456,000

 

2,497,727

 

5.0

 

402,146

 

Total

 

3,982,000

 

7.18

 

919,000

 

5,245,663

 

4.8

 

817,927

 

 

The mine design considered in the PEA was based on the resource block models, existing surface and underground infrastructure, and actual operating experience at the Timmins West Mine.

 

The results of the PEA have been summarized in Table 14.24 and Table 14.25.

 

140



 

TABLE 14.24:    PEA SUMMARY AND ESTIMATED CASH FLOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description

 

Total

 

2012

 

2013

 

2014

 

2015

 

2016

 

2017

 

2018

 

2019

 

2020

 

2021

 

Mine Production

 

 

 

 

 

 

 

    

 

    

 

    

 

 

 

 

 

 

 

 

 

 

 

Tonnes

 

8,644,025

 

586,341

 

798,948

 

1,015,088

 

1,051,078

 

1,049,707

 

1,051,577

 

1,051,713

 

972,668

 

679,677

 

387,228

 

Tonnes per Day

 

 

 

1,675

 

2,283

 

2,900

 

3,003

 

2,999

 

3,005

 

3,005

 

2,779

 

1,942

 

1,106

 

Grade (g/t)

 

5.2

 

4.5

 

5.2

 

5.2

 

5.0

 

5.0

 

5.4

 

5.3

 

5.3

 

5.6

 

5.3

 

Timmins Deposit - Mined Ounces

 

623,601

 

45,590

 

56,518

 

68,255

 

63,678

 

62,875

 

72,187

 

66,415

 

57,815

 

63,805

 

66,463

 

Thunder Creek Deposit - Mined Ounces

 

816,032

 

39,099

 

76,352

 

100,307

 

105,631

 

105,567

 

110,259

 

113,192

 

106,762

 

58,863

 

0

 

Stockpile Ounces (from 2012 mining)

 

4,118

 

0

 

4,118

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

Ounces Sold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timmins Deposit Ounces

 

603,920

 

43,994

 

56,685

 

65,866

 

61,449

 

60,674

 

69,660

 

64,090

 

55,791

 

61,572

 

64,137

 

Thunder Creek Deposit Ounces

 

789,300

 

37,731

 

75,508

 

96,796

 

101,934

 

101,872

 

106,400

 

109,230

 

103,025

 

56,803

 

0

 

Total Ounces Sold

 

1,393,220

 

81,725

 

132,193

 

162,662

 

163,383

 

162,547

 

176,060

 

173,321

 

158,817

 

118,375

 

64,137

 

Gold Price & Exchange

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gold Price $US

 

 

 

$

1,744

 

$

1,725

 

$

1,575

 

$

1,400

 

$

1,347

 

$

1,275

 

$

1,200

 

$

1,200

 

$

1,200

 

$

1,200

 

Exchange $CDN/$US

 

 

 

1.03

 

1.02

 

1.04

 

1.08

 

1.09

 

1.09

 

1.09

 

1.09

 

1.09

 

1.09

 

Total Sales (millions $CDN)

 

 

 

$

146.80

 

$

225.60

 

$

266.44

 

$

247.04

 

$

238.66

 

$

244.68

 

$

226.70

 

$

207.73

 

$

154.83

 

$

83.89

 

Treatment Charges & Royalties

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Charges - Timmins Deposit ($millions)

 

$

-0.97

 

$

-0.07

 

$

-0.09

 

$

-0.11

 

$

-0.10

 

$

-0.10

 

$

-0.11

 

$

-0.10

 

$

-0.09

 

$

-0.10

 

$

-0.10

 

Treatment Charges - Thunder Creek ($millions)

 

$

-1.27

 

$

-0.06

 

$

-0.12

 

$

-0.16

 

$

-0.16

 

$

-0.16

 

$

-0.17

 

$

-0.18

 

$

-0.17

 

$

-0.09

 

$

0.00

 

Royalties - Timmins Deposit ($millions)

 

$

-19.94

 

$

-1.78

 

$

-2.24

 

$

-2.43

 

$

-2.09

 

$

-2.00

 

$

-2.18

 

$

-1.88

 

$

-1.64

 

$

-1.81

 

$

-1.89

 

Royalties - Thunder Creek ($millions)

 

$

-37.74

 

$

-2.20

 

$

-4.31

 

$

-5.15

 

$

-5.00

 

$

-4.86

 

$

-4.80

 

$

-4.64

 

$

-4.37

 

$

-2.41

 

$

0.00

 

Gross Revenue

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timmins Deposit ($millions)

 

$

865.80

 

$

77.18

 

$

97.40

 

$

105.36

 

$

90.73

 

$

86.99

 

$

94.52

 

$

81.84

 

$

71.25

 

$

78.63

 

$

81.90

 

Thunder Creek Deposit ($millions)

 

$

1,123.67

 

$

65.52

 

$

128.42

 

$

153.25

 

$

148.96

 

$

144.55

 

$

142.90

 

$

138.06

 

$

130.22

 

$

71.80

 

$

0.00

 

Total Gross Revenue ($millions)

 

$

1,989.47

 

$

142.70

 

$

225.83

 

$

258.61

 

$

239.68

 

$

231.54

 

$

237.42

 

$

219.91

 

$

201.46

 

$

150.42

 

$

81.90

 

Operating Expenses ($millions)

 

$

-867.94

 

$

-68.31

 

$

-89.20

 

$

-100.06

 

$

-97.99

 

$

-97.26

 

$

-97.55

 

$

-98.00

 

$

-93.85

 

$

-71.87

 

$

-53.85

 

Operating Costs ($/Tonne)

 

$

100.40

 

$

116.51

 

$

111.64

 

$

98.57

 

$

93.23

 

$

92.66

 

$

92.76

 

$

93.18

 

$

96.49

 

$

105.74

 

$

139.07

 

Operating Costs ($/Ounce Recovered)

 

$

623

 

$

836

 

$

675

 

$

615

 

$

600

 

$

598

 

$

554

 

$

565

 

$

591

 

$

607

 

$

840

 

Net Revenue ($millions)

 

$

1,121.53

 

$

74.38

 

$

136.63

 

$

158.55

 

$

141.69

 

$

134.27

 

$

139.87

 

$

121.90

 

$

107.61

 

$

78.55

 

$

28.05

 

Capital & Sustaining Capital Costs ($millions)

 

$

-386.19

 

$

-161.65

 

$

-66.51

 

$

-50.14

 

$

-24.07

 

$

-17.97

 

$

-18.27

 

$

-18.90

 

$

-14.40

 

$

-9.31

 

$

-4.98

 

Net Cash Flow ($CDN millions)

 

$

735.34

 

$

-87.26

 

$

70.12

 

$

108.42

 

$

117.63

 

$

116.30

 

$

121.61

 

$

103.01

 

$

93.21

 

$

69.24

 

$

23.07

 

 

141



 

TABLE 14.25:    PEA ESTIMATED UNDISCOUNTED CASH FLOW AND NPV (5% AND 10% DISCOUNT INTEREST)

 

Year
Discount Period

 

2012
Principal

 

2013
1

 

2014
2

 

2016
3

 

2016
4

 

2017
5

 

2018
6

 

2019
7

 

2020
8

 

2021
9

 

Net Cash Flow ($CDN millions)

 

$

-87.26

 

$

70.12

 

$

108.42

 

$

117.63

 

$

116.30

 

$

121.61

 

$

103.01

 

$

93.21

 

$

69.24

 

$

23.07

 

Undiscounted Cash Flow Cumulative ($millions)

 

$

-87.26

 

$

-17.15

 

$

91.27

 

$

208.89

 

$

325.20

 

$

446.80

 

$

549.81

 

$

643.02

 

$

712.26

 

$

735.33

 

5% Discount Interest

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discount Factor

 

1

 

0.952

 

0.907

 

0.864

 

0.823

 

0.784

 

0.746

 

0.711

 

0.677

 

0.645

 

Discounted Cash Flow ($millions)

 

$

-87.26

 

$

66.78

 

$

98.34

 

$

101.61

 

$

95.68

 

$

95.28

 

$

76.87

 

$

66.24

 

$

46.87

 

$

14.87

 

Discounted Cash Flow Cumulative ($millions)

 

$

-87.26

 

$

-20.49

 

$

77.85

 

$

179.46

 

$

275.14

 

$

370.42

 

$

447.29

 

$

513.53

 

$

560.40

 

$

575.27

 

10% Discount Interest

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discount Factor

 

1

 

0.909

 

0.826

 

0.751

 

0.683

 

0.621

 

0.564

 

0.513

 

0.467

 

0.424

 

Discounted Cash Flow ($millions)

 

$

-87.26

 

$

63.74

 

$

89.60

 

$

88.37

 

$

79.44

 

$

75.51

 

$

58.15

 

$

47.83

 

$

32.30

 

$

9.78

 

Discounted Cash Flow Cumulative ($millions)

 

$

-87.26

 

$

-23.52

 

$

66.08

 

$

154.45

 

$

233.89

 

$

309.40

 

$

367.54

 

$

415.37

 

$

447.67

 

$

457.46

 

 

142



 

15.0                        MINERAL RESERVE ESTIMATES

 

The reserves estimated for the Timmins West Mine have been based on the indicated resource material included in the resource block models for the Thunder Creek Desposit (Thunder_Crk, November 9, 2011) and Timmins Deposit (Timmins_Mine_Combined, February 13, 2012).  The block models were prepared by Lake Shore Gold and validated by SGS Geostat.  The estimated in-situ indicated resource reported from the block models at a 3.0 gram per tonne (g/t) cut-off grade (capped at 75 metre x g/t) are summarized in Table 15.1.

 

TABLE 15.1:       TIMMINS WEST MINE IN-SITU INDICATED RESOURCE AT 3.0 G/T CUT-OFF GRADE

 

Deposit

 

Tonnes

 

Grade (g/t)
(capped)

 

Ounces

 

Timmins Deposit

 

2,124,000

 

7.93

 

541,700

 

Thunder Creek Deposit

 

2,053,000

 

7.02

 

463,000

 

Total Indicated Resource

 

4,177,000

 

7.48

 

1,004,700

 

 

A mine design was completed to reflect the most likely mining and production scenario for the Timmins West Mine.  The mine design includes all development and construction required to access the indicated resources, and the methods required to extract the ore using a combination of Longhole and Mechanized Cut and Fill techniques.

 

15.1                        TIMMINS DEPOSIT RESERVE ESTIMATE

 

Based on the in-situ indicated resource included in the Timmins Deposit block model, the following methodology was used to estimate the reserves.

 

The Timmins Deposit block model was reviewed in plan and in section to identify zones of indicated resource material above 3.0 grams per tonne cut-off grade and to determine the most appropriate mining method for each zone.

 

Sublevels were established at 20 metre vertical intervals, and vertical sections were cut through the model at 10 metre intervals along strike.  Mining shapes were designed on each section and each shape had an influence five metres East and five metres West of the section.  The mining shapes were joined with shapes on adjacent sections to generate 3D stope wireframes.  All probable reserves quoted in Table 15.1 are captured within these specific mining shapes.

 

The mining shapes were evaluated to determine average stope size, and stope geometry to identify MCAF stoping areas.  The average stope size was used to estimate an external dilution factor (unplanned dilution) to apply to the in-situ stope resource.  The weighted average external dilution has been estimated to be 15 percent.

 

The tonnes and grade contained within the stope wireframes were extracted from the block model indicated resource data, and external dilution and mining recovery factors have been applied to estimate the reserves. The results have been summarized in Table 15.2.

 

143



 

TABLE 15.2:       TIMMINS DEPOSIT ESTIMATED RESERVES

 

Item

 

Tonnes

 

Grade
(grams/tonne)

 

Ounces

 

Block Model Indicated Resource above 3.0 g/t captured within stope wireframes

 

1,558,205

 

8.54

 

427,832

 

Block Model Indicated Resource Below 3.0 g/t captured within stope wireframes (Planned Dilution)

 

417,779

 

1.72

 

23,151

 

Internal Waste Rock captured inside the stope wireframe (Planned Dilution)

 

197,598

 

0.0

 

0

 

External Waste Rock 15% (Unplanned Dilution)

 

326,037

 

0.0

 

0

 

Subtotal

 

2,499,619

 

5.62

 

450,983

 

90% Mining Recovery

 

2,249,658

 

5.62

 

405,885

 

Reserves Mined to Surface

 

2,249,658

 

5.62

 

405,885

 

 

A detailed development schedule, production profile, and mine design was created to estimate the capital and operating costs required to access, develop, and extract the Timmins Deposit reserves.  A full cost estimate was also prepared to include all Timmins area general and administration costs and all operating and capital costs required to complete and operate essential site infrastructure at both the Timmins West Mine and Bell Creek Mill sites.  No allowance (positive or negative) was made for mining operations at Bell Creek Mine.

 

A cost (direct capital and operating) versus revenue evaluation was completed for each sublevel interval to confirm that each sublevel will generate positive net cash.  These cash flows were then summed for each deposit and then summed again to give the overall cash flow balance for the Timmins West Mine.  The costs breakdown and cash flow analysis are included in Sections 21 and 22.

 

15.2                        THUNDER CREEK DEPOSIT RESERVE ESTIMATE

 

Based on the in-situ indicated resource included in the Thunder Creek block model, the following methodology was used to estimate the reserves.

 

The Thunder Creek block model was reviewed in plan and in section to identify indicated resources above 3.0 grams per tonne, and to confirm the appropriateness of Longhole mining methods.  Sublevels were established at 35 metre vertical intervals and mining shapes were designed at five metre intervals along strike for each sublevel.  The mining shapes on each section were meshed with shapes on adjacent sections to generate 3D stope wireframes.  Individual stopes were designed at 15 metre wide intervals along strike on each sublevel.  All reserves are included in a mining shape.  External dilution parameters were developed and applied to each individual stope based on geometry and size and characteristics of neighboring stopes and sequencing.

 

The tonnes and grade contained within the stope wireframes were extracted from the block model indicated resource data, and external dilution and mining recovery factors were applied to estimate the reserves. The results have been summarized in Table 15.3.

 

144



 

TABLE 15.3:       THUNDER CREEK DEPOSIT ESTIMATED RESERVES

 

Item

 

Tonnes

 

Grade
(grams/tonne)

 

Ounces

 

Block Model Indicated Resource Above 3.0 g/t captured within the stope wireframes

 

1,830,506

 

6.99

 

411,376

 

Block Model Indicated Resource Below 3.0 g/t captured within the stope wireframes (Planned Dilution)

 

628,500

 

1.85

 

37,382

 

Internal Waste Rock captured inside the stope wireframe (Planned Dilution)

 

159,744

 

0.00

 

0

 

External Low Grade Material and Waste Rock (Unplanned Dilution)

 

304,509

 

1.00

 

9,806

 

Subtotal

 

2,923,259

 

4.88

 

458,564

 

90% Mining Recovery

 

2,630,933

 

4.88

 

412,708

 

Adjustment for 2012 Mining Plan (inferred resource mined)

 

41,589

 

3.93

 

5,255

 

Reserves Mined to Surface

 

2,672,522

 

4.86

 

417,963

 

 

A detailed development schedule, production profile, and mine design was completed to estimate the capital and operating costs required to access, develop, and extract the Thunder Creek Deposit reserves.

 

A cost (direct capital and operating) versus revenue evaluation was completed for each sublevel interval to confirm that each sublevel will generate positive net cash.  The costs breakdown and cash flow analysis are included in Sections 21 and 22.

 

15.3                        TIMMINS WEST MINE COMBINED RESERVES

 

The Timmins Deposit and Thunder Creek Deposit combined reserves have been summarized in Table 15.4.

 

TABLE 15.4:       TIMMINS WEST MINE COMBINED RESERVES

 

Deposit

 

Tonnes

 

Grade
(grams/tonne)

 

Ounces

 

Timmins Deposit

 

2,249,658

 

5.61

 

405,885

 

Thunder creek Deposit

 

2,672,522

 

4.86

 

417,963

 

Timmins West Mine Total Reserves Mined to Surface

 

4,922,180

 

5.21

 

823,848

 

 

145



 

16.0                        MINING METHODS

 

Overview

 

The Timmins West Mine includes two mineralized gold resource deposits; the Timmins Deposit and nearby Thunder Creek Deposit.

 

The Timmins Deposit mineralized resource extends from near surface (surface is at 10,015 metre elevation) to approximately 1,340 metres below surface (and remains open at depth).  There are three main geological mineralized zones; Vein Zone, Footwall Zone, and Ultramafic Zone.  Each zone is further comprised of a number of smaller zones, separated by waste rock.  The zones vary in transverse width from 1.5 metres to in excess of 30 metres.  Generally, the mineralized resource strikes east-west and dips 55 degrees to the north, although locally individual zones may be shallower dipping.  The indicated only portion of the Timmins Deposit mineralized zones are shown in Figure 16.1.

 

FIGURE 16.1:     TIMMINS DEPOSIT INDICATED MINERALIZED ZONES, LOOKING EAST

 

 

The Thunder Creek Deposit mineralized resource is approximately 750 metres south of the Timmins Deposit and extends from 165 metres to 950 metres below surface.  Thunder Creek consists of the Rusk Zone and the Porphyry Zone and is generally massive, striking east-west and dipping 60 degrees to the north.  The indicated only portion of the Thunder Creek Deposit mineralized zones are shown in Figure 16.2.

 

146



 

FIGURE 16.2:     THUNDER CREEK DEPOSIT INDICATED MINERALIZED ZONES, LOOKING EAST

 

 

The geographic relationship between the Timmins Deposit and Thunder Creek Deposit is shown in Figure 16.3.

 

FIGURE 16.3:     TIMMINS DEPOSIT AND THUNDER CREEK DEPOSIT, LOOKING EAST

 

Lake Shore completed an advanced exploration program on the Timmins Deposit in 2010.  The program included establishing surface facilities, sinking a 5.5 metre inside diameter, 710 metre deep shaft,

 

147



 

completing an underground diamond drilling program, and developing/constructing required underground infrastructure to extract a bulk sample.

 

Two exploration ramps were developed from the Timmins Deposit to access the Thunder Creek Deposit at 275 Level and 730 Level.  Ongoing advanced exploration activities continued at Thunder Creek, including extraction of a bulk sample, throughout 2011.  Development of underground mine infrastructure and surface support facilities has been ongoing, and commercial production started at the Timmins Deposit in 2011.

 

The existing surface infrastructure at the Timmins West Mine is shown in Figure 16.4 and includes:

 

·                  Access roads and site grading.

·                  Security gate house.

·                  Shaft headframe, collar house, and hoisting plant.

·                  Compressed air plant.

·                  Process water supply.

·                  Portal and main ramp to underground.

·                  Electrical services infrastructure and distribution.

·                  Timmins Deposit main fresh air ventilation fans and mine air heaters.

·                  Thunder Creek main fresh air ventilation fans and mine air heaters.

·                  Administration, mine dry, and training facilities.

·                  Warehouse and maintenance facilities.

·                  Water treatment facilities and discharge water settling ponds.

 

148



 

FIGURE 16.4:     TIMMINS WEST MINE SURFACE INFRASTRUCTURE

 

 

149



 

The existing underground infrastructure at the Timmins West Mine is shown in Figure 16.5 and includes:

 

·                  The 5.5 metre diameter, 710 metre deep production shaft.

·                  Main shaft stations at 200 Level, 525 Level, and 650 Level.

·                  Ore and waste rockbreakers and bins at 650 Level, and a Loading Pocket at 670 Level.

·                  Ventilation raises to surface and internal ventilation raises underground.

·                  The main ramp from surface to approximately 290 Level.

·                  An internal ramp system to access existing sublevels.

·                  Mine dewatering facilities.

·                  Electrical distribution and communications.

·                  Compressed air and service water distribution.

·                  Maintenance facilities.

·                  Access to the Thunder Creek Deposit at 275 Level and 730 Level.

 

FIGURE 16.5:     TIMMINS WEST MINE EXISTING UNDERGROUND INFRASTRUCTURE

 

 

The reserve estimated for the Timmins West Mine has been based on the indicated resource material included in the resource block models for the Thunder Creek Deposit (Thunder_Crk, November 9, 2011) and Timmins Deposit (Timmins Mine Combined, February 13, 2012).  The block models were prepared by Lake Shore Gold and validated by SGS Geostat.  The estimated in-situ indicated resource reported from the block models at a 3 grams per tonne (g/t) cut-off grade (capped at 75 metre x g/t) are summarized in Table 16.1.

 

150



 

TABLE 16.1:       TIMMINS WEST MINE IN-SITU INDICATED RESOURCE AT 3.0 G/T CUT-OFF GRADE

 

Deposit

 

Tonnes

 

Grade (g/t)
(capped)

 

Ounces

 

Timmins Deposit

 

2,124,000

 

7.93

 

541,700

 

Thunder Creek Deposit

 

2,053,000

 

7.02

 

463,000

 

Total Indicated Resource

 

4,177,000

 

7.48

 

1,004,700

 

 

Engineering and cost assessment work has been conducted on this material to a prefeasibility study level (PFS) of detail in order to substantiate the declaration of reserves for the mine.

 

The mine design considered in this PFS has been based on the in-situ indicated resources included in the block models, existing surface and underground infrastructure, and current operating experience at the Timmins West Mine.

 

16.1                        UNDERGROUND ACCESS

 

The Timmins Deposit and Thunder Creek Deposit indicated resource will be extracted using underground mining methods.

 

16.1.1              Primary / Secondary Access

 

Trade-off studies have been completed to select a preferred approach to access the underground resources and included:

 

·                  Deepening the existing Timmins West Mine Shaft.

·                  Sinking a new shaft near the Thunder Creek Deposit.

·                  Truck hauling (from both Timmins Deposit and Thunder Creek Deposit) to the existing Timmins West Mine shaft.

·                  Conveying ore (from both the Timmins Deposit and Thunder Creek Deposit) to the existing Timmins West Mine shaft.

 

Based on the trade-off study results, it has been concluded that the primary access will continue to be via the existing Timmins West Mine shaft, and ore and waste rock will be trucked to the 650 Level rockbreakers for sizing and subsequent skipping to surface.

 

The Thunder Creek Deposit will be accessed via existing ramps originating at the Timmins Deposit 200 Level (accessing Thunder Creek at 275 Level) and 650 Level (accessing Thunder Creek at 730 Level).

 

An existing portal and ramp from surface currently extends to the Timmins Deposit 290 Level.  Development of an internal ramp system at each deposit is ongoing and will connect to each production level in the mine (i.e. no captive levels), including a shaft bottom access ramp.

 

Secondary access/egress to/from the underground will be via the existing portal and ramp to surface, and internal raises equipped with escapeways.

 

16.2                        SHAFT AND HOISTING FACILITIES

 

The primary access to the underground workings and transfer of ore and waste rock to surface will be via the existing production shaft (sunk in close proximity to the Timmins Deposit).  The shaft collar is at

 

151



 

10,015 metre elevation and shaft bottom at 9,305 metre elevation (710 metres deep).  Main shaft stations have been constructed at 200 Level (200L), 525L, and 650L.  The naming of underground levels has been expressed as metres below the shaft collar (i.e. 650L is 650 metres below collar).

 

The shaft is concrete lined with a 5.5 metre inside diameter.  The shaft includes two skip compartments (12 tonne capacity bottom dump skips), a service cage compartment (42 person capacity double deck cage), and service compartment for piping and electrical services.  There is no manway in the shaft.

 

The existing steel headframe is 47 metres tall and includes a collar house and chute to dump ore and waste to an outside pad.

 

16.2.1              Hoisting Plant

 

The hoisting plant includes a production hoist for skipping operations and a service hoist for cage operations.

 

Production Hoist

 

The existing production hoist is a Nordberg, 3.6 metre (12 foot) diameter double drum with 2 x 862 kW (2 x 1,150 hp) AC motors.  Combined with the 12 tonne skips, the plant has capacity to hoist 5,378 tonnes per day (assuming 16 hours per day hoisting).  This capacity will be sufficient to meet ore production (peak approximately 2,400 tpd) and waste rock (peak approximately 1,000 tpd) hoisting requirements.

 

Service Hoist

 

The existing service hoist is a 2.7 metre (9 foot) diameter single drum unit with an 862 kW (1,150 hp) AC motor.  Combined with the 42 person double deck cage, the capacity will be suitable to meet personnel and material transfer requirements.

 

16.2.2              Shaft Services

 

The existing pipe services in the shaft include a 100 mm diameter service water pipeline, 152 mm diameter dewatering pipeline, two 203 mm diameter slick lines, and a 305 mm diameter compressed air line.  The shaft services will have sufficient capacity to supply the mine.

 

16.2.3              Ore / Waste Handling System and Loading Pocket

 

Broken ore and waste rock are hauled to separate ore and waste dumps/rockbreaker arrangements near the shaft at 650L.  Broken material is dumped onto grizzlies and sized through 0.35 metre by 0.35 metre grizzly openings with stationary hydraulic rockbreakers.  The sized material feeds the 350 tonne capacity ore bin below.

 

The bins feed a conventional gravity fed loading pocket.  Chains and pneumatic cylinders are used to control the flow of material.  For the ore system, ore feeds from the bin to a splitter to divert the material into the two measuring flasks.  The waste material feeds from one side, but a moveable (by cylinder) chute allows both flasks to be filled.  The existing skip loading system has been fully automated.

 

Since much of the future ore and waste rock will be produced from below the current shaft bottom, additional ore bin storage capacity will be required.  An additional bin has been proposed above 650L and has been included in the mine design.  The work will include developing a ramp to 25 metres above

 

152



 

the existing rockbreaker station, and constructing a new bin, dump/grizzly, and rockbreaker arrangement.

 

16.3                        STOPING METHODS

 

Longhole with delayed unconsolidated rockfill (Longhole) stoping has been the primary mining method used to date at the Timmins West Mine.  Longhole is a widely used and proven mining method that involves common industry equipment and labour skillsets.

 

Varying resource geometry will require more than one mining method to extract the resource.  The narrower, flatter dipping geometry at the Timmins Deposit will require a combination of Longhole and Mechanized Cut and Fill (MCAF) methods, while the massive, steeper dipping geometry at Thunder Creek will support the use of primarily bulk transverse Longhole mining.

 

16.3.1              Timmins Deposit

 

The mineralized zones at the Timmins Deposit vary in transverse width and dip.  Mining shapes (representing stopes) have been designed for all indicated resources material (i.e. all indicated resource converted to reserves has a mining shape applied).  Evaluation of the mining shapes indicates approximately 57% of the resource will be from areas where the footwall dip will be too shallow (i.e. less than 55 degrees) to facilitate effective flow of broken (blasted) material.  In these areas, MCAF has been selected as the preferred mining approach.  Figure 16.6 and Figure 16.7 represent examples of “mining shapes” at Sections 4540 East and 4550 East.

 

153



 

FIGURE 16.6:       MINING SHAPES AT SECTION 4540 EAST

 

 

154



 

FIGURE 16.7:       MINING SHAPES AT SECTION 4550 EAST

 

 

Mechanized Cut and Fill

 

Where mineralized zones dip less than 55 degrees, MCAF will be the preferred mining method.  MCAF stope blocks will be accessed by an attack ramp (or “V” ramp).  Sublevels for MCAF mining areas will be developed at 20 vertical metre intervals (floor to floor).  There will be four, 5 metre high cuts taken from each sublevel as shown in the sketch in Figure 16.8.

 

155



 

FIGURE 16.8:       TYPICAL SECTION THROUGH A MCAF STOPE

 

 

The 5 metre high cuts will be mined using 2-boom Jumbos, 6 cubic yard class LHD’s, with ground support installed using handheld drills from the deck of a scissor lift.

 

Mined cuts will be backfilled.  To maximize sill pillar recovery, backfill that will be mined under (i.e. exposed as a back) may include up to 7% binder content.  Where available (and without compromising backfill quality or schedule), mined out stopes will be used to dispose of waste rock from development activities (as opposed to skipping this material and stockpiling on surface).

 

Longhole

 

The Longhole method has been successfully used at the Timmins West Mine during bulk sample extraction, and commercial production in 2011.

 

Where resource geometry is favourable (i.e. the footwall dips 55 degrees or steeper), the Longhole mining method will be the preferred stoping approach (note that in some wider areas, if the footwall dips less than 55 degrees, some waste rock may be mined as part of the stope to steepen the footwall to facilitate use of the Longhole method).

 

Sublevels will be established at 20 metre vertical intervals (same as MCAF).  The resource will generally be accessed in the centre (along strike) and stope undercut and overcut sills developed to the east and west extents.  Stope lengths will be 20 metres along strike and mining will retreat from the extremities toward the initial access point.

 

The mining method has been shown in longitudinal and section view in the sketches shown in Figure 16.9.

 

156



 

FIGURE 16.9:       LONGITUDINAL LONGHOLE MINING METHOD

 

 

Ore sills will be developed along the strike of the resource under geological control (i.e. under the direction of mine geologists).  Where ore widths are less than 8 metres, the entire sill from the hangingwall to footwall contacts will be developed.  Where ore widths exceed 8 metres, the hangingwall contact will be followed, with crosscuts developed at preset intervals to expose the footwall contact.  Where ore widths allow, a sill drift will be developed along each contact, with a pillar left between.  Ore sills will be developed at minimum 4 metres wide to accommodate 6 cubic yard LHDs for stope mucking.  Based on the mining shapes, the average longhole stope width will be 8.2 metres from hangingwall to footwall.

 

The three sill development scenarios are shown in Figure 16.10.

 

FIGURE 16.10:     SILL DEVELOPMENT FOR LONGITUDINAL LONGHOLE STOPES

 

 

157



 

 

Longholes will be drilled with a pneumatically powered top hammer drill (current practice).  Longholes will be drilled down from the overcut sill with some holes breaking through into the undercut, and others fanned as required to contour the stope limits.  A drop raise will be drilled and blasted to create the initial void for production blasting.  When mining a sill pillar (below a backfilled stope), uppers drilling will be completed from the stope undercut sill.

 

Longholes will be loaded with emulsion explosives.  The emulsion will be detonated with non-electric blasting caps and boosters.

 

Broken ore will be extracted from stopes using 6 cubic yard LHD’s.  When the stope drawpoint brow is closed with muck, the LHD will be operated manually (i.e. with the operator in the seat).  When the drawpoint brow is open, the LHD will be operated via remote control with the operator located a safe distance from the stope and away from the moving LHD.  The LHD will tram to a remuck or load directly into a haul truck.  Any ore dumped into a remuck will subsequently be remucked and loaded into a 42 tonnes class haul truck and hauled to the 650L rockbreaker.

 

Mined out stopes will be backfilled.  Where backfill will be mined against (i.e. exposed as a vertical wall) the binder content will be up to 3 percent.  To maximize sill pillar recovery, backfill that will be mined under (i.e. exposed as a back) may include up to 7% binder content.  Where available (and without compromising backfill quality), mined out stopes will be used to dispose of waste rock from development activities (as opposed to skipping this material and stockpiling on surface).

 

16.3.2              Thunder Creek Deposit

 

The indicated mineralized zones at the Thunder Creek Deposit average 20 metres wide and dip approximately 60 degrees to the North.  The massive geometry of the Rusk and Porphyry zones at Thunder Creek will be suitable for the transverse longhole mining method with a primary/secondary stoping sequence.  The Longhole method has been successfully used throughout the mining industry to mine ore bodies with similar geometry.

 

158



 

Initial preliminary geotechnical study work has concluded that the hangingwall of 15 metre wide stope panels (along strike) will remain stable at 35 vertical metre sublevel intervals.  A number of comparison exercises were completed to evaluate if a shorter sublevel interval should be considered.

 

35 Metre vs. 25 Metre Sublevels

 

Stantec completed a comparison exercise for the global Thunder Creek resource.  Mining shapes were prepared for a sample area with sublevels at 35 metre (base case) and 25 metre intervals.  The shapes were evaluated (for each sublevel interval) to estimate the percentage and grade of planned dilution (i.e. low grade and waste rock) that will be mined within stope limits.  The percentage of planned dilution from the sample area was then applied to the overall block model in-situ resource.

 

35 Metre vs. 17.5 Metre Sublevels

 

A separate exercise was completed at a greater level of detail by Lake Shore Gold personnel for stopes between 695L and 660L.  Individual stopes (15 metre wide stopes) were designed for each of the two sublevel intervals and the resource within each stope determined from the block model.

 

Based on the comparison exercise work completed, it has been concluded that the distribution of grade within the resource offers limited opportunity to selectively mine higher grade areas by reducing the sublevel interval.

 

Sublevel Interval Comparison Matrix

 

The sublevel interval selection process also included a joint review meeting involving Lake Shore Gold projects, engineering, geology, operations, safety, and management personnel, Stantec (mine engineering consultant), and Mine Design Engineering (geotechnical consultant).  The purpose of the review was to ensure other factors have been considered.  The review team identified key items that may be impacted by the sublevel interval, ranked the three interval options (35 metre, 25 metre, and 17.5 metre) as best, worst, or in-between, and applied a weighting to each item.

 

The results of the comparison review supported the base case 35 metre sublevel interval.  The 35 metre sublevel interval has been accepted as the basis for the Thunder Creek Deposit mine design.

 

Longhole Stoping

 

Longholes will be drilled using an ITH drill (for greater accuracy with the higher sublevel interval).  Longholes will be drilled down from the overcut sill with some holes breaking through into the undercut, and others fanned as required to contour the stope limits.  A drop raise will be drilled and blasted to create the initial void for production blasting.  Longholes will be loaded with emulsion explosives (current practice).  The emulsion will be detonated with non-electric blasting caps and boosters.

 

Broken ore will be extracted from stopes using 6 and 8 cubic yard class LHD’s.  When the stope drawpoint brow is closed with muck, the LHD will be operated manually (i.e. with the operator in the seat).  When the drawpoint brow is open, the LHD will be operated via remote control with the operator located a safe distance from the stope and away from the moving LHD.  The LHD will tram on the level and dump into an orepass finger raise.  The orepass will gravity feed a truck loadout at 800L.  For stopes mucked at 800L, ore will be mucked to a remuck and/or loaded directly into a haul truck.

 

Ore will be hauled via the ramp from the 800L loadout to the rockbreaker at Timmins West Mine in 50 tonne class haul trucks.  To reduce traffic congestion at 650L, a bypass ramp will be developed and a new grizzly/rockbreaker and ore bin will be constructed above the existing 650L rockbreaker

 

159



 

arrangement.  Chain controls will be used to regulate the flow of broken ore from the new bin, through the existing grizzly, and into the existing bin feeding the loading pocket.

 

Mined out stopes will be backfilled.  Where backfill will be mined against (i.e. exposed as a vertical wall) the binder content will be 3 percent.  To maximize sill pillar recovery, backfill that will be developed through and mined under (i.e. exposed as a back) may include up to 7% binder content.

 

16.4                        RESOURCE ANALYSIS (DILUTION AND RECOVERY)

 

16.4.1              Mining Dilution and Recovery

 

Mining Dilution

 

Two sources of dilution have been considered in establishing the probable reserves.

 

Planned dilution includes low grade material and/or waste rock that will be mined and will not be segregated from the ore.  Sources of planned dilution include:

 

·                  Waste rock or low grade material that is drilled and blasted within the drift profile of ore sills and the overall grade of the “muck” justifies delivery to the mill.

·                  Waste rock or low grade material within the confines of the stope limits.  This includes internal waste pockets and footwall and/or hanging wall rock that has been drilled and blasted to maximize ore recovery and/or maintain favourable wall geometry for stability.

 

Planned dilution is directly reported from block model data and waste rock within stope wireframes.

 

Unplanned dilution includes low grade resource, waste rock, and/or backfill from outside the planned drift profile or stope limits that overbreaks or sloughs and is mucked with the ore and delivered to the mill.

 

The estimated planned and unplanned dilution for the deposits is outlined in Sections 16.4.3 and 16.4.4.

 

Mining Recovery

 

Two recovery factors have been considered in establishing the probable reserves.

 

Planned recovery includes the in-situ block model resource that will be accessed, developed, and mined.  Any indicated resource not included in the mining shapes (i.e. stopes) has not been included in the reserves.  Reasons that some block model in-situ resource will not be recovered may include:

 

·                  The resource includes a small volume that is separate from the main mining area and does not support the cost to develop and mine.

·                  The resource terminates between sublevels and would require mining excess dilution to recover.

·                  Random blocks within the block model that cannot be mined as part of an economic stope.

·                  Resource left in pillars adjacent to previously mined stopes that have been backfilled with unconsolidated rockfill.

 

160



 

A mining recovery factor has been applied to account for material that is planned to be mined within the confines of the stope limits, but will not be recovered due to factors such as:

 

·      Poor ground.

·      Blasting difficulties (ground does not break properly and cannot be recovered).

·      Ore geometry.

·      Broken ore that cannot be extracted (i.e. resting on the footwall, or around corners).

·      Unplanned ore pillars left in place.

 

A 90% mining recovery has been considered in estimating the probable reserves mined to surface.

 

16.4.2              Block Model Cut-Off Grade

 

An initial 3 grams per tonne block model cut-off grade has been used to identify and evaluate potential mining areas for both deposits.  The following assumptions have been made to establish the initial cut-off grade:

 

Mine Operating Cost

$ 75 per tonne

Mill Operating Cost

$ 25 per tonne

Sustaining Capex

$ 50 per tonne

Total Cost

$ 150 per tonne ($CAN)

 

Gold Price $1,500 ($CAN) per ounce ($48 per gram).

 

16.4.3              Timmins Deposit Probable Reserve Estimate

 

Based on the in-situ indicated resource included in the Timmins Deposit block model, the following methodology was used to estimate the probable reserves.

 

The Timmins Deposit block model was reviewed in plan and in section to identify indicated resource above the 3 grams per tonne cut-off grade, and to determine appropriate mining methods.

 

Sublevels were designed at 20 metre vertical intervals, and vertical sections were cut through the model at 10 metre intervals along strike.  Mining shapes were designed on each section and each shape had an influence 5 metres east and 5 metres west of the section.  The mining shapes were joined with shapes on adjacent sections to generate wireframes.

 

The mining shapes were evaluated to determine average stope size and stope geometry to identify MCAF stoping areas.  The average stope size was used to estimate an external dilution factor (unplanned dilution) to apply to the in-situ stope resource.  The weighted average external dilution has been estimated to be 15% and is summarized in Table 16.2 and Table 16.3.  These factors were reviewed with the project team and site personnel and were agreed to be representative of current experience.

 

161



 

TABLE 16.2:       TIMMINS DEPOSIT LONGHOLE STOPE AVERAGE EXTERNAL DILUTION

 

Stope
Surface

 

Surface
Area
(m
2)

 

Dilution
Source

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

HW

 

500

 

Waste
(2.8t/m
3)

 

0.50m
(700t)

 

0.75m
(1,050t)

 

1.00m
(1,400t)

 

1.25m
(1,750t)

 

1.50m
(2,100t)

 

FW

 

500

 

Waste
(2.8t/m
3)

 

0.25m
(350t)

 

0.25m
(350t)

 

0.25m
(350t)

 

0.50m
(700t)

 

0.50m
(700t)

 

Endwall

 

205

 

Backfill
(2.0t/m
3)

 

0.25m
103t)

 

0.50m
(205t)

 

0.50m
(205t)

 

0.50m
(205t)

 

0.50m
(205t)

 

Floor

 

164

 

Backfill
(2.0t/m
3)

 

0.25m
(82t)

 

0.25m
(82t)

 

0.25m
(82t)

 

0.25m
(82t)

 

0.25m
(82t)

 

Average in-situ stope tonnes

 

11,020t

 

11,020t

 

11,020t

 

11,020t

 

11,020t

 

Total external dilution

 

1,235t

 

1,687t

 

2,037t

 

2,737t

 

3,087t

 

Total tonnes mined

 

12,255t

 

12,707t

 

13,057t

 

12,757t

 

14,107t

 

% external dilution

 

10.1%

 

13.3%

 

15.6%

 

19.9%

 

21.9%

 

Average external dilution

 

16.1%

 

 

TABLE 16.3:       TIMMINS DEPOSIT MCAF STOPE AVERAGE EXTERNAL DILUTION

 

Stope
Surface

 

Surface
Area
(m
2)

 

Dilution
Source

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

Over-Break
Metres
(tonnes)

 

HW

 

500

 

Waste
(2.8t/m
3)

 

0.25m
(350t)

 

0.50m
(700t)

 

0.75m
(1,050t)

 

1.00m
(1,400t)

 

1.25m
(1,750t)

 

FW

 

500

 

Waste
(2.8t/m
3)

 

0.25m
(350t)

 

0.25m
(350t)

 

0.25m
(350t)

 

0.50m
(700t)

 

0.50m
(700t)

 

Floor

 

164

 

Backfill
(2.0t/m
3)

 

0.25m
(82t)

 

0.25m
(82t)

 

0.25m
(82t)

 

0.25m
(82t)

 

0.25m
(82t)

 

Average in-situ stope tonnes

 

11,020t

 

11,020t

 

11,020t

 

11,020t

 

11,020t

 

Total external dilution

 

782t

 

1,132t

 

1,482t

 

2,182t

 

2,532t

 

Total tonnes mined

 

11,802t

 

12,152t

 

12,502t

 

13,202t

 

13,552t

 

% external dilution

 

6.6%

 

9.3%

 

11.9%

 

16.5%

 

18.7%

 

Average external dilution

 

12.6%

 

 

The tonnes and grade contained within the wireframes were extracted from the block model indicated resource data and external dilution and mining recover factors have been applied to estimate the probable reserves.  The results have been summarized in Table 16.4.

 

162



 

TABLE 16.4:       TIMMINS DEPOSIT ESTIMATED PROBABLE RESERVES

 

Item

 

Tonnes

 

Grade
(grams per tonne)

 

Ounces

 

Block Model Indicated Resource Above 3.0 g/t captured within the stope wireframes

 

1,558,205

 

8.54

 

427,832

 

Block Model Indicated Resource Below 3.0 g/t captured within the stope wireframes (Planned Dilution)

 

417,779

 

1.72

 

23,151

 

Internal Waste Rock captured within the stope wireframes. (Planned Dilution)

 

197,598

 

0.0

 

0

 

External Waste Rock 15% (Unplanned Dilution)

 

326,037

 

0.0

 

0

 

Subtotal

 

2,499,619

 

5.62

 

450,983

 

90% Mining Recovery

 

2,249,658

 

5.62

 

405,885

 

Reserves Mined to Surface

 

2,249,658

 

5.62

 

405,885

 

 

Further details of the Timmins Deposit estimated probable reserves are included in Appendix 12.

 

A development schedule, production profile, and mine design has been completed to estimate the capital and operating costs required to access, develop, and extract the Timmins Deposit reserves.  A cost (direct capital and operating) versus revenue evaluation was completed for each sublevel interval to confirm each sublevel will generate positive net cash.  In addition, a life-of-mine cash flow analysis has been completed to demonstrate that the probable reserves support major capital infrastructure.  The costs and cash flow analysis are included in Sections 21 and 22.

 

16.4.4              Thunder Creek Deposit Probable Reserve Estimate

 

Based on the in-situ indicated resource included in the Thunder Creek block model, the following methodology was used to estimate the probable reserves.

 

The Thunder Creek block model was reviewed in plan and in section to identify indicated resource above the 3.0 grams per tonne cut-off grade, and to confirm the Longhole mining method.  Sublevels were established at 35 metre vertical intervals and mining shapes were designed at five metre intervals along strike for each sublevel.  The mining shapes on each section were meshed with shapes on adjacent sections to generate stope wireframes.

 

External dilution parameters were developed and applied to each individual stope based on geometry and size.  The external dilution parameters are summarized in Table 16.5.

 

163



 

TABLE 16.5:       THUNDER CREEK EXTERNAL DILUTION PARAMETERS

 

Stope Surface
Characteristic

 

Hangingwall Dilution
(metres)

 

Footwall Dilution
(metres)

 

Backfill Dilution
(metres)

 

HW/FW 50 to 60 degrees dip

 

0.85m

 

0.20m

 

 

 

HW/FW 60 to 70 degrees dip

 

0.65m

 

0.30m

 

 

 

HW/FW 70 to 80 degrees dip

 

0.50m

 

0.40m

 

 

 

HW/FW 80 to 90 degrees dip

 

0.45m

 

0.50m

 

 

 

Stope Endwall Span 15m

 

 

 

 

 

0.30m

 

Stope Endwall Span 20m

 

 

 

 

 

0.40m

 

Stope Endwall Span 30m

 

 

 

 

 

0.60m

 

Stope Endwall Span 40m

 

 

 

 

 

0.80m

 

Stope Endwall Span +50m

 

 

 

 

 

1.00m

 

 

The tonnes and grade contained within the stope wireframes were extracted from the block model indicated resource data and external dilution and mining recover factors have been applied to estimate the probable reserves. The results have been summarized in Table 16.6.

TABLE 16.6:       THUNDER CREEK DEPOSIT ESTIMATED PROBABLE RESERVES

 

Item

 

Tonnes

 

Grade
(grams per tonne)

 

Ounces

 

Block Model Indicated Resource Above 3.0 g/t captured within the stope wireframes

 

1,830,506

 

6.99

 

411,376

 

Block Model Indicated Resource Below 3.0g/t captured within the stope wireframes (Planned Dilution)

 

628,500

 

1.85

 

37,382

 

Internal Waste Rock captured within the stope wireframes (Planned Dilution)

 

159,744

 

0.00

 

0

 

External Low Grade Material and Waste Rock (Unplanned Dilution)

 

304,509

 

1.00

 

9,806

 

Subtotal

 

2,923,259

 

4.88

 

458,564

 

90% Mining Recovery

 

2,630,933

 

4.88

 

412,708

 

Adjustment for 2012 Mining Plan (Inferred Resource Mined)

 

41,589

 

3.93

 

5,255

 

Reserves Mined to Surface

 

2,672,522

 

4.86

 

417,963

 

 

Further details of the Thunder Creek estimated probable reserves are included in Appendix 12.

 

A development schedule, production profile, and mine design has been completed to estimate the capital and operating costs required to access, develop, and extract the Thunder Creek Deposit reserves.  A cost (direct capital and operating) versus revenue evaluation was completed for each sublevel interval to confirm each sublevel will generate positive net cash.  In addition, a life-of-mine cash flow analysis has been completed to demonstrate that the probable reserves support major capital infrastructure.  The costs and cash flow analysis are included in Sections 21 and 22.

 

164



 

 

16.5                        HAULAGE

 

All ore and waste rock that will be skipped to surface will be hauled by trucks to the existing production shaft at the 650L grizzly/rockbreaker stations (or to a planned future additional rockbreaker station).

 

16.5.1              Timmins Deposit Underground Truck Haulage

 

Ore mined above 650L will be loaded into 42 tonne capacity haul trucks and hauled via the ramp to either 525L and dumped into an ore pass, or to 650L and dumped on the grizzly.  Waste rock from development activities will be dumped into open stopes (as backfill) or dumped into a waste pass that will gravity feed to 650L.

 

Below 650L, an LHD will load ore and waste rock into 42 tonne capacity haul trucks that will haul the material up the ramp and dump on the 650L grizzly.  The estimated productivity of a 42 tonne truck will range from 1,800 tonnes per day from 670L to 245 tonnes per day from 1290L.

 

As mining progresses deeper, additional trucks will be added to the fleet to maintain production.  Up to four 42 tonne trucks will be required for ore haulage, with additional capacity provided by the 36 tonne truck fleet (for hauling development waste rock).

 

16.5.2              Thunder Creek Deposit Underground Truck Haulage

 

Ore mucked from stopes above 800L will be trammed using LHD’s and dumped directly into an ore pass dump on each sublevel.  The ore pass will gravity feed to a truck loadout chute at 800L.  At the 800L truck loadout, 50 tonne class underground haul trucks will be loaded and will haul up the internal ramp to 730L and across the connecting ramp to the 650L rockbreakers at the Timmins West Mine.  The one-way haul distance will be approximately 1,400 metres, with a 31 minute round trip haulage cycle.  Ore mucked from stopes at 800L will be loaded into trucks using the LHD.  The trucks will also haul up to 730L and across to the Timmins West Mine 650L rockbreaker.

 

Waste rock from development will be handled through the waste pass system and will also be loaded into haul trucks through a truck chute at 765L.  Where possible, waste rock will be dumped directly into mined out stopes (as opposed to hauling and skipping to surface).

 

Three 50 tonne class trucks will be required (with excess capacity) to haul ore and waste rock from Thunder Creek to the rockbreakers at the Timmins West Mine.  As the mine matures and waste rock from development reduces, two 50 tonne trucks will be sufficient for hauling ore and the third truck will be a spare (or cycling through re-builds).

 

16.6                        DEVELOPMENT

 

Table 16.7 summarizes the estimated development quantities for the Timmins Deposit and Thunder Creek Deposit.  Seven development crews will be active in 2012 and 2013 to complete sufficient infrastructure development to support production ramp-up.  The estimated development advance per crew will be 4.5 metres per day (based on Lake Shore Gold operating experience and consistent with Stantec experience with other projects).  At the Timmins Deposit, development productivity will decrease as crews work deeper in the mine.  Crew advance will incrementally reduce to 3.5 metres per day.

 

165



 

As development requirements decrease, the development crews (and gear) will transition to MCAF crews for production.

 

TABLE 16.7:       ESTIMATED DEVELOPMENT QUANTITIES

 

Item

 

Timmins Deposit
(metres)

 

Thunder Creek Deposit
(metres)

 

Total
(metres)

 

Ramp

 

3,641

 

2,495

 

6,136

 

Capital Lateral Waste

 

6,221

 

4,402

 

10,623

 

Operating Lateral Waste

 

1,936

 

2,751

 

4,687

 

Operating Lateral Ore

 

1,818

 

1,666

 

3,484

 

Total Development

 

13,616

 

11,314

 

24,930

 

Raises

 

1,376

 

1,609

 

2,985

 

 

An estimated 2.5 million tonnes of waste rock will be generated from development and raising activities.  Where possible, waste rock will be dumped into mined out stopes as backfill, otherwise waste rock will be hauled to the 650L rockbreaker and subsequently skipped to surface (and possibly later returned underground for backfilling).  The annual waste rock generated from development and raising activities has been summarized in Table 16.8.

 

TABLE 16.8:       ANNUAL WASTE ROCK GENERATED FROM DEVELOPMENT AND RAISING

 

Year

 

Total Waste Rock
(tonnes)

 

Waste Rock
Hoisted
(tonnes)

 

Waste Rock
Hoisted
(tpd)

 

2012

 

611,100

 

305,550

 

873

 

2013

 

708,700

 

354,350

 

1,012

 

2014

 

440,600

 

220,300

 

629

 

2015

 

321,000

 

160,500

 

458

 

2016

 

142,600

 

71,300

 

203

 

2017

 

188,600

 

94,300

 

269

 

2018

 

59,500

 

29,750

 

85

 

2019

 

0

 

0

 

0

 

Total

 

2,472,100

 

1,236,050

 

 

 

 

The planned life of mine development and infrastructure is shown in Figure 16.11.

 

166



 

FIGURE 16.11:   PLANNED MINE INFRASTRUCTURE

 

 

16.6.1              Timmins Deposit

 

Ramp

 

The existing ramp extends from surface to 290L and from 455L to 730L.  The ramp connection between 290L and 455L will be completed and the ramp will extend to 1290L as mining progresses downward.

 

The ramp will be developed 5 metres wide by 5 metres high (arched back) at a maximum gradient of 15 percent.  The assumed ramp face advance will be 3 metres per day (based on current Timmins West Mine operating experience and consistent with Stantec experience with other projects).  The ramp development crew overall advance will be 4.5 metres per day when including remucks, establishing initial infrastructure on sublevels, safety bays, etc.  As mining progresses deeper in the mine, development crew productivity will decrease incrementally to 3.5 metres per day.  The ramp floor will include a layer of ballast material and the roadway will be maintained using a grader to help reduce equipment maintenance requirements.

 

Sublevel Infrastructure Development

 

Drawings for all sublevel development have been completed and are included in Appendix 11.  The main access to sublevels will be developed 5 metres wide by 5 metres high to accommodate haul trucks.  Ancillary development such as electrical substations will be developed off the level access and will have dimensions to suit the purpose and/or to accommodate the size of the development gear.  The infrastructure on sublevels will generally include:

 

167



 

·      Sublevel access drift.

·      Sump.

·      Electrical cut-out (for load centres, starters, communications etc.).

·      Remucks and truck turning/loading areas.

·      Material storage bays (on some levels).

·      Ore sill accesses.

·      Fresh air raise access drives.

·      Return air raise access drives.

·      Refuge Stations (on some levels).

 

The existing sublevel infrastructure at 650L is shown in Figure 16.12.

 

168



 

FIGURE 16.12:   EXISTING 650L INFRASTRUCTURE

 

 

169



 

Typical sublevel infrastructure for new sublevels below 650L is shown in Figure 16.13.

 

FIGURE 16.13:   TYPICAL TIMMINS DEPOSIT SUBLEVEL INFRASTRUCTURE 850L

 

 

16.6.2              Thunder Creek Deposit

 

Ramp

 

The main access to the Thunder Creek Deposit will be via the two existing connecting ramps from the Timmins Deposit at 275L and 730L.  The Thunder Creek Deposit internal ramp currently extends from 275L to 370L in the upper mine and from 695L to 730L in the lower part of the mine.  The ramp will eventually connect through and will extend down to 800L.

 

The ramp will be developed 5 metres wide by 5 metres high (arched back) at a maximum gradient of 15 percent.  The ramp floor will include a layer of ballast material and the roadway will be maintained using a grader to help reduce equipment maintenance requirements.

 

The existing haulage ramp from Thunder Creek Deposit (730L) to Timmins Deposit (650L) will require some roadbed (ballast) material and regular grading to provide an appropriate travelway for the haul trucks.

 

170



 

Sublevel Infrastructure Development

 

Drawings for all sublevel development have been completed and are included in Appendix 11.  The main access to sublevels will be developed 5 metres wide by 5 metres high.  Ancillary development, such as electrical substations will be developed off the level access and will have dimensions to suit the purpose and/or to accommodate the size of the development gear.  The infrastructure on sublevels will generally include:

 

·                  Sublevel access drift.

·                  Sump.

·                  Electrical cut-out (load centres, starters, communications etc.).

·                  Footwall haulage drift.

·                  Stope drawpoints and crosscuts.

·                  Material storage bays (on some levels).

·                  Fresh air raise access drives.

·                  Return air raise access drives.

·                  Ore and waste pass accesses and finger raise dumps.

·                  Refuge stations (on some levels).

 

The existing sublevel infrastructure at 730L is shown in Figure 16.14.

 

FIGURE 16.14:   EXISTING 730L INFRASTRUCTURE

 

 

171



 

Typical sublevel infrastructure for new sublevels above 730L is shown for the 660L in Figure 16.15.

 

FIGURE 16.15:   TYPICAL THUNDER CREEK SUBLEVEL INFRASTRUCTURE 660L

 

 

16.6.3              Ground Support

 

Primary Ground Support

 

Ground support will be installed in all underground excavations and will remain consistent with current practices.  Standard primary ground support in development headings will include 1.8 metre resin rebar (1.2 metre by 1.2 metre pattern) and welded wiremesh screen installed in the back and shoulders, and 1.8 metre resin rebar bolts in the walls (also on a 1.2 metre by 1.2 metre pattern).  Additional/alternate ground support measures may be required to accommodate local adverse ground conditions and may include shotcrete and/or cable bolts.  The existing ground control quality control program will continue to be implemented.

 

Secondary Ground Support

 

Preliminary geotechnical study work has concluded that under certain conditions secondary ground support (generally referring to cable bolting) may be required.  Stope wall dimensions have been designed in the “stable” region using the Stability Graph Analysis method (Hoek et al. 1995).  This is consistent with current practices at the operation.  An allowance for cable bolting has been included in the longhole stoping unit costs.

 

16.7                        DEVELOPMENT SCHEDULE

 

Development schedules have been completed for the Timmins Deposit and Thunder Creek Deposit.  The schedule starts January 1, 2013 and has been based on the development planned in the 2012 Budget prepared by Lake Shore.  Development schedule milestones for the Timmins Deposit are summarized in

 

172



 

Table 16.9 and for Thunder Creek in Table 16.10.  Additional development schedule details are included in Gantt charts in Appendix 12.

 

TABLE 16.9:       TIMMINS DEPOSIT DEVELOPMENT SCHEDULE MILESTONES

 

Milestone

 

Date

Above 650L

 

 

Upper ramp breakthrough

 

Q2 2014

Start developing upper levels

 

Q1 2015

260L to 230L Mining Block Ready for Production

 

Q1 2015

435L to 335L Mining Block Ready for Production

 

Q3 2015

650L to 525L Salvage Areas Ready for Production

 

Q2 2016

 

 

 

Below 650L

 

 

Ramp Complete to 890L

 

Q4 2013

Ramp Complete to 990L

 

Q4 2014

Ramp Complete to 1130L

 

Q2 2016

Ramp Complete to 1210L

 

Q1 2017

Ramp Complete to 1290L

 

Q1 2018

810L to 750L Mining Block Ready for Production

 

Q2 2013

890L to 830L Mining Block Ready for Production

 

Q2 2014

990L to 910L Mining Block Ready for Production

 

Q2 2015

1130L to 1050L Mining Block Ready for Production

 

Q1 2017

1210L to 1150L Mining Block Ready for Production

 

Q4 2017

1290L to 1230L Mining Block Ready for Production

 

Q2 2018

 

TABLE 16.10:    THUNDER CREEK DEVELOPMENT SCHEDULE MILESTONES

 

Milestone

 

Date

Upper Ramp Breakthrough

 

Q2 2014

660L Infrastructure Complete

 

Q2 2013

695L Primary Stopes Ready for Production

 

Q3 2013

625L Infrastructure Complete

 

Q1 2014

660L Primary Stopes Ready for Production

 

Q1 2014

590L Infrastructure Complete

 

Q3 2014

625L Primary Stopes Ready for Production

 

Q4 2014

415L Infrastructure Complete

 

Q3 2014

415L Primary Stopes Ready for Production

 

Q1 2015

450L Infrastructure Complete

 

Q4 2014

450L Primary Stopes Ready for Production

 

Q4 2014

485L Infrastructure Complete

 

Q1 2015

555L Infrastructure Complete

 

Q1 2015

590L Primary Stopes Ready for Production

 

Q2 2015

 

16.8                        PRODUCTION

 

The mine will operate two shifts per day, seven days per week.  Underground crews and maintenance workers will work 10.5 hour shifts.  Annual production has been based on 350 days per year.

 

173



 

16.8.1              Timmins Deposit Production

 

Production from the Timmins Deposit will ramp up to approximately 950 tonnes per day and will include a combination of ore development, MCAF stoping, and longitudinal Longhole stoping.  Production will be a combination of:

 

·                  Two to three MCAF crews at 250 tpd each.

·                  Two to three longitudinal Longhole stopes at 170 tpd each.

·                  Ore development up to 200 tpd.

 

Approximately 20% of the Timmins Deposit reserves (0.49 million tonnes) will be mined above 650L.  Of this quantity, 25% will be mined in 2012.  The remaining reserves above 650L will generally be salvage areas adjacent to previously mined out areas, and small independent mining blocks.  After 2012, production from these areas will be deferred until 2015 while the development and production focus will be below 650L.  In 2016, when production ramps down at Thunder Creek, crews and equipment will transfer to above 650L to increase Timmins Deposit production.

 

Approximately 80% of the Timmins Deposit reserves will be mined from below 650L.  Mining below 650L will progress in blocks as ramp development and sublevel infrastructure advances and the ventilation system expands.  Mining blocks will generally be 80 vertical metres (i.e. four sublevels) high.  Mining will commence at the bottom sublevel within a block and progress upwards within the block.  Stopes at the top sublevel in a block will be mined up to the backfilled stopes of the previously mined block above.  A conceptualized mining block is shown in the sketch in Figure 16.16.

 

FIGURE 16.16:   TYPICAL TIMMINS DEPOSIT MINING BLOCK BELOW 650L

 

 

174



 

Production will rely on prioritizing down ramp development to bring new mining blocks into production before depleting reserves in previously developed blocks (i.e. multiple blocks in production simultaneously).

 

The estimated average productivity from a MCAF crew within a mining block will be 250 tonnes per day.  The productivity is based on a MCAF crew producing from two headings (each requiring an attack ramp), each having 45 metres of stope strike length, with an average stope width of 7.9 metres.  The crew will cycle through the two headings producing 10,300 tonnes in 41 days (250 tonnes per day).

 

 

Longhole stopes will be 20 metres along strike, 20 metres high (24 metres along dip) with an average width of 8.2 metres (hangingwall to footwall).  The estimated productivity from a Longhole stope will average 170 tonnes per day through the mining cycle of the stope.  The productivity has been based on an average stope size of 10,125 tonnes (excluding ore sill development) and a 60 day mining cycle.

 

 

175



 

 

16.8.2              Thunder Creek Deposit Production

 

Production at Thunder Creek will ramp up to approximately 1,500 tonnes per day at steady state and will include a combination of ore development and transverse Longhole stoping.  Production will be a combination of:

 

·                  4 to 5 Longhole stopes at 350 tpd each.

·                  Ore development up to 200 tpd.

 

Longhole stopes will be mined in a primary/secondary stope sequence, with panels 15 metres wide along the strike of the resource.  The panels will be mined (opened) from the hangingwall to the footwall prior to backfilling.  The main stoping sequence will begin at 765L and advance upwards.  At steady state, the sequence will have 3 to 5 stopes active in some stage of the stope cycle at all times.

 

To supplement production from the main sequence, a smaller stoping block will be initiated at 415L in the upper part of the resource.  The smaller stoping block will contribute one to two additional active stopes in the production cycle and will provide production flexibility.

 

The estimated productivity from a Longhole stope will average 350 tonnes per day through the mining cycle of the stope.  The productivity has been based on an average stope size of 29,200 tonnes and an 83 day mining cycle.

 

 

An example of transverse longhole mining primary/secondary stope sequencing is shown in a sketch in Figure 16.17.

 

176



 

FIGURE 16.17:   EXAMPLE OF PRIMARY/SECONDARY STOPE SEQUENCING

 

GRAPHIC

 

16.8.3              Production Summary

 

The life of mine production profile (based on the reserves) is summarized in Table 16.11 and graphically in Figure 16.18 and Figure 16.19.  Additional production details have been included in Appendix 12.

 

Production will ramp up to approximately 2,400 tonnes per day by 2014 and will begin to ramp down in 2017.  It is expected that prior to ramp down, diamond drilling will have converted additional inferred resource material to the indicated category, with potential to locate further resource.

 

TABLE 16.11:    PRODUCTION SUMMARY

 

Production
Area

 

Total

 

2012

 

2013

 

2014

 

2015

 

2016

 

2017

 

2018

 

2019

 

Thunder Creek

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tonnes

 

2,672,522

 

263,849

 

529,087

 

537,478

 

525,696

 

547,677

 

268,734

 

0

 

0

 

Grade

 

4.8

 

4.6

 

4.8

 

5.3

 

4.8

 

5.0

 

4.1

 

0.0

 

0.0

 

Ounces

 

417,963

 

39,099

 

81,406

 

92,038

 

81,834

 

88,530

 

35,057

 

0

 

0

 

TPD

 

 

 

 

 

1,512

 

1,536

 

1,502

 

1,565

 

768

 

0

 

0

 

Timmins Deposit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tonnes

 

2,249,658

 

263,931*

 

269,417

 

328,967

 

336,268

 

301,174

 

342,245

 

352,522

 

55,134

 

Grade

 

5.6

 

4.5*

 

5.0

 

5.2

 

5.8

 

6.4

 

5.4

 

6.5

 

6.4

 

Ounces

 

405,885

 

38,930*

 

42,949

 

55,333

 

63,239

 

61,600

 

58,955

 

73,518

 

11,361

 

TPD

 

 

 

 

 

770

 

940

 

961

 

860

 

978

 

1,007

 

368

 

Total

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tonnes

 

4,922,180

 

527,780*

 

798,504

 

866,445

 

861,964

 

848,851

 

610,979

 

352,522

 

55,134

 

Grade

 

5.2

 

4.6*

 

4.8

 

5.3

 

5.2

 

5.5

 

4.8

 

6.5

 

6.4

 

Ounces

 

823,848

 

78,029*

 

124,354

 

147,371

 

145,073

 

150,130

 

94,021

 

73,518

 

11,361

 

TPD

 

 

 

 

 

2,281

 

2,476

 

2,463

 

2,425

 

1,746

 

1,007

 

368

 

 


*The Timmins Deposit 2012 Production Plan also includes a small amount of inferred resource material (53,075t @ 3.9g/t, 6,660 ounces) that is not included in this total.

 

177



 

FIGURE 16.18:   PRODUCTION SUMMARY (TONNES)

 

 

FIGURE 16.19:   PRODUCTION SUMMARY (OUNCES)

 

 

178



 

16.9                        PRODUCTION EQUIPMENT

 

The existing development, production, and auxiliary underground equipment fleet will continue to be used (where applicable), with additional equipment purchased as required to meet increased production demands.  The existing mobile equipment fleet and planned additions to the fleet (including spares) are summarized in Table 16.12.

 

TABLE 16.12:    UNDERGROUND MOBILE EQUIPMENT FLEET

 

Equipment Type

 

Existing Fleet

 

Planned
Additions
(2012)

 

Future
Additions
(2013+)

 

Total

 

2-Boom Jumbo

 

6

 

1

 

1

 

8

 

1-Boom Jumbo

 

1

 

1

 

0

 

2

 

LHD — 8 yd

 

2

 

0

 

2

 

4

 

LHD — 6 yd

 

10

 

1

 

0

 

11

 

LHD — 3.5 yd

 

3

 

0

 

0

 

3

 

LHD — 1.25 and 2 yd

 

3

 

0

 

0

 

3

 

20 Tonne UG Haul Truck

 

2

 

0

 

0

 

2

 

36 Tonne UG Haul Truck

 

3

 

1

 

0

 

4

 

42 Tonne UG Haul Truck

 

1

 

2

 

2

 

5

 

50 Tonne UG Haul Truck

 

0

 

0

 

3

 

3

 

Scissor Lift

 

8

 

2

 

2

 

12

 

Flat Deck Boom Truck

 

2

 

0

 

0

 

2

 

Grader

 

1

 

0

 

0

 

1

 

Personnel Carrier

 

2

 

0

 

2

 

4

 

Tractor/Minecat

 

5

 

1

 

2

 

8

 

Kubota RTV

 

11

 

4

 

0

 

15

 

Toyota UG Pick-Up

 

4

 

1

 

1

 

6

 

Blockholer

 

0

 

1

 

0

 

1

 

Emulsion Loader (Tractor)

 

0

 

1

 

0

 

1

 

Total

 

64

 

16

 

17

 

97

 

 

16.10                 VENTILATION

 

Steady state ventilation requirements have been estimated based on providing 0.06 cubic metres per second (cms) of fresh air per kilowatt (kW) of mobile equipment diesel power (including factors for engine utilization), for the equipment anticipated to be operating.  The equipment list and estimated ventilation requirements for the Timmins Deposit and Thunder Creek Deposit are shown in Table 16.13 and Table 16.14.

 

179



 

TABLE 16.13:    TIMMINS DEPOSIT STEADY STATE MOBILE EQUIPMENT AND VENTILATION

 

Purpose/Equipment Type

 

Fleet

 

kW/Unit

 

Utilization

 

CMS

 

Development

 

 

 

 

 

 

 

 

 

2-Boom Jumbo

 

2

 

58

 

15

%

1.0

 

6 yd LHD

 

2

 

187

 

80

%

17.9

 

Scissor Lift

 

2

 

86

 

40

%

4.1

 

MCAF

 

 

 

 

 

 

 

 

 

2-Boom Jumbo

 

2

 

58

 

15

%

1.0

 

6 yd LHD

 

2

 

187

 

80

%

17.9

 

Scissor Lift

 

2

 

86

 

40

%

4.1

 

Longhole

 

 

 

 

 

 

 

 

 

6 yd LHD

 

2

 

187

 

80

%

17.9

 

Haulage

 

 

 

 

 

 

 

 

 

36 Tonne Truck

 

2

 

298

 

80

%

28.6

 

42 Tonne Truck

 

4

 

392

 

80

%

75.2

 

Backfill

 

 

 

 

 

 

 

 

 

Scissor Lift

 

1

 

86

 

40

%

2.1

 

Services/Construction/Misc.

 

 

 

 

 

 

 

 

 

Service LHD

 

2

 

86

 

40

%

4.1

 

Scissor Lift

 

1

 

86

 

40

%

2.1

 

Personnel Carrier

 

1

 

86

 

40

%

2.1

 

Flatdeck Boom Truck

 

1

 

86

 

40

%

2.1

 

Emulsion Loader

 

1

 

74

 

40

%

1.8

 

Grader

 

1

 

82

 

40

%

2.0

 

Kubota RTV

 

7

 

16

 

40

%

2.8

 

Minecat

 

4

 

74

 

40

%

7.1

 

Totota Pick-up

 

3

 

100

 

40

%

7.2

 

Subtotal

 

42

 

 

 

 

 

201.0

 

Contingency 15%

 

 

 

 

 

 

 

30.2

 

Total

 

 

 

 

 

 

 

231.2

 

 

 

 

 

 

 

CFM

 

489,900

 

 

TABLE 16.14:    THUNDER CREEK STEADY STATE MOBILE EQUIPMENT AND VENTILATION

 

Purpose/Equipment Type

 

Fleet

 

kW/Unit

 

Utilization

 

CMS

 

Development

 

 

 

 

 

 

 

 

 

2-Boom Jumbo

 

3

 

58

 

15

%

1.6

 

6 yd LHD

 

3

 

187

 

80

%

26.9

 

Scissor Lift

 

3

 

86

 

40

%

6.2

 

Longhole

 

 

 

 

 

 

 

 

 

8 yd LHD

 

3

 

250

 

80

%

36.0

 

6 yd LHD

 

1

 

187

 

80

%

9.0

 

Haulage

 

 

 

 

 

 

 

 

 

36 Tonne Truck

 

2

 

298

 

80

%

28.6

 

50 Tonne Truck

 

3

 

485

 

80

%

69.8

 

Backfill

 

 

 

 

 

 

 

 

 

Scissor Lift

 

1

 

86

 

40

%

2.1

 

 

180



 

Purpose/Equipment Type

 

Fleet

 

kW/Unit

 

Utilization

 

CMS

 

Services/Construction/Misc.

 

 

 

 

 

 

 

 

 

Service LHD

 

2

 

86

 

40

%

4.1

 

Scissor Lift

 

1

 

86

 

40

%

2.1

 

Personnel Carrier

 

1

 

86

 

40

%

2.1

 

Flatdeck Boom Truck

 

1

 

86

 

40

%

2.1

 

Kubota RTV

 

7

 

16

 

40

%

2.8

 

Minecat

 

4

 

74

 

40

%

7.1

 

Totota Pick-up

 

3

 

100

 

40

%

7.2

 

Blockholer

 

1

 

40

 

15

%

0.4

 

Subtotal

 

37

 

 

 

 

 

207.8

 

Contingency 15%

 

 

 

 

 

 

 

31.2

 

Total

 

 

 

 

 

 

 

239.0

 

 

 

 

 

 

 

CFM

 

506,300

 

 

16.10.1       Timmins Deposit Ventilation

 

Based on the anticipated diesel equipment fleet, Timmins Deposit will require an estimated 231 cubic metres per second (cms) of fresh ventilation air.  The existing Timmins Deposit surface ventilation arrangement includes two 450 kW (600 hp) Alphair 8400AMF5000 fans (these fans have been installed, but are currently not in operation).  Fresh ventilation air will be delivered to the Timmins Deposit underground workings via an existing 4.5 metre by 4.5 metre raise system.  In general, the ventilation system to 650L has already been established.

 

During steady state operation, the majority of Timmins Deposit mining activity will be at 650L and below.  Gradual expansion of the ventilation system as mining progresses to 1290L will increase the system pressure.  To provide sufficient air volumes to depth, and relieve pressure demand on the surface fans, two 300 kW booster fans will be installed in the fresh air system at 650L.

 

As ramp development advances below 650L, two fresh air ventilation raises will be required.  A 3 metre by 3 metre “ramp” raise will facilitate ventilating ramp development and will be equipped with an escapeway to provide a second egress to 650L.  The second raise will be 4.5 metres by 4.5 metres and will be the main ventilation source for sublevel development and production.

 

From 650L to 1290L, return air will exhaust from sublevels via the ramp and a 4 metre by 4 metre return air raise.  Return air will split between the shaft and ramp and will be exhausted to surface.  The Timmins Deposit steady state ventilation system is shown in Figure 16.20.

 

16.10.2      Thunder Creek Ventilation

 

Thunder Creek will require an estimated 240 cms of fresh ventilation air.  The existing Thunder Creek surface ventilation system includes two 400 kW Alphair 8400AMF5000 fans (these fans currently provide ventilation to both the Timmins Deposit and Thunder Creek).  The fans have been designed to provide 203 cms at 3.0 kPa total pressure.  Fresh ventilation air will continue to be delivered to the Thunder Creek underground workings via the existing 4 metre diameter fresh air raise (FAR) from surface to 275L and the existing 4 metre diameter FAR from 275L to 730L.

 

To deliver the required capacity to Thunder Creek, the pressure on the surface fans will be reduced.  To accomplish this (and to avoid booster fans), a planned 4 metre diameter FAR from 730L to 395L will

 

181



 

operate in parallel with the existing FAR from 275L to 730L.  The two raises will be connected by drifts at 395L and 730L.  Two new fresh air raises will be required from 730L down to the bottom mining horizon at 870L.  An initial 3 metre by 3 metre raise will be equipped with an escapeway for secondary egress to 730L and will facilitate ramp development.  The second raise will be 4 metres by 4 metres and will provide fresh air for production.

 

A new return air raise to surface will exhaust Thunder Creek used ventilation air.  A 4 metre diameter raise will be bored in two legs; from 730L to 395L, and from 395L to surface.  Return air from below 730L will exhaust to 730L via a 4.5 metre by 4.5 metre return air raise.  Some ventilation air will transfer from Thunder Creek to the Timmins Deposit via the connecting ramps at 730L and 275L.  The Thunder Creek steady state ventilation system is also shown in Figure 16.20.

 

FIGURE 16.20:     TIMMINS WEST MINE VENTILATION SYSTEM

 

 

182



 

16.10.3       Mine Air Heating and Cooling

 

The existing surface fresh air ventilation plants at the Timmins Deposit and Thunder Creek each include two ACI-Canefco Inc., 118 cms mine air heaters.  Each heating unit has 22.5 MMBH of heating capacity.

 

The mine design extends to 1,290 metres below surface.  Mine air cooling requirements are not anticipated for mining at this depth.

 

16.11                 PERSONNEL

 

An existing core group of management, environmental, technical services (engineering/geology), administration, maintenance, supervisory, and production personnel will continue to operate the site.  Additional personnel will be hired (many in 2012) to support increased production activity.

 

The estimated personnel required on payroll during steady state operation is summarized in Table 16.15.

 

TABLE 16.15:      PERSONNEL ON PAYROLL (STEADY STATE)

 

Classification

 

Number

 

Site Management

 

 

 

General Superintendent

 

1

 

Electrical Superintendent

 

1

 

Maintenance Superintendent

 

1

 

Mine General Foreman

 

2

 

Administration Staff

 

 

 

HR Administrator

 

1

 

Reception

 

1

 

Purchasing

 

1

 

Warehouse Worker

 

2

 

Mine Clerk

 

1

 

Engineering Staff

 

 

 

Chief Mine Engineer

 

1

 

Senior Mine Engineer/Projects Engineer

 

3

 

Mine Engineer

 

1

 

Mine Planners

 

2

 

Longhole Planner/Coordinator

 

2

 

Surveyors

 

2

 

Ventilation Planner and Technician

 

2

 

Geology Staff

 

 

 

Chief Geologist

 

1

 

Senior Geologist

 

1

 

Mine Geologist

 

10

 

Resource Geologist

 

1

 

Diamond Drill Core Technicians

 

2

 

Health and Safety

 

 

 

Safety Coordinator

 

1

 

Trainer

 

2

 

 

183



 

Classification

 

Number

 

Environmental

 

 

 

Environmental Coordinator

 

1

 

Environmental Technician

 

1

 

Mine Operations Staff

 

 

 

Development/Production Shift Supervisor

 

10

 

Surface Supervisor

 

1

 

Maintenance Staff

 

 

 

Maintenance Supervisor

 

1

 

Hoist Electrical Supervisor

 

1

 

Hoist Mechanical Supervisor

 

1

 

Hoist/Electrical Planner

 

1

 

Maintenance Planner

 

1

 

Maintenance Clerk

 

1

 

SubTotal Staff

 

61

 

 

 

 

 

Mine Construction/Services — Hourly Indirect

 

 

 

Construction Miner

 

12

 

Underground Labourer

 

6

 

Rockbreaker Operator

 

4

 

Backfill Operator

 

8

 

Surface Yard Maintenance Loader/Truck Operator

 

13

 

Ammonia Treatment Plant Operator

 

6

 

Dry/Janitorial

 

4

 

Shaft — Hourly Indirect

 

 

 

Hoistperson

 

6

 

Cage/Skip Tender

 

5

 

Deckperson

 

4

 

Maintenance — Hourly Indirect

 

 

 

Lead Mechanic

 

4

 

Mechanic

 

20

 

Welder

 

1

 

Drill / Pump Mechanic

 

2

 

Mill Wright

 

9

 

Lead Electrician

 

6

 

Electrician

 

10

 

Hoist Electrician

 

2

 

Instrumentation

 

1

 

Cap Lamp Maintenance

 

1

 

Subtotal Hourly Indirect

 

124

 

Mine Development / MCAF — Hourly Direct

 

 

 

Lead Development Miner

 

46

 

Development Miner 1

 

76

 

 

184



 

Classification

 

Number

 

Mine Production — Hourly Direct

 

 

 

Longhole/Cable Bolt Driller (contractor)

 

16

 

Longhole Blaster/Cable Bolt Installer (contractor)

 

16

 

LHD Operator

 

24

 

Haul Truck Operator

 

28

 

Subtotal Hourly Direct

 

206

 

Total Personnel

 

391

 

 

16.12                 UNDERGROUND MINE SERVICES

 

The underground mine services will include electrical power distribution and communications, compressed air, service water, and dewatering.

 

16.12.1       Electrical Distribution and Communications

 

Power is delivered underground at 13.8 kVa via electrical cables installed in the existing shaft, with an additional 13.8 kVa line to underground planned for installation in 2012.  Once installed, the power supply will be sufficient for expansion of the mine into new productions areas.  Electrical substations (mine load centres) have been located at shaft stations and as required in electrical cut-outs on sublevels.

 

Communication has been established throughout the mine via an underground radio network (“leaky feeder”).  Underground shaft stations and refuge stations will have direct communications to surface.

The core of the electrical and communications systems have already been put in place and will expand accordingly as the mine develops into new production areas.

 

16.12.2       Compressed Air

 

The existing surface compressed air plant includes four Sullair 225 kW, 698 litre/second (1,480 cfm) compressors and one, Sullair 150 kW, 472 litre/second (1,000 cfm) compressor.  The overall plant capacity is 3,264 litres/second (6,920 cfm).  The existing plant capacity will be sufficient for future development and production activities.

 

Compressed air will be delivered underground via the existing 305 mm diameter pipe in the shaft.  The underground compressed air distribution system will consist of steel piping installed in the ramps and sublevels.  Compressed air will be required to power pneumatic equipment and/or activities including:

 

·                  Jackleg and stoper use.

·                  Pneumatic Anfo loaders.

·                  Blasthole/bootleg cleaning for development rounds.

·                  Pneumatic longhole drills.

·                  Longhole cleaning.

·                  Refuge station ventilation (pressurizing).

·                  Pneumatic cylinders for door controls.

·                  Pneumatic pumps for local dewatering.

·                  Main shop (pneumatic tools).

 

185



 

The estimated average compressed air requirements during steady state mining activity will be approximately 1,510 litre/second (3,200 cfm) with peaks approaching 3,210 litre/second (6,800 cfm) for short periods possible during the shift (if all compressed air users are operating simultaneously).

 

16.12.3       Service Water

 

Currently, all service water required for underground drilling operations, dust suppression, and washing work places is supplied from recycled water inflow from the surrounding rock mass.  Additional service water will be available (if needed) from surface sources.  Service water is supplied to the main levels via the existing 100 mm diameter pipe in the shaft and in the ramp.  Service water will be distributed underground via steel pipe in the ramp and on sublevels.  Service water will not be potable (i.e. not for drinking).

 

The estimated average service water requirements during steady state mining will be 81 cubic metres per hour.

 

16.12.4       Mine Dewatering

 

Water inflow from the surrounding rockmass and water used for drilling activities and dust suppression is currently collected in local sumps and directed to main sumps/pump stations at the Timmins Deposit (200L and 650L) through a network of drain holes and small pumps/dewatering lines (including a shaft bottom pump).  The inflow water is recycled and used for service water in the mine.

 

The 650L pump station includes two 225 kW (300 hp) pumps (one duty and one spare).  From the 650L pump station, clean (settled) water is pumped up the existing 152 mm diameter pipe in the shaft to the 200L pump station.  The 200L pump station includes two 150 kW (200 hp) pumps (one duty and one spare).  From the 200L pump station, a portion of the water is pumped to surface via piping in the ramp and in the shaft while the remaining water is returned to the service water supply piping network (in the shaft and ramp).  The current dewatering system capacity is approximately 102 cubic metres per hour (450 usgpm).

 

A full water balance study is currently under way at the site.  The current estimated mine dewatering rate ranges from 500 cubic metres per day to 800 cubic metres per day depending on the season (i.e. heavier water inflow during spring months).

 

As the mine expands into new production areas (including deeper), additional pump stations will be constructed and will feed into the existing dewatering system.  At Timmins Deposit, pump stations have been considered at 950L and 1250L.  Each pump station will include two 75 kW pumps (one duty and the other spare) with capacity to pump 60 cubic metres per hour.  The pump stations will transfer dirty water to the main sump at 650L.  At Thunder Creek, a new pump station has been included at 800L.  The 800L pump station will include two 40 kW pumps (one duty and the other spare) with capacity to transfer 60 cubic metre per hour of dirty water to the main pump station at 650L.

 

16.12.5       Roadbed Material

 

The maintenance of roadways will be essential in reducing the mobile equipment operating and maintenance costs and achieving high haulage truck availability.

 

Crushed/screened rock will be sourced from local contractors for use underground and will be delivered underground and distributed via production equipment and spread using the existing grader.

 

186



 

16.13                 MATERIALS SUPPLY

 

The Timmins West Mine is well positioned in the established Timmins mining district.  Consumable materials and external services required to support the mining operation will be sourced from local businesses or from other nearby mining centres (such as Sudbury, Kirkland Lake, North Bay, and Rouyn-Noranda).  A number of contracts have been established to support current site activities and these will be amended as required to meet production demands.

 

16.14                 MAINTENANCE

 

There are existing maintenance facilities on surface to support maintenance of surface equipment and smaller fixed plant equipment brought to surface from underground.

 

An underground maintenance shop has been constructed and equipped at the Timmins Deposit 650L.  Mobile equipment will be brought to the shop for servicing, preventive maintenance, and repairs.  A mechanic will be available (each shift) to service certain mobile equipment (such as longhole drills and jumbos) and tend to minor breakdowns in the field.  Fueling and lubricant facilities will be available at 650L, 525L, and 200L.

 

A small satellite maintenance shop has been planned for Thunder Creek in 2012 to support minor repairs and servicing of equipment used for Thunder Creek mining activities.

 

16.15                 SAFETY

 

The site has existing health and safety programs in place as required by the Ontario Occupational Health and Safety Act and Regulations for Mines and Mining Plants.  There is an existing Joint Health and Safety Committee and Mine Rescue Team and training facilities.

 

There is currently a full time Safety Coordinator on site and this position will remain filled for life of mine operations.  The Safety Coordinator will maintain site safety programs and initiatives.  There will be two trainers on staff.

 

16.16                 GEOTECHNICAL

 

A geotechnical engineering consultant (Mine Design Engineering) has been providing geotechnical support to Lake Shore Gold for the Timmins West Mine since the start of development.  The consultant has completed underground field work to assess rock mass properties and conditions.  Geotechnical data collection has been used for evaluating stope stability [primarily using the Stability Graph Analysis Method (Hoek et al. 1995)].  In general, stopes have been designed to be stable without the requirement for secondary ground support.

 

16.16.1       Thunder Creek

 

Rock Mass Character and Joint Structure

 

A geotechnical assessment of Thunder Creek has been completed by Mine Design Engineering (MDEng) to characterize rock mass quality, joint distribution and character, and domain delineation.  The Thunder Creek rock mass has been delineated into domains according to rock type (1. Pyroxenites, 2. Rusk and Sedimentary, 3. Porphyry, and 4. Mafic Metavolcanics).  Rock mass quality and the distribution of joint structure varies between these four identified domains.

 

187



 

Rock mass characterization for all domains at Thunder Creek is summarized in Table 16.16.  The pyroxenite is of quality good with Q’ ranging from 15 to 20 and RMR typically around 73.  The rusk and sedimentary domain is fair with Q’ ranging from 7 to 10 and RMR typically around 66.  The porphyry domain has the highest rock mass quality at Thunder Creek, it is very good with Q’ ranging from 43 to 50 and RMR typically around 88.  Lastly, the mafic metavolcanics are good with Q’ ranging from 13 to 40 and typical RMR values estimated at 72.

 

TABLE 16.16:    ROCK MASS CHARACTERIZATION SUMMARY BY ROCK UNIT MAPPED AT THUNDER CREEK

 

Unit

 

Ja
Range (typical)

 

Jr
Range (typical)

 

Jn

 

RQD

 

Q’*

 

RMR

 

Pyroxenite

 

0.75 to 2 (1)

 

1 to 3 (3)

 

12

 

60-80

 

15 to 20

 

56-85 (73)

 

Rusk and Sedimentary

 

1 to 2 (1)

 

1

 

6

 

40-60

 

7 to 10

 

41-75 (66)

 

Porphyry

 

0.75 to 1 (1)

 

1 to 3 (3)

 

6

 

85-100

 

43 to 50

 

77-88 (83)

 

Mafic Metavolcanics

 

0.75 to 1 (1)

 

1 to 2

 

4 to 6

 

80

 

13 to 40

 

59-88 (72)

 

 


*where typical values are noted for Ja and Jr those are used to define Q’

 

The nature of jointing in the Thunder Creek rock mass is very scattered and random, and the joint structure varies between the rock mass domains as summarized in Table 16.17.  The prominent joint set (A) is sub-parallel to foliation and joint sets B, C, D, and E are weakly defined.  Joints are typically smooth to rough and undulating to planar with typically clean joint surfaces or quartz infilling.

 

TABLE 16.17:    SUMMARY OF THUNDER CREEK JOINT SETS BY DOMAIN

 

(DD = Dip Direction, SD = 2 Standard Deviations of variability, all values are in degrees)

 

Domain

 

Pyroxenites

 

Rusk and
Sedimentary

 

Porphyry

 

Mafic Metavolcanics

 

Set ID

 

Dip

 

DD

 

SD

 

Dip

 

DD

 

SD

 

Dip

 

DD

 

SD

 

Dip

 

DD

 

SD

 

A

 

64

 

341

 

20

 

54

 

320

 

20

 

 

 

 

 

 

 

81

 

330

 

10

 

B

 

65

 

201

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

51

 

030

 

11

 

42

 

051

 

8

 

 

 

 

 

 

 

51

 

012

 

14

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

22

 

319

 

19

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

173

 

19

 

 

 

 

 

 

 

 

UCS (unconfined compressive strength) testing has been completed for Thunder Creek in 2010 and 2011, data from those testing campaigns is provided in Appendix 10.

 

In-Situ Stress

 

Thunder Creek in-situ stress state has been estimated based on in-situ stress testing completed at Dome Mine (report provided to MDEng by LSG titled: Arjang, B., Pre-Mining Ground Stresses at the Dome Mine, South Porcupine, CANMET 1988).  The assumed stress state at Thunder Creek (s1 parallel to orebody strike) is summarized in Table 16.18.

 

188



 

TABLE 16.18:    ASSUMED IN-SITU STRESS STATE AT THUNDER CREEK

 

 

 

sv

 

sh1

 

sh2

 

Magnitude (MPa)

 

gravity

 

1.6sv

 

1.2sv

 

Dip (°)

 

90

 

0

 

0

 

Dip Direction (°)

 

0

 

60

 

330

 

 

It has been recommended that in-situ stress testing be completed at the Timmins West Mine.

 

Stability Assessment of Proposed Mining Methods

 

A ground stability assessment of the mining methods, proposed by Lake Shore Gold for the Thunder Creek Deposit, has taken into consideration both stope size and sequencing.  Preliminary stope dimension analysis has been conducted using the Stability Graph Analysis method (Hoek et al. 1995).  Recommendations for stope face maximum hydraulic radius (HR) dimensions have been made and are summarized in Table 16.19 and Table 16.20.  The poorest stope face performance is expected in the rusk unit which is sheared and intensely foliated.  The rusk and sedimentary lithologies are of lower rock mass quality than all other Thunder Creek rock mass units.  Challenges with instability and dilution are anticipated when mining within and adjacent to this rock unit.  The rusk unit is traceable by drilling (Rhys, 2010), and so proactive identification of this weak unit will be pertinent to mine planning so that stope design can adequately account for the lower rock mass quality.

 

TABLE 16.19:    HR RECOMMENDATIONS FOR UPPER MINING AREA

 

Face

 

Maximum HR
(unsupported)

 

Maximum HR
(cablebolted)

 

Back (porphyry)

 

6.5

 

9

 

Back (rusk)

 

5

 

7.5

 

FW

 

8

 

 

HW (porphyry)

 

10.0

 

 

HW (pyroxenite)

 

7.0

 

10.5

 

HW (rusk)

 

6.0

 

8.5

 

Endwall (porphyry)

 

15.0

 

 

Endwall (rusk)

 

7.0

 

 

 

TABLE 16.20:    HR RECOMMENDATIONS FOR LOWER MINING AREA

 

Face

 

Maximum HR
(unsupported)

 

Maximum HR
(cablebolted)

 

Back (porphyry)

 

5.0

 

7.5

 

Back (rusk)

 

3.5

 

6.0

 

Endwall (porphyry)

 

14.0

 

 

Endwall (rusk)

 

7.5

 

 

FW

 

4.5

 

 

HW(porphyry)

 

12.5

 

12.5

 

HW(pyroxenite)

 

7.0

 

9.5

 

HW (rusk)

 

6.5

 

9.0

 

 

189



 

Table 16.21 and Table 16.22 summarize the prefered stope dimensions (as suggested by Lake Shore Gold: 15 metre stope strike lengths, varying hangingwall to footwall spans depending on ore body thickness, with level heights of 17.5 metres, 25 metres, and 35 metres under consideration) and associated hydraulic radii.

 

TABLE 16.21:    HANGINGWALL HR FOR STOPES WITH VARYING STRIKE LENGTH AND VARYING LEVEL SPACING

 

Level Spacing

 

17.5 m

 

25 m

 

35 m

 

25 m strike

 

5.1

 

6.3

 

7.3

 

20 m strike

 

4.7

 

5.6

 

6.4

 

15 m strike

 

4.0

 

4.7

 

5.3

 

 

TABLE 16.22:    STOPE BACK AND ENDWALL HR FOR STOPES WITH VARYING HANGINGWALL TO FOOTWALL SPAN

 

HW-FW span

 

20 m

 

30 m

 

40 m

 

50 m

 

60 m

 

Endwall HR

 

 

 

 

 

 

 

 

 

 

 

17.5 m level spacing

 

4.7

 

5.5

 

6.1

 

6.5

 

6.8

 

25 m level spacing

 

5.6

 

6.8

 

7.7

 

8.3

 

8.8

 

35 m level spacing

 

6.4

 

8.1

 

9.3

 

10.3

 

11.1

 

 

 

 

 

 

 

 

 

 

 

 

 

Back HR

 

 

 

 

 

 

 

 

 

 

 

25 m strike

 

5.6

 

6.8

 

7.7

 

8.3

 

8.8

 

20 m strike

 

5.0

 

6.0

 

6.7

 

7.1

 

7.5

 

15 m strike

 

4.3

 

5.0

 

5.5

 

5.8

 

6.0

 

 

To avoid extensive cablebolting in the upper mining area it is recommended that stope strike length not exceed 20 metres.  With a 15 metre stope strike length it is expected that hangingwall stability can be maintained with 35 metre level spacing.  Furthermore, with 35 metre level spacing, endwalls are expected to perform well provided the hangingwall to footwall span does not exceed 20 metres in rusk.  Larger stope dimensions in the upper mining area can be achieved if stope backs and hangingwalls are cablebolted, for example 25 metre strike lengths with 35 metre level spacing.

 

With the preferred stope dimensions summarized above it is likely cablebolting will be required to maintain stope back stability in rusk in the lower mining area.  Stope backs in porphyry are expected to perform well with 15 metre strike lengths and hangingwall to footwall spans not exceeding 30 metres.  With a 15 metre strike length, it is expected that hangingwall stability can be achieved without cablebolting if 35 metre level spacing is utilized.  With these stope dimensions, endwalls are predicted to perform well.  If cablebolting is utilized for stope backs in porphyry it will be possible to take the entire hangingwall to footwall span at once which will speed up the mining cycle, however difficulties with remote mucking in such long stopes may be encountered.

 

190



 

Three-dimensional linear-elastic numerical models have been developed and analyzed to predict the distribution of in-situ stresses over the planned mine life using the modelling software Examine3D TM (RocScience Inc.).  Based on the proposed Thunder Creek mine sequences(1), and assumed model input parameters there are no stress related challenges anticipated over the life of mine.  Very little seismicity is predicted and stress induced damage is expected to be very localized and minor.  Modelling results suggest no preference for either top-down or bottom-up sequence in the upper mining block; this may be decided by production demands.  Low strength factor values are predicted for some stope endwalls, footwalls, and backs where stress shadowing may contribute to gravity driven instability, which can be controlled by standard support in good condition.

 

Long Term Stability of Major Mine Infrastructure

 

Long term stability of major mine infrastructure has also been evaluated based on the anticipated stress distribution at the end of mine life.  Following current plans for mine development, permanent mine infrastructure will be located sufficiently far from the ore zone so that no significant stress induced instability is anticipated.  The minimum recommended standoff distance is a maximum of roughly 6 metres from the footwall at the lower extents of Thunder Creek.

 

Monitoring and Instrumentation

 

It has been recommended that all 4-way intersections and 3-way intersections with spans exceeding 6.5 metres (the approximate 3-way intersection span assuming a 5 metre drift width) be instrumented with SMART cablebolts or extensometers to monitor support load and ground deformations.  The top cuts of stopes extracted early in mine life should also be instrumented as a means to validate and optimize cablebolt pattern design; once cablebolt design is optimized back instrumentation will not be required for non-entry stopes.

 

16.16.2       Timmins Deposit

 

Rock Mass Character and Joint Structure

 

Assessment of the Timmins Deposit rock mass character by MDEng has been limited to the Ultramafics (UM) host rock and the talc-schist unit (between 650 and 545 Levels) as these have been the lithological units of interest for mine stability analyses.  The host rock has an estimated Geological Strength Index (GSI) of 55 to 75, the talc-schist GSI is estimated at 30 to 40.  The prominent joint set (J1) is sub-parallel to foliation and the ore contact; this set dips roughly 45° to the northwest.  Two weakly defined joint sets have also been identified.  J2 has an estimated orientation of 75°/165° (dip/dip direction) and the third set (J3) dips shallowly to the south(2).  Joint surfaces where observed to typically be smooth and planar to undulating and joint surfaces are commonly unaltered or have calcite infilling (particularly for J3).  The rock mass quality is good with a Modified Rock Quality Index (Q’) estimated at 8.9 to 40.

 

UCS (Unconfined Compressive Strength) testing was completed for the Timmins Deposit in 2009 and data from that testing campaign have been provided in Appendix 10.

 


(1)  Three sequences have been assessed, including two sequences with transverse stopes (30 m along strike x 30 m hangingwall to footwall x 35 m level spacing) are utilized in the lower mining block and longitudinal stoping (25 m on strike x 15 m hangingwall to footwall x 40 m level spacing for levels 9459 to 9599; 50 m on strike x 20 m hangingwall to footwall x 30 m level spacing above 9599 level) proposed for the upper mining block.  A third mine sequence utilizes transverse stoping (15 m on strike x varying hangingwall to footwall span x 35 m level spacing below 485 level and 20 to 25 m on strike x varying hangingwall to footwall span x 35 m level spacing above 485 level).

 

(2)  The provided estimates of joint set orientation are based on very little data, additional geotechnical data is required to improve confidence in the joint set orientations.

 

191



 

In-Situ Stress

 

Timmins West in-situ stress state is assumed to be the same as the Thunder Creek in-situ stress state (Table 16.18).

 

Stability Assessment of Proposed Mining Methods

 

Stope stability analyses by MDEng have largely focused on back analysis of UM1 stopes located between 650 and 545 Levels to explain the geomechanical controls on significant stope back and hangingwall overbreak.  This has involved 2- and 3-dimensional numerical analyses as well as empirical stope stability assessment.  Back analyses have concluded that the low strength talc-schist unit in the UM1 footwall cuts off horizontal stresses (s2) perpendicular to the orebody strike.  As a result, the UM1 ore body is partially stress shadowed and low confinement has contributed to the susceptibility of stope backs to overbreak.  Numerical and empirical analyses both predict stope back and hangingwall instability similar to what has been experienced.

 

It has been recommended that all stope backs with HR exceeding 5 and hangingwalls with HR exceeding 7.5 in the UM1 be cablebolted to improve stability and reduce dilution.  Cablebolting of stope backs in the UM2 has also been recommended to reduce dilution.

 

Numerical simulations suggest that the pillar between the UM1 and UM2 have incurred significant rock mass yield.  To maintain integrity of the UM1/UM2 pillar and avoid further raveling of UM1 stopes, it is recommended that stopes be completely backfilled prior to mining adjacent stopes.

 

The performance of UM stopes located below 650 Level has been assessed based on the assumption that the UM zone below 650 Level is hosted in a very similar environment to the UM zones above 650 Level zones, and that the geotechnical conditions are expected to be very similar to the upper UM zones.  Lake Shore Gold has proposed stope dimensions of: 20 metre level intervals (24 metre floor to back), 20 metre span on strike, and 20 metre hangingwall to footwall span for UM mining below 650 Level.  These dimensions return HR as follows:

 

HW HR = 5.5

Back HR = 5

Endwall HR = 5.5

 

Stopes near the upper extent of this lower mining region (near 650 metre depth) are expected to have stable stope faces when unsupported.  However at depth (near 1,220 metre depth) higher in-situ stress magnitudes will contribute to stope wall instability.  For stopes at depth it has been suggested by MDEng that stope strike span be reduced to 10 metres to maintain hangingwall stability.  Alternatively, if stope hangingwalls are cablebolted (if accessibility permits) the stope strike length may be increased to as much as 35 metres.  To maintain stope back stability at depth it has been recommended that the stope strike length be reduced (i.e. 10 metre strike length, as per the hangingwall recommendation) and that the hangingwall to footwall span be limited to no more than 20 metres.  If stope backs are cablebolted the strike length can be increased to as much as 35 metre strike length with 20 metre hangingwall to footwall span.  It is not considered feasible to cablebolt stope endwalls due to accessibility limitations; anticipated stope endwall dilution can be reduced by reducing the hangingwall to footwall span to 15 metres.

 

It has been recommended that stope stability assessment be updated once additional geotechnical data, and records of stope performance become available in the lower mining areas.

 

192



 

16.17                 BELL CREEK TAILINGS FACILITY

 

Ore mined to date from the Timmins West Mine has been milled at Lake Shore’s existing Bell Creek Mill.  All future ore mined from the Timmins West Mine will also be processed at the Bell Creek Mill (refer to Section 17.0).

 

The Bell Creek tailings facility is part of the Bell Creek complex.  The facility first received tailings from the Bell Creek Mine in 1986 at an initial rate of 300 tpd and later increased to 1,500 tpd by 2002.  Production from the Bell Creek Mine ceased in 2002 and the tailings facility was placed in a state of inactivity (care and maintenance) from 2002 to 2008.  The Bell Creek Mill resumed operation in the last quarter of 2008 and the tailings facility was reactivated.  The Bell Creek Mill currently processes ore from both the Bell Creek advanced exploration project and the Timmins West Mine at a nominal rate of 2,000 tpd.

 

The tailings facility is located west of the Bell Creek mill, covers an area of approximately 75 ha, and includes the following:

 

·                  Two tailings cells (Phase 1/2 cell, Phase 3 cell).

·                  Clear water pond.

·                  Effluent treatment pond.

 

Tailings are pumped in a conventional slurry stream (40% to 45% solids) from the mill to the tailings facility for deposition.

 

The Bell Creek mill is currently undergoing an expansion to increase throughput capacity to 3,000 tpd by the fourth quarter of 2012.  A phased expansion of the Bell Creek tailings facility will follow, with the first phase of expansion planned for completion in 2014.  The new tailings area will be expended incrementally and will ultimately hold 20 million tonnes of tailings material.

 

Reference for this data (Golder Associates Technical Memorandum Mar 8, 2012).

 

The Bell Creek Tailings facility is shown in Figure 16.21.

 

193



 

FIGURE 16.21:     BELL CREEK TAILINGS FACILITY

 

 

194



 

17.0                        RECOVERY METHODS

 

Mineralized rock from the Timmins West Mine is milled exclusively at the Bell Creek Mill located approximately 6.5 kilometres north of Highway 101 in South Porcupine, Ontario.  The current 2,000 tonne per day processing plant consists of a crushing circuit, a two-stage grinding circuit with gravity recovery, followed by oxidation and cyanidation of the slurry and CIL and CIP recovery.  Ore from the Timmins West Mine is trucked to the Bell Creek Milling Facility.  The round trip haul distance is approximately 112 kilometres.

 

17.1                        HISTORY

 

The Bell Creek Mill was established as a conventional gold processing plant utilizing cyanidation with gravity and CIP recovery.  Between 1987 and 1994 the mill processed 576,017 short tonnes of Bell Creek ore grading 0.196 ounce per short tonne Au (112,739 recovered ounces).  The historical gold recovery was approximately 93 percent.  Additional tonnage from the Marlhill Mine, Owl Creek open pit, and Hoyle Pond Mine was processed prior to the mill being placed on care and maintenance in 2002.  During this period several improvements and additions were implemented to increase tonnage throughput from the original 350 tonnes per day to 1,500 tonnes per day.  Lake Shore purchased the mill in 2008 and re-commissioned the mill for operation in 2009 at 1,000 tonnes per day.  The mill was expanded to 2,000 tonnes per day in the fourth quarter of 2010 and is currently operating at this capacity.

 

17.2                        BELL CREEK MILL PROCESS DESCRIPTION

 

17.2.1              Current Process (Pre-Phase 2 Expansion)

 

Mineralized rock is trucked to the Bell Creek Mill site from the Timmins West Mine and is stored outside on the ground until processed.  Ore is dumped by a loader onto a grizzly and a rockbreaker is used to handle the oversized material.  The ore is fed with a track feeder to a 76 cm x 101 cm (30 inch x 40 inch) Nordberg jaw crusher (C100B).  The discharge from the crusher is conveyed to the sizing screen.  Undersize (-½ inch) material reports to the fine ore bin (FOB).  The oversize material reports to the coarse ore bin (COB) which feeds an HP300 Nordberg cone crusher.  The crushed material will circulate until it passes through the ½ inch screen and reports to the fine ore bin.

 

The grinding circuit consists of two ball mills in series.  The primary mill is 3.7 metre x 4.9 metre and the secondary mill is 3.8 metre x 4.4 metre.  The primary mill is fed from the FOB and is single pass.  The primary cyclone overflow reports to the thickener feed box and the underflow reports to the secondary mill (there is a 30 inch Knelson concentrator that takes a bleed from this material for gravity gold collection, while the secondary mill is in closed circuit with the secondary cyclones).  The secondary overflow reports to the thickener feed box with the underflow reporting back to the secondary mill (there is a 20 inch Knelson concentrator that takes a bleed from this material for gravity gold collection).  The gravity gold reports to the gravity gold hopper while the Knelson discharge reports to the feed of the secondary mill.  Both primary and secondary cyclone packs are made up of high efficiency Cavex cyclones, where 80% -200 mesh is being achieved.  Lime is added to this circuit to maintain a pH of 11.2 to create a stable alkaline environment for the addition of sodium cyanide.

 

Flocculent is added to the combined cyclone overflow from both circuits and this slurry is pumped to the 20 metre diameter thickener.  The slurry from the cyclones is 32% solids by weight with the thickener underflow at approximately 54% solids by weight.  The excess water is recovered and used in the

 

195



 

process.  If cyanide is added to the grinding circuit the solution will be gold-bearing and will be pumped through carbon columns to recover the gold before going back to the process.  The thickened slurry is pumped to the leach circuit.  The leach circuit consists of five agitated tanks in series with a total volume of 1,940 cubic metres.  Cyanide is added to tank No. 1.  Each of the leach tanks has air or pure oxygen pumped into it which maintains a high dissolved oxygen level (this is required for the cyanide to dissolve the gold).

 

The carbon-in-leach (CIL) tank is approximately 1,900 cubic metres and contains 15 grams of carbon per litre of slurry.  Retention time in the CIL tank is 19 hours.  The circuit will reach equilibrium for loading of the carbon.  Usually, the grade of the loaded carbon is in excess of 4,500 grams per tonne.  Loaded carbon is pumped from #1 CIL tank, screened, washed, and then transferred to the loaded carbon tank.  A portion of carbon from #1 CIP tank is advanced forward.  The strip vessel is located in the CIP circuit.

 

The slurry from the CIL tank reports to the carbon-in-pulp (CIP) circuit which consists of six tanks with approximately 4 tonnes of activated carbon in each tank.  The retention time is four hours based on 2,000 tonnes of material.  The carbon columns hold 1.3 tonnes of carbon.  These are used if the practice of grinding in cyanide is used.  The carbon from the carbon columns is also pumped across the loaded carbon screen and columns are advanced forward.  Recovery of the gold from the carbon is a batch process with carbon being stripped at a rate of 3 tonnes per batch.  The turnaround time between batches is 24 hours.  Carbon is cleaned with acid, reactivated with the kiln and reused in the circuit.

 

The loaded solution from the strip circuit is passed through the electrowinning cell in the refinery.  The gold collects on the cathodes in a sludge form.  The cell is washed weekly and the sludge is collected in filter bags and dried.  The dried sludge is then mixed with reagents and melted in the induction furnace.  Gold bullion bars are poured when the melt is completed.

 

The gravity gold material collected from the Knelson concentrator is transferred to the refinery and a shaker table is used to increase the gold content.  The concentrate is then dried, reagents are added and the material is melted in the induction furnace.  The gravity concentrate and the CIP gold sludge are melted separately due to the differing amounts of reagents used in each.

 

17.2.2              Phase 2 Expansion

 

The Bell Creek Mill currently processes 2,000 tonnes per day.  The Phase 2 expansion will increase the mill throughput capacity to 3,000 tonnes per day.  The “front end” of the expansion will be designed and built to a capacity of 5,500 tonnes per day, matching the capacity of the new SAG mill.  Improvements at the “back end” of the process include the added capacity of two additional CIL tanks and a high capacity thickener.

 

Trucks will offload directly onto a grizzly.  A remote controlled rockbreaker will be used to handle any oversized material.  Material will be fed to an 80 tonne capacity hopper and apron feeder which will subsequently feed a conveyor belt leading to the crusher house.

 

Once in the crusher house, ore will dump onto a vibrating grizzly for sizing.  Any plus (+) 6 inch material will go through the jaw crusher (44” x 34”) and then will combine with the minus (-) 6 inch material that bypassed the crusher.  The sized ore material will be conveyed from this location to the ore storage dome.

 

196



 

Ore will be pulled from the 7,000 tonne capacity ore storage dome by three apron feeders and a conveyor belt located in a tunnel under the storage dome.  The ore flows from the storage dome to the SAG mill.  The 5,500 tonne per day SAG mill is 6.7 metres in length x 11.1 metres in diameter and is powered by twin 4,500 kW (6,000 hp) motors.  The slurry, at approximately 65% solids, will be discharged from the SAG mill and pumped to the primary cyclones.  Cyclone overflow will report to a 20 metre high efficiency thickener with underflow reporting back to the SAG mill.  The existing 3.8 metre x 4.4 metre ball mill will be used for secondary grinding.  Thickener underflow will report to the leach circuit.  Leach tanks No. 1 to No. 3 will be used for oxidation of the slurry before the addition of lime and cyanide for leaching.  Cyanide slurry will report to two new 15.7 metre x 15.7 metre CIL tanks and then to the original CIL tank.  The adsorption of the gold onto the carbon will begin in the CIL circuit.  Finally, the slurry will flow by gravity to the original CIP circuit, then to tailings.

 

17.3                        METALLURGICAL BALANCE

 

A metallurgical balance is conducted daily based on the tonnage from the double toggle belt weightometer.  The total tonnage, corrected for moisture, and assays from the daily sample campaign are used to produce the balance.  All samples are assayed in accordance with typical assay standards and a QA/QC program is in place to ensure the integrity of the assay lab processes.  The main components used to calculate the daily balance are the cyclone overflow solids and solution, the weight of gravity gold collected, the estimated grade, and the tailings sample solids and solution.  The daily metallurgical balance is a best estimate of daily production which must then be reconciled with the circuit inventory and bullion poured (this reconciliation is performed on a monthly basis).  Only designated personnel perform the mill reconciliation.  All areas of the circuit are sampled and percent solids are recorded for each slurry tank.  Levels are recorded for all carbon bins and pregnant and barren tanks.  As the carbon contains the majority of the gold in inventory, strict care is taken to ensure sampling is performed correctly.

 

The final clean out of the electro-winning cell is completed by the refiner or his designate, under security control.  All sludge is collected and dried.  The washed, dry cathodes from the cell are weighed and the weights are recorded to determine whether any plating buildup is occurring.  The dried cell sludge and the gravity concentrate collected over the same period are smelted and bullion bars are poured.  The bars are stamped and their weights are recorded and verified.  Bullion samples are taken and are assayed at the Bell Creek Lab.  These sample results are used in the metallurgical balance.

 

The simplified milling process and the sampling points are shown in Figure 17.1.

 

197



 

FIGURE 17.1:     SIMPLIFIED MILLING PROCESS AND SAMPLING POINTS

 

 

198



 

17.4                        ACTUAL MINERAL PROCESSING RESULTS OF TIMMINS WEST MATERIAL

 

The actual processing results of Timmins West Mine material are shown in Table 17.1 and Table 17.2 below.

 

TABLE 17.1:       TIMMINS WEST MINE MATERIAL PROCESSED IN 2010

 

Ore Type

 

Tonnes
Processed

 

Grade
(grams Au/tonne)

 

Recovery

 

Ramp Ore

 

100,574

 

2.91

 

96.09

%

Shaft Ore

 

154,668

 

6.97

 

96.96

%

Thunder Creek

 

2,824

 

5.21

 

96.87

%

 

TABLE 17.2:       TIMMINS WEST MINE MATERIAL PROCESSED TO END THIRD QUARTER 2011

 

Ore Type

 

Tonnes
Processed

 

Grade
(grams Au/Tonne)

 

Recovery

 

Ramp Ore

 

48,322

 

3.00

 

96.75

%

Shaft Ore

 

232,182

 

3.87

 

96.70

%

Thunder Creek

 

74,577

 

3.65

 

97.00

%

 

Gold recovery from all Timmins West Mine materials have met expectations established by test work completed prior to plant start-up.  All materials yield a consistent high recovery even with variable grade.  The average grind size to achieve these recoveries is a P80 of 75 micron.  All reagent consumptions remained at normal levels for the different materials processed.  Gravity recovery averaged 25% to 30% through this operational period, which was somewhat below expectations.  Operational issues related to gravity recovery have been identified and changes aimed at increasing gravity recovery are planned.

 

199



 

18.0                        PROJECT INFRASTRUCTURE

 

18.1                        TIMMINS WEST MINE SITE

 

The existing surface and underground infrastructure at the Timmins West Mine site has been described in Section 16.

 

18.2                        BELL CREEK MILL SITE

 

The existing infrastructure at the Bell Creek Mill site has been described in Sections 16.16 (Bell Creek Tailings Facility) and 17.0 (Recovery Methods).

 

200



 

19.0                        MARKET STUDIES AND CONTRACTS

 

Markets for the gold produced by the Company are readily available.  These are mature, global markets with reputable smelters and refiners located throughout the world.  Markets for doré are readily available.  Demand is presently high with prices for gold showing remarkable increases during recent times.  The 36-month average London PM gold price fix through February 2012 was US $1,421/oz.

 

The Company has numerous contracts with external third party entities, none of which are considered individually material to the overall economics of the Company.

 

201



 

20.0                        ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

 

20.1                        REGULATORY AND FRAMEWORK

 

This section provides an overview of the environment related authorizations that are required for the operation of Timmins West Mine.  Legislation related to routine operational monitoring, reporting, and notifications is not discussed herein.

 

20.1.1              Provincial Environmental Assessments

 

Mining projects, normally being private projects, are generally not subject to the Environmental Assessment Act unless designated.  If a project becomes designated, then the project must complete an Individual Environmental Assessment (EA) prior to any permits being issued.

 

The provincial environmental assessment process is often triggered by specific components of a project rather than the entire project itself.

 

A Class EA process may apply to the project as a result of approvals under the Ministry of Natural Resources (MNR).  Typically, Class EAs are required for work on roads and dikes, roads and water crossings, stream bank rehabilitation work, and related construction including dredging and filling activities.  The Class EA must be completed prior to the issuance of the Land Use Permit or Work Permit under the Public Lands Act and the Lakes and Rivers Improvement Act, respectively.

 

Class EAs may also be triggered for approvals issued by the Ministry of Transportation (MTO) as a result of construction or re-alignment of a provincial highway during the development of a mining project.  Some transmission lines and transformer station projects are also subject to review under the Class EA for minor transmission facilities.

 

20.1.2              Federal Environmental Assessments

 

The Canadian Environmental Assessment Act (CEAA) applies to mining projects for which the federal government exercises authority on some aspect of the Project.  For mining projects, the CEAA process is usually triggered through a Fisheries Act, Navigable Water Act, or Explosives Act approval.  Other triggers may include the use of federal funding, land, or facilities.  This process has not been triggered to date.

 

20.1.3             Provincial Permits

 

Ministry of Northern Development and Mines

 

Provincially, the Ministry of Northern Development and Mines (MNDM) is the lead agency for mining projects in Ontario.  Mine production triggers requirements under Part VII of the Mining Act.  These requirements include notifications, public and First Nations consultation, closure plans and financial assurance.  Approval of a closure plan provides rights for the company to proceed under the Mining Act.  Mine production is not allowed on unpatented mining claims and public notice is mandatory for mine production.

 

202



 

This process was brought to the forefront in October of 2010.  During this time Lake Shore Gold conducted all the requirements mentioned in the above paragraph to obtain approval from the MNDM for their submission of a Production Closure Plan for the Timmins West Mine.

 

Ministry of the Environment

 

The Ministry of the Environment (MOE) issues permits to take water (both surface and groundwater), emit noise and dust, and discharge into the atmosphere.  The MOE will administer the following permits for the Timmins West Mine Project:

 

·                  Wastewater treatment and effluent discharge from the mine process water, including construct and operate tailings impoundment — Ontario Water Resources Act (OWRA).

·                  Water taking permits — OWRA.

·                  Industrial Sewage Works Permit — OWRA.

·                  Solid waste management (waste generator registration) — Ontario Environmental Protection Act (EPA).

·                  Noise/air emissions — EPA.

 

Currently, the Timmins West Mine is operating under the following permits issued by the Ontario Ministry of the Environment:

 

·                  Permit to Take Water 6841-82UQ75 issued February 22, 2010.

·                  Certificate of Approval # 5028-89PJTR issued September 29, 2010.

·                  Certificate of Approval for Air and Noise # 3055-6WVLMG.

·                  Waste Generator # ON6594555.

 

Ministry of Natural Resources

 

The Ministry of Natural Resources (MNR) issues land use permits and work permits under the Public Lands Act and the Lakes and Rivers Improvement Act, respectively.  The MNR will administer the following permits for the Timmins West Mine Project:

 

·                  Forest Resource Licence for the cutting of crown owned timber.

·                  Land use permits for such things as effluent ditches/pipelines, access roads, camps, etc., where the acquisition of crown lands is required — Public Lands Act (PLA).

·                  Work permits for such things as creek crossings or impoundment structures (dams) Lakes and Rivers Improvement Act (LRIA).

 

Ministry of Transportation

 

A private entrance permit was required from the Ministry of Transportation (MTO) for the entrance to the site which connects onto provincial Highway 101 West.  This permit was approved in July 2008 and is currently active.

 

20.1.4              Federal Permits

 

Environment Canada

 

Environment Canada (EC) involvement in the permitting process begins with the submission of a production closure plan.  At that time, they receive a copy of the plan for information purposes.  EC does not usually comment on the production closure plan.  When the mine began commercial production the Metal Mining Effluent Regulations (MMER) and Environmental Effect Monitoring came into force.  This

 

203



 

requires the operation to conduct additional monitoring of the discharge effluent as well as detailed aquatic, benthic, and sediment investigation on the receiver, in this case the Tatachikapika River.

 

20.2                        ENVIRONMENTAL IMPACTS

 

Water management and protection of the cold water systems on and adjacent to the Timmins West Mine site were recognized from the onset of the project as primary environmental concerns.  Preliminary design for Timmins West Mine includes the concept of managing rock that can be an acid generating risk within a containment facility and treating runoff in accordance with regulatory requirements before release to the environment.  Timmins West Mine is regulated under both provincial and federal legislation.

 

The waste rock containment pad is designed to receive and contain rock from the underground workings that are identified as acid generating.  All runoff from the site waste rock piles is contained within the footprint of the operation and treated through the treatment process prior to discharge to the natural environment.  Mine water from the underground workings will also be directed to ponds and treated through the effluent treatment plant (ETP) prior to discharge.  The treatment process will ensure that all COA criteria are met prior to discharging into the natural environment.

 

To protect Thunder Creek, and maintain flows within the system, un-impacted storm water is diverted away from Thunder Creek.  Storm water is monitored to confirm that it will not affect the Thunder Creek system.  Flow and water quality monitoring for Thunder Creek is ongoing.

 

The development of the mine will create a disturbance footprint on the terrestrial environment.  Baseline work did not identify the possibility of provincially or federally listed fauna species on the site that will trigger concern.  The Closure Plan will reduce this disturbance area at closure and disturbed areas will be rehabilitated with the intent of returning the site to a productive use (i.e. forestry) resulting in limited long-term impact to the area.  The Timmins West Mine water management plan has been summarized in Figure 20.1.

 

204



 

FIGURE 20.1:     TIMMINS WEST MINE WATER MANAGEMENT PLAN

 

 

20.3                        ENVIRONMENTAL MONITORING PROGRAM

 

Environmental monitoring will be conducted in accordance with regulatory and due diligence requirements.  The monitoring program will be compiled in a Management System.  General components of the environmental monitoring program are described in the bullets below.

 

·                  Thrice weekly sampling as per the Municipal Industrial Strategy for Abatement (MISA) and Certificate of Approval (COA) # 5028-89PJTR.

·                  Regular sampling and analyzing of storm water.

·                  Thrice weekly sampling of water collected from the mine water ponds.

·                  Semi-annual sampling and analysis of groundwater at the monitoring wells that have been installed at the site.

·                  Monthly water samples at reference and exposure areas on the Tatachikapika River as well as Thunder Creek as required by the COA # 5028-89PJTR.

·                  Annual updates to air dispersion model as changes are made to infrastructure at the site that discharges to air as required by COA # 1745-7WMRSZ.

·                  Annual calibrations of flow monitoring devices for effluent discharge.

·                  Assessment of sediment quality, benthic, and fish communities as required through the Metal Mining Effluent Regulation and Environmental Effects Monitoring.

·                  Recording and reporting of daily flows associated to Permits to Take Water for the underground workings.

 

205



 

20.4                        HAZARDOUS MATERIALS HANDLING

 

Effluent treatment reagents (i.e. acid, flocculent, carbon dioxide) will be stored in designated areas.  Currently these materials are stored within the ETP and in accordance with their respective Material Safety Data Sheets (MSDS).

 

Drinking water treatment reagents (i.e. liquid sodium hypochlorite, alum, citric acid) will be stored within the water distribution plant on site and in accordance with their MSDS.

 

Bulk containers of petroleum products are stored in designated areas adjacent to the Maintenance Garage and hoist room.  Spill trays are utilized for containment.

 

Fuel will be stored and handled in accordance with the Liquid Fuels Handling Code.  Gasoline and diesel fuel will be stored in the tank farm and in portable, double-hulled tanks that are located within containment areas to contain incidental spillage.  Propane is stored in above ground tanks.

 

There are no PCBs at Timmins West Mine.

 

With the exception of silica dust from development rock, there will be no designated substances at Timmins West Mine, as defined in the Occupational Health and Safety Act.

 

Explosives will be brought to Timmins West Mine on an as-needed basis.  If it is necessary to store explosives at Timmins West Mine on surface, storage magazines will be contractor-owned and these will be accessed using existing secondary roads in the vicinity of the site.  The storage location will be in accordance with requirements from Natural Resources Canada (i.e. minimum permissible distances, Explosives Act requirements) and the Ministry of Labour (i.e. Occupational Health and Safety Act requirements).

 

20.5                        SPILL AND EMERGENCY RESPONSE PLAN

 

As part of the Safety and Environment Program, Lake Shore has prepared a Consolidated Spill Prevention Contingency and Response Plan (SPCR) for the Timmins West operations.  This document provides a practical guide for preventing, controlling, and responding to spills.  It has been prepared using guidelines provided by the Liquid Fuels Handling Code, the Canadian Environmental Protection Act, the Ontario Environmental Protection Act, the North American Emergency Response Guidebook, as well as standardized response procedures from petroleum product suppliers.  Copies of this document are available in the Safety, Health, and Orientation Manuals, which are available in the field office, in Lake Shore vehicles, and from contractor supervisors.

 

20.6                        CLOSURE PLANNING

 

Mine closure is the orderly safe and environmental conversion of an operating mine to a “closed-out” state.

 

The development of a walk-away, no active management scenario is a primary environmental management goal for this project.  The long-term environmental management issues associated with the project have been identified in the Mining Act and relate to ore hoisted to surface, waste rock dumps, open holes to surface and overall construction of permanent structures.  Other secondary

 

206



 

issues, such as returning the site to a productive use (i.e. forestry) will be accommodated within the context of the Closure Plan.

 

Should Lake Shore identify and require an area to store rock which poses a metal leaching risk, this will be conducted on the waste-rock containment pad during the life of the mine.  Runoff from this low permeability pad will be directed to the containment pond, preventing a release of water with potentially high concentrations of metals.  Water from the containment pond will be recycled for use as process water with the excess being treated and released to the environment in accordance with regulatory requirements.  However, with the extensive sampling program initiated by the Timmins West Mine facility, the analytical data collected does not identify any potential acid rock drainage issues.

 

At the conclusion of the mine life, the closeout rehabilitation measures summarized below will be implemented.

 

·                  Removal of surface buildings and associated infrastructure.

·                  Dewatering of the containment pond by pumping pre-treated water into the underground workings, or treating and releasing any remaining water.

·                  Deposition of rock from the containment pad into the underground workings.

·                  Excavation of containment pad and pond and placement of the removed material in the underground workings.

·                  Flooding of the underground mine workings with lime treated water to above the elevation of backfilled materials to prevent oxidation.

·                  Securing of mine openings in accordance with regulatory requirements.

·                  Contouring of any piles of rock that do not pose a metal leaching risk.

·                  Contouring, covering, and re-vegetating disturbed areas using available overburden.

 

Infrastructure will be removed from the site and any other disturbed areas associated with the project will be re-vegetated, mainly through natural regeneration using seed banks in the overburden stored on site.

 

20.7                        CONSULTATION

 

Consultation is being undertaken with regulatory agencies, the general public, the Métis Nation of Ontario, Wabun Tribal Council and the First Nation communities of Flying Post First Nation and Mattagami First Nation, who are represented by Wabun Tribal Council.  Consultation provides an opportunity to identify and address the impacts of Lake Shore’s activities on external stakeholders, and to expedite the authorization process.

 

The consultations have been held in order to comply with Lake Shore corporate policy and the provincial requirements of Ontario Regulation 240/00 and the Environmental Bill of Rights.

 

An Impact and Benefits Agreement (“IBA”) has been negotiated and signed (February 17, 2011).  The IBA outlines how Lake Shore Gold Corp. and the First Nations communities will work together in the following areas: education and training of First Nation community members, employment, business and contracting opportunities, financial considerations and environmental provisions (Hagan, B.; Samson, J., 2011, personal communication).

 

207



 

An exploration agreement is currently in force with the Mattagami, Flying Post, Matachewan, and Waghoshig First Nations for the Bell Creek Complex where all ore is processed (dated March 10, 2009).  Negotiations are currently underway to develop a full IBA with these First Nations partners.

 

208



 

21.0                        CAPITAL AND OPERATING COSTS

 

The cost estimates are in 2012 Canadian dollars and are to a level of accuracy of ±25 percent.  Escalation has not been included.

 

21.1                        LAKE SHORE BUDGETED 2012 CAPITAL COSTS

 

The 2012 capital costs include the work planned by Lake Shore and included in the Timmins West Mine 2012 operating plan (budget) to expand/upgrade the existing surface and underground infrastructure to support both the short term production ramp up and the longer term sustained production rate.  This also includes full funding of the Bell Creek Mill expansion project and related environmental projects at the Bell Creek Mill site.  The 2012 capital costs estimated by Lake Shore are summarized in Table 21.1.

 

TABLE 21.1:       2012 TIMMINS WEST MINE BUDGETED CAPITAL COSTS

 

Item

 

2012 Capital Costs
(millions)

 

Lake Shore Budgeted Mine Capital 2012

 

$

94.65

 

Environmental Projects - Subtotal

 

$

3.30

 

Water discharge upgrades (surface)

 

$

1.20

 

Water management study

 

$

0.23

 

Water management upgrades and storm water control

 

$

1.34

 

Ammonia Treatment Plant expansion and improvements

 

$

0.37

 

Environmental effect monitoring plan

 

$

0.10

 

Hazardous waste storage

 

$

0.06

 

Ventilation Related - Subtotal

 

$

8.19

 

Thunder Creek ventilation raises and escapeways

 

$

5.54

 

Thunder Creek ventilation bulkheads and doors

 

$

0.26

 

Timmins Deposit ventilation raises

 

$

1.56

 

Timmins Deposit ventilation bulkheads and doors

 

$

0.10

 

Ventilation fans and silencers

 

$

0.73

 

Miscellaneous Raise Development - Subtotal

 

$

4.71

 

Thunder Creek Waste Pass raise

 

$

3.37

 

Timmins Deposit Backfill Raise

 

$

0.98

 

Drop Raises

 

$

0.36

 

Underground Construction - Subtotal

 

$

5.13

 

Ore/Waste handling system upgrades

 

$

1.30

 

Underground backfill distribution

 

$

1.74

 

Underground Satellite Shop and Electrical Shop

 

$

0.30

 

Underground dewatering system and slimes handling upgrade

 

$

0.40

 

Fuel transfer system

 

$

0.28

 

Miscellaneous Construction and Service Holes Drilling

 

$

1.11

 

Engineering Studies — Subtotal

 

$

0.38

 

Electrical Projects — Subtotal

 

$

4.68

 

Thunder Creek electrical distribution upgrade (13.8 feed upgrade) and expansion

 

$

3.04

 

Timmins Deposit electrical distribution expansion

 

$

1.04

 

Surface electrical upgrades

 

$

0.60

 

 

209



 

Item

 

 

2012 Capital Costs
(millions)

 

Surface Infrastructure — Subtotal

 

$

6.76

 

Surface Backfill Plant (temporary and permanent)

 

$

5.21

 

Surface facilities upgrades and expansion

 

$

0.87

 

Thunder Creek Backfill Raise access road and raise collar

 

$

0.68

 

Hoist Related Critical Spares — Subtotal

 

$

0.97

 

Mobile Equipment — Subtotal

 

$

8.44

 

Mobile equipment purchases

 

$

6.21

 

Mobile equipment rebuilds / major overhauls

 

$

2.23

 

Capital Development — Subtotal

 

$

22.40

 

Thunder Creek — Upper Levels

 

$

5.94

 

Thunder Creek — Lower Levels

 

$

7.45

 

Timmins Deposit — Upper Levels

 

$

0.00

 

Timmins Deposit — Lower Levels

 

$

9.01

 

Capital Diamond Drilling — Subtotal

 

$

3.41

 

Thunder Creek

 

$

1.32

 

Timmins Deposit

 

$

2.09

 

Capitalized Common Costs — Subtotal

 

$

26.28

 

Indirect Costs Allocated to Thunder Creek Capital

 

$

11.74

 

Indirect Costs Allocated to Timmins Deposit Capital

 

$

14.46

 

Project Group Costs Allocated to Capital

 

$

0.08

 

Lake Shore 2012 Budgeted Bell Creek Mill Expansion and other Mill projects - Total

 

$

67.00

 

Bell Creek Mill Expansion — P2 Construction

 

$

61.40

 

New Clear Water Pond Construction

 

$

2.50

 

Polishing Pond Lift Construction

 

$

1.80

 

Feasibility Design Phase 4 Tailing Expansion

 

$

0.47

 

Bell Creek Water Management Study

 

$

0.23

 

Bell Creek Site Water Management physical improvements

 

$

0.50

 

Miscellaneous Engineering Study/Consultation Work

 

$

0.10

 

Total Estimated Capital Costs

 

$

161.65

 

 

Of the estimated $161.65 million capital costs budgeted for 2012, $19.3 million is considered “direct” capital required to establish specific sublevel infrastructure required to mine the reserves and has been used in the economic evaluations (to confirm the reserves for each sublevel) included in Section 22.  The remaining $142.35 million in capital costs are attributable to common major underground infrastructure, surface site infrastructure, and Bell Creek Mill Expansion and other mill related projects.

 

21.2                        SUSTAINING CAPITAL COSTS

 

The sustaining capital costs include the development, infrastructure, construction, and equipment purchases required (after 2012) to support ongoing mining and expansion of the mine into new production areas.  The estimated sustaining capital costs have been summarized in Table 21.2.

 

210



 

TABLE 21.2:       ESTIMATED SUSTAINING CAPITAL COSTS (2013 TO 2019)

 

Item

 

Sustaining Capital Cost
(millions)

 

Lake Shore Estimated Capital Projects TWM Mine Related Only

 

$

19.64

 

Surface water handling facility upgrades

 

$

2.24

 

Ventilation infrastructure

 

$

3.00

 

Thunder Creek Ore Pass (765L to 415L)

 

$

2.30

 

Thunder Creek Auxiliary Shop

 

$

0.15

 

Remaining Thunder Creek Electrical upgrades (13.8 kVa feed)

 

$

2.00

 

Underground Communications Network expansion

 

$

1.20

 

Surface Load-out

 

$

5.00

 

Surface Truck Weigh Scale

 

$

0.50

 

Cold Storage Building

 

$

0.25

 

Portal Cover

 

$

0.50

 

Surface Facilities Upgrades

 

$

0.50

 

Hoist Critical Spares

 

$

2.00

 

Lake Shore Estimated Bell Creek Mill Expansion and other Mill related projects

 

$

4.95

 

Tailings Dyke Lifts

 

$

1.45

 

New Clear Water Pond construction

 

$

3.00

 

Site Water Management upgrades

 

$

0.50

 

Mobile Equipment Purchases

 

$

11.45

 

2-Boom Jumbo

 

$

0.84

 

Underground Haul Trucks

 

$

6.42

 

LHDs

 

$

2.78

 

Auxiliary Equipment

 

$

1.41

 

Mobile Equipment Rebuilds

 

$

18.49

 

2-Boom Jumbos

 

$

3.53

 

Underground Haul Trucks

 

$

7.64

 

LHDs

 

$

5.12

 

Scissor Lifts

 

$

1.42

 

Surface Loader

 

$

0.78

 

Underground Infrastructure and Construction

 

$

23.26

 

Underground Booster and Auxiliary Fans and Accessories

 

$

2.50

 

Refuge Stations

 

$

1.26

 

Pumps Stations

 

$

1.24

 

Satellite Fuel/Lube Stations

 

$

0.48

 

Ventilation Bulkheads and Doors

 

$

2.59

 

Explosives and Detonators Storage

 

$

0.40

 

Thunder Creek Ore Pass and Waste Pass Dumps

 

$

0.92

 

Ore Pass and Waste Pass Truck Loading Chutes

 

$

1.80

 

Electrical Distribution Thunder Creek

 

$

4.47

 

Electrical Distribution Timmins Deposit

 

$

5.16

 

Service Holes (Electrical and Drain)

 

$

0.44

 

Rockbreaker/Grizzly/Bin at 625L

 

$

2.00

 

Timmins Deposit Ramp Development

 

$

12.63

 

Thunder Creek Ramp Development

 

$

6.06

 

 

211



 

Item

 

 

Sustaining Capital Cost
(millions)

 

Timmins Deposit Lateral Waste Development

 

$

18.93

 

Thunder Creek Lateral Waste Development

 

$

10.69

 

Timmins Deposit Raise Development

 

$

7.01

 

Ramp FAR

 

$

1.95

 

Main Internal FAR 790L to 1270L

 

$

2.32

 

Main Internal RAR 710L to 1270L

 

$

2.74

 

Thunder Creek Raise Development

 

$

5.99

 

Ore Passes

 

$

0.34

 

Escapeways

 

$

0.36

 

Internal RAR

 

$

2.12

 

Internal FAR

 

$

2.12

 

Ore Pass Finger Raises

 

$

0.37

 

Backfill Finger Raises

 

$

0.68

 

Waste Rock Haulage and Handling

 

$

6.66

 

Timmins Deposit Waste Rock Handling

 

$

5.08

 

Thunder Creek Waste Rock Handling

 

$

1.58

 

Subtotal

 

$

145.76

 

Contingency 15%

 

$

21.86

 

Total Estimated Sustaining Capital Costs

 

$

167.62

 

 

Of the estimated $167.62 million sustaining capital costs, $53.59 million is considered “direct” capital required to establish specific sublevel infrastructure required to mine the reserves and has been used in the economic evaluations (to confirm the reserves for each sublevel) included in Section 22.  The remaining $114.03 million in sustaining capital costs are attributable to common major underground infrastructure, surface site infrastructure, and Bell Creek Mill Expansion and other mill related projects.

 

21.2.1              Lake Shore Capital Projects

 

Lake Shore has planned and estimated the costs associated with certain capital projects related to the Timmins West Mine.  The estimated costs were developed by Lake Shore operations and projects personnel with experience in the area, and have been based on operating experience and/or interaction with vendors/contractors.

 

21.2.2              Bell Creek Mill Expansion and Related

 

Lake Shore has identified and estimated the costs associated with the Bell Creek Mill expansion and other mill site related initiatives.  The estimated costs were developed by Lake Shore operations and projects personnel with experience in the area, and have been based on operating experience and/or interaction with vendors/contractors.

 

21.2.3              Mobile Equipment Purchases

 

Mobile equipment purchases include the additional jumbos, LHDs, underground haul trucks, and auxiliary equipment required to meet production targets.

 

Mobile equipment cost estimates have been based on recent quotations from appropriate mobile equipment suppliers.

 

212



 

21.2.4              Mobile Equipment Rebuilds

 

Mobile equipment rebuilds include significant rebuilds of major mobile production equipment (jumbos, LHDs, haul trucks, scissor lifts).  The estimated cost of a rebuild has been based on 60% of the initial purchase price of the unit.

 

21.2.5             Underground Infrastructure and Construction

 

Infrastructure includes underground installations (that have not been included in the Lake Shore Capital Projects) required to support production.  Infrastructure cost estimates have been based on Stantec’s recent experience with similar installations, interaction with vendors, and/or developed from first principles.

 

21.2.6              Ramp Development

 

Ramp development quantities have been based on 3D mine design drawings prepared for the Timmins Deposit and Thunder Creek.  Each production level in the mine will be accessed by the ramp system (including a ramp scheduled to access the shaft bottom in 2012).  The ramp development quantities include a 15% allowance for safety bays and miscellaneous remuck bays and material storage bays.

 

The estimated unit cost for ramp development has been developed from first principles using current Lake Shore labour rates (including wages and overhead), estimated mobile equipment operating costs, consumable materials quantities and costs, services materials, and anticipated productivities.  The unit costs do not include haulage of the waste rock (identified separately).

 

21.2.7              Waste Infrastructure Development

 

Waste infrastructure development quantities have been based on 3D mine design drawings prepared for the Timmins Deposit and Thunder Creek.  Waste development will include the initial sublevel access and ancillary development (sumps, electrical substations, ventilation raise access, etc.), any footwall haulage drifts and the first 15 metres of access to the stopes (i.e. drawpoints).  The waste development quantities include a 15% allowance for miscellaneous slashing, remucks, and material storage bays.

 

The estimated unit cost for waste development has been developed from first principles using current Lake Shore labour rates (including wages and overhead), mobile equipment operating costs, consumable materials quantities and costs, services materials, and anticipated productivities.  The unit costs do not include haulage of the waste rock (identified separately).

 

21.2.8              Raise Development

 

Raise development quantities include all vertical development (ore passes, waste passes, backfill raises, ventilation raises, and escapeway raises) to support the mine design.  Raise development will be completed by qualified mining contractors by either Alimak or Raise Boring methods, or for shorter raises drop-raising.

 

The estimated unit cost for raise development has been developed by Stantec based on recent experience with other projects in the area.  The unit costs include mobilization and demobilization of the contractor and the contractor’s indirect fees and profit.

 

213



 

21.2.9              Waste Haulage

 

Waste haulage includes the direct cost of hauling waste rock to stopes for use as backfill, or to the waste rockbreaker at 650L for skipping to surface.

 

Waste rock quantities have been estimated from the ramp, lateral, and raise development quantities.

 

The estimated unit cost (per tonne) for waste haulage has been developed by Stantec using current Lake Shore labour rates (including wages and overhead) and estimated haul truck operating costs.  The unit rates vary with haulage distance.

 

21.3                        OPERATING COSTS

 

The life of mine operating costs will include both direct and indirect costs.

 

Direct operating costs include waste development to access specific stopes, ore sill development and stope production activities.  All costs not directly related to mine construction, development, and production activities, have been included in the indirect operating costs.

 

The operating costs are summarized in Table 21.3.

 

TABLE 21.3:        OPERATING COST SUMMARY

 

Item

 

Cost
(millions)

 

Cost
$/Tonne

 

Lake Shore Budgeted 2012 Operating Costs

 

$

68.31

 

$

116.50/t

(1)

Timmins Deposit Direct Operating Costs (2013 to 2019)

 

$

102.28

 

$

51.51/t

(2)

Waste Development

 

$

6.53

 

$

3.29/t

 

Ore Development

 

$

5.79

 

$

2.92/t

 

Longhole Stoping

 

$

35.38

 

$

17.82/t

 

MCAF Stoping

 

$

43.44

 

$

21.88/t

 

Waste Rock Haulage

 

$

0.55

 

$

0.28/t

 

Ore Haulage

 

$

10.59

 

$

5.32/t

 

Thunder Creek Direct Operating Costs (2013 to 2019)

 

$

67.92

 

$

28.20/t

(3)

Waste Development

 

$

6.29

 

$

2.61/t

 

Ore Development

 

$

3.81

 

$

1.58/t

 

Longhole Stoping

 

$

50.76

 

$

21.07/t

 

Waste Rock Haulage

 

$

0.34

 

$

0.14/t

 

Ore Haulage

 

$

6.72

 

$

2.80/t

 

Indirect Costs (2013 to 2019)

 

$

197.44

 

$

44.93/t

(4)

Indirect Labour (Staff and Supervision)

 

$

35.06

 

$

7.98/t

 

Indirect Labour (Shaft, Construction, Services, Maintenance)

 

$

38.15

 

$

8.68/t

 

Site Costs

 

$

11.40

 

$

2.59/t

 

Leases/Rentals

 

$

0.86

 

$

0.19/t

 

Power Consumption

 

$

26.37

 

$

6.00/t

 

Electrical Miscellaneous

 

$

1.69

 

$

0.38/t

 

Surface Facilities Maintenance

 

$

2.74

 

$

0.62/t

 

Propane Consumption

 

$

9.58

 

$

2.18/t

 

Engineering Supplies

 

$

1.58

 

$

0.36/t

 

 

214



 

Item

 

Cost
(millions)

 

Cost
$/Tonne

 

Environmental Consultants, Supplies, and Consumables

 

$

6.29

 

$

1.43/t

 

Ammonia Treatment Plant Operation

 

$

8.16

 

$

1.86/t

 

Safety and Training (includes Mine Rescue)

 

$

2.74

 

$

0.62/t

 

Geology Labour, Sampling, and Diamond Drilling

 

$

34.91

 

$

7.94/t

 

Indirect Mobile Equipment Operating

 

$

11.49

 

$

2.61/t

 

Lake Shore Timmins Administration Team

 

$

6.42

 

$

1.49/t

 

Surface Haulage and Milling (2013 to 2019)

 

$

128.05

 

$

29.14

(4)

Highway Haulage to Bell Creek Mill

 

$

30.76

 

$

7.00

 

Milling

 

$

97.29

 

$

22.14

 

Total Estimated LOM Operating Costs

 

$

564.00

 

$

113.24

(5)

 


(1) Based on 586,341 tonnes included in the Timmins West Mine 2012 production forecast.

(2) Based on 1,985,727 tonnes produced from Timmins Deposit, during 2013 to 2019.

(3) Based on 2,408,672 tonnes produced from Thunder Creek during 2013 to 2017.

(4) Based on combined 4,394,399 tonnes produced from Timmins West Mine during 2013 to 2019.

(5) Based on combined total 4,980,740 tonnes produced from Timmins West Mine LOM.

 

The estimated average LOM operating cost will be $113.24 per tonne.

 

21.3.1              Lake Shore Budgeted 2012 Operating Costs

 

Lake Shore has prepared a 2012 budget and operating plan for the Timmins West Mine.  The operating plan includes the estimated direct and indirect operating costs to achieve production targets.  This budget has been based on experiences gained through early stage commercial production in 2011 and factored for units of work planned in 2012.

 

21.3.2              Direct Operating Costs (2013 to 2019)

 

The direct operating costs include waste development to access the ore, ore sill development, longhole stoping, MCAF stoping, and ore and waste rock haulage.  The direct operating costs have been developed based on actual labour rates provided by Lake Shore, equipment operating costs from Stantec’s internal database, and consumable materials costs from Stantec’s internal database.

 

Waste and Ore Sill Development

 

The direct costs related to waste and ore sill development include:

 

·                  Direct labour.

·                  Drilling consumables (drill steel, bits, hammers, etc.).

·                  Explosives.

·                  Ground support supplies.

·                  Direct equipment operating costs (fuel and lubricants, tires, and spare parts) for the jumbo, scissor lift, and LHD.

·                  Services material and installation including pipe, ventilation duct, and electrical cables.

·                  Miscellaneous materials required to support development activities.

 

The unit costs for development are summarized in Table 21.4.

 

215



 

TABLE 21.4:        DEVELOPMENT UNIT COSTS

 

Item

 

Advance Rate
4.5 m/day

 

Advance Rate
4.0 m/day

 

Advance Rate
3.5 m/day

 

4 m x 4 m Heading

 

 

 

 

 

 

 

Labour

 

$

945.46/m

 

$

1,063.64/m

 

$

1,215.59/m

 

Materials

 

$

833.71/m

 

$

833.71/m

 

$

833.71/m

 

Equipment Operating

 

$

506.50/m

 

$

541.03/m

 

$

585.42/m

 

Total

 

$

2,285.68/m

 

$

2,438.39/m

 

$

2,634.73/m

 

5 m x 5 m Heading

 

 

 

 

 

 

 

Labour

 

$

945.46/m

 

$

1,063.64/m

 

$

1,215.59/m

 

Materials

 

$

976.58/m

 

$

976.58/m

 

$

976.58/m

 

Equipment Operating

 

$

506.50/m

 

$

541.03/m

 

$

585.42/m

 

Total

 

$

2,428.54/m

 

$

2,581.25/m

 

$

2,777.59/m

 

 

MCAF Stoping (Timmins Deposit Only)

 

The direct costs related to MCAF stoping include the labour, consumable material, and equipment operating and maintenance associated with:

 

·                  Developing each mining cut (similar to development).

·                  Backfilling.

·                  Developing the attack ramp to access the next cut.

 

The direct costs for MCAF stoping are summarized in Table 21.5.

 

TABLE 21.5:        MCAF UNIT COSTS

 

Item

 

Cost/Tonne

 

Sill (Cut) Development (average 7.9 metres wide)

 

$

26.39

 

Backfill

 

$

10.63

 

Attack Ramp Development

 

$

13.76

 

Total

 

$

50.78/tonne

 

 

Longhole Stoping

 

The direct costs related to longhole stoping include the labour, consumable material, and equipment operating and maintenance associated with:

 

·                  Drilling, loading, and blasting longholes (including drop raises) by a drilling contractor.

·                  Mucking from the stope with an LHD and tramming to a remuck or truck loading area or ore pass dump.

·                  Backfilling.

 

216



 

The direct costs for Longhole stoping are summarized in Table 21.6.

 

TABLE 21.6:        LONGHOLE STOPING UNIT COSTS

 

Item

 

Cost/Tonne

 

Thunder Creek Transverse Longhole Stoping

 

 

 

Drilling and Blasting

 

$

8.22

 

Mucking

 

$

2.88

 

Backfilling

 

$

9.90

 

Cable Bolting

 

$

0.75

 

Total

 

$

21.75/tonne

 

 

 

 

 

Timmins Deposit Longtiudinal Longhole Stoping

 

 

 

Drilling and Blasting

 

$

18.68

 

Mucking

 

$

4.14

 

Backfilling

 

$

9.90

 

Cable Bolting

 

$

2.16

 

Total

 

$

34.88/tonne

 

 

Ore Haulage

 

Ore haulage costs include labour and haul truck operating and maintenance costs associated with hauling ore to the Timmins Deposit 650L (and/or proposed 625L) rockbreaker station.  Ore haulage costs vary incrementally with haul distance.

 

21.3.3              Indirect Costs

 

All costs not directly related to mine development, construction, or production activities have been included in the indirect costs.  The indirect costs have been based on current operating experience at the site, estimated quantities/consumption (such as power), and actual labour rates provided by Lake Shore.  The indirect costs include:

 

·                  Timmins West Mine Staff including:

·                  Management, administration, technical services, and environmental personnel.

·                  Supervisory and health and safety/training personnel.

·                  Electrical, mechanical, millwright, and services personnel (hourly).

·                  Shaft and material handling related personnel.

·                  General site services including:

·                  Surface ore and waste handling.

·                  Shaft operation.

·                  Office operating expenses.

·                  Miscellaneous travel and expenses.

·                  Miscellaneous supplies and services.

·                  Leases and rentals including office and dry trailers.

·                  Site electrical power consumption.

·                  Miscellaneous electrical costs including:

·                  Hoist consultants.

·                  Cap lamps and radios.

·                  Operating supplies.

·                  Surface maintenance including buildings, yard, roads, and bridge.

 

217



 

·                  Mine air heating costs.

·                  Engineering supplies including:

·                  Consultants allowance.

·                  Survey equipment.

·                  Ventilation measuring instrumentation.

·                  Professional fees and training.

·                  Environmental related including:

·                  Monitoring and instrumentation.

·                  Waste management and recycling.

·                  Consultants.

·                  Erosion control and site reclamation.

·                  Consumables.

·                  Ammonia Treatment Plant Operation including:

·                  Operating labour.

·                  Consultants.

·                  Reagents and consumable materials.

·                  Safety and Training including:

·                  Safety gear and PPE.

·                  Training and safety awards.

·                  Mine Rescue and Emergency Procedures tests.

·                  First Aid supplies.

·                  Geology labour and diamond drilling.

·                  Support equipment operating and maintenance costs such as underground tractors, boom trucks, service LHDs, and the surface loaders.

·                  Lake Shore Timmins Administration Team located off-site.

 

21.3.4              Surface Ore Haulage and Milling

 

Surface ore haulage costs from Timmins West Mine to the Bell Creek Mill have been based on actual experience at the mine.  A hauling contract is currently in place with a local contractor.

 

Bell Creek milling costs have been estimated from Lake Shore actual 2011 milling costs.  The milling costs have been adjusted to reflect higher tonnage throughput (following mill expansion) and reduced surface re-handling requirements resulting from capital improvements in the dump arrangement.

 

218



 

22.0                        ECONOMIC ANALYSIS

 

An economic analysis has been completed for the Timmins West Mine.  The economic analysis has been based on the estimated probable reserves.

 

22.1                        SUBLEVEL EVALUATIONS

 

Each sublevel was evaluated to confirm that the gross revenue generated from the estimated probable reserves mined will support the operating costs and direct capital costs required for infrastructure specific to the sublevel.  The evaluations were completed at US $1,600 and a currency exchange rate ($CDN/$US) of 1.0.  An example of the evaluation of Timmins Deposit 930L is summarized in Table 22.1.  The evaluations for all sublevels have been included in Appendix 13.

 

TABLE 22.1:        EXAMPLE OF SUBLEVEL EVALUATION — TIMMINS DEPOSIT 930L

 

930L to 910L
Estimated Probable Reserve 71,148 tonnes @ 7.5 g/t

 

Quantity

 

Rate

 

Total Cost

 

Capital Costs

 

 

 

 

 

$

1,091,433

 

Ramp Development

 

153m

 

$

2,428/m

 

$

371,484

 

Infrastructure Development

 

196m

 

$

2,428/m

 

$

475,888

 

Waste Rock Haulage to Stope as Backfill

 

12,215t

 

$

2.1/t

 

$

25,652

 

Waste Rock Haulage to Shaft for Hoisting

 

12,215t

 

$

6.3/t

 

$

76,099

 

Ramp Fresh Air Raise

 

16m

 

$

4,880/m

 

$

78,080

 

Ventilation Bulkhead Construction

 

3

 

$

21,410 ea

 

$

64,230

 

Operating Costs

 

 

 

 

 

$

8,447,233

 

Operating Development through Waste Rock

 

55m

 

$

2,285/m

 

$

125,675

 

Operating Development through Ore

 

112m

 

$

2,285/m

 

$

255,920

 

Longhole Stope Production

 

66,130t

 

$

34.88/t

 

$

2,306,628

 

Waste Rock Haulage to Stope for Backfill

 

1,232t

 

$

2.1/t

 

$

2,587

 

Waste Rock Haulage to Shaft for Hoisting

 

1,232t

 

$

6.3/t

 

$

7,675

 

Ore Haulage to Shaft for Hoisting

 

71,148t

 

$

6.3/t

 

$

443,252

 

Indirect Costs

 

71,148t

 

$

45.9/t

 

$

3,263,547

 

Surface Haulage and Milling

 

71,148t

 

$

28.7/t

 

$

2,041,948

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value

 

 

 

Evaluation

 

 

 

 

 

 

 

Ounces Mined to Surface

 

 

 

17,156

 

 

 

Mill Recovery

 

 

 

96.5

%

 

 

Ounces Sold (recovered)

 

 

 

16,555

 

 

 

Gold Price $US

 

 

 

$

1,600

 

 

 

Exchange Rate ($CDN/$US)

 

 

 

1.0

 

 

 

Total Sales

 

 

 

$

26,488,782

 

 

 

Treatment Charges $1.6 per ounce

 

 

 

$

-26,489

 

 

 

Royalties 2.25%

 

 

 

$

-596,594

 

 

 

Gross Revenue

 

 

 

$

25,865,700

 

 

 

Total Operating Costs

 

 

 

$

-8,447,233

 

 

 

Net Revenue

 

 

 

$

17,418,467

 

 

 

Total Capital Costs

 

 

 

$

-1,091,433

 

 

 

Net Cash from Mining 930L

 

 

 

$

16,327,034

 

 

 

 

219



 

The results of all sublevel evaluations for the Timmins Deposit and Thunder Creek are summarized in Table 22.2.

 

TABLE 22.2:        SUBLEVEL EVALUATION SUMMARIES

 

Sublevel

 

Tonnes

 

Grade

 

Ounces
(Recovered)

 

Revenue
(millions)

 

Capital Costs
(millions)

 

Operating
Costs (millions)

 

Net Cash from
Mining
(millions)

 

Comment

 

Timmins Deposit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

230L

 

11,236

 

4.8

 

1,673

 

$

2.61

 

$

0.00

 

$

1.67

 

$

0.94

 

 

 

260L

 

9,182

 

6.1

 

1,738

 

$

2.71

 

$

0.00

 

$

1.27

 

$

1.44

 

 

 

290L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.00

 

$

0.00

 

$

0.00

 

No production

 

315L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.41

 

$

0.00

 

$

-0.41

 

No production, ramp development only

 

335L

 

35,374

 

5.6

 

6,146

 

$

9.60

 

$

0.75

 

$

4.22

 

$

4.63

 

 

 

355L

 

12,972

 

7.2

 

2,898

 

$

4.53

 

$

0.96

 

$

1.52

 

$

2.05

 

 

 

375L

 

15,797

 

6.1

 

2,990

 

$

4.67

 

$

0.90

 

$

1.89

 

$

1.88

 

 

 

395L

 

16,902

 

5.0

 

2,622

 

$

4.10

 

$

0.87

 

$

2.37

 

$

0.86

 

 

 

415L

 

28,896

 

4.4

 

3,945

 

$

6.16

 

$

0.86

 

$

4.03

 

$

1.27

 

 

 

435L

 

50,182

 

4.8

 

7,473

 

$

11.68

 

$

0.78

 

$

6.66

 

$

4.24

 

 

 

455L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.00

 

$

0.00

 

$

0.00

 

No production

 

475L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.00

 

$

0.00

 

$

0.00

 

No production

 

500L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.00

 

$

0.00

 

$

0.00

 

No production

 

525L

 

54,642

 

4.1

 

6,951

 

$

10.86

 

$

0.19

 

$

6.96

 

$

3.71

 

 

 

545L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.18

 

$

0.00

 

$

-0.18

 

No production

 

565L

 

51,225

 

4.3

 

6,834

 

$

10.68

 

$

0.00

 

$

6.18

 

$

4.50

 

 

 

585L

 

78,908

 

4.3

 

10,527

 

$

16.45

 

$

0.00

 

$

8.88

 

$

7.57

 

 

 

610L

 

75,601

 

4.0

 

9,382

 

$

14.66

 

$

0.00

 

$

8.74

 

$

5.92

 

 

 

630L

 

21,963

 

4.4

 

2,998

 

$

4.68

 

$

0.00

 

$

2.64

 

$

2.04

 

 

 

650L

 

29,547

 

4.5

 

4,125

 

$

6.45

 

$

0.38

 

$

3.39

 

$

2.68

 

 

 

670L

 

149,167

 

4.4

 

20,363

 

$

31.81

 

$

0.43

 

$

17.46

 

$

13.92

 

 

 

690L

 

89,691

 

4.9

 

13,635

 

$

21.30

 

$

0.70

 

$

10.65

 

$

9.95

 

 

 

710L

 

119,659

 

4.4

 

16,335

 

$

25.52

 

$

1.76

 

$

16.09

 

$

7.67

 

 

 

730L

 

75,623

 

5.2

 

12,200

 

$

19.06

 

$

1.61

 

$

10.21

 

$

7.24

 

 

 

750L

 

68,936

 

4.9

 

10,480

 

$

16.37

 

$

1.27

 

$

9.36

 

$

5.74

 

 

 

770L

 

104,543

 

6.4

 

20,758

 

$

32.43

 

$

0.95

 

$

14.07

 

$

17.41

 

 

 

790L

 

125,433

 

5.7

 

22,182

 

$

34.66

 

$

0.91

 

$

14.61

 

$

19.14

 

 

 

810L

 

59,706

 

4.7

 

8,706

 

$

13.60

 

$

1.24

 

$

7.93

 

$

4.43

 

 

 

830L

 

25,542

 

7.2

 

5,706

 

$

8.91

 

$

0.96

 

$

3.63

 

$

4.32

 

 

 

850L

 

78,888

 

9.2

 

22,517

 

$

35.18

 

$

1.04

 

$

10.42

 

$

23.72

 

 

 

870L

 

70,856

 

6.8

 

14,949

 

$

23.36

 

$

1.36

 

$

9.25

 

$

12.75

 

 

 

890L

 

66,239

 

4.2

 

8,631

 

$

13.49

 

$

1.75

 

$

8.72

 

$

3.02

 

 

 

910L

 

50,087

 

4.0

 

6,216

 

$

9.71

 

$

1.23

 

$

6.71

 

$

1.77

 

 

 

930L

 

71,148

 

7.5

 

16,555

 

$

25.87

 

$

1.09

 

$

8.45

 

$

16.33

 

 

 

950L

 

68,168

 

8.3

 

17,554

 

$

27.43

 

$

1.15

 

$

8.15

 

$

18.13

 

 

 

970L

 

44,309

 

4.2

 

5,774

 

$

9.02

 

$

1.82

 

$

6.21

 

$

0.99

 

 

 

990L

 

25,614

 

3.3

 

2,622

 

$

4.10

 

$

1.11

 

$

3.80

 

$

-0.81

 

Production gains back some capital cost.

 

 

220



 

Sublevel

 

Tonnes

 

Grade

 

Ounces
(Recovered)

 

Revenue
(millions)

 

Capital Costs
(millions)

 

Operating
Costs (millions)

 

Net Cash from
Mining
(millions)

 

Comment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1010L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.80

 

$

0.00

 

$

-0.80

 

No Production.

 

1030L

 

0

 

0.0

 

0

 

$

0.00

 

$

0.80

 

$

0.00

 

$

-0.80

 

No Production.

 

1050L

 

0

 

0.0

 

0

 

$

0.00

 

$

2.18

 

$

0.15

 

$

-2.33

 

No Production. Overcut for 1030L Stopes

 

1070L

 

44,112

 

6.2

 

8,485

 

$

13.26

 

$

1.15

 

$

5.48

 

$

6.63

 

 

 

1090L

 

55,927

 

8.5

 

14,749

 

$

23.04

 

$

1.28

 

$

6.94

 

$

14.82

 

 

 

1110L

 

47,240

 

5.8

 

8,501

 

$

13.28

 

$

1.19

 

$

5.91

 

$

6.18

 

 

 

1130L

 

45,825

 

4.5

 

6,398

 

$

10.00

 

$

1.91

 

$

6.53

 

$

1.56

 

 

 

1150L

 

44,466

 

3.2

 

4,415

 

$

6.90

 

$

1.25

 

$

5.74

 

$

-0.09

 

 

 

1170L

 

12,763

 

11.9

 

4,712

 

$

7.36

 

$

1.45

 

$

1.69

 

$

4.22

 

 

 

1190L

 

15,849

 

20.0

 

9,834

 

$

15.36

 

$

1.27

 

$

2.10

 

$

11.99

 

 

 

1210L

 

40,214

 

4.5

 

5,614

 

$

8.77

 

$

2.39

 

$

5.19

 

$

1.19

 

 

 

1230L

 

41,466

 

4.1

 

5,275

 

$

8.24

 

$

1.37

 

$

5.22

 

$

1.65

 

 

 

1250L

 

33,319

 

11.2

 

11,578

 

$

18.09

 

$

1.35

 

$

4.25

 

$

12.49

 

 

 

1270L

 

41,793

 

7.3

 

9,466

 

$

14.79

 

$

1.28

 

$

5.38

 

$

8.13

 

 

 

1290L

 

40,647

 

6.0

 

7,567

 

$

11.82

 

$

1.13

 

$

5.21

 

$

5.48

 

 

 

Timmins Deposit Total

 

2,249,658

 

5.61

 

392,080

 

$

612.57

 

$

47.46

 

$

285.93

 

$

279.18

 

 

 

Thunder Creek Deposit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

370L

 

43,029

 

3.73

 

4,980

 

$

7.70

 

$

0.12

 

$

4.72

 

$

2.86

 

 

 

395L

 

56,414

 

5.97

 

10,449

 

$

16.16

 

$

1.50

 

$

6.06

 

$

8.60

 

 

 

415L

 

41,358

 

3.55

 

4,555

 

$

7.04

 

$

2.00

 

$

4.36

 

$

0.68

 

 

 

450L

 

92,898

 

4.01

 

11,558

 

$

17.87

 

$

2.00

 

$

9.59

 

$

6.28

 

 

 

485L

 

15,329

 

5.80

 

2,758

 

$

4.27

 

$

1.25

 

$

1.56

 

$

1.46

 

 

 

520L

 

0

 

0

 

0

 

$

0.00

 

$

0.78

 

$

0.00

 

$

-0.78

 

No production. Ramp development only.

 

555L

 

0

 

0

 

0

 

$

0.00

 

$

1.39

 

$

0.16

 

$

-1.55

 

No production. Overcut for 590L stopes.

 

590L

 

73,215

 

3.40

 

7,723

 

$

11.94

 

$

2.56

 

$

8.67

 

$

0.71

 

 

 

625L

 

397,371

 

4.43

 

54,616

 

$

84.45

 

$

2.53

 

$

41.18

 

$

40.74

 

 

 

660L

 

357,515

 

5.06

 

56,126

 

$

86.79

 

$

2.36

 

$

37.70

 

$

46.73

 

 

 

695L

 

433,939

 

5.97

 

80,375

 

$

124.29

 

$

2.52

 

$

45.40

 

$

76.37

 

 

 

730L

 

550,077

 

4.75

 

81,065

 

$

125.36

 

$

1.91

 

$

54.94

 

$

68.51

 

 

 

765L

 

509,044

 

4.84

 

76,440

 

$

118.20

 

$

2.06

 

$

52.76

 

$

63.38

 

 

 

800L

 

102,335

 

4.02

 

12,763

 

$

19.74

 

$

1.82

 

$

10.96

 

$

6.96

 

 

 

Thunder Creek Deposit Total

 

2,672,522

 

4.86

 

403,408

 

$

623.81

 

$

24.80

 

$

278.06

 

$

320.95

 

 

 

Total Timmins West Mine

 

4,922,180

 

5.21

 

795,488

 

$

1,236.38

 

$

72.26

 

$

563.99

 

$

600.13

 

 

 

 

221



 

Based on the evaluation results, the estimated net cash generated at the Timmins Deposit from mining the probable reserves will be $279.18 million and the net cash generated at the Thunder Creek Deposit will be $320.95 million from mining the probable reserves.  This yields an overall total cash flow net of direct mining and processing costs of $600.13 million.

 

Using the same tonnes, grade, and capital and operating costs (as in Table 22.2), a sensitivity was completed to estimate the net cash per sublevel at US $1,300 per ounce gold price (at the same 1.0 currency exchange rate).  At US $1,300 per ounce gold price, the estimated net cash from mining Timmins Deposit probable reserves will be $164.21 million and for mining the Thunder Creek Deposit probable reserves will be $203.85 million (total $368.06 million).

 

Considering the base case at US $1,600 per ounce gold price, when the capital allowance from 2012 infrastructure is deducted the net remaining becomes $457.78 million and when the sustaining infrastructure capital is removed the net revenue becomes $343.75 million as summarized in Table 22.3.

 

TABLE 22.3:        ESTIMATED NET REVENUE

 

Item

 

US $1,600/oz
(millions)

 

Sensitivity
US $1,300/oz
(millions)

 

Net Revenue from Direct Mining and Processing

 

$

600.13

 

$

368.06

 

Less 2012 Capital Costs (common infrastructure)

 

$

142.35

 

$

142.35

 

Net Remaining

 

$

457.78

 

$

225.71

 

Less Sustaining Capital Costs (common infrastructure)

 

$

114.03

 

$

114.03

 

Net Revenue

 

$

343.75

 

$

111.68

 

 

Considering the same mine design and production plan, the estimated gold price to break-even on all capital costs will be US $1,156 per ounce.  The estimated gold price to break-even on all (direct capital plus common infrastructure capital) post 2012 capital will be US $972 per ounce.  The estimated gold price on direct capital only (post 2012) will be approximately US $824 per ounce, and the break-even operating cost is US $ 709 per ounce.

 

222



 

23.0                        ADJACENT PROPERTIES

 

23.1                        GENERAL STATEMENT ABOUT ADJACENT PROPERTIES

 

The Timmins West Mine is surrounded and contiguous with other Lake Shore Gold properties. In the immediate area of the Timmins West Mine there is only one advanced project, Explor Resources Inc.’s Timmins Porcupine West Property, reporting a recently released (January 12, 2012) Inferred Resource of 6.29 million tonnes grading 4.11 grams per tonne for 831,175 ounces of in-situ gold at a cut-off of 2.20 grams gold per tonne (Langton et al., 2012).  Figure 23.1 illustrates active projects owned by other companies in the immediate area of Timmins West Mine.

 

The mineralized zones of the Timmins West Mine within Bristol township are situated between 20 to 38 kilometres south west of the historical producing and past producing gold mines of the Porcupine Gold Camp.  Table 23.1 states the distance from the Timmins West Mine headframe to a selected list of mines within the Timmins area.

 

TABLE 23.1:        DISTANCE FROM THE TIMMINS WEST MINE HEADFRAME TO SIGNIFICANT TIMMINS AREA MINING LANDMARKS

 

Mine

 

Distance (kilometres)

 

General Direction

 

Kidd Creek Mine

 

36.7

 

North-northeast

 

Hoyle Pond Mine

 

37.2

 

North-northeast

 

Dome Mine

 

24.8

 

northeast

 

McIntyre Mine

 

22.1

 

North-northeast

 

Hollinger Mine

 

20.4

 

North-northeast

 

Bell Creek Mine Complex

 

33.7

 

North-northeast

 

Gold River Project

 

3.5

 

South-southeast

 

 

23.2                        ADVENTURE GOLD INC. — MEUNIER 144 GOLD PROPERTY — BRISTOL TOWNSHIP

 

RT Minerals Corp. and Lake Shore Gold Corp. have optioned the Meunier 144 Gold Property from Adventures Gold Inc.  The property consists of ten (10) freehold patent claims with an approximate area of 160 hectares. The south-east claim, P26393 straddles the junction of highways 101 and 144 with a common boundary to the west boundary of Lake Shore Gold Corp.’s Timmins Mine.  The west and south-west boundaries are contiguous with the western portion of the Thunder Creek property.  The claims are underlain by metamorphosed mafic volcanics of the Tisdale assemblage that are intruded by diabase dykes belonging to the Matachewan dyke swarm.  The property is being drill tested for the possible deep, (2,000 metres) down dip, down plunge extension of Timmins Deposit, and the Rusk horizon.

 

The 2010 mineral deposits inventory (“MDI”) lists MDI42A05NE00004 as a discretionary gold occurrence located in the central east section of claim P26392.  The MDI reports the showing as “a 12 inch quartz vein reportedly returned 0.17oz/t gold from a 1946 diamond drill hole”.

 

223



 

FIGURE 23.1:       LOCATION OF ADJACENT PROPERTIES

 

GRAPHIC

 

224



 

23.3                        PELANGIO EXPLORATION INC. — POIRIER OPTION — BRISTOL TOWNSHIP

 

Two staked mineral claims with an area of 64 hectares are situated between the Meunier 144 property — Timmins Mine property and to the north of the Thunder Creek Property portion of the Timmins West Mine. The claims are underlain by mafic metavolcanic rocks belonging to the Tisdale assemblage.  The MDI does not describe or locate a mineral occurrence on this property.  On their website Pelangio report completing prospecting, and an MMI soil geochemical survey.  They state quartz veining and sulphides where noted on the property during the surveys.  The location of the quartz veins and sample results are not available.

 

23.4                        NEWCASTLE MINERALS LIMITED — WEST TIMMINS GOLD PROJECT — CARSCALLEN TOWNSHIP

 

The property consists of nine (9) freehold patent claims covering an area of approximately 118 hectares in Carscallen township.  Newcastle Minerals Limited optioned the patents which have both mineral and surface rights from Timmins Forest Products Limited in 2009.  In May of 2010, SGX Exploration entered into an agreement with Newcastle Minerals Limited to acquire an option to earn 75% interest in the nine patents.  The east boundary of the Newcastle claims is situated four (4) kilometres west of the Timmins Mine headframe.

 

The western portion of the claim group is underlain by mafic to intermediate metavolcanics belonging to the Deloro assemblage rocks. The central portion of the claims are underlain by felsic to intermediate metavolcanic rocks belonging to the Kidd-Munro Upper assemblage, and the south-eastern portion of the claim group contains Tisdale assemblage mafic metavolcanic rocks.

 

The MDI does not locate a mineral occurrence on this property.

 

Work completed by Newcastle Minerals Inc. is summarized in Table 23.2.  Diamond drilling targeted an explanation for geophysical anomalies.  No assays greater than 1 gram were reported in the NI 43-101 report “Technical report on the West Timmins Gold Project Carscallen Township, Porcupine Mining District, Ontario” authored by D.C. Leroux P.Geo. A.C.A. Howe International Ltd., September 26, 2011.

 

TABLE 23.2:       SUMMARY OF WORK NEWCASTLE MINERALS LIMITED

 

Year

 

Survey Type

 

Comments

2010

 

Total field magnetic response

 

13.7 kilometres

 

 

Induced polarization and resistivity

 

13.7 kilometres

 

 

MMI soil geochemistry

 

72 samples from 7 lines

 

 

7 BQ (35 mm diameter) diamond drill holes

 

1,516 metres

 

 

Core samples for gold analysis

 

420 samples

2011-09-30

 

9 BQ diamond drill holes

 

2,032 metres

 

 

Core samples for gold analysis

 

817 samples

 

23.5                        RICHMONT MINES INC. — CRIPPLE CREEK PROPERTY — DENTON TOWNSHIP

 

The north-east corner of the Cripple Creek property is approximately 5 kilometres south west of the Timmins Mine headframe.  Richmont acquired the project in 2002 and explored the property until 2005.  Exploration activities resumed in 2010 over the project that consists of 26 staked claims, 43 claim units (688 hectares).  Ontario’s Mineral Deposits Inventory indicates four (4) occurrences are located within

 

225



 

the property.  Gold was first discovered in the 1950s by R.E.  Halpenny and the showing that bears his name (also known as Mahoney Creek-1984, MDI42A05SE00005).  The local stratigraphic, as it is currently understood, is composed of a series of intercalated mafic and ultramafic and mafic metavolcanic flow units belonging to the Tisdale assemblage.  Gold bearing quartz-carbonate veins occur within alteration zones at the mafic —ultramafic metavolcanic contact as well as in strained section of the mafic metavolcanics.  Since the discovery of gold on the property the following companies have tested the property by means of diamond drilling, stripping, trenching overburden sampling, geophysical and geochemical surveys: Hollinger Consolidated Gold Mines Limited, Gambit Exploration, Gowest Amalgamated Resources Limited, Noranda Exploration Company Limited, Hemlo Gold Mines Inc. and Battle Mountain Gold. Three gold bearing areas have been identified: MDI42A05SE00056, the Cripple Creek Zone 16 referenced to Battle Mountain’s drill collar cc96-16; MDI42A05SE00057, the Cripple Creek Zone 17 also referenced to as Battle Mountain drill collar cc96-17; MDI42A05SE00058, the Mahoney Creek Zone reference with Hemlo Gold drill collar cc93-1.

 

Richmont Mines Inc., report that they have completed a two phase diamond drill program for a total of 8032 metres of drilling.  No resource estimate is reported for this property.

 

23.6                        EXPLOR RESOURCES INC. — TIMMINS PORCUPINE WEST (ONTARIO) PROPERTY — BRISTOL AND OGDEN TOWNSHIPS

 

Explor Resources Inc. have 120 claims (204 claim units) totaling 3,264 hectares registered to their name in the area of the Timmins Porcupine West Project located in Bristol and Ogden townships.  The southwest corner of the claim group is situated approximately four (4) kilometres from the Timmins Mine headframe.  The 2010 provincial mineral deposits inventory locates 9 mineral occurrences adjacent to the claim line or within the property boundary.  These gold mineral occurrences are:  1) MDI42A06NW00055  — Mineral Estates Ltd (Waterhen Group) — 1930 (also known as: Torburn ddh no 2 — 1931; P. Hubert Claim P8504 — 1911; Hulcano Porcupine -1946); 2) MDI42A06NW00195- Cominco DDH BR-87-1 — 1987; 3) MDI42A06NW00196 - Placer Dome DDH ###-## -####; (also known as: Cameco South Zone — 2002 and Cameco DDH BRS02-19-2002); 4) MDI42A06NW00197 - Cameco DDH BRS02-12 — 2002; (also known as: Cameco SW Zone — 2002); 5) Mdi42a06nw00198 - Hoyle Mining DDH No. 1 — 1945; (also known as: Cameco DDH BRS02-14 — 2002); 6) MDI42A06NW00199- Cameco Main Zone — 2002; (also known as: Bristol Project — 1998, and Placer Dome Project 246 — 1985); 7) MDI42A06NW00200 - Cameco DDH BRS02- 16 — 2002, or Cameco East Zone — 2002; 8) MDI42A06NW00208 - Hollinger DDH B.O. # 3 — 1959; and 9) MDI42A05NE00024 - Foley-Obrien Claim 15462 — 1928 or the Wright Ventures Group — 1939.

 

Cameco Gold Inc. geologists Babin, Samson, and Koziol (2002) describe the property geology as follows: “The property geology is marked by a southwest striking package of sediments which are bounded to the north by mafic volcanics and intruded in the central part of the property by a variably altered quartz-feldspar- porphyritic intrusion.  The margins of the main porphyry body consist of porphyry dyke swarms of similar composition intruding the sediments.  Recent age dating suggests that the mafic volcanic rocks on the north side of the property belong to the Tisdale Group (Ayers et al, 1999).  The sediments consist of moderately chloritic interbedded sandstones and +/- argillaceous mudstones, exhibiting well defined Bouma sequences away from the porphyry.  Close to the main porphyry intrusion, the sediments are coarser grained with only minor mudstone horizons.  The sand stone beds are more massive, crudely bedded and contain an appreciable percentage of quartz grains and granule size siliceous clasts (chilled porphyry clasts?).  Some sediment horizons close or in contact with the porphyry contain up to 70% variably altered and deformed, granule to cobble size porphyry clasts similar to the main porphyry

 

226



 

intrusion, surrounded by a sandstone matrix.  These horizons probably represent brecciated contact zones of the porphyry intruding the sediments.  Where porphyry dykes are not observed in contact with the conglomerate-like horizons they are alternatively explained as debris flow horizons eroded from the main porphyry.  The mafic volcanic/sediment contact is marked by graphitic argillite and interpreted to dip north based on limited drill hole information in that area of the property.  Because of its generally coarse nature and its composition (rich in quartz grains and siliceous clasts), the sediment package is interpreted to be transitional between the Krist formation and the Porcupine Group sediments described in the Timmins area stratigraphy.  Over the central and south parts of the property, stratigraphic facing is to the south based upon graded bedding and flame structures in the sediments.  Numerous late north-northwest trending diabase dykes of variable width crosscut all units.

 

Langton et al. (2012) describe the property as marked by southwest-striking series of steeply north-dipping faults and zones of high-strain (“shear zones”) that parallel a moderate to strong foliation present in all the rocks except the diabase dykes.  A quartz-feldspar porphyry intrudes the central part of the Property and is itself intruded by a smaller, linear syenite body.  The quartz-feldspar porphyry (QFP) is locally strongly altered by sericitic, chloritic and carbonaceous alteration, and local silicification, where it is transected by high-strain zones.

 

The mineralization as being hosted by a series of strongly foliated, parallel structural zones interpreted to be striking southwest and dipping about 70° northwest.  Gold values are spatially associated with disseminated, fine-to-coarse grained subhedral pyrite.  Chloritized bands of pyrite, chalcopyrite, and red sphalerite are locally cored by quartz-carbonate veins, which have been subsequently boudinaged.  Not all pyrite is associated with gold mineralization.  Visible gold has been recognized occurring as free grains in chlorite, and quartz-carbonate veins, and as inclusions in pyrite and chalcopyrite (but not with sphalerite).

 

The area south and southwest of the QFP hosts several gold-anomalous zones associated with pyrite-pyrrhotite-red sphalerite stringers.  This gold and zinc anomalous mineralization is distinct from the main pyrite-chalcopyrite mineralization seen in the central part of the main porphyry.

 

The chlorite alteration overprints the (earlier) sericite alteration, late, quartz-chlorite-hematite-tourmaline veinlet stockworks locally crosscut the QFP, but there is no apparent correlation between the veinlets and the gold.  Where the QFP is less deformed and sericitized the feldspar phenocrysts are preferentially epidotized, and the rock is generally more siliceous, highly fractured and blocky.

 

Explor Resources Inc.’s recently filed NI 43-101 Technical Report prepared for utilizing diamond drill results available as of May 03, 2011 and an effective date of November 23, 2011 states an Inferred Mineral Resource of 6.29 million tonnes grading 4.11 grams per tonne for 831,175 ounces of in-situ gold at a cut-off of 2.20 grams gold per tonne (Langton et al., 2012).

 

227



 

24.0                        OTHER RELEVANT DATA AND INFORMATION

 

No additional information or explanation is necessary to make this Technical Report understandable and not misleading.

 

228



 

25.0                        INTERPRETATION AND CONCLUSIONS

 

The Mineral Resource estimates for the Timmins West Mine are based on historical diamond drilling dating back to March 1984 and drilling completed by LSG between July 2003 and January 31, 2012.  A total of 167 surface holes (118,141 metres) and 777 underground holes (115,439 metres) were used in the Resource Estimate.

 

The Timmins West Mine Resource totals 5.83 Mt at 5.99 g/t Au amounting to 1,122,500 ounces of gold in the Indicated category and 4.27 Mt at 5.76 g/t Au amounting to 791,500 ounces of gold in the Inferred category (Table 25.1).  The base case resources are estimated at a 1.5 g/t Au cut-off for the Timmins deposit and a 2.0 g/t Au cut-off for the Thunder Creek Deposit.

 

The Thunder Creek Deposit Resource totals 2.88 Mt at 5.64 g/t Au amounting to 521,600 ounces of gold in the Indicated category and 2.69 Mt at 5.89 g/t Au amounting to 510,000 ounces of gold in the Inferred category.  The Resource was estimated using Inverse Distance to the power 2 (ID(2)) interpolation method with all gold assays capped to 75 gram metres, and an assumed long-term gold price of US $1,200 per ounce.

 

The Timmins Deposit Resource totals 2.95 Mt at 6.34 g/t Au amounting to 600,900 ounces of gold in the Indicated category and 1.58 Mt at 5.54 g/t Au amounting to 281,500 ounces of gold in the Inferred category.  The Resources were estimated using Inverse Distance to the power 3 (ID(3)) interpolation method with all gold assays capped to 70 gram metres for the Ultramafic Zone and 40 gram metres for the Vein Zones, and an assumed long-term gold price of US $1,200 per ounce.

 

The drilling, development and test mining has demonstrated continuity of grade, mineralization and geologic structure to support the definition of a reasonable prospect of economic extraction defined by CIMM standards for indicated and inferred resource classifications.

 

A high level Preliminary Economic Assessment (PEA) was previously conducted on the combined Mineral Resources of the Timmins Deposit and the Thunder Creek Deposit.  A summary of the results of this work are presented under Item 14.11.  This work indicated the potential for a very robust business case based on fair and reasonable production and cost assumptions.

 

229



 

TABLE 25.1:       TIMMINS WEST MINE RESOURCE ESTIMATES

 

(Prepared by Lake Shore Gold — January 31, 2012)

 

Deposit

 

Resource Classification

 

Tonnes

 

Capped
Grade
(g/t Au)

 

Contained
Gold
(ounces)

 

Timmins

 

 

 

 

 

 

 

 

 

 

 

Indicated

 

2,949,000

 

6.34

 

600,900

 

 

 

Inferred

 

1,579,000

 

5.54

 

281,500

 

 

 

 

 

 

 

 

 

 

 

Thunder Creek

 

 

 

 

 

 

 

 

 

 

 

Indicated

 

2,877,000

 

5.64

 

521,600

 

 

 

Inferred

 

2,693,000

 

5.89

 

510,000

 

 

 

 

 

 

 

 

 

 

 

Total Timmins West Mine

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

5,826,000

 

5.99

 

1,122,500

 

 

 

Total Inferred

 

4,272,000

 

5.76

 

791,500

 

 

Notes:

 

1.              CIM definitions were followed for classification of Mineral Resources.

2.              Mineral Resources are estimated at a cut-off grade of 1.5 g/t Au for the Timmins Deposit and 2.0 g/t Au for Thunder Creek.

3.              Mineral Resources are estimated using an average long-term gold price of US $1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.              A minimum mining width of 2 metres was used.

5.              Capped gold grades are used in estimating the Mineral Resource average grade.

6.              Sums may not add due to rounding.

7.              Mineral Reserve estimates for the Timmins West Mine are currently in progress.

8.              Metallurgical recoveries are assumed to average 96.5 percent.

9.              Mining costs are assumed to average $82/tonne.

10.       Mr. Robert Kusins, B. Sc., P. Geo. and Mr. Ralph Koch, B. Sc., P. Geo., are the Qualified Persons for this Resource estimate.

 

A sensitivity analysis was carried out to examine the impact upon the tonnage, average grade and contained ounces by increasing the cut-off grade up to 3.0 g/t Au for the Timmins West Mine; Timmins and Thunder Creek Deposits.  The results are graphically presented in Figure 25.1 for the Timmins Deposit and Figure 25.2 for the Thunder Creek Deposit respectively.  By increasing the cut-off grade, (refer to Figure 1.1 and Figure 1.2) the model demonstrates opportunity to optimize target grade by carving out the fringe, lower grade mineralization while maintaining grade and geological continuity and the loss of minimal total ounces.  The application of grade control practices using a higher cut-off grade has been challenging due to the irregular geometry of the quartz stringer zones within the mineralized envelopes and the practical separation of higher grade mineralization at the face.  Detailed mapping, chip channel sampling, and muck samples in addition to tighter definition drilling will be required to delineate the higher grade mineralized outlines and 3-D solids.

 

230


 


 

FIGURE 25.1:     GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE, TIMMINS DEPOSIT

 

 

FIGURE 25.2:     GRADE-TONNAGE GRAPH AS A FUNCTION OF CUT-OFF GRADE, THUNDER CREEK

 

 

231



 

Although limited initial metallurgical testing has been conducted on core sample from the Timmins and Thunder Creek Deposits since the previous respective technical reports, the best large scale testing was achieved through batch milling of the various sources over a period between September 2010 and June 2011, when capacity at the Bell Creek mill was available.  Rusk Shear Zone and Porphyry Zone bulk samples were largely extracted from the 300 metre Level and 730 metre Level elevations respectively during this period (Table 25.2) and returned greater than 96.5 % recovery.  The 650-610 metre Level longhole stope comprising the UM1 and UM1a Zones was almost exclusively processed between September and December 2010 returning greater than 96% Au recovery (Table 25.3).  For most of 2011, and especially after June 2011 the mill production was increased to capacity and run of mine feed was blended from multiple sources; Timmins Mine, Bell Creek and Thunder Creek deposits achieving very positive gold recoveries, averaging in excess of 96 percent.

 

TABLE 25.2:       BATCH MILLING RESULTS FOR THUNDER CREEK DEPOSIT MINERALIZATION

 

Thunder Creek Batch Mill Processing Results

 

Year

 

Month

 

Tonnes

 

Grade
(g/t Au)

 

Recovery

 

Head Ounces

 

Ounces Produced

 

2010

 

September

 

2,824.94

 

5.21

 

96.87

%

473.11

 

458.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011

 

March

 

24,028.8

 

3.75

 

97.32

%

2,894.11

 

2,816.62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011

 

May

 

13,213.3

 

3.75

 

97.03

%

1,593.53

 

1,546.24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2011

 

June

 

5,631.9

 

3.98

 

97.21

%

721.43

 

701.31

 

 

TABLE 25.3:       BATCH MILLING RESULTS FOR TIMMINS DEPOSIT MINERALIZATION

 

Timmins Deposit Batch Processing Results

 

Year

 

Month

 

Tonnes

 

Grade
(g/t Au)

 

Recovery

 

Head Ounces

 

Ounces Produced

 

 2010

 

September

 

8,475

 

4.69

 

96.52

 

1,279

 

1,234.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2010

 

October

 

21,893

 

7.71

 

96.97

 

5,428

 

5,263.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2010

 

November

 

53,833

 

7.53

 

96.83

 

13,035

 

12,622

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2010

 

December

 

45,483

 

8.57

 

97.31

 

12,528

 

12,191

 

 

The Mineral Resource block model incorporated in Table 25.1 delineated a concentration of approximately 650,000 ounces between the 600 and 800 metre Level elevations of Rusk Shear and Porphyry Zones at 3,250 ounces per vertical metre for all resource categories.  This vertical interval contains some of the widest mineralized Porphyry Zones over the entire vertical expression of the Thunder Creek resource with two key domains host to approximately 75% of the total contained ounces and average horizontal widths of 14.7 metres and 24.4 metres respectively (i.e. PZ-1a, PZ-1b).

 

An independent review by Michel Dagbert, Eng. of SGS Geostat of the QA/QC samples routinely introduced into the AEP drill hole sample stream, has concluded that the quality of the assaying

 

232



 

incorporated into the block model is satisfactory demonstrating no significant bias and adequate precision and reproducibility.

 

Validation of the block model was performed visually through a comparison of drill intercepts and block model results on plans and section between the geologic model and domain block model.  Preliminary sill development and test mining results of both the Rusk Shear and Porphyry Zones demonstrate reasonable correlation with the 3D shapes and grades predicted by the Thunder Creek block model.

 

No significant differences in grade estimation were realized between the nearest neighbor interpolation of the block model using the same parameters and search ellipse as the ID² interpolation.

 

An independent review of the resource estimate was completed by Michel Dagbert, Eng. of SGS Geostat and he is in agreement with the practices employed by Bob Kusins, P. Geo. in the Mineral Resource estimate and block modeling parameters utilized at both the Timmins and Thunder Creek Deposits.

 

Subsequent to completion of the Preliminary Economic Assessment (PEA), further detailed engineering design, cost analysis, and economic evaluations were completed at a Prefeasibility (PFS) level on the Measured and Indicated resource subset of the total resource pool.  The results of this work support a Probable Reserve of 4.9 M tonnes grading 5.2 g/tonne for the Timmins West Mine for some 823,848 oz mined (795,000 oz. net mill recoveries), including some 2.25 M tonnes grading 5.62 g/tonne at the Timmins Deposit for some 406,000 oz mined (392,000 oz. net mill recoveries), and a further 2.67 M tonnes grading 4.86 g/tonne at the Thunder Creek Deposit for some 417,000 oz mined (403,000 oz. net mill recoveries).

 

The high level steps involved in the development of the PFS were as follows.  Geological models of the indicated resources were isolated and rigorous assessments were made of the geometry and continuity of each of the mineralized zones.  Geomechanical information and assessments collected and conducted over the last two years were taken into account in the assessment and assignment of appropriate mining methods to these mineralized zones.  Individual stope designs were then created in three dimensions.  These stope shapes were then queried against the block models.  This allowed for fair inclusion of internal dilution from both low grade and barren mineral zones.  Additional factors were assigned for external dilution (with or without grade) dependent on the specific mining method and geometry of each stoping unit being evaluated.  Finally, a global recovery factor was assigned to the overall reserves to allow for in-stope and process losses.  Detailed mine development layouts and construction activities were then assigned to provide access to each of the stoping units.  Development, construction, and production costs were then estimated to allow an economic assessment to be made comparing the capital and operating expenses required for each area to its expected revenue stream to ensure economic viability.  All inputs were vetted thoroughly and benchmarked against current operating practices and industry norms.

 

It should also be noted that all capital costs required to complete all surface and underground facilities at the Timmins West Mine and Bell Creek Mill facility have been included in this analysis.  It should also be noted that no contributions from the Bell Creek mining operations (positive or negative) have been included in this work.

 

Key outcomes of this financial analysis indicate that the reserves support a robust 5 year mining plan at a sustained production rate of 2,400 t/d.  The reserves can be extracted at an average operating cost of $113 per tonne ($709/oz) and a total capital cost of $329 million.  At an assumed gold price of US $1,600 per ounce, the reserves generate a positive cash flow of some $344 million.  Based on executing the

 

233



 

same mining plan, at an assumed long term gold price of US $1,300 per ounce, the cash flow drops to $112 million.

 

A series of break-even gold proce sensitivities were conducted.  The break-even price required to cover all capital and operating costs for the reserves only mining plan has been calculated at US $1,156 per ounce.  The estimated long term (post 2012) break-even gold price has been calculated at US $972/ounce.  This information shows that the mining plan for the reserves as stated, is very robust and can withstand significant fluctuations in market conditions.

 

Based on the outcomes of the financial evaluations from both the PEA (based on total resources) and the PFS (based on indicated resources only), it can be concluded that the mining operations at Timmins West Mine are extremely robust from a financial point of view.

 

Recommendations are to continue developing the mine and related infrastructure in 2012 to allow continued ramping up of the production profile into 2013 when cash flows are expected to become positive.

 

Ongoing development of appropriate diamond drilling platforms and completion of diamond drilling programs as indicated in the mine design are recommended.  This will allow ongoing mineral resource upgrading and conversion of mineral resources to mineral reserves on a year on year basis to extend the mine production plan as reserves are mined out.

 

25.1                        RISKS

 

The resource base used for inclusion in the previously completed PEA included inferred mineral resources.  Inferred mineral resources are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as mineral reserves, and there is no certainty that the financial outcomes predicted by the PEA will be realized.

 

The resource base used for the engineering and economic evaluations used in the PFS work completed to support the Reserve statement in this report includes material in the indicated resource category only.  This material is considered to be significantly more likely to realize the financial outcomes indicated in Item 22 of this report.

 

The realized grade in any mining plan has the greatest impact on financial returns.  Ongoing diamond drilling programs are planned and will need to be funded to reduce this risk going forward.

 

Gold prices are subject to significant fluctuation and are affected by a number of factors which are beyond the control of Lake Shore Gold Corp.  Lower than predicted gold prices will reduce the projected cash flow from the operation.  The economic analyses presented in this PFS have been conducted using both short and long term gold price assumptions (US $1,600 and US $1,300 respectively).  A break even price has been calculated at US $1,156/oz to cover all costs associated with mining these reserves.

 

Currency fluctuations are also affected by factors which are beyond the control of Lake Shore Gold Corp.  A stronger than predicted Canadian dollar versus the U.S. dollar will reduce the projected cash flow from the operation.

 

Operating and capital costs determined as the basis for this PFS have been developed based on industry benchmarks and best practice as well as actual performance metrics of the operation in 2011.  These factors are considered low risk elements and have intrinsically less impact on financial returns.

 

234



 

Social, political, and environmental factors are all considered to be low risk factors for the Timmins West Mine.

 

235



 

26.0                        RECOMMENDATIONS

 

An internal validation of the Gemcom GEMS (Microsoft SQL) database used in the current Timmins West Mine resource estimate identified only minor discrepancies that were documented and corrected prior to the estimation of the resources.

 

As a result, the logging geologists will be required to inspect and sign-off that their completed drill logs and assay certificates have been inspected for completeness and accuracy on a quarterly basis as part of an ongoing validation protocol.

 

Michel Dagbert, Eng., senior geostatistician, SGS Geostat reviewed the Timmins West Mine QA/QC spreadsheet, a compilation of blanks, duplicates standards and check assays assembled for consideration of the quality of surface and underground drilling assay results included in the Mineral Resource calculation reported in this technical report.

 

Mr. Dagbert stated in his report that there exists no sign of an overall bias in the results for standards.

 

Mr. Dagbert has concluded that despite there being high variability in the gold grades at Timmins West Mine, the QA/QC data reviewed indicates that the quality of the assay grades used in the resource estimation are satisfactory.

 

The findings of the report will be communicated to the internal and commercial labs used at the Timmins West Mine and their performance will be monitored monthly for compliance on performance of QA/QC samples against the target grades and accepted variance thresholds.  Any significant bias in standards and/or non-compliance to threshold variance in standards, duplicates and/or blanks may result in termination of services.

 

Development and initial mining at the Timmins West Mine has identified some strengths in the Mineral Resources of specific zones and styles of mineralization that were largely successful in achieving target grades and tonnes i.e. reconciling well to the drill indicated resource.  In the upper mine, ramp infrastructure, the MZ and Vein 2 were largely successful targets for follow-up drilling and development below the current 290 metre Level of the surface ramp.  Connection of the 290-480 metre Level ramps would provide internal flexibility of equipment movement throughout the mine and the development of a shaft independent source of ore feed.

 

The performance of the UM complex in the mining block between 650-565 metre Levels to date has been largely successfully and should be pursued with vigor below the 650 metre Level with a focus on mining upwards to avoid sill pillar creation.  The focus should be on driving the ramp deeper, drilling and developing mining horizons far in advance of mining so that mineral reserves are largely drilled off and development defined at the annual budget time.

 

The first Mineral Resource at Thunder Creek has identified a significant resource, of which approximately 65% of the contained ounces are located between an elevation roughly 100 metres above and below the 730 metre Level elevation.  Although the base case at a 2.0 g/t cut-off grade provides a more global resource, the target grades generated at a higher cut-off grade are likely more inline with the economic margins preferred for mining at Thunder Creek.  The density of drilling that currently exists within the resource estimate was designed to optimize a larger bulk mining approach with more simplistic mineralization outlines distributed within the monzonite intrusion.  It is believed

 

236



 

that mineralization outlines for a higher grade cut-off will dictate sectional ring drilling on tighter patterns.

 

Advancing a larger number of mining horizons will increase production flexibility in the mine planning and scheduling.  This will de-risk the production profile.

 

A budget of $8.375 M will be required to complete the recommendations listed below.  This estimated budget assumes an all-inclusive underground operating definition drilling budget of $95/m and exploration drilling budget of $125/m; and an all-inclusive cost of $150 per metre for surface diamond drilling for drill holes bored to a 1,000 metre depth:

 

1.              Detailed sectional drilling of the Rusk and Porphyry Zones from the 600-800 metre Level elevations on 15 metre centers comprising approximately 30,000 metres ($2.85 M).

2.              The upper level Rusk Shear Zone delineation testing the Rusk and emerging Porphyry Zones from the 370-500 metre Level elevations at 25 metre centers for a total of 10,000 metres ($0.95 M).

3.              Definition drilling from scram drifts parallel to the sill development in the hangingwall will include 2,500 metres in total over the year ($0.237 M).

4.              Delineation drilling of the Rusk/Porphyry style mineralization between the 500-600 metre Level and the 750-850 metre Level at 15-30 metre centers from the 260 and 710 metre Level drill drifts comprising an additional 7,500 metres ($0.713 M).

5.              Exploration drilling along strike off the ends of the 260 and the 710 metre Level drill platforms, with step-outs of approximately 100-200 metres to the northeast and southwest comprise approximately 5,000 metres ($0.625 M).

6.              Surface exploration diamond drilling along strike of the Rusk Shear (20,000 metres) over ground held by Lake Shore Gold Corp. ($3.0 M).

 

A budget of $6.295 M will be required to complete the recommendations listed below for the Timmins deposit.  This estimated budget assumes an all-inclusive underground operating definition drilling budget of $95/m and exploration drilling budget of $125/m.

 

1.              Detailed sectional drilling at 10-15 metre centres of the UM complex between the 670-730 metre Levels comprising 25,000 metres ($2.37 M).

2.              Exploration Drilling of the UM complex from the 730 metre Level drill drift down to 810 metre vertical at 15-25 metre centers for a total of 10,000 metres ($1.25 M).

3.              Delineation drilling of the FW Zone and Vein Zones between the 380-580 metre Levels from the 480 up ramp east comprising 10,000 metres ($0.95 M).

4.              Delineation drilling of the MZ between the 525-650 metre Levels from the 525 metre down ramp comprising approximately 5,000 metres ($0.475 M).

 

The following items are recommended for further study and evaluation based on the findings of the resource estimation process for the Timmins West Mine:

 

1.              Evaluate the replacing of the ID(3) and ID(2) interpolation method by ordinary kriging.

2.              Continue monitoring of specific gravity and grade capping, as addition drill hole information is added to the database, to insure appropriate values are being used.

3.              Continue stope reconciliations to monitor the grade predictability of the block model.

4.              Additional drilling, particularly in areas of the Inferred Resources, to better delineate the extent of the Resource and increase its confidence level.

 

237



 

5.              Reduce the amount of off azimuth and oblique drilling which become problematic in modeling and grade estimation.

 

The objective of the budget is to be continually upgrading the quality and confidence level of the interpretation and resource classification, converting inferred to indicated resources using delineation drilling from drill platforms in 100 — 200 metre level increments and indicated to measured through definition drilling and sill development at the sublevel elevation to refine the geology and mineralization models.  Drilling, chip and muck sampling densities will vary as a function of mineralization strike length and geometry and can be re-examined routinely by selectively running the block model with various data sets for comparison.  Until sufficient mining history in the various mineralization styles has been reconciled, sampling densities will be conducted on a more frequent basis, i.e. approaching 7.5 metre centres, in order to ensure the appropriate level of geologic and grade continuity is realized for adequate tonnage and grade estimation.

 

The resource pool indicated in this report has been tested through a high level Preliminary Economic Assessment (PEA) to have reasonable expectations for economic extraction.

 

Significant additional engineering, cost evaluation, and financial analysis completed at a preliminary feasibility study (PFS) level on the measured and indicated resource pool indicates strong economic value and therefore substantiates the Reserves declared in this report.

 

238



 

27.0                        REFERENCES

 

27.1                        REPORTS AND SCHEDULES

 

Accurassay Laboratories Ltd., 2011; Schedule of Services and Fees

 

ALS Laboratory Group, 2009 (CAD); Schedule of Services and Fees, ALS Minerals.

 

ALS Laboratory Group, 2011 (CAD); Schedule of Services and Fees, ALS Minerals.

 

Anglin, C. D., 1992; Sm-Nd and Sr Isotope Studies of Scheelite from some Superior Province Gold Deposits; a thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Ottawa-Carleton Geoscience Centre and Department of Earth Science, Carleton University, Ottawa, Ontario.

 

Ayer, J., Berger, B., Johns, G., Trowell, N., Born, P., Mueller, W.U., 1999; Late Archean Rock Types and Controls On Gold Mineralization In The Southern Abitibi Greenstone Belt Of Ontario; Field Trip B3 Guidebook, Geological Association of Canada (GAC), Mineralogical Association of Canada (MAC), Joint Annual Meeting, 1999, Sudbury, Ontario, Canada.

 

Ayer, J.A., Baker, C.L., Kelly, R.I., Stott, G.M., Thurston, P.C., 1999; Summary of Field Work and Other Activities 1999; Ontario Geological Survey, Open File Report 6000, Queen’s Printer of Ontario.

 

Ayer, J.A., Trowell, N.F., Madon, Z., Kamo, S., Compilation of the Abitibi Greenstone Belt in the Timmins-Kirkland Lake Area; revision to stratigraphy and new geochronological results; p. (4) 1-14.

 

Ayer, J.A., Dubé, B., Trowell, N.F. 2009; NE Ontario Mines and Minerals Symposium, PowerPoint Presentation: Stratigraphic and Metallogenic Comparison of the Detour Burntbush area with the Southern Abitibi.

 

Ayer, J., Trowell, N., (OGS); Amelin, Y., Kamo, S. and Kwok, Y., (ROM), 2000; PowerPoint Presentation: Deep Crustal Structures in the Abitibi Greenstone Belt and their Prolonged Control on the Distribution of Stratigraphy and Mineral Deposits; Toronto, January 2000.

 

Ayer, J., Barr, E., Bleeker, W., Creaser, R.A., Hall, G., Ketchum, J.W.F., Powers, D., Salier, B., Still, A., Trowell, N.F, 2003; Discovery Abitibi, new geochronology results from the Timmins Area: Implications for the Timing of Late-Tectonic Stratigraphy, Magmatism and Gold Mineralization.  Summary of field work and other activities, Ontario Geological Survey, Open File Report 6120, p. 33-1 to 33-11.

 

Ayer, J.A., Thurston, P.C., Bateman, R., Dubé, B., Gibson, H.L., Hamilton, M.A., Hathaway, B., Hocker, S.M., Houlé, M.G., Hudak, G., Ispolatov, V.O., Lafrance, B., Lesher, C.M., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E., Thompson, P.H., 2005; Overview of Results from Greenstone Architecture Project; Discovery Abitibi Initiative, Open File Report 6154, Ontario Geological Survey.

 

Barrie, C.T., 1992; Geology of the Kamiskotia Area, Ontario Geological Survey Open File Report 5829.  P.33.

 

239



 

Bateman, R., Ayer, J.A., Dubé, B, Hamilton, M.A., 2005; the Timmins-Porcupine Gold Camp, Northern Ontario: The Anatomy of an Archean Greenstone Belt and its Gold Mineralization: Discovery Abitibi Initiative, Open File Report 6158, Ontario Geological Survey.

 

Brisbin, D.I., 1986; Geology of The Owl Creek and Hoyle Pond Gold Mines, Hoyle Township, Ontario, an independent project submitted to the Department of Geological Science Queen’s University, Kingston, Ontario, in conformity with the requirements of the Non-Research Masters of Science Degree in Mineral Exploration.

 

Brisbin, D.I., 1997; Geological Setting of Gold Deposits in the Porcupine Camp, Timmins, Ontario, a thesis submitted to the Department of Geological Science in conformity with the requirements for the degree of Doctor of Philosophy, Queens University, Kingston, Ontario.

 

Brisbin, D.I., 2000; World Class Intrusion Related Archean Vein Gold Deposits of the Porcupine Gold Camp, Timmins, Ontario, Geology and Ore Deposits 2000, The Great Basin and Beyond, Proceedings, Geological Society of Nevada Symposium Volume 1, p. Brisbin-19-35.

 

Burrows, A.G., 1911; the Porcupine Gold Area, Twentieth Annual Report of the Bureau of Mines, 1911, Vol. XX, Part II.

 

Burrows, A.G., and Rogers, W.R., 1912; Map of the Porcupine Gold Area, District of Temiskaming, Ontario; First Edition, July 1910; Second Edition, April 1911. Scale: 1:63,360.  To accompany the Twentieth Report of the Bureau of Mines 1911.

 

Burrows, A.G., and Rogers, W.R., 1912; Map of the Porcupine Gold Area, District of Temiskaming, Ontario; First Edition, July 1910; Second Edition, April 1911; Third Edition June 1912.  Scale: 1:63,360.  To accompany the Twenty-first report of the Bureau of Mines, 1912.

 

Camier, J., 2009; Geological Mapping of the Peralkaline Syenite Intrusion and Host Rocks on the Thunder Creek Property, Lake Shore Gold Corp., Timmins, Ontario.

 

Cattarello Assayers Inc., 2011 Standard Operating Procedures, personal correspondence.

 

Cavey, G., 2004; Summary Geological Report On The Thorne Property, Bristol, Carscallen, Denton and Thorneloe Townships, Porcupine Mining Division, Ontario, for Band-Ore Resources Ltd. (December 04, 2004).

 

Cavey, G., 2006; Summary Geological Report On The Thorne Property, Bristol, Carscallen, Denton and Thorneloe Townships, Porcupine Mining Division, Ontario, for Band-Ore Resources Ltd. (March 30, 2006).

 

CIMM Standing Committee on Reserve Definitions, 2010; CIM Definition Standards — For Mineral Resource and Mineral Reserves, November 27, 2010.

 

Coad, P.R., Brisbin, D.I., Labine, R.J., Roussain, R.,1998; Geology of Owl Creek Gold Mine, Timmins, Ontario, CIMM Exploration and Mining Geol. Vol. 7, No. 4, p. 271-286.

 

240



 

Crick, D., Kusins, R., Powers, D., 2011; Technical Report on the Initial Mineral Resource Estimate for the Thunder Creek Property, Bristol Township, West of Timmins, Ontario, Canada, prepared for Lake Shore Gold Corp and West Timmins Mining Inc.

 

Dagbert, Michel: 2011; Statistical Analysis of QA/QC Assay Data, A Review and Report by SGS Canada Inc. Geostat.

 

Dagbert, Michel: 2011; Resource Modeling and Estimation of the Thunder Creek Gold Deposit, SGS Canada Inc. — Geostat, December 14. 2011.

 

Darling, G., 2007; Pre-feasibility Study Report, The Lake Shore Gold Timmins West Project, Timmins, Ontario, Lake Shore Gold Corp., SRK Consulting Canada Inc., SRK Project Number 5CL001.001, July 31st, 2007.

 

Darling, G., Kociumbas, M., Sullivan, J.R., Lavigne, J., Hayden, A.S., Small, A.S., Butler, D., Kordgharochorloo, F., Hall, R.A., Schmidt, P.R., 2007; NI 43-101 Technical Report, Lake Shore Gold Corp., Timmins West Project, Timmins, Ontario, Report Prepared for Lake Shore Gold Corp. by SRK Consulting Engineers and Scientists (October 12, 2007).

 

Darling, G., Fayram, T., Kusins, R., Samson, J., Miree, H., 2009; Updated NI 43-101 on the Timmins Mine Property, Ontario, Canada, prepared for: Lake Shore Gold Corp.

 

Dubois, M., and Brown, C., 2010; Lake Shore Gold Corp. Resistivity/Induced Polarization and Ground Magnetic Field Survey, Timmins West Mine Complex, Tailings Condemnation, Bristol and Thorneloe Townships, Ontario, Canada., Abitibi Geophysis

 

Easton, R.M., 2000; Geochronology of Ontario; Ontario Geological Survey, Miscellaneous Release Data 75.

 

Eastwood, A.M., 2004; 2004 Diamond Drill Program, Vogel Project, an internal memo Glencairn Gold Corporation.

 

Ferguson, S.A., 1957; Geology of Bristol Township, Sixty-Sixth Annual Report of the Ontario Department of Mines, being Volume LXVI, Part 7.

 

Ferguson, S.A., 1957; Bristol Township, District of Cochrane, Ontario; Ontario Department of Mines, Map 1957-7, scale 1:12,000.

 

Ferguson, S.A., 1968; Geology and Ore Deposits of Tisdale Township, Geological Report 58, Ontario Department of Mines.

 

Ferguson, S.A., Groen, H.A., Haynes, R., 1971; Gold Deposits of Ontario, Part 1, Districts of Algoma, Cochrane, Kenora, Rainy River and Thunder Bay, Ontario Department of Mines, Mineral Resources Circular No. 13, p. 49 — 50, 123 — 124.

 

Fyon, J.A., Breaks, F.W., Heather, K.B, Jackson, S.L., Muir, T.L., Stott, G.M., Thurston, P.C. 1991; Geology of Ontario, Special Volume 4, Part 2, Chapter 22,Metallogeny of Metallic Mineral Deposits in the Superior Province of Ontario, Ontario Geological Survey, p. 1091 to 1174.

 

241



 

Geldart, J., Bousfield, J., Dymov, I., 2005; An Investigation of The Recovery of Gold from Samples From the Timmins Property, prepared for Lake Shore Gold, LR 10669-001-Report No. 1, SGS Lakefield Research Limited.

 

Gray, D. Mathew, 1994; Multiple Gold Mineralizing Events In The Porcupine Mining District, Timmins Area, Ontario, Canada; A thesis submitted to the faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology).

 

Hawley, J.E., 1926; Thirty-Fifth Annual Report of the Ontario Department of Mines being Vol. XXXV, Part VI, 1926, p. 1 to 36.

 

Hawley, J.E., 1926; Map No. 35g, The Townships of Carscallen, Bristol and Ogden, District of Cochrane, Ontario, scale: 1:47520.

 

Hawley, J.E., 1926; ARM35G, The Townships of Carscallen, Bristol, and Ogden, District of Cochrane, Ontario, Map 35g, scale: 1:47,520, Ontario Department of Mines.

 

Hodder, R.W., Petruk, W., 1980; Geology of Canadian Gold Deposits, Proceedings of the CIM Gold Symposium, published for the Geology Division of CIM, Special Volume 24, The Canadian Institute of Mining and Metallurgy, p. 101 to 170.

 

Jackson, S.L., Fyon, J.A., 1991; Geology of Ontario, Special Volume 4, Part 1, Chapter 11, the Western Abitibi Subprovince in Ontario, Ontario Geological Survey p. 405 to 482.

 

Jackson, S.L., Fyon, J.A., 1991; Geology of Ontario, Special Volume 4, Part 2, Chapter 22, The Metallogeny of Metallic Mineral Deposits in the Superior Province of Ontario, Ontario Geological Survey, p. 1149.

 

Kerrich, R., 1983; Geochemistry of Gold Deposits in the Abitibi Greenstone Belt, Special Volume 27, Canadian Institute of Mining and Metallurgy.

 

Krikham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., (editors) 1993; Mineral Deposit Modeling, Geological Association of Canada Special Paper 40, p. 465 to 479, and 635 to 678.

 

Lake Shore Gold Corp., 2011; Bell Creek Mill Laboratory Standard Operating Procedures.

 

Lake Shore Gold Corp., 2011; Internal Memo Regarding Permitting, T. Ternes; September 22.

 

Langton, J., Puritch, E., Yassa, A., Armstrong, T., 2112; National Instrument 43-101 Technical Report for Explor Resources Inc., on Timmins Porcupine West Property, Bristol and Ogden Townships, Ontario, MRB & Associates, and P&E Mining Consultants.

 

Leroux, D.C., 2011; Technical Report on the West Timmins Gold Project, Carscallen Township, Porcupine Mining District, Ontario; A.C.A. Howe International Limited; for Newcastle Minerals Limited.

 

Lo, Bob, 2011; Tailings IP Results, an internal Lake Shore Gold Corp. memo.

 

242



 

Lucas, S.B., and St-Onge, M.R. Coordination, 1998; Geology of Canada No. 7, Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America; Geological Survey of Canada, Geology of North America, Volume C-1.

 

Macdonald, A. James, Editor, 1986; Proceedings Volume, Gold 86; an International Symposium of the Geology of Gold Deposits:

 

Burrows, D.R., and E.T.C. Spooner, McIntyre Cu-Au Deposit, Timmins, Ontario, Canada; p. 23-40.

 

Mason, R., and Melnik, N., the Anatomy of an Archean Gold System — The McIntyre-Hollinger Complex at Timmins, Ontario, Canada; p. 40-56.

 

Wood, P.C. et al., the Hollinger-McIntyre Au-Quartz Vein System, Timmins, Ontario, Canada; Geological Characteristics, Fluid Properties and Light Stable Isotope Geochemistry; p. 56-81.

 

Melnik-Proud, Nadia, 1992; The Geology and Ore Controls in and Around the McIntyre Mine at Timmins, Ontario, Canada; a thesis submitted to the Department of Geological Sciences in conformity with the requirements for the degree of Doctor of Philosophy, Queen’s University, Kingston, Ontario, Canada.

 

Miller, A., 2004; Contribution to the Geology of the Holmer Gold Deposit: Orogenic Mesothermal Lode Gold Hosted in a Lake Archean Alkaline Intrusive Complex: Lithologies, Metamorphism and Overprinting Hydrothermal Alteration Assemblages Northern Volcanic Zone, Abitibi Subprovince, Canada, Volume 1 of 2, for Lake Shore Gold Corp. Miller and Associates.

 

Miller, A., 2008; A Contribution to the Geology of the Thunder Creek Property, Northern Volcanic Zone, Abitibi Subprovince, Canada: Lithologies, Metamorphism, Overprinting, Hydrothermal Alteration Assemblages, Precious Metal Mineralogy Based on Petrography, Ore Microscopy and Scanning Electron Microscope Investigation of Selected Drill Core Samples from Drill Holes TC04-13, TC07-27, -30, -36, -37 with Comparison of the West Timmins Gold Property (formerly Holmer Gold Deposit); Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Miller, A., 2009; Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Selected Drill Core Samples from Drill Holes TC-08-51, TC-08-52, TC08-54, TC-1891 utilizing Scanning Electron Microscope with Petrography and Ore Microscope. Parts A-C-D; Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Miller, A., 2009; Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Selected Drill Core Samples from Drill Holes TC-08-51, TC-08-52, TC08-54, TC-1891 utilizing Scanning Electron Microscope with Petrography and Ore Microscope. Part B; Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Miller, A., 2009; Part A — Petrography and Ore Microscopy addendum to January 11, 2009 Report entitled Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Samples TC08-54 (663), TC-08-54 (668) utilizing Part A —

 

243



 

Scanning Electron Microscope, Part B — Petrography and Ore Microscope, Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Miller, A., 2009; Part B — Scanning Electron Microscopy addendum to January 11, 2009 Report entitled Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Samples TC08-54 (663), TC-08-54 (668) utilizing Part A — Scanning Electron Microscope, Part B — Petrography and Ore Microscope, Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Neczakar, E., Kociumbas, M.W., Sullivan, J.R., 2004; A Technical Review of the Holmer Gold Property in Bristol Township, Timmins Area, Ontario, Canada, for Lake Shore Gold Corp., Watts, Griffis, and McQuat limited, September 07, 2004.

 

Placer Dome, 2005; Canadian Operations, Sustainability Report.

 

Pyke, D.R., 1982; Geology of the Timmins Area, District of Cochrane, Report 219, Ontario Geological Survey.

 

Poulsen, K.H., 1996; Geology of Canadian Mineral Deposit Types, Geology of Canada, No. 8, Geological Survey of Canada, Chapter 15, Lode Gold, p. 323 to 392.

 

Powers, D., 2009; Amended Technical Review and Report of the “Thunder Creek Property” Bristol and Carscallen Townships, Porcupine Mining Division, Ontario, Canada prepared for Lake Shore Gold Corp. and West Timmins Mining Inc.

 

Pressacco, R., 1999; Special Project: Timmins Ore Deposit Descriptions, Ontario Geological Survey, Open File Report 5985.

 

Ross, K., 2003; Petrographic Study of Twenty Five Samples from the Holmer Gold Deposit, Timmins, Ontario, Internal Lake Shore Gold Corp. Report by Panterra Geoservices Inc., Surrey, British Columbia.

 

Ross, K., 2010; Petrographic Study of the Timmins Gold Mine and Thunder Creek Area, Timmins, Ontario, Prepared for Lake Shore Gold Corp., March 12, 2010.

 

Rhys, D.A., 2003; Structural Mapping Study of the Surface Outcrops of the Holmer Gold Deposit, Timmins, Ontario, Internal Lake Shore Gold Corp. Report by Panterra Geoservices Inc, Surrey, British Columbia.

 

Rhys, D., Lewis, P., 2004; Gold Vein Deposits: Turning Geology into Discovery, BC & Yukon Chamber of Mines, Cordilleran Exploration Round-Up, short course notes.

 

Rhys, D., 2010; Structural Study of Gold Mineralization in Portions of the Timmins Mine and Thunder Creek Projects, Porcupine Mining District, Ontario.  Report prepared for Lake Shore Gold, March 12, 2010.

 

Rhys, D., 2010; an Internal Lake Shore Gold Corp. Memo: Golden River East Zone: Observations and Interpretation from Brief Field Review, December 10, 2010.

 

244



 

Rhys, D., 2010; Thunder Creek — Rusk Zone: Assessment of Structural Controls Through Examination of Initial Underground on 300 and 315 Levels, Memo dated December 21, 2010.

 

Rhys, D., 2011; an Internal Lake Shore Gold Corp. Memo: Golden River East Zone Drill Core Review: Summary of Geological Observations and Recommendations, September 06, 2011.

 

Rocque, P., Mah, S., Hamilton, R., Wilson, G., Kilpatrick, R., 2006; Review of Porcupine Joint Venture Operation, Ontario, Canada, NI 43-101 Technical Report, prepared for Goldcorp Inc., prepared by AMEC Americas Limited.

 

Samson, J., 2005; the 2003 — 2005 Diamond Drill Program on the Thunder Creek Property, Bristol Township, Lake Shore Gold Corp., Report.

 

Samson, J., 2008; the 2006 Stripping and Trenching Program on the Thunder Creek Property, Bristol Township, Lake Shore Gold Corp., Report.

 

Samson, J., 2009; the 2007-2008 Diamond Drill Program (Phase 4) on the Thunder Creek Property, Bristol Township, Lake Shore Gold Corp., Report.

 

Sullivan, J.R., Lavigne, J.G., Kociumbas, M.W., 2007; a Technical Review of the Timmins West Gold Project in Bristol Township, Timmins Area, Ontario, Canada, for Lake Shore Gold Corp., Watts, Griffis and McOuat Limited, Consulting Geologists and Engineers (January 03, 2007).

 

Thompson, P.H., 2002; Toward a New Metamorphic Framework for Gold Exploration in the Timmins Area, Central Abitibi Greenstone Belt, Ontario Geological Survey, Open File Report 6101.

 

Wagner, D.W., 2008; Technical Report of the Thunder Creek Gold Property, Bristol Township, Timmins, Ontario, Canada, for West Timmins Mining Inc. (June 27, 2008).

 

Webster, B., 2010; Report on Borehole Induced Polarization Surveys, Thunder Creek Property, Timmins, Ontario, JVX Limited, Geophysical Surveys and Consulting.

 

Wilson, G.C., Rucklidge, J.C., 1986; Grant 262; Geoscience Research Grant Program, Summary of Research 1985-1986; Lithological Features and Economic Significance of Reduced Carbonaceous Rocks in Gold Deposits, Ontario Geological Survey, Miscellaneous Paper 130, p. 177-189.

 

Wilson, G.C., Rucklidge, J.C., 1987; Grant 262; Geoscience Research Grant Program, Summary of Research 1986-1987; Geology, Geochemistry, and Economic Significance of Carbonaceous Host Rocks in Gold Deposits of The Timmins Area, Ontario Geological Survey, Miscellaneous Paper 136, p. 66-76.

 

Winter, L.D.S., 2004; National Instrument 43-101 Technical Report, Lake Shore Gold Corp., Timmins Gold Project, Timmins, Ontario (September 28, 2004).

 

Winter, L.D.S., 2004; National Instrument 43-101 Technical Report, Lake Shore Gold Corp., Timmins Gold Project, Timmins, Ontario (November 26, 2004).

 

Winter, L.D.S., 2006; National Instrument 43-101 Technical Report, Lake Shore Gold Corp., Timmins Gold Project, Timmins, Ontario (January 25, 2006).

 

245



 

27.2                        ASSESSMENT RESEARCH IMAGING FILES (AFRI)

 

Allan, J.E., 1974; Diamond Drill Logs, Allerston Gold Property, Bristol Twp., Ducanex Resources, AFRI No.  42A05NE8449.

 

Anderson, S.D., 1994; Work Report on the Bristol Lake Property, Trenching and Sampling Program for R.J. Poirier by Rayan Exploration Ltd., AFRI No. 42A05NE0079.

 

Anderson, S.D., 1995; Report on an Induced Polarization Survey on the Bristol Township Properties, Porcupine Mining Division, Ontario, for R.J. Poirier by Rayan Exploration Ltd., AFRI No. 42A05NE0078.

 

Anderson, S.D., 1996; Geophysical Report on the Bristol Township Property, Induced Polarization Survey Located in Bristol Township, Porcupine Mining Division, for Marl/Pelangio Larder J.V., Rayan Exploration Ltd., AFRI No. 42ANE0165.

 

Anderson, S.D., 2003; Geophysical Report on the Magnetometer Survey, Bristol Lake Property, Bristol Township, Porcupine Mining Division for Rolly Poirier, Vision Exploration, AFRI No. 42A05NE2049.

 

Bald, R., 1987; Diamond Drill Logs, Bristol Township, Highwood Resources. AFRI No. 42A05NE8428.

 

Barnett, E.S., 1985; Diamond Drill Report, Bristol Township, Kidd Creek Mines Ltd. AFRI No. 42A05NE8489.

 

Begauskas, J., Vamos, P.J., 1996; Report on the Allerston Project (Portion of the Allerston Option) in Bristol Township, West Timmins Area, Prospectors Alliance Corp. AFRI No. 42A05NE0167.

 

Benham, W., 1984; Diamond Drill Report, Allerston Option, Rio Algom Exploration Inc., Bristol Township, AFRI No. 42A05NE8473.

 

Bradshaw, R.J., 1973; Magnetic — Electromagnetic Survey on the Property of Holmer Gold Mines Limited, Bristol Township, Ontario, AFRI No. 42A05NE8495.

 

Bradshaw, R.J., 1973; Magnetic — Electromagnetic Survey on the Property of Mill Hill Mines Limited, Bristol, Denton, Carscallen and Thorneloe Townships, Ontario, AFRI No. 42A05SE0024.

 

Bradshaw, R.J., 1974; Magnetic — Electromagnetic Survey on the Shield Group, Bristol Township, Ontario, AFRI No. 42A05NE8463.

 

Bradshaw, R.J., 1978; Magnetic — Electromagnetic Survey on the Property of Holmer Gold Mines Limited, Bristol Township, Ontario, AFRI No. 42A05NE8439.

 

Bradshaw, R.J., 1978; Geological Report on Part of the Property of Holmer Gold Mines Limited, Bristol Township, Ontario, AFRI No. 42A05NE8494.

 

Burns, J.G., 1996; Evaluation Report on Claims Located in Bristol Township, Porcupine Mining Division for Copper Dome Mines Ltd., AFRI No. 42A05NE0095.

 

246



 

Calhoun, R., 1994; Diamond Drill Hole Summary, Mahoney Creek Project (No. 507), Noranda Exploration Company Limited, Claims 1177808, 1177809, AFRI No. 42ANE0075.

 

Calhoun, R., 1995; Summary of Induced Polarization Survey, Mahoney Creek Project (No. 507), Hemlo Gold Mines Inc., AFRI No. 42ANE0084.

 

Calhoun, R., Edwards, J., 1997; Battle Mountain Gold, Diamond Drill Logs, Mahoney Creek, Project 507, AFRI No. 42A05NE0169.

 

Calhoun, R., Edwards, J., 1997; Battle Mountain Gold, Diamond Drill Logs, Thunder Creek, Project 506, AFRI No. 42A05NE2007.

 

Calhoun, R., 1998; Diamond Drill Logs, Allerston Option, Bristol Township, Falconbridge Ltd., AFRI No. 42A05NE2019.

 

Calhoun, R., 2000; Diamond Drill Logs, KM-2 Project, Bristol Township, Falconbridge Ltd., Explorers Alliance Corp., AFRI No. 42A05NE2030.

 

Calhoun, R., 1999; Diamond Drill Logs, Wallingford South Project, Bristol Township, Pelangio Mines Inc., Prospectors Alliance Inc., AFRI No. 42A05NE2034.

 

Calhoun, R., 2001; Summary Report of Fugro MegaTem® Survey, Timmins West Area by GeoCal Exploration Services, for Explorers Alliance Corp., AFRI No. 42A06NW2026.

 

Chataway, R.T., 1981; Diamond Drilling 1981, Preussag Canada Limited, Timmins West Project, Timmins, Ontario, AFRI No. 42A05NE8478.

 

Clark, D., 1989; Report on Magnetic Survey, Southwestern Poirier Block, Holmer Project, Bristol Township, Ontario, M588, AFRI No. 42ANE8648.

 

Croxall, J.E., 1979; Magnetic and Electromagnetic Surveys, Claims No. 495307, 495309, 515901, North Part of the Croxall-Miller Property, Southwestern Pare of Bristol Township, Porcupine Mining Division, AFRI No. 42A05NE8447.

 

Croxall, J.E., 1992. Mechanical Overburden Stripping, Bristol Township, AFRI No. 42A05NE8488.

 

Daigle, R.J., 1994; Noranda Exploration Co. Ltd., Geophysical Assessment Report, Project 507, Induced Polarization Survey, Bristol, Carscallen, Denton, Thorneloe, Townships, Ontario, N/.T.S. 42A-SW, Porcupine Mining Division, AFRI No. 42A05NE0083.

 

Daigle, R.J., 1994; Noranda Exploration Co. Ltd., Total Field Magnetic Assessment Report, Project 507, Bristol, Carscallen, Denton, Thorneloe, Townships, Ontario, N/.T.S. 42A-05, Porcupine Mining Division, AFRI No. 42A05NE0081.

 

Daigle, R.J., 1994; Noranda Exploration Co. Ltd., Assessment Report, Project 144, Porcupine Mining Division, AFRI No. 42A05SE0011.

 

Daigle, R.J., 1995; Line Cutting, TFM and I.P. Surveys, Bristol Township, Hemlo Gold Inc., N.T.S. 42-A-05, Porcupine Mining Division, AFRI No. 42ANE0080.

 

247



 

Daigle, R.J., 1997; Report of Work for Band-Ore Resources Ltd. on Carstol Property, Carscallen and Bristol Townships, 1997 Line Cutting, TFM, and I.P. Surveys, AFRI No. 42A05NE0131.

 

Daigle, R.J., 1997; Report of Work for Band-Ore Resources Ltd. on West Porcupine Project 1996-1997, Geophysical Surveys, Line Cutting, I.P., TFM., AFRI No. 42A06SW0025.

 

Deevy, A.J., 1985; Report on Bristol Township Property, Project 404, Allerston Option, Westfield Minerals Ltd., AFRI No. 42A05NE8498.

 

Dionna, R.J., 1965; Diamond Drill Report, Claim P55903, Bristol Township, United Buffadison, AFRI No. 42A05NE8650.

 

Diorio, P., 1984; Assessment Report on Magnetic and VLF-EM Surveys Conducted on Claims 724587-724591, 740864-740873, 752195-752205, 779457-779461, 79509-779515, 825436-825440 Located in the Bristol Township in Porcupine Mining District, Ontario., Utah Mines, AFRI No. 42A05NE8491.

 

Diorio, P., 1985; Assessment Report on Induced Polarization Conducted on Claims 724587-724591, 740864-740873, 752195-752205, 779457-779461, 779509-779515, 825436-825440 Located in the Bristol Township in Porcupine Mining District, Ontario, Utah Mines, AFRI No. 42A05NE8456.

 

Duess, R., 1997; Diamond Drill Logs and Sections, Bristol Property, Sedex Mining Corp./Band-Ore Resources Ltd., Joint Venture, Bristol and Thorneloe Townships, Porcupine Mining Division, AFRI No. 42A06NW0042.

 

Fedikow, M., 2011; Preliminary Results of Mobile Metal Ions Soil Geochemical Orientation Surveys, Timmins Area, Ontario.  Prepared for Lake Shore Gold Corp.

 

Filo, J.K., 1997; Diamond Drill Report for Pelangio Larder Mines Limited and Copper Dome Mines Ltd., on the Poirier Joint Venture within Bristol Township, Northern Ontario, AFRI No. 42A05NE0168.

 

Fumerton, S., Clark, D., 1988; Geological and Geochemical Assessment Report, Bristol Township, M588, Chevron Minerals Ltd., AFRI No. 42A05NE8459.

 

Fumerton, S., 1988; Report of Work Done in 1987 on the Holmer Property, Bristol Township, M588, Chevron Minerals Ltd., AFRI No. 42A05NE8490.

 

Gasteiger, W.A., 1981; Report on Geophysical Work, Bristol Township, Allerston Claims and Bristol 66, Texasgulf Inc., AFRI No. 42A06NW8486.

 

Gasteiger, W.A., 1981; Report on Geophysical Work, Bristol, Denton, Carscallen, Thorneloe Townships, Airborne EM and Airborne Mag., Texasgulf Canada Ltd., AFRI No. 42A06NW0303.

 

George, P.T., 1973; Report on the property of Holmer Gold Mines Ltd., Bristol Township, Ontario, AFRI No. 42A05NE8475.

 

George, P.T., 1975; Diamond Drill Report, for Geonex Limited (Ralph Allerston), Bristol Township, Ontario, AFRI No. 42A05NE8436.

 

248



 

Glenn, W.E., 1987; Airborne Geophysical Survey, Bristol Township, Chevron Canada Resources Limited, AFRI No. 42A05NE8705.

 

Grant, J.C., 1997; Geophysical Report for Copper Dome Mines Ltd. on the Poirier Option, Bristol Township, Porcupine Mining Division, Northeastern Ontario, AFRI No. 42ANE0104.

 

Grant, J.C., 1997; Geophysical Report for Pelangio Larder/Copper dome Mines Ltd. on the Poirier Option Bristol Township., Porcupine Mining Division, Northeastern Ontario, AFRI No. 42A05NE0158.

 

Grant, J.C., 2004; Geophysical Report for Probe Mines Limited, Bristol Project, Bristol Township, Porcupine Mining Division, Northeastern Ontario, AFRI No. 42A06NW2046.

 

Hendry, K.N., 1987; 1986 Geophysical assessment Report, Bristol Property, Cominco Ltd., AFRI No. 42A06NW8427.

 

Hiava, M., 1987; Diamond Drill Logs, Allerston Property, Bristol Township, AFRI No. 42A05NE8432.

 

Holmer Gold Mines Ltd., 1969; Diamond Drill Log Report, Bristol Township, AFRI No. 42A05NE8500.

 

Holmer Gold Mines Ltd., 1980; Diamond Drill Log Report, Bristol Township, AFRI No. 42A05NE8460.

 

Johnston, Matthew, 2000; Report of Work on the Bristol Property, Bristol Township, Ontario, NTS 42A/SW, Porcupine Mining Division, for Mike Caron, AFRI No. 42A05NE2037.

 

Jones, W.A., 1958; Diamond Drill Report, Hollinger Mines Ltd., Bristol Township, AFRI No. 42A05NE8454.

 

Klein, J., 1987; 1986 Geophysical Assessment Report on Claims P835909-835916, P871660 and P871661, Bristol Property, Cominco Ltd., AFRI No. 42A06NW8423.

 

Kilpatrick, J.M., 1973; Report on the Property on the Boundary of Townships of Carscallen, Bristol, Denton and Thorneloe, Mill Hill Mines Limited.  AFRI No. 42ASE0025.

 

Lebaron, P.S., 1984; Report on Reverse Circulation Overburden Drilling, Croxall Option, Bristol and Thorneloe Townships, Noranda Exploration Company Limited, AFRI No. 42A05SE0010.

 

Lebaron, P.S., 1985; Diamond Drill Report, Croxall Option, Bristol Township, Noranda Exploration Company Limited, AFRI No. 42A05SE0001.

 

Legault, J.M., Williston, C., Warne, J., 1997; Geophysical Survey Logistical Report, Quantec, regarding the Gradient-Realsection TDIP\Resistivity Survey over the Bristol Property, Bristol Twp., ON., on behalf of Prospectors Alliance Corp., Toronto, Quantec IP Incorporated, AFRI No. 42A05NE2018.

 

Mackenzie, C.D, 1995; Ground Magnetometer Survey and VLF Survey for the Ralph Allerston Property, Bristol Twp., Block 1190579, 4 Units, District of Cochrane, Timmins, Ontario, AFRI No. 42A05NE0077.

 

MacPherson, J., 1988; Report on Linecutting, and Ground Magnetometer on Bristol #1 and 2, Mattagami River and Hwy 144 Grids, Thorneloe and Bristol Townships, District of Cochrane, Esso Minerals Canada, AFRI No. 42A06NW0317.

 

249



 

Manchuck, B., 1989; Diamond Drill Report, Chevron Minerals Ltd., AFRI No.42A05NE8649.

 

McCann, S., 1995, Hemlo Gold Mines Inc., Diamond Drill Logs, Mahoney Creek Project (507), AFRI No. 42ANE0085.

 

McCann, S., 1995, Hemlo Gold Mines Inc., Diamond Drill Logs, Mahoney Creek Project (507), AFRI No. 42ANE0087.

 

McLeod, C.C., 1979; Reverse Circulation Overburden Drilling, Texasgulf Inc., AFRI No. 42A05NE8457.

 

McLeod, C.C., 1981; Reverse Circulation Overburden Drilling, Texasgulf Inc., AFRI No. 42A05NE8464.

 

Meikle, R.J.; 1994; Geophysical Report on a Magnetometer Survey for Band-Ore Resources Ltd., on Claim 1177822, Bristol Twp., Porcupine Mining Division, Ontario, by Rayan Exploration, AFRI No. 42A05NE0070.

 

Meikle, R.J.; 1994; Geophysical Report on a Magnetometer Survey for Band-Ore Resources Ltd., on the Thunder Creek Property, Bristol/Carscallen Twp., Porcupine Mining Division, Ontario, by Rayan Exploration, AFRI No. 42A05NE2062.

 

Meikle, R.J.; 1994; Geophysical Report on a Magnetometer Survey for Band-Ore Resources Ltd., on the Thunder Creek Property, Bristol/Carscallen Twp., Porcupine Mining Division, Ontario, by Rayan Exploration, AFRI No. 42A05NE8701.

 

Meikle, R.J.; 1995; Geophysical Report on the, Bristol Township Property Magnetometer Survey Located in Bristol Township., Porcupine Mining Division, Ontario, for Pelangio Larder Mines Ltd., AFRI No. 42A05NE0092.

 

Moore, D.D., 1987; Diamond Drill Logs BR87-1, 87-2, 87-6, Cominco Ltd., AFRI No. 42A06NW8424.

 

Muir, J.E., 1980; Mineralogical Examination of Jim Croxall’s Sample, Falconbridge Metallurgical Laboratories, AFRI No. 42A05NE8430.

 

Mullen, D., 1979; Diamond Drill Logs, Allerston Option, Bristol Township, Texasgulf Ltd., AFRI No. 42A05NE8479.

 

Newsome, J.W., 1986; Assessment Report on Diamond Drilling Conducted on Claim 779509, Bristol Township, Porcupine Mining Division, Ontario, for Utah Mines Ltd., AFRI No. 42A06NW8426.

 

Perry, J., 1977; Magnetic Survey Report, Bristol Township, M-264, Porcupine Mining Division, District of Cochrane, Canadian Nickel Company, AFRI No. 42A06NE8435.

 

Perry, J., 1977, Geological Report, Allerston Option, Bristol Township, Canadian Nickel Company Limited, AFRI No. 42A06NW8485.

 

Robinson, G.D., 1958; Diamond Drill Report, Hollinger Mines Ltd., Bristol and Thorneloe Townships, AFRI No. 42A05NE8477.

 

250



 

Roth, J., 1988; Report on Magnetic and Induced Polarization Surveys, Holmer Project, Bristol Township for Chevron Canada Resources Ltd., AFRI No. 42A05NE8492.

 

Vamos, P.J., 1998; Report on the Exploration Program Conducted by Prospectors Alliance Corp., during 1996 and 1997, on the East Portion of the Allerston Option, AFRI No. 42A05NE2012.

 

Van Hees, E.H., 1989, Diamond Drill Log and Assay Results, Chevron Minerals Ltd., AFRI No. 42A06NW8429.

 

Wamtech Pty, Ltd., 2004; MMI Manual for Mobile Metal Ion Geochemical Soil Survey, Version 5.04.

 

Warren, T.E., 1981; Timmins west Project, Geophysical Surveys, 1981, Mag., VLF, HEM, Preussag Canada Limited, AFRI No. 42A06SW0206.

 

Webster, B., 1977; Induced Polarization and Resistivity Survey Report, Bristol Township (M-264), Porcupine Mining Division, District of Cochrane, for R. Allerston, AFRI No. 42A06NW8471.

 

Webster, B., 1977; Magnetic Survey Report, Bristol Township (M-264), Porcupine Mining Division, District of Cochrane, for Canadian Nickel Company Ltd., AFRI No. 42A06NW8431.

 

Webster, B., 1997; Logistical and Interpretive Report, Spectral Induced Polarization Surveys, Timmins West Project, The Allerston Grid, Prospectors Alliance Corp., Bristol Twp., Northern Ontario, AFRI No. 42A05NE2001.

 

27.3                        PRESS RELEASES

 

2003-05-27; Innes, D.G., Lake Shore Options Timmins Area High Grade Gold Property.

 

2003-07-17; Innes, D.G., Lake Shore Commences Drilling Program on Timmins High-Grade Gold Project, Ontario.

 

2003-09-05; Innes, D.G. Lake Shore Adds More Drills to and Doubles the Budget at the Timmins Gold Project, Ontario.

 

2003-10-08; Innes, D.G., First Drill Assays Positive Ultramafic Zone Returns Excellent Grades and Widths Timmins Gold Project, Ontario.

 

2003-11-11; O’Connor, W.J., Lake Shore and Band-Ore Ink Timmins, Ontario Deal.

 

2003-11-12; Innes, D.G., Lake Shore Options Thunder Creek Property Adjoining The Timmins Gold Project, Ontario.

 

2003-12-03; Innes, D.G., Lake Shore Gold Reports More Timmins Gold Property Results and Updates from the Thunder Creek-Bazooka-Highway Projects Ontario-Quebec.

 

2004-01-08; Innes, D.G, Lake Shore Gold Corp. Drilling Expands Timmins Gold Resources High Grade Gold Recoveries from Metallurgical Testing.

 

251



 

2004-02-17; Innes, D.G. Lake Shore Gold Corp. More Drilling Results from the Timmins Gold Project Summary of 2003 Drilling.

 

2004-03-24; Innes, D.G., Lake Shore Confirms Gold Mineralization on Thunder Creek Property Timmins, Ontario.

 

O’Connor, W.J., Gold Mineralization Confirmed on Thunder Creek Property.  Band-Ore Resources Ltd.

 

2004-03-30; Innes, D.G., Lake Shore Gold Corp., More Positive Results from Resource Expansion Drilling Timmins Gold Project, Ontario.

 

2004-06-01; Innes, D.G., Lake Shore Gold Corp., Resource Expansion and Drilling Update, Timmins Gold Project, Ontario.

 

2004-07-19; Innes, D.G., Lake Shore Gold Corp. First Phase Resource Expansion Drilling Completed, New Zone Discovered, Timmins Gold Project, Ontario.

 

2004-08-25; Innes, D.G., Lake Shore Gold Corp. Initiates Second Phase 3.000 Metre drilling Program Thunder Creek Property, Timmins, Ontario.

 

O’Connor, W.J., Lake Shore Gold Corp., Initiates Second Phase 3,000 Metre Drill Program Thunder Creek Gold Property, Band-Ore Resources Ltd., Timmins, Ontario.

 

2004-09-10; Innes, D.G., Lake Shore Gold Corp., Resources Expansion Program Triples Resources on the Timmins Gold Project.

 

2004-09-21; Innes, D.G., Lake Shore Completes Earn In, Timmins Gold Property, Ontario.

 

2004-10-05; Innes, D.G. Lake Shore Gold Corp., Step Out Drilling Continues to Expand Gold Mineralization, Timmins Gold Project, Ontario.

 

2004-10-20; Innes, D. G., Raman, K., Lake Shore and Holmer Announce Business Combination.

 

2004-12-29; Innes, D.G., Raman K., Lake Shore and Holmer Announce Shareholder Approval for Business Combination.

 

2004-12-31; Innes, D.G., Raman K., Lake Shore and Holmer Announce Complete Business Combination.

 

2005-01-06; Innes, D.G., Lake Shore Gold Exploration Update, 2005 Resource Expansion Drilling Pre-Feasibility to Start on Timmins Gold Project, Ontario.

 

2005-02-14; Innes, D.G., Thunder Creek Project Update, Timmins, Ontario.

 

O’Connor, W.J., Thunder Creek Project Update, Band-Ore Resources Ltd., Timmins, Ontario.

 

2005-05-30; Booth, B.R., Lake Shore’s Timmins Gold Project Intersects High-Grade Gold up to 24.3 Grams Per Tonne Over 11.1 Metres and Expands Mineralization 450 Metres Down Plunge Beyond the Current Indicated Resource.

 

252



 

2005-08-15; Booth, B.R., Lake Shore Gold Intersects 18.09 Grams/Tonne Gold over 5.70 Metres, Timmins West Gold Project, Ontario.

 

2005-11-04; Booth, B.R., Lake Shore Gold Intersects 24.35 Metres Grading 9.28 Grams Per Tonne Gold, Timmins West Gold Property, Ontario.

 

2005-12-08; Booth, B.R., Lake Shore Starts Drilling At Desantis and Continues Drilling At Timmins West, Ontario.

 

2006-02-07; Booth, B.R., Summary of Gold Resources And An Exploration Update for Lake Shore’s Timmins Area Properties.

 

2006-03-03; Booth, B.R., Seven Drills Operating In March, Lake Shore Gold Corp. Exploration Update.

 

2006-04-17; Booth, B.R., Lake Shore Gold Intersects 6.0 Metres Grading 32.52 Grams Per Tonne Gold As Sectional Resource Drilling Continues At Timmins West Gold Project, Ontario.

 

2006-05-23; Booth, B.R., Lake Shore Initiates Permit Process for Advanced Underground Exploration Programs At Timmins West And Vogel-Schumacher Gold Projects, Timmins, Ontario.

 

2006-06-21; O’Connor, W.J., Exploration Update, Thunder Creek Property, Band-Ore Resources Ltd., Timmins, Ontario.

 

2006-08-11; Booth, B.R., Lake Shore Gold Quarterly Project Update.

 

2006-08-16; Booth, B.R., Lake Shore Gold continues To Expand The Resource and Extends The Main Zone On The Timmins West Gold Project, Ontario.

 

2006-09-14; Wagner, D.W., West Timmins Mining Inc. To Begin Trading Sept. 18, Amalgamation of Sydney And Band-Ore Receives Final Approvals.

 

2006-09-26; Notice of Change in Corporate Structure, Report Date: 2006-09-26; Amalgamation Became Effective on September 13, 2006. (Sydney Resources Corporation and Band-Ore Resources Limited) - New - West Timmins Mining Inc.

 

2006-09-18; Wagner, D.W., Canadian Gold Company Launched on Toronto Stock Exchange — West Timmins Mining Inc. to Focus on Large Projects in West Timmins Camp and Sierra Madres of Mexico.

 

2006-10-30; Wagner, D.W., West Timmins Commences 12,000 Metre Drill Program on West Timmins Gold Project.

 

2006-10-31; Booth, B.R., Lake shore Reports Latest Results At Timmins West, Including Four Metres Grading 65.65 Grams Gold Per Tonne, And Provides Update At Vogel-Schumacher.

 

2006-11-09; Booth, B.R., Lake Shore Third Quarter Project Update.

 

2006-11-20; Booth, B.R., Lake Shore Gold Increases The Indicated Mineral Resource to 3.27 Million Tonnes at 12.29 Grams Gold Per Tonne (Uncut) at Timmins West).

 

253



 

2007-03-12; Booth, B.R., Lake Shore Gold Files Application for Advanced Exploration Permit At Timmins West.

 

2007-04-11; Wagner, D.W., West Timmins Mining Exploration Update: 5 Drills Turning on WTM Gold Projects; 8,000 metres, 10-12 holes, Thunder Creek Property, Timmins, funded by Lake Shore Gold.

 

2007-04-30; Booth, B.R., Lakeshore Recieves Approval to Initiate Advanced Underground Exploration at Timmins West.

 

2007-05-10; Booth, B.R. Lake Shore Gold First Quarter Project Update.

 

2007-07-09; Wagner, D.W., West Timmins Mining Inc. Annual Report 2006.

 

2007-07-11; Wagner, D.W. West Timmins Gold Project Exploration Update.

 

2007-07-19; Booth, B.R., Lake Shore Provides Update on Timmins West Pre-Feasibility Study.

 

2007-08-01; Booth, B.R., Lake Shore Intersects New High-Grade Gold Mineralization at Thunder Creek, Ontario.

 

Wagner, D.W., High Grade Gold Intersected on West Timmins’ Thunder Creek Property, Ontario.

 

2007-08-15; Booth, B.R., Lake Shore Second Quarter Project Update.

 

2007-08-28; Booth, B.R., Lake Shore Reports Mineral Reserves and Positive Pre-Feasibility Study Results for Timmins West.

 

2007-09-05; Booth, B.R., Lake Shore Reports Additional High-Grade Gold Intersection at Thunder Creek.

 

2007-09-06; Wagner, D.W., West Timmins Reports New High Grade Gold Discovery at Thunder Creek Property, Timmins, Ontario.

 

2007-11-13; Booth, B.R., Lake Shore Reports Third Quarter Results.

 

2007-11-17; Wagner, D.W., West Timmins to Initiate Drilling on Highway 144 Gold Property, Timmins, Ontario.

 

2007-11-29; Booth, B.R., Lake Shore Transition into Mining -Plans Management Changes.

 

2007-12-04; Booth, B.R., Lake Shore Intersects 24.61 Grams Gold Per Tonne over 7.0 Metres at Thunder Creek Property in Ontario.

 

Wagner, D.W. 24.61 Grams Gold Per Tonne Intersected Over 7.0 Metres On West Timmins’ Thunder Creek Property, Timmins, Ontario.

 

2008-02-07; Wagner, D.W., Drilling extends Pond and West Gold Zones, West Timmins Gold Project, Ontario.

 

254



 

2008-03-31; Makuch, T., Lake Shore Intersects 8.57 g/t Gold Over 9.0 Metres at Thunder Creek Property in Ontario.

 

Wagner, D.W., WTM Reports 8.57 g/t Gold over 9.0 Metres for Follow-Up Drilling at Thunder Creek.

 

2008-04-21; Wagner, D.W., WTM To Test Northern Extension of Thunder Creek — Timmins West Trend.

 

2008-05-15; Makuch, T., Lake Shore Gold Announces First Quarter 2008 Results.

 

2008-07-10; Wagner, D.W., West Timmins Mining Inc. Annual Report 2008.

 

2008-07-18; Makuch, T., Lake Shore Gold Corp Announces Timmins West Exploration Agreement with Flying Post and Mattagami First Nations.

 

2008-08-05; Makuch, T., Lake Shore Gold Provides Update on Thunder Creek Exploration.

 

Wagner, D.W., 22,000 Metre Diamond Drill Program Commences on WTM’s Thunder Creek Property in Timmins, Ontario.

 

2008-08-12; Makuch, T., Lake Shore Gold on Track to Achieve 2008 Targets.

 

2008-08-13; Wagner, D.W., WTM Completes $1,950,000 Non Brokered, Flow Through Private Placement — proceeds to fund the announced 22,000 metre diamond drill program on the Thunder Creek Property.

 

2008-09-11; Makuch, T., Lake Shore Gold Commence Ramp Development at Timmins West, Shaft Sinking Progressing on Schedule and Budget.

 

2008-11-10; Makuch, T., Lake Shore Gold Reports Timmins West on Schedule for Production in First Quarter 2009.

 

2008-12-02; Wagner, D.W., WTM Reports New High Grade intercepts from the Golden River West Zone.

 

2008-12-16; Makuch, T., Lake Shore Gold Significantly Extends Rusk Zone and Announces New High-Grade Gold Intercepts at Thunder Creek.

 

Wagner, D.W., WTM Reports 11.20 g/t Gold over 10.4 metres at Thunder Creek, Timmins, Ontario.

 

2009-01-21; Wagner, D.W., Drilling Program Accelerated on WTM’s Thunder Creek Gold Property, Timmins, Ontario.

 

2009-02-18; Wagner, D.W., WTM Discovers Large New Gold System on HWY 144, Property, Timmins, Ontario.

 

2009-02-23; Makuch, T., Lake Shore Gold Provides Corporate Update.

 

2009-03-26; Makuch, T., Lake Shore Commences Processsing At Bell Creek Mill.

 

2009-03-31; Makuch, T., Lake Shore Gold Announces 19.55 g/t over 6.0 Metres and Discovery of Second Mineralized Horizon in Porphyry at Thunder Creek.

 

255



 

Wagner, D.W., WTM Reports 8.86 g/t (0.26 oz/t) Gold over 24.85 Metres (81.58 feet) from Rusk Zone — Is History Being Repeated in Timmins, Ontario?

 

2009-04-16; Wagner, D.W., WTM Reports High-Grade Results from 100% Owned Thorne Property: District Scale Potential of the West Timmins Gold Project Continues to Expand.

 

2009-05-05; Makuch, T., Lake Shore Gold Continues To Advance Projects on Schedule and Budget and to Achieve Exploration Success In First Quarter of 2009.

 

2009-05-05; Makuch, T., Lake Shore Gold Reports Additional High-Grade Intercepts at Thunder Creek, Confirms 175 Metre minimum Strike Length for Rusk and Porphyry Zones and Identifies New Sub-Zone at Depth.

 

Wagner, D.W., WTM Reports 7.95 g/t (0.23 oz/t) Gold over 19.45 Metres (63.80 feet) as Thunder Creek Gold System Continues to Expand.

 

2009-06-08; Wagner, D.W., Third and Fourth Drill Added on TWM’s Thunder Creek Property, Timmins, Ontario.

 

2009-06-24; Makuch, T., Lake Shore Gold Reports 12.75 Grams per Tonne Over 83.40 Metres at Thunder Creek.

 

Wagner, D.W., WTM Intersects 83.40 Metres (273.55 feet) Grading 12.75 g/t (0.37 oz/ton) Gold on Thunder Creek Property, Timmins, Ontario.

 

2009-07-13; Wagner, D.W., West Timmins Mining Inc. Annual Report 2009.

 

2009-08-05; Makuch, T., Lake Shore Gold advances Projects on Schedule and Budget and Achieves Exploration Success in Second Quarter and First Half of 2009.

 

2009-08-24; Wagner, D.W., West Timmins Gold Project Update.

 

2009-08-24; Makuch, T., Lake Shore Gold Reports High-Grade Intercepts from Underground Drilling at Timmins Mine.

 

2009-08-25; Makuch, T., Lake Shore Gold Continues to Establish Large Gold System at Thunder Creek, Porphyry Structure Extended To At Least 1,125 Metre Depth.

 

2009-08-25; Wagner, D.W., WTM Acquires 10 Additional Properties In The West Timmins Gold District.

 

Wagner, D.W., Thunder Creek Drilling Intersects 12.17 g/t Gold Over 9.00 Metres, Extends Porphyry System to 1,125 Vertical Metres Depth.

 

2009-08-27; Makuch, T., Lake Shore Gold and West Timmins Agree To Business Combination.

 

2009-10-07; Makuch, T., Lake Shore Gold Releases Updated National Instrument 43-101 Report for Timmins Mine.

 

2009-10-29; Makuch, T., Lake Shore Gold Reports Results of Underground Drilling and Development at Timmins Mine, Results Confirm Previous Drilling and Expand Resource Potential.

 

256



 

2009-11-04; Makuch, T., West Timmins Mining Shareholders Approve Business Combination Agreement With Lake Shore Gold.

 

2009-11-06; Makuch, T., Lake Shore Gold and West Timmins Mining Complete Business Combination.

 

2009-11-11; Makuch, T., Lake Shore Gold Continues to Achieve Development and Exploration Success and to Grow Property Position, Plans to Commence Accelerated Thunder Creek Advanced Exploration Program.

 

2010-01-06; Makuch, T., Lake Shore Gold Acquires Interest in RT Minerals Corp.

 

2010-01-26; Makuch, T., Lake Shore Gold Extends Thunder Creek to Depth, Confirms High-Grade Core and Discovers New Zone.

 

2010-02-12; Makuch, T., Lake Shore Gold Commences Drill Program on Gold River Trend, the Company’s Third Major Timmins West Target.

 

2010-02-17; Makuch, T., Lake Shore Gold Reports Results of Underground Exploration at Timmins Mine 650-Level Test Block.

 

2010-02-18; Makuch, T., Lake Shore Gold Announces Major Extension to Timmins Mine Mineralization, Thunder Creek Rusk Horizon.

 

2010-03-10; Makuch, T., Lake Shore Gold Announces 2009 Year End Results, Continued Exploration and Development Success, Timmins Mine to Achieve Commercial Production in 2010.

 

2010-04-12; Makuch, T., Annual Report 2009.

 

2010-04-27; Makuch, T., Lake Shore Gold Expands Resources Potential at Timmins Mine.

 

2010-05-04; Makuch, T., Lake Shore Gold Advances Third Major Target in Timmins West Complex, Confirms Presence of Large Gold-Bearing System Along Gold River Trend Extending to Depth.

 

2010-05-05; Makuch, T., Lake Shore Gold Announces Continued Progress at Three Timmins Mining Projects During First Quarter 2010.

 

2010-06-23; Makuch, T., Lake Shore Gold Intersects High-Grade Mineralization at Thorne Property, Expands Resource Potential Near Surface and at Depth.

 

2010-06-29; Makuch, T., Lake Shore Gold Ramp Reaches Thunder Creek Deposit, Intersects High-Grade Gold Mineralization.

 

2010-08-10; Makuch, T., Lake Shore Gold Announces Continued Progress During Second Quarter 2010.

 

2010-08-10; Makuch, T., Lake Shore Gold Reports Wide, High-Grade Intercepts at Timmins Mine Including 13.55 GPT over 50.80 Metres and 61.35 GPT Over 15.00 Metres.

 

2010-08-30; Makuch, T., Lake Shore Gold Expands Thunder Creek Rusk Zone, Announces Additional Wide, High-Grade Intercepts.

 

257



 

2010-11-01; Makuch, T., Lake Shore Gold Continues to Confirm and Expand Thunder Creek Rusk Horizon, Initial Drilling on 650 Level Intersects Rusk Zone and 100 Metres of Porphyry.

 

2010-11-10; Makuch, T., Lake Shore Gold Achieves Key Production, Development and Exploration Milestones Following Successful Third Quarter.

 

2010-11-11; Makuch, T., Lake Shore Gold Announces New High-Grade Intercepts, Major Extension of Main Zone and Expansion of Resource Blocks at Timmins Mine.

 

2010-11-24; Makuch, T., Lake Shore Gold Confirms and Expands Large Gold System in Thunder Creek Porphyry, Intersects 99.60 Metres Grading 4.91 GPT Including 6.92 GPT Over 61.4 Metres.

 

2010-12-01; Makuch, T., Lake Shore Gold Achieves 12,000 Ounces of Gold in November, Files Closure Plan for Commercial Production.

 

2011-01-06; Makuch, T., Lake Shore Gold Declares Commercial Production at Timmins Mine, 12,300 Ounces of Gold Produced in December of 2010.

 

2011-01-07; Makuch, T., Lake Shore Increases Interest In RT Minerals Corp.

 

2011-01-25; Makuch, T., Lake Shore Gold to Nearly Triple Gold Production in 2011, Significantly Grow Resources and Increase Exploration Spending.

 

2011-01-25; Makuch, T., Lake Shore Gold Confirms Broad Mineralized Envelope With High-Grade Sections Around 730 Level at Thunder Creek.

 

2011-02-24; Makuch, T., Lake Shore Gold Intersects Wide, High-Grade Mineralization at Timmins Mine, Confirms and Expands Ultramafic and Main Zones.

 

2011-03-04; Makuch, T., Lake Shore Gold Reports Wide Intersections with High-Grade Sections within Porphyry Zone at Thunder Creek, Underground and Surface Drilling Highlight Potential to Expand Mineralized System.

 

2011-03-09; Makuch, T., Lake Shore Gold Achieves Major Milestones in 2010, On Track to Nearly Triple Production and Significantly Grow Resources in 2011.

 

2011-05-15; Makuch, T., Annual Report 2010.

 

2011-05-02; Makuch, T., Lake Shore Gold Intersects Wide, High-Grade Mineralization at Timmins Mine, Highlights Significant Potential For Resource Expansion and Discovery of New Zones.

 

2011-05-03; Makuch, T., Lake Shore Gold Announces First Quarter 2011 Production Results, Company Targeting 125,000 Ounces in 2011.

 

2011-05-25; Makuch, T., Lake Shore Announces First Quarter 2011 Results Including Strong Gold Sales, Low Operating costs and Continued Exploration Success.

 

2011-07-18; Makuch, T., Lake Shore Gold Releases Production Results for Second Quarter and First Six-Months of 2011, Reviews 2011 Outlook.

 

258



 

2011-07-26; Makuch, T., Lake Shore Gold Continues To Define and Extend Mineralization at Thunder Creek, Potential New Zone Discovered 500 Metres Along TC-144 Trend.

 

2011-08-09; Makuch, T., Lake Shore Gold Announces Second Quarter 2011 Financial Results, Comments On Progress Made in Support of Future Production.

 

2011-10-11; Makuch, T., Lake Shore Gold Reports Higher Commercial Production from Timmins Mine in Third Quarter, Maintains Target Production Range for 2011.

 

2011-11-10; Makuch, T., Lake Shore Gold discovers Potential 1.9 Kilometre Down Plunge Extension of Timmins Gold Mineralization.

 

2011-11-16; Makuch, T., Lake Shore Gold Announces Large, High-Grade Initial Resource at Thunder Creek.

 

2012-01-12; Makuch, T., Lake Shore Reports 2011 Operating Results, Pours 26,550 ounces in Fourth Quarter and 86,565 ounces for Full Year.

 

2012-01-17; Makuch, T., Lake Shore Gold Announces New Extension at Thorne Property, Mineralization Now Confirmed 750 Metres East of Existing Resource.

 

2012-02-08; Makuch, T., Lake Shore and Franco-Nevada Enter Agreement for $50 Million Royalty and Equity Investment.

 

2012-02-15; Makuch, T., Lake Shore Confirms Large-Scale Resources For Timmins West Mine.

 

2012-02-22; Makuch, T., Lake Shore Gold Announces Large Increase in Resources at Gold River Trend, Total Ounces Nearly Triple, Grade, Doubles.

 

2012-02-28; Makuch, T., Lake Shore Gold Announces Results of Preliminary Economic Assessment for the Timmins West Mine, PEA Highlights Potential Positive Economics, Substantial Cash Flow, and Attractive Returns.

 

2012-03-08; Makuch, T., Lake Shore Gold and Franco-Nevada Complete $50 Million Royalty and Equity Investment Transaction.

 

2012-03-26; Makuch, T., Lake Shore Gold Announces Fourth Quarter and Full-Year 2011 Financial Results, Company on Track for Rapid Production Growth by Late 2012.

 

2012-03-30; Makuch, T., Lake Shore Gold Announces Large Increase in Measured and Indicated Resources at Bell Creek Mine.

 

2012-03-30; Makuch, T., Lake Shore Gold Files Technical Report for Timmins West Mine.

 

2012-04-02; Makuch, T., Lake Shore Gold Announces Reserve Estimate for Timmins West Mine, New Reserve to Support Next Five Years of Production.

 

2012-04-05; Makuch, T., Lake Shore Gold Announces First Quarter 2012 Operating Results, Company on Track to Achieve 2012 Production Target.

 

259



 

2012-04-05; Makuch, T., Lake Shore Gold announces filing of Gold River Trend Technical Report.

 

2012-04-11; Makuch, T., Lake Shore Gold Enters Agreement for Credit Facility of up to $70 Million with Sprott Resource Lending Partnership.

 

2012-05-01; Makuch, T., Lake Shore Gold Reports Significant New Drill Intercepts at Fenn-Gib Open-Pit Project Including 1.93 gpt Gold Over 241.20 Metres, Results Highlight Potential for Major Resource Expansion.

 

2012-05-10; Makuch, T., Lake Shore Gold Exceeds Targets and Achieves Continued Operating Improvements During First Quarter 2012, Company Remains on Track for Strong Production Growth and Positive Free Cash Flow.

 

260



 

28.0                        DATE AND SIGNATURE PAGE

 

This report titled “43-101 Technical Report, Prefeasibility Study, and Mineral Reserve Estimate For Timmins West Mine, Timmins, Ontario, Canada” having an effective date of March 29, 2012 was prepared and signed by the following authors:

 

 

 

 

(Signed & Sealed) “Brian Buss”

 

 

 

Dated at Timmins, Ontario

 

 

May 14, 2012

 

Brian Buss, P. Eng., PMP

 

 

VP Project Development

 

 

Lake Shore Gold Corp.

 

 

 

 

 

 

 

 

(Signed & Sealed) “Dean Crick”

 

 

 

Dated at Timmins, Ontario

 

 

May 14, 2012

 

Dean Crick, P. Geo.

 

 

Director of Geology,

 

 

Lake Shore Gold Corp.

 

 

 

 

 

 

 

 

(Signed & Sealed) “Robert Kusins”

 

 

 

Dated at Timmins, Ontario

 

 

May 14, 2012

 

Robert Kusins, P. Geo.

 

 

Chief Mineral Resource Geologist,

 

 

Lake Shore Gold Corp.

 

 

 

 

 

 

 

 

(Signed & Sealed) “David Powers”

 

 

 

Dated at Timmins, Ontario

 

 

May 14, 2012

 

David Powers, P. Geo.

 

 

David Powers Geological Services

 

261



 

29.0                        CERTIFICATES OF QUALIFIED PERSONS

 

CERTIFICATE

 

To Accompany the Report titled “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate for Timmins West Mine, Timmins, Ontario, Canada”.

 

I, Brian Buss, do hereby certify that:

 

1.              I reside at 175 Strathmere Crescent Sudbury, Ontario P3E 2J8.

 

2.              I am a graduate of Queen’s University at Kingston, Ontario with a B.Sc. (Hons) Mining Engineering — 1985.

 

3.              I have practiced my profession continuously since 1985.

 

4.              I am a member of the Professional Engineers of Ontario (Membership Number 90303512).

 

5.              I have been continuously employed during this period by Hudson’s Bay Mining and Smelting (Snow Lake, Manitoba), Johannesburg Consolidated Investment Company — Randfontein Estates Gold Mining Company (Randfontein, Republic of South Africa), Vale (Sudbury, Ontario), and Lake Shore Gold Corporation (Timmins, Ontario)

 

6.              I have experience in operations, engineering, and project management in underground mining environments globally.  I hold specialized credentials in the fields of Rock Mechanics, and Project Management.  Since 2005 I was directly accountable for the entire portfolio of mining projects for Vale’s Canadian operations.  My accountabilities in this role included all phases of project development from project evaluation (study) through to project development (execution).

 

7.              I have read the definition of “qualified person” set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purpose of NI 43-101.

 

8.              I am currently employed by Lakeshore Gold Corp, (since June 2011) and now hold the position of Vice President — Project Development.  I am directly accountable for the work supporting the Preliminary Economic Assessment of the combined resources of the Timmins West and Thunder Creek deposits carried out by Stantec.  I have provided constant feedback and oversight throughout the development of the PEA and have reviewed all supporting documentation.

 

9.              I take personal accountability for the content of sections 1, 13, 16, 17, 18, 19, 20, 21, 22, 25, and 26 which I have reviewed and found to be fair and reasonable assessments suitable for inclusion in the Prefeasibility Study having an effective date of March 29, 2012.

 

10.       I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report.

 

11.       I have read National Instrument 43-101 and form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form

 

262



 

43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and forms.

 

12.       I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

Dated in Timmins, Ontario, this 14th day of May, 2012

 

 

“Brian Buss”

 

 

 

(Signed and Sealed)

 

Brian Buss, P. Eng., PMP

 

 

263



 

CERTIFICATE

 

To Accompany the Report titled “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate For Timmins West Mine, Timmins, Ontario, Canada”.

 

I, Dean Brian Crick, do here by certify that:

 

1.              I reside at 833 Reg Pope Blvd., Timmins, Ontario, Canada, P4N 8K7.

 

2.              I am a graduate from Laurentian University, Sudbury, Ontario with a M.Sc. in Economic Geology degree (1991), and a Honours B.Sc. in Geology (1986) from Brock University, St. Catharines, Ontario.  I have practiced my profession continuously since 1989.

 

3.              I am a member of the Association of Professional Geoscientists of Ontario (Membership Number 1071).

 

4.              I have practiced my profession as a geologist for 22 years being employed by Falconbridge Exploration, VMS Group, Falconbridge Ltd, Kidd Creek Mine, Pentland Firth Ventures- Marlhill Mine, Boliden Westmin, Myra Falls Mine, Wallbridge Mining, Placer Dome Canada Ltd. Campbell Mine, Golcorp Inc., Red Lake Gold Mines, and Lakeshore Gold.  I have actively explored for Archean hosted gold deposits since 1991.

 

5.              I have experience with various mineral deposit types, Mineral Resource estimation techniques, and the preparation of technical reports.

 

6.              I have read the definition of “qualified person” set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purpose of NI 43-101.

 

7.              I am currently employed by Lakeshore Gold Corp, (since August 2010), as the Director of Geology. I have been directly involved in the design and supervision of the surface and underground diamond drilling Advanced Exploration Program at the Thunder Creek project. I have also provided technical support to the production geology team at the Thunder Creek project for grade control and resource estimation of tonnes and grade for sill development and test mining stopes in the Rusk Shear and Porphyry Zones.

 

8.              I am responsible for the preparation of Items 1, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23 24, 25, 26 of the Technical Report titled: “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate for Timmins West Mine, Timmins, Ontario, Canada”, having an effective date of March 29, 2012.

 

9.              I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report.

 

10.       I have read National Instrument 43-101 and form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form 43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and that forms.

 

264



 

11.       I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

Dated in Timmins, Ontario, this 14th day of May, 2012

 

 

“Dean Crick”

 

(Signed and Sealed)

 

Dean Crick, P. Geo.

 

 

265



 

CERTIFICATE

 

To accompany the Report titled “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate For Timmins West Mine, Timmins, Ontario, Canada” for Lake Shore Gold Corp. with an effective date of March 29, 2012.

 

I, Robert Kusins, P. Geo., do hereby certify that:

 

1.              I reside at 126 Forest Place, Timmins, Ontario. P4N

 

2.              I graduated with a B Sc degree in Geology from McMaster University in 1978.

 

3.              I am a member of the Association of Professional Geoscientists of Ontario (Registration Number 0196).

 

4.              I have worked continuously as a geologist for a total of 33 years since my graduation from university.

 

5.              I have read the definition of “qualified person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

 

6.              I am responsible for sections 1, 14, 25 and 26 contained in this report.

 

7.              I have worked on interpretation and resource estimates on the Thunder Creek property since February 2010.  A site visit was completed on September 8, 2011.

 

8.              I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

 

9.              I am currently employed by Lake Shore Gold as Chief Resource Geologist.  I currently hold 1,000 shares of Lake Shore Gold and options under the Lake Shore Gold’s employee stock option plan.

 

10.       I have read National Instrument 43-101 and Form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form 43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and forms.

 

11.       I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

266



 

Dated in Timmins, Ontario, this 14th day of May, 2012

 

 

“R. Kusins”

 

(Signed and Sealed)

 

R. Kusins, P. Geo.

 

 

267



 

CERTIFICATE

 

To Accompany the Report titled “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate for Timmins West Mine, Timmins, Ontario, Canada”.

 

I, David H. R. Powers, do here by certify that:

 

1.              I reside at 385 Sony Street, South Porcupine, Ontario, Canada, P0N 1H0.

 

2.              I am a graduate from Lakehead University, Thunder Bay, Ontario with an Honours B.Sc. Geology degree (1974), and I have practiced my profession continuously since that time.

 

3.              I am a member of the Association of Professional Geoscientists of Ontario (Membership Number 0114).

 

4.              I have practiced my profession as a geologist for 36 years being employed by Noranda Exploration Company Limited (N.P.L.), Noranda Mines Limited, Placer Dome C.L.A. Limited, Placer Dome North America Limited, Dome Mine, Placer Dome (C.L.A.) Limited — Porcupine Joint Venture, and Placer Dome Canada.  As an independent geological consultant my services have provided to Central Crude Limited, Dome Mine, CanAlaska Uranium Limited and Pacific North West Capital Corp.  I have actively explored for Archean hosted gold deposits since 1985.

 

5.              I have experience with various mineral deposit types, Mineral Resource estimation techniques, and the preparation of technical reports.

 

6.              I have read the definition of “qualified person” set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purpose of NI 43-101.

 

7.              I have visited the Thunder Creek Property on May 29th, 2009, and December 08, 2011 examined core from the property as well as the core logging and core storage areas.

 

8.              I am responsible for the preparation of Items 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 23, and 27  of the Technical Report titled: “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate for Timmins West Mine, Timmins, Ontario, Canada”, having an effective date of March 29, 2012.

 

9.              I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report.

 

10.       I am independent of the issuer (Lake Shore Gold Corp.) applying tests in section 1.4 of National Instrument 43-101, and there were no circumstances that were or could be seen to interfere with my judgment in preparing the Technical Report.

 

11.       I have read National Instrument 43-101 and form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form 43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and that forms.

 

268



 

12.       I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

Dated in Timmins, Ontario, this the 14th day of May, 2012

 

“David H. R. Powers”

 

 

 

 

 

(Signed and Sealed)

 

David H. R. Powers, P.Geo. (APGO No. 0114)

 

 

269



 

CERTIFICATE

 

To accompany the Report titled “43-101 Technical Report, Prefeasibility Study and Mineral Reserve Estimate for Timmins West Mine, Timmins, Ontario, Canada” for Lake Shore Gold Corp. and with an effective date of March 29, 2012.

 

I, Ralph Koch, B. Sc., P. Geo., as an author of this report do herby certify that:

 

1.              I reside at 428 Pine St. North, Timmins Ontario, P4N 6L7

 

2.              I graduated with a B.Sc Degree in Earth Sciences from the University of Waterloo in 1986.

 

3.              I am a member of the Association of Professional Geoscientists of Ontario (Registration Number 0323).

 

4.              I have worked continuously as a geologist for 26 years since graduation.

 

5.              I have read the definition of “qualified person” set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional Association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

 

6.              I am responsible for portions of section 14 and 15 of the report.

 

7.              I visited the property on January 17th, 2012.

 

8.              To the best of my knowledge, information, and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

 

9.              I am currently employed by Lake Shore Gold Corporation in the capacity of Chief Mine Resource Geologist for the Bell Creek Complex and Timmins West Mine.  I currently do not hold any securities of Lake Shore Gold other than options under the Lake Shore Gold’s employee stock option plan.

 

10.       I have read National Instrument 43-101 and Form 43-101F1 as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form 43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and forms.

 

11.       I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public.

 

270



 

Dated in Timmins, Ontario, this the 14th day of May, 2012.

 

 

“R. Koch”

 

 

 

(Signed and Sealed)

 

R. Koch, B. Sc, P. Geo.

 

 

271



 

APPENDIX 1

 

TABLE 10.1: SURFACE DIAMOND DRILL HOLE COLLAR LOCATIONS, AZIMUTH, INCLINATION,
AND METRES DRILLED, TIMMINS WEST MINE

 

Appendix 1-1



 

Table 10.1a: Surface Diamond Drilling Collar and Metreage Information (Thunder Creek)

 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC03-01

 

4455.82

 

6834.80

 

10017.12

 

125.0

 

-45.0

 

3.00

 

0.00

 

232.30

 

232.30

 

TC03-02

 

4462.77

 

7011.98

 

10016.23

 

175.0

 

-45.0

 

13.00

 

0.00

 

290.00

 

290.00

 

TC03-03

 

4770.37

 

5890.98

 

10043.05

 

125.0

 

-45.0

 

4.00

 

0.00

 

332.00

 

332.00

 

TC03-04

 

4488.42

 

7471.82

 

10009.44

 

180.0

 

-45.0

 

16.00

 

0.00

 

191.00

 

191.00

 

TC03-05

 

4223.86

 

6766.41

 

10018.26

 

170.0

 

-45.0

 

5.00

 

0.00

 

284.00

 

284.00

 

TC03-06

 

4336.75

 

6998.43

 

10014.82

 

125.9

 

-50.8

 

22.00

 

0.00

 

338.00

 

338.00

 

TC03-06EXT

 

4336.75

 

6998.43

 

10014.82

 

125.9

 

-50.8

 

0.00

 

338.00

 

480.00

 

142.00

 

TC03-07

 

4405.22

 

7471.66

 

10013.88

 

180.0

 

-60.0

 

4.00

 

0.00

 

278.00

 

278.00

 

TC04-08

 

3608.73

 

6041.97

 

10019.12

 

130.0

 

-45.0

 

28.00

 

0.00

 

425.00

 

425.00

 

TC04-09

 

3540.45

 

6267.61

 

10019.09

 

130.0

 

-45.0

 

15.00

 

0.00

 

296.00

 

296.00

 

TC04-10

 

3426.89

 

6524.86

 

10021.80

 

130.0

 

-45.0

 

2.00

 

0.00

 

329.00

 

329.00

 

TC04-11

 

3589.82

 

6547.76

 

10021.09

 

130.0

 

-45.0

 

3.00

 

0.00

 

269.00

 

269.00

 

TC04-12

 

4334.08

 

6807.01

 

10016.94

 

180.0

 

-45.0

 

13.50

 

0.00

 

350.00

 

350.00

 

TC04-13

 

4297.93

 

6650.67

 

10019.33

 

165.0

 

-46.0

 

2.20

 

0.00

 

296.00

 

296.00

 

TC04-14

 

4459.92

 

7021.98

 

10016.89

 

130.0

 

-55.0

 

13.00

 

0.00

 

422.00

 

422.00

 

TC04-15

 

4321.73

 

6800.77

 

10017.27

 

130.0

 

-50.0

 

12.00

 

0.00

 

250.00

 

250.00

 

TC04-16

 

2044.92

 

6066.97

 

10000.00

 

130.0

 

-45.0

 

10.00

 

0.00

 

297.00

 

297.00

 

TC04-17

 

2448.96

 

7045.87

 

10000.00

 

130.0

 

-45.0

 

13.00

 

0.00

 

305.00

 

305.00

 

TC04-18

 

4335.10

 

6999.61

 

10014.72

 

124.5

 

-69.7

 

16.00

 

0.00

 

452.00

 

452.00

 

TC04-18EXT

 

4335.10

 

6999.61

 

10014.72

 

124.5

 

-69.7

 

0.00

 

452.00

 

551.00

 

99.00

 

TC04-19

 

4281.16

 

6907.68

 

10016.84

 

125.0

 

-67.0

 

11.00

 

0.00

 

401.00

 

401.00

 

TC04-50EXT

 

4654.24

 

7997.54

 

10009.76

 

187.5

 

-61.9

 

0.00

 

1260.00

 

1451.00

 

191.00

 

TC05-20

 

2344.91

 

6069.11

 

10000.00

 

130.0

 

-45.0

 

25.00

 

0.00

 

389.01

 

389.01

 

TC05-21

 

4661.04

 

6633.69

 

10019.36

 

170.0

 

-45.0

 

4.00

 

0.00

 

374.01

 

374.01

 

TC05-22

 

4966.61

 

6823.79

 

10000.00

 

130.0

 

-45.0

 

3.00

 

0.00

 

314.01

 

314.01

 

TC05-23

 

3770.41

 

6721.27

 

10039.23

 

130.0

 

-45.0

 

4.00

 

0.00

 

476.01

 

476.01

 

TC05-24

 

4325.38

 

6935.01

 

10014.84

 

125.6

 

-62.3

 

13.00

 

0.00

 

405.01

 

405.01

 

TC05-25

 

4217.85

 

6819.92

 

10018.52

 

125.0

 

-64.0

 

7.00

 

0.00

 

401.01

 

401.01

 

TC07-26

 

4529.55

 

7051.65

 

10021.71

 

130.0

 

-46.2

 

4.00

 

0.00

 

348.01

 

348.01

 

TC07-27

 

4529.16

 

7053.37

 

10021.29

 

130.0

 

-61.8

 

3.00

 

0.00

 

381.01

 

381.01

 

TC07-28

 

4488.95

 

6975.28

 

10017.80

 

134.6

 

-47.0

 

16.00

 

0.00

 

344.01

 

344.01

 

TC07-29

 

4573.61

 

7017.31

 

10023.18

 

129.6

 

-46.0

 

4.00

 

0.00

 

236.01

 

236.01

 

TC07-30

 

4288.26

 

7097.80

 

10016.99

 

125.6

 

-48.8

 

16.00

 

0.00

 

560.51

 

560.51

 

TC07-31

 

4288.28

 

7097.79

 

10016.93

 

126.2

 

-54.6

 

23.00

 

0.00

 

612.01

 

612.01

 

TC07-32

 

4327.11

 

7135.31

 

10018.26

 

127.9

 

-50.0

 

7.00

 

0.00

 

588.01

 

588.01

 

TC07-33

 

4288.79

 

7097.37

 

10016.99

 

124.6

 

-43.9

 

22.00

 

0.00

 

482.01

 

482.01

 

TC07-34

 

4327.29

 

7135.16

 

10018.28

 

128.9

 

-44.5

 

7.00

 

0.00

 

561.01

 

561.01

 

TC07-35

 

4327.04

 

7135.37

 

10018.26

 

128.4

 

-58.5

 

7.00

 

0.00

 

693.01

 

693.01

 

TC07-36

 

4328.83

 

7004.29

 

10015.10

 

125.3

 

-59.0

 

16.00

 

0.00

 

429.01

 

429.01

 

TC07-37

 

4238.15

 

6996.36

 

10016.02

 

131.3

 

-58.1

 

7.00

 

0.00

 

624.01

 

624.01

 

TC07-38

 

4195.15

 

6964.92

 

10017.65

 

132.6

 

-63.6

 

7.00

 

0.00

 

536.01

 

536.01

 

TC07-39

 

4145.23

 

6941.57

 

10019.88

 

130.0

 

-50.0

 

8.00

 

0.00

 

531.01

 

531.01

 

TC07-40

 

4026.60

 

6870.75

 

10023.21

 

136.4

 

-48.7

 

7.00

 

0.00

 

539.11

 

539.11

 

TC07-41

 

4292.27

 

7132.79

 

10019.16

 

132.5

 

-66.4

 

10.00

 

0.00

 

711.01

 

711.01

 

TC07-42

 

3953.36

 

6771.07

 

10028.12

 

130.3

 

-49.6

 

3.00

 

0.00

 

566.01

 

566.01

 

TC07-43

 

4292.36

 

7132.73

 

10019.19

 

131.2

 

-58.2

 

13.00

 

0.00

 

708.01

 

708.01

 

TC07-44

 

3953.03

 

6771.33

 

10028.09

 

132.4

 

-62.4

 

3.00

 

0.00

 

449.01

 

449.01

 

TC07-45

 

4292.57

 

7132.55

 

10019.03

 

134.3

 

-50.3

 

13.00

 

0.00

 

510.01

 

510.01

 

 

Appendix 1-2



 

Table 10.1a: Surface Diamond Drilling Collar and Metreage Information (Thunder Creek)

 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC08-50

 

3675.23

 

6633.26

 

10024.74

 

130.3

 

-47.0

 

13.00

 

0.00

 

702.01

 

702.01

 

TC08-51

 

4584.62

 

7265.15

 

10013.21

 

131.2

 

-49.0

 

16.00

 

0.00

 

544.01

 

544.01

 

TC08-52

 

4472.29

 

6901.81

 

10016.84

 

130.4

 

-56.4

 

7.00

 

0.00

 

305.01

 

305.01

 

TC08-53

 

4652.49

 

7082.53

 

10021.67

 

130.5

 

-46.5

 

4.00

 

0.00

 

260.01

 

260.01

 

TC08-54

 

4254.12

 

7216.24

 

10022.88

 

129.0

 

-65.5

 

2.00

 

0.00

 

882.01

 

882.01

 

TC08-54A

 

4254.12

 

7216.24

 

10022.88

 

129.0

 

-65.5

 

0.00

 

202.00

 

803.00

 

601.00

 

TC08-54B

 

4254.12

 

7216.24

 

10022.88

 

129.0

 

-65.5

 

0.00

 

295.00

 

765.00

 

470.00

 

TC08-54C

 

4254.12

 

7216.24

 

10022.88

 

129.0

 

-65.5

 

0.00

 

544.00

 

729.00

 

185.00

 

TC08-54D

 

4254.12

 

7216.24

 

10022.88

 

128.8

 

-65.5

 

0.00

 

196.00

 

807.00

 

611.00

 

TC08-55

 

4449.96

 

6987.05

 

10015.29

 

130.2

 

-60.3

 

10.00

 

0.00

 

368.01

 

368.01

 

TC08-56

 

4424.47

 

6941.78

 

10014.16

 

130.8

 

-57.7

 

4.00

 

0.00

 

419.01

 

419.01

 

TC08-57

 

4254.12

 

7216.24

 

10023.18

 

128.5

 

-59.6

 

4.00

 

0.00

 

750.01

 

750.01

 

TC08-58

 

4510.11

 

6869.01

 

10017.37

 

130.1

 

-56.2

 

4.00

 

0.00

 

254.01

 

254.01

 

TC08-59

 

4532.31

 

6851.00

 

10018.37

 

125.5

 

-43.4

 

4.00

 

0.00

 

218.01

 

218.01

 

TC08-60

 

4254.21

 

7216.17

 

10023.11

 

133.6

 

-54.9

 

4.00

 

0.00

 

687.01

 

687.01

 

TC08-61

 

4434.88

 

6868.49

 

10015.32

 

129.1

 

-54.5

 

4.00

 

0.00

 

314.01

 

314.01

 

TC08-62

 

4479.22

 

6765.44

 

10016.79

 

139.0

 

-47.2

 

4.00

 

0.00

 

272.01

 

272.01

 

TC08-63

 

4286.16

 

6342.63

 

10017.15

 

134.4

 

-44.4

 

7.00

 

0.00

 

563.01

 

563.01

 

TC08-64

 

4220.96

 

7178.99

 

10022.08

 

130.0

 

-65.0

 

13.00

 

0.00

 

794.01

 

794.01

 

TC08-65

 

4538.99

 

6132.97

 

10047.86

 

129.1

 

-65.8

 

2.50

 

0.00

 

473.01

 

473.01

 

TC08-66

 

4346.06

 

7526.82

 

10011.39

 

132.9

 

-65.1

 

10.10

 

0.00

 

933.01

 

933.01

 

TC09-67

 

4288.43

 

7448.33

 

10014.43

 

129.1

 

-65.8

 

3.00

 

0.00

 

933.01

 

933.01

 

TC09-68

 

4122.14

 

7456.53

 

10018.52

 

133.9

 

-62.7

 

4.00

 

0.00

 

1172.01

 

1172.01

 

TC09-68A

 

4122.14

 

7456.53

 

10018.52

 

133.9

 

-62.7

 

0.00

 

864.00

 

941.00

 

77.00

 

TC09-68B

 

4122.14

 

7456.53

 

10018.52

 

133.9

 

-62.7

 

0.00

 

396.00

 

1072.00

 

676.00

 

TC09-68C

 

4122.14

 

7456.53

 

10018.52

 

134.3

 

-62.7

 

0.00

 

432.00

 

1045.00

 

613.00

 

TC09-68D

 

4122.14

 

7456.53

 

10018.52

 

134.3

 

-62.7

 

0.00

 

454.00

 

1028.00

 

574.00

 

TC09-68E

 

4122.14

 

7456.53

 

10018.52

 

134.0

 

-62.3

 

0.00

 

472.00

 

1005.00

 

533.00

 

TC09-68F

 

4122.14

 

7456.53

 

10018.52

 

134.4

 

-62.4

 

0.00

 

518.00

 

1028.00

 

510.00

 

TC09-69

 

4098.92

 

7281.39

 

10034.21

 

128.9

 

-64.9

 

4.00

 

0.00

 

855.00

 

855.00

 

TC09-69A

 

4098.92

 

7281.39

 

10034.21

 

130.0

 

-66.0

 

0.00

 

703.00

 

1023.00

 

320.00

 

TC09-69B

 

4098.92

 

7281.39

 

10034.21

 

128.7

 

-65.1

 

0.00

 

357.00

 

1016.00

 

659.00

 

TC09-69C

 

4098.92

 

7281.39

 

10034.21

 

128.0

 

-65.0

 

0.00

 

435.00

 

998.00

 

563.00

 

TC09-69D

 

4098.92

 

7281.39

 

10034.21

 

124.0

 

-64.0

 

0.00

 

342.00

 

883.00

 

541.00

 

TC09-69E

 

4098.92

 

7281.39

 

10034.21

 

128.7

 

-65.1

 

0.00

 

732.00

 

899.00

 

167.00

 

TC09-69F

 

4098.92

 

7281.39

 

10034.21

 

128.7

 

-65.1

 

0.00

 

711.00

 

1057.00

 

346.00

 

TC09-69G

 

4098.92

 

7281.39

 

10034.21

 

127.6

 

-67.9

 

0.00

 

331.00

 

993.00

 

662.00

 

TC09-69H

 

4098.92

 

7281.39

 

10034.21

 

127.6

 

-64.9

 

0.00

 

361.00

 

1035.00

 

674.00

 

TC09-69J

 

4098.92

 

7281.34

 

10034.21

 

127.6

 

-65.1

 

0.00

 

391.00

 

940.00

 

549.00

 

TC09-69K

 

4098.92

 

7281.39

 

10034.21

 

128.7

 

-65.2

 

0.00

 

379.00

 

867.00

 

488.00

 

TC09-70

 

4237.40

 

7421.34

 

10020.35

 

133.4

 

-67.5

 

3.00

 

0.00

 

1043.00

 

1043.00

 

TC09-71

 

4040.16

 

7201.74

 

10034.80

 

130.6

 

-64.8

 

4.00

 

0.00

 

1221.00

 

1221.00

 

TC09-71A

 

4040.16

 

7201.74

 

10034.80

 

130.6

 

-64.7

 

0.00

 

296.00

 

1105.00

 

809.00

 

TC09-72

 

4334.69

 

7214.13

 

10017.28

 

131.8

 

-58.1

 

3.00

 

0.00

 

605.00

 

605.00

 

TC09-73

 

4013.80

 

7415.87

 

10021.48

 

126.6

 

-67.8

 

7.00

 

0.00

 

1262.00

 

1262.00

 

TC09-73A

 

4013.80

 

7415.87

 

10021.48

 

126.6

 

-68.3

 

0.00

 

905.00

 

1488.00

 

583.00

 

TC09-73B

 

4013.80

 

7415.87

 

10021.48

 

126.6

 

-68.3

 

0.00

 

703.00

 

976.00

 

273.00

 

TC09-73C

 

4013.80

 

7415.87

 

10021.48

 

126.2

 

-68.4

 

0.00

 

850.00

 

1328.00

 

478.00

 

 

 

Appendix 1-3



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC09-73D

 

4013.80

 

7415.87

 

10021.48

 

126.1

 

-68.4

 

0.00

 

535.00

 

1290.00

 

755.00

 

TC09-73E

 

4013.80

 

7415.87

 

10021.48

 

126.6

 

-67.8

 

0.00

 

628.00

 

1218.00

 

590.00

 

TC09-73F

 

4013.80

 

7415.87

 

10021.48

 

126.6

 

-67.8

 

0.00

 

492.00

 

1440.00

 

948.00

 

TC09-74

 

3962.94

 

7004.23

 

10033.22

 

162.8

 

-58.8

 

4.00

 

0.00

 

1043.00

 

1043.00

 

TC09-75

 

4101.39

 

7537.99

 

10015.67

 

126.6

 

-68.5

 

4.00

 

0.00

 

1308.00

 

1308.00

 

TC09-76

 

3962.82

 

7004.33

 

10033.22

 

128.5

 

-65.4

 

4.00

 

0.00

 

1117.00

 

1117.00

 

TC09-77

 

3946.31

 

7343.72

 

10023.65

 

128.6

 

-64.7

 

3.00

 

0.00

 

1269.00

 

1269.00

 

TC09-77A

 

3946.31

 

7343.72

 

10023.65

 

128.6

 

-64.7

 

0.00

 

929.00

 

961.00

 

32.00

 

TC09-78

 

3946.31

 

7343.72

 

10023.65

 

126.0

 

-65.0

 

3.00

 

0.00

 

282.00

 

282.00

 

TC09-79

 

3946.31

 

7343.72

 

10023.65

 

123.3

 

-64.8

 

3.00

 

0.00

 

1215.00

 

1215.00

 

TC09-79A

 

3946.31

 

7343.72

 

10023.65

 

124.0

 

-65.0

 

0.00

 

458.00

 

1212.00

 

754.00

 

TC09-79B

 

3946.31

 

7343.72

 

10023.65

 

123.3

 

-64.9

 

0.00

 

508.00

 

1332.00

 

824.00

 

TC09-79C

 

3946.31

 

7343.72

 

10023.65

 

123.4

 

-64.6

 

0.00

 

483.00

 

1128.00

 

645.00

 

TC09-80

 

4123.75

 

7391.17

 

10024.00

 

127.6

 

-67.9

 

4.00

 

0.00

 

1202.00

 

1202.00

 

TC09-80A

 

4123.75

 

7391.17

 

10024.00

 

127.7

 

-67.9

 

0.00

 

407.00

 

1256.00

 

849.00

 

TC09-80B

 

4123.96

 

7389.32

 

10024.52

 

127.7

 

-67.9

 

0.00

 

525.10

 

1108.00

 

582.90

 

TC09-80C

 

4123.96

 

7389.32

 

10024.52

 

127.6

 

-67.9

 

0.00

 

580.00

 

1104.00

 

524.00

 

TC09-80D

 

4123.75

 

7391.17

 

10024.00

 

127.6

 

-67.9

 

0.00

 

390.00

 

624.00

 

234.00

 

TC09-80E

 

4123.75

 

7391.17

 

10024.00

 

127.2

 

-67.8

 

0.00

 

199.00

 

1176.00

 

977.00

 

TC09-80F

 

4123.75

 

7391.17

 

10024.00

 

126.9

 

-68.1

 

0.00

 

428.00

 

1059.00

 

631.00

 

TC09-81

 

4324.76

 

7002.17

 

10015.54

 

130.0

 

-59.0

 

17.00

 

0.00

 

627.00

 

627.00

 

TC10-82

 

3953.00

 

7010.00

 

10033.00

 

127.0

 

-68.0

 

 

 

0.00

 

6.60

 

6.60

 

TC10-83

 

3845.27

 

7293.32

 

10022.11

 

124.5

 

-66.5

 

3.00

 

0.00

 

453.00

 

453.00

 

TC10-83A

 

3848.14

 

7296.07

 

10023.00

 

124.5

 

-66.5

 

0.00

 

438.00

 

1407.00

 

969.00

 

TC10-84

 

3834.90

 

7200.00

 

10020.38

 

137.4

 

-70.3

 

6.30

 

0.00

 

1472.00

 

1472.00

 

TC10-85

 

3805.00

 

6899.50

 

10030.00

 

128.3

 

-64.1

 

4.50

 

0.00

 

692.00

 

692.00

 

TC10-85A

 

3805.00

 

6899.50

 

10030.00

 

128.3

 

-64.1

 

0.00

 

657.00

 

1582.00

 

925.00

 

TC10-85B

 

3805.00

 

6899.50

 

10030.00

 

128.3

 

-64.1

 

0.00

 

527.00

 

776.00

 

249.00

 

TC10-85C

 

3805.00

 

6899.50

 

10030.00

 

128.3

 

-64.1

 

0.00

 

521.70

 

797.00

 

275.30

 

TC11-101

 

4077.10

 

7234.50

 

10030.00

 

132.0

 

-65.4

 

3.00

 

0.00

 

1088.00

 

1088.00

 

TC11-102

 

4538.10

 

7069.67

 

10019.37

 

0.0

 

-90.0

 

0.60

 

0.00

 

102.00

 

102.00

 

TC11-103

 

4538.79

 

7071.34

 

10019.37

 

0.0

 

-90.0

 

0.70

 

0.00

 

102.00

 

102.00

 

TC11-104

 

4539.28

 

7073.94

 

10019.29

 

0.0

 

-90.0

 

1.00

 

0.00

 

102.00

 

102.00

 

TC11-105

 

4538.25

 

7075.43

 

10019.29

 

0.0

 

-90.0

 

1.40

 

0.00

 

87.00

 

87.00

 

TC11-106

 

4536.47

 

7075.98

 

10019.27

 

0.0

 

-90.0

 

1.60

 

0.00

 

102.00

 

102.00

 

TC11-107

 

4534.19

 

7076.08

 

10019.24

 

0.0

 

-90.0

 

1.50

 

0.00

 

102.00

 

102.00

 

TC11-108

 

4533.21

 

7074.31

 

10019.25

 

0.0

 

-90.0

 

1.30

 

0.00

 

100.00

 

100.00

 

TC11-109

 

4532.91

 

7072.37

 

10019.26

 

0.0

 

-90.0

 

1.00

 

0.00

 

100.50

 

100.50

 

TC11-110

 

4532.73

 

7069.74

 

10019.27

 

0.0

 

-90.0

 

1.70

 

0.00

 

102.00

 

102.00

 

TC11-111

 

4077.12

 

7234.50

 

10030.00

 

129.4

 

-64.0

 

4.00

 

0.00

 

1009.00

 

1009.00

 

TC11-111A

 

4077.12

 

7234.50

 

10030.00

 

129.2

 

-63.0

 

0.00

 

414.00

 

1004.00

 

590.00

 

TC11-111B

 

4077.10

 

7234.50

 

10030.00

 

129.4

 

-64.0

 

0.00

 

384.00

 

877.00

 

493.00

 

TC11-111C

 

4077.12

 

7234.50

 

10030.00

 

129.1

 

-63.8

 

0.00

 

408.00

 

848.00

 

440.00

 

TC11-111D

 

4077.12

 

7234.50

 

10030.00

 

129.2

 

-63.5

 

0.00

 

318.00

 

887.00

 

569.00

 

TC11-112

 

4230.00

 

7235.00

 

10022.00

 

130.2

 

-65.8

 

4.00

 

0.00

 

860.00

 

860.00

 

TC11-112A

 

4230.00

 

7235.00

 

10022.00

 

130.4

 

-65.8

 

0.00

 

318.00

 

851.00

 

533.00

 

 

Appendix 1-4



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC11-113

 

3985.00

 

7390.00

 

10022.00

 

125.9

 

-64.2

 

4.00

 

0.00

 

1199.00

 

1199.00

 

TC11-113A

 

3985.00

 

7390.00

 

10022.00

 

125.6

 

-64.2

 

0.00

 

395.00

 

1094.00

 

699.00

 

TC11-114

 

4208.00

 

7445.00

 

10030.00

 

142.0

 

-62.4

 

4.00

 

0.00

 

936.00

 

936.00

 

TC11-115

 

4013.80

 

7415.90

 

10021.50

 

126.0

 

-63.0

 

5.00

 

0.00

 

1144.00

 

1144.00

 

TC11-86

 

3922.00

 

6646.00

 

10015.00

 

131.5

 

-51.7

 

14.00

 

0.00

 

1001.00

 

1001.00

 

TC11-87

 

3847.00

 

7022.00

 

10030.00

 

132.0

 

-70.0

 

2.00

 

0.00

 

1499.00

 

1499.00

 

 

 

Total Number of Surface Diamond Drill Holes

102

 

 

 

 

Total Number of Surface Diamond Drill Wedge Splays

47

 

 

 

 

Total Number of Metres Drilled

83,656.69

 

 

 

 

3 Diamond Drill Hole Extensions

 

 

 

 

 

One SurfaceDiamond Drill Hole Remains In Incomplete, TC11-87 (in progress)

 

 

 

Table 10.1b: Surface Diamond Drilling Collar and Metreage Information (Timmins Deposit)

 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TG05-74D

 

4600.00

 

8474.73

 

10010.68

 

232.41

 

-72.82

 

614.00

 

616.00

 

899.00

 

283.00

 

TG05-74E

 

4600.00

 

8474.73

 

10010.68

 

232.12

 

-72.87

 

714.00

 

716.00

 

1233.00

 

517.00

 

TG05-74F

 

4600.00

 

8474.73

 

10010.68

 

232.15

 

-72.86

 

729.00

 

731.00

 

1556.00

 

825.00

 

TG06-75P

 

4501.89

 

8650.56

 

10012.99

 

243.14

 

-75.77

 

852.00

 

854.00

 

1809.00

 

955.00

 

TG06-96E

 

4501.68

 

8751.42

 

10013.82

 

250.80

 

-77.11

 

735.00

 

737.00

 

862.00

 

125.00

 

TG06-96F

 

4501.68

 

8751.42

 

10013.82

 

250.80

 

-77.11

 

756.00

 

758.00

 

770.00

 

12.00

 

TG08-178B

 

4312.02

 

8727.88

 

10012.00

 

250.93

 

-78.97

 

525.00

 

527.00

 

1652.00

 

1125.00

 

TG08-178C

 

4312.02

 

8727.88

 

10012.00

 

249.69

 

-79.03

 

822.00

 

824.00

 

1679.00

 

855.00

 

TG08-178D

 

4312.02

 

8727.88

 

10012.00

 

249.69

 

-79.03

 

972.00

 

974.00

 

1404.00

 

430.00

 

TG08-178E

 

4312.02

 

8727.88

 

10012.00

 

249.83

 

-78.96

 

1377.00

 

1379.00

 

1646.00

 

267.00

 

TG08-178F

 

4312.02

 

8727.88

 

10012.00

 

249.83

 

-78.96

 

1005.00

 

1007.00

 

2114.00

 

1107.00

 

TG08-178G

 

4312.02

 

8727.88

 

10012.00

 

249.79

 

-78.77

 

1468.00

 

1470.00

 

2034.00

 

564.00

 

TG08-178H

 

4312.02

 

8727.88

 

10012.00

 

249.83

 

-78.85

 

1061.00

 

1079.65

 

1119.00

 

39.35

 

TG08-178J

 

4312.02

 

8727.88

 

10012.00

 

250.08

 

-78.85

 

996.00

 

998.00

 

1877.00

 

879.00

 

TG09-181

 

4220.79

 

8703.05

 

10013.28

 

247.31

 

-78.90

 

0.00

 

9.00

 

1572.00

 

1563.00

 

 

 

Total Number of Surface Diamond Drill holes

1

 

 

 

Total Number of Surface Diamond Drill Wedge Splays

14

 

 

 

Total Number of Metres Drilled

9546.35

 

 

 

Highlighted in blue are diamond drill holes that are not used in the modeling.

 

Appendix 1-5



 

APPENDIX 2

 

TABLE 10.2: UNDERGROUND DIAMOND DRILL HOLE COLLAR AND METREAGE INFORMATION TIMMINS WEST MINE; THUNDER CREEK AND TIMMINS DEPOSITS

 

Appendix 2-1



 

Table 10.2a: Underground Diamond Drill Hole Collar and Metreage Information (Thunder Creek)

 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC200-001

 

4536.59

 

7275.95

 

9756.59

 

183.0

 

-3.0

 

0

 

0

 

15

 

15

 

TC200-001A

 

4536.59

 

7275.95

 

9756.59

 

183.0

 

-3.0

 

0

 

0

 

15

 

15

 

TC200-001B

 

4536.59

 

7275.95

 

9756.59

 

197.5

 

-4.0

 

0

 

31.5

 

519

 

487.5

 

TC200-002

 

4536.33

 

7275.97

 

9756.60

 

189.5

 

-8.0

 

0

 

0

 

15

 

15

 

TC200-002A

 

4536.33

 

7275.91

 

9756.60

 

189.5

 

-3.0

 

0

 

34.65

 

436

 

401.35

 

TC200-003

 

4535.95

 

7275.85

 

9756.49

 

189.5

 

-3.0

 

0

 

0

 

455

 

455

 

TC200-004

 

4535.95

 

7275.89

 

9756.56

 

197.5

 

5.0

 

0

 

0

 

451

 

451

 

TC200-005

 

4539.20

 

7068.70

 

9734.00

 

197.5

 

-4.0

 

0

 

0

 

15

 

15

 

TC200-005A

 

4539.20

 

7068.70

 

9734.00

 

197.5

 

1.0

 

0

 

0

 

220

 

220

 

TC200-006

 

4539.20

 

7068.70

 

9734.00

 

197.5

 

1.0

 

0

 

0

 

216

 

216

 

TC200-007

 

4539.20

 

7068.70

 

9734.00

 

196.8

 

4.6

 

0

 

0

 

197

 

197

 

TC200-008

 

4539.20

 

7068.70

 

9734.00

 

197.5

 

-9.0

 

0

 

0

 

213

 

213

 

TC200-009

 

4539.20

 

7068.70

 

9734.00

 

195.0

 

-3.0

 

0

 

0

 

15

 

15

 

TC200-009A

 

4539.20

 

7068.70

 

9734.00

 

187.0

 

-5.0

 

0

 

0

 

12

 

12

 

TC200-009B

 

4539.20

 

7068.70

 

9734.00

 

190.0

 

5.0

 

0

 

0

 

213

 

213

 

TC200-010

 

4539.20

 

7068.70

 

9734.00

 

177.0

 

-5.0

 

0

 

0

 

12

 

12

 

TC200-010A

 

4539.20

 

7068.70

 

9734.00

 

177.0

 

-5.0

 

0

 

0

 

30

 

30

 

TC200-010B

 

4539.20

 

7068.70

 

9734.00

 

195.0

 

-5.0

 

0

 

0

 

243.8

 

243.8

 

TC200-011

 

4494.10

 

7083.60

 

9730.00

 

195.0

 

-5.0

 

0

 

0

 

242

 

242

 

TC200-012

 

4494.10

 

7083.60

 

9730.00

 

190.0

 

-5.0

 

0

 

0

 

240

 

240

 

TC200-013

 

4494.10

 

7083.60

 

9730.00

 

190.0

 

-5.0

 

0

 

0

 

238

 

238

 

TC200-014

 

4539.20

 

7068.70

 

9734.00

 

119.0

 

-57.0

 

0

 

0

 

210

 

210

 

TC200-016

 

4494.10

 

7083.60

 

9730.00

 

193.0

 

-10.0

 

0

 

0

 

240

 

240

 

TC200-017

 

4494.10

 

7083.60

 

9730.00

 

193.0

 

5.0

 

0

 

0

 

240

 

240

 

TC200-018

 

4539.20

 

7068.70

 

9734.00

 

193.0

 

-10.0

 

0

 

0

 

240

 

240

 

TC200-019

 

4468.13

 

6992.65

 

9724.80

 

190.0

 

5.0

 

0

 

0

 

15

 

15

 

TC200-019A

 

4468.13

 

6992.65

 

9724.80

 

190.0

 

5.0

 

0

 

0

 

210

 

210

 

TC200-020

 

4469.75

 

6992.70

 

9724.00

 

190.0

 

12.0

 

0

 

0

 

30

 

30

 

TC260-001

 

4497.63

 

7258.33

 

9756.48

 

179.4

 

-36.4

 

0

 

0

 

420

 

420

 

TC260-002

 

4497.63

 

7258.38

 

9756.25

 

177.5

 

-42.4

 

0

 

0

 

420

 

420

 

TC260-003

 

4497.63

 

7258.54

 

9756.10

 

179.9

 

-49.5

 

0

 

0

 

450

 

450

 

TC260-004

 

4497.65

 

7258.64

 

9755.18

 

180.1

 

-54.6

 

0

 

0

 

462

 

462

 

TC260-005

 

4497.64

 

7258.68

 

9755.10

 

179.5

 

11.0

 

0

 

0

 

548

 

548

 

TC260-006

 

4497.66

 

7259.20

 

9756.31

 

181.2

 

-62.0

 

0

 

0

 

450

 

450

 

TC260-007

 

4499.64

 

7257.98

 

9756.04

 

141.1

 

-44.6

 

0

 

0

 

465

 

465

 

TC260-008

 

4499.78

 

7257.84

 

9756.45

 

137.7

 

-26.5

 

0

 

0

 

471

 

471

 

TC260-009

 

4498.75

 

7258.20

 

9756.02

 

166.3

 

-50.4

 

0

 

0

 

421

 

421

 

TC260-010

 

4498.62

 

7258.55

 

9756.24

 

163.5

 

-56.7

 

0

 

0

 

464

 

464

 

TC260-011

 

4498.59

 

7258.63

 

9756.19

 

162.6

 

-66.2

 

0

 

0

 

471

 

471

 

TC260-012

 

4497.48

 

7258.11

 

9758.22

 

175.7

 

13.6

 

0

 

0

 

470

 

470

 

TC260-013

 

4395.50

 

7257.58

 

9759.08

 

180.3

 

-30.5

 

0

 

0

 

444

 

444

 

TC260-014

 

4395.80

 

7257.68

 

9758.73

 

178.7

 

-38.0

 

0

 

0

 

447

 

447

 

TC260-015

 

4395.51

 

7257.84

 

9758.81

 

176.3

 

-47.8

 

0

 

0

 

480

 

480

 

 

Appendix 2-2



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC260-016

 

4350.00

 

7275.75

 

9759.80

 

180.0

 

-40.0

 

0

 

0

 

480

 

480

 

TC260-017

 

4350.00

 

7275.75

 

9759.80

 

180.0

 

-32.0

 

0

 

0

 

480

 

480

 

TC260-018

 

4350.00

 

7275.75

 

9759.80

 

180.0

 

-24.0

 

0

 

0

 

460

 

460

 

TC260-019

 

4350.00

 

7275.75

 

9759.80

 

180.0

 

-16.0

 

0

 

0

 

460

 

460

 

TC260-020

 

4500.00

 

7260.00

 

9759.40

 

163.0

 

10.0

 

0

 

0

 

540

 

540

 

TC260-021

 

4395.84

 

7258.95

 

9736.80

 

180.0

 

10.0

 

0

 

0

 

550

 

550

 

TC260-022

 

4395.84

 

7258.95

 

9763.80

 

173.0

 

8.0

 

0

 

0

 

510

 

510

 

TC260-023

 

4395.84

 

7258.95

 

9763.80

 

173.0

 

11.0

 

0

 

0

 

520

 

520

 

TC280-001

 

4469.70

 

6992.70

 

9724.80

 

181.0

 

3.0

 

0

 

0

 

15

 

15

 

TC280-001A

 

4469.70

 

6992.70

 

9724.50

 

175.0

 

1.0

 

0

 

0

 

130

 

130

 

TC280-002

 

4469.70

 

6992.70

 

9724.80

 

175.0

 

-8.0

 

0

 

0

 

160

 

160

 

TC280-003

 

4469.70

 

6992.70

 

9724.80

 

176.0

 

-12.0

 

0

 

0

 

132.6

 

132.6

 

TC280-004

 

4469.70

 

6992.70

 

9724.80

 

157.0

 

1.3

 

0

 

0

 

130.8

 

130.8

 

TC280-005

 

4469.70

 

6992.70

 

9724.80

 

157.0

 

-9.0

 

0

 

0

 

41.7

 

41.7

 

TC280-005A

 

4469.70

 

6992.70

 

9724.80

 

169.0

 

-15.0

 

0

 

0

 

130.5

 

130.5

 

TC280-006

 

4468.03

 

6992.73

 

9724.61

 

181.0

 

3.0

 

0

 

0

 

141

 

141

 

TC280-007

 

4468.68

 

6992.73

 

9724.01

 

165.0

 

-14.0

 

0

 

0

 

15

 

15

 

TC280-007A

 

4468.68

 

6992.73

 

9724.01

 

169.0

 

-17.0

 

0

 

0

 

141.7

 

141.7

 

TC280-008

 

4439.76

 

6973.40

 

9726.50

 

181.0

 

1.5

 

0

 

0

 

141

 

141

 

TC280-009

 

4439.76

 

6973.50

 

9726.40

 

165.2

 

-24.8

 

0

 

0

 

163.2

 

163.2

 

TC280-010

 

4467.95

 

6992.75

 

9724.38

 

170.4

 

-50.0

 

0

 

0

 

48

 

48

 

TC280-011

 

4439.20

 

6972.70

 

9726.00

 

157.2

 

-66.3

 

0

 

0

 

15

 

15

 

TC280-011A

 

4439.73

 

6972.70

 

9726.00

 

146.8

 

-67.0

 

0

 

0

 

15

 

15

 

TC280-011B

 

4439.20

 

6972.70

 

9726.00

 

135.0

 

-67.0

 

0

 

0

 

150

 

150

 

TC280-012

 

4439.20

 

6972.70

 

9726.00

 

137.5

 

-52.8

 

0

 

0

 

125.8

 

125.8

 

TC280-013

 

4417.34

 

6956.03

 

9729.62

 

142.0

 

15.0

 

0

 

0

 

15

 

15

 

TC280-013A

 

4417.34

 

6956.03

 

9729.62

 

142.0

 

15.0

 

0

 

0

 

150

 

150

 

TC280-014

 

4439.20

 

6972.70

 

9726.00

 

139.0

 

-82.0

 

0

 

0

 

12

 

12

 

TC280-014A

 

4439.20

 

6972.70

 

9726.00

 

139.0

 

-82.0

 

0

 

0

 

15

 

15

 

TC280-014B

 

4439.20

 

6972.70

 

9726.00

 

138.4

 

-81.2

 

0

 

0

 

153

 

153

 

TC280-015

 

4442.00

 

6975.00

 

9726.24

 

115.0

 

-79.0

 

0

 

0

 

15

 

15

 

TC280-015A

 

4441.04

 

6974.30

 

9726.24

 

115.0

 

-79.0

 

0

 

0

 

180.3

 

180.3

 

TC280-016

 

4440.73

 

6973.58

 

9726.72

 

157.8

 

-14.0

 

0

 

0

 

141

 

141

 

TC280-017

 

4440.85

 

6973.00

 

9726.62

 

150.1

 

-13.0

 

0

 

0

 

141

 

141

 

TC280-018

 

4441.04

 

6973.00

 

9726.00

 

120.0

 

-40.0

 

0

 

0

 

15

 

15

 

TC280-018A

 

4441.04

 

6972.70

 

9726.00

 

122.3

 

-41.1

 

0

 

0

 

141

 

141

 

TC280-019

 

4441.04

 

6973.00

 

9726.00

 

110.8

 

-57.0

 

0

 

0

 

15

 

15

 

TC280-019A

 

4441.04

 

6973.10

 

9726.00

 

119.5

 

-56.4

 

0

 

0

 

140.5

 

140.5

 

TC280-020

 

4441.04

 

6973.58

 

9727.20

 

165.4

 

14.6

 

0

 

0

 

141

 

141

 

TC280-021

 

4440.85

 

6973.58

 

9727.20

 

156.4

 

20.9

 

0

 

0

 

140

 

140

 

TC280-022

 

4438.83

 

6972.70

 

9727.20

 

177.3

 

17.9

 

0

 

0

 

159.2

 

159.2

 

TC280-023

 

4439.03

 

6972.70

 

9727.80

 

164.5

 

20.0

 

0

 

0

 

171

 

171

 

TC280-024

 

4438.83

 

6972.70

 

9726.87

 

177.6

 

4.3

 

0

 

0

 

119.5

 

119.5

 

TC280-025

 

4438.83

 

6972.70

 

9727.47

 

173.0

 

14.5

 

0

 

0

 

172

 

172

 

TC280-026

 

4441.00

 

6972.75

 

9726.50

 

185.7

 

1.8

 

0

 

0

 

130

 

130

 

 

Appendix 2-3



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC280-069

 

4411.20

 

6921.00

 

9732.50

 

145.9

 

12.3

 

0

 

0

 

132

 

132

 

TC280-070

 

4411.80

 

6921.00

 

9732.50

 

150.2

 

30.7

 

0

 

0

 

156

 

156

 

TC280-071

 

4418.20

 

6957.10

 

9727.80

 

134.7

 

-33.9

 

0

 

0

 

150

 

150

 

TC280-072

 

4417.30

 

6956.00

 

9729.60

 

149.0

 

31.1

 

0

 

0

 

186

 

186

 

TC280-073

 

4417.30

 

6956.00

 

9729.60

 

148.6

 

11.3

 

0

 

0

 

150

 

150

 

TC280-074

 

4411.90

 

6921.00

 

9732.50

 

163.3

 

14.6

 

0

 

0

 

126

 

126

 

TC280-075

 

4411.90

 

6921.00

 

9732.50

 

163.3

 

28.4

 

0

 

0

 

171

 

171

 

TC280-076

 

4411.90

 

6921.00

 

9732.50

 

167.9

 

32.0

 

0

 

0

 

180

 

180

 

TC280-077

 

4417.30

 

6956.00

 

9729.60

 

150.3

 

24.7

 

0

 

0

 

180

 

180

 

TC280-078

 

4417.30

 

6956.00

 

9729.60

 

150.0

 

27.0

 

0

 

0

 

186

 

186

 

TC280-080

 

4411.90

 

6921.00

 

9732.50

 

168.2

 

20.0

 

0

 

0

 

132

 

132

 

TC280-081

 

4493.60

 

6918.50

 

9733.40

 

180.0

 

0.0

 

0

 

0

 

21

 

21

 

TC280-082

 

4498.60

 

6923.60

 

9377.40

 

180.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-083

 

4503.70

 

6924.50

 

9733.40

 

180.0

 

0.0

 

0

 

0

 

25.7

 

25.7

 

TC280-084

 

4510.00

 

6922.50

 

9734.70

 

180.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-085

 

4515.00

 

6919.40

 

9734.70

 

180.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-086

 

4495.00

 

6927.00

 

9734.70

 

0.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-087

 

4500.00

 

6929.00

 

9734.70

 

0.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-088

 

4505.00

 

6929.50

 

9734.70

 

0.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-089

 

4510.00

 

6931.50

 

9734.70

 

0.0

 

0.0

 

0

 

0

 

25

 

25

 

TC280-090

 

4446.70

 

6854.60

 

9736.20

 

332.0

 

45.0

 

0

 

0

 

35

 

35

 

TC280-091

 

4446.70

 

6854.60

 

9736.20

 

332.0

 

25.0

 

0

 

0

 

36

 

36

 

TC280-092

 

4446.70

 

6854.60

 

9736.20

 

332.0

 

-45.0

 

0

 

0

 

70

 

70

 

TC280-093

 

4446.70

 

6854.60

 

9736.20

 

346.0

 

45.0

 

0

 

0

 

36

 

36

 

TC280-094

 

4446.70

 

6854.60

 

9736.20

 

346.0

 

25.0

 

0

 

0

 

35

 

35

 

TC280-100

 

4450.30

 

6850.50

 

9732.50

 

208.0

 

0.0

 

0

 

0

 

42

 

42

 

TC280-101

 

4450.30

 

6850.50

 

9732.50

 

208.0

 

20.0

 

0

 

0

 

41.5

 

41.5

 

TC280-102

 

4453.40

 

6851.00

 

9732.50

 

196.0

 

0.0

 

0

 

0

 

40

 

40

 

TC280-103

 

4453.40

 

6851.00

 

9732.50

 

196.0

 

20.0

 

0

 

0

 

40

 

40

 

TC280-104

 

4453.40

 

6851.00

 

9732.50

 

171.0

 

0.0

 

0

 

0

 

42

 

42

 

TC280-105

 

4453.40

 

6851.00

 

9732.50

 

171.0

 

20.0

 

0

 

0

 

40

 

40

 

TC280-106

 

4453.40

 

6851.00

 

9732.50

 

149.0

 

0.0

 

0

 

0

 

40

 

40

 

TC280-107

 

4450.30

 

6850.50

 

9732.50

 

208.0

 

0.0

 

0

 

0

 

40

 

40

 

TC280-108

 

4450.30

 

6851.00

 

9732.50

 

196.0

 

0.0

 

0

 

0

 

60

 

60

 

TC280-109

 

4450.30

 

6851.00

 

9732.50

 

171.0

 

0.0

 

0

 

0

 

60

 

60

 

TC280-110

 

4450.30

 

6851.00

 

9732.50

 

149.0

 

0.0

 

0

 

0

 

60

 

60

 

TC280-111

 

4453.40

 

6851.00

 

9732.00

 

149.0

 

40.0

 

0

 

0

 

44

 

44

 

TC300-001

 

4471.60

 

6885.20

 

9719.70

 

310.0

 

0.0

 

0

 

0

 

25

 

25

 

TC300-002

 

4471.60

 

6885.20

 

9719.70

 

333.0

 

0.0

 

0

 

0

 

25.5

 

25.5

 

TC300-003

 

4471.60

 

6885.20

 

9719.70

 

310.0

 

20.0

 

0

 

0

 

27

 

27

 

TC300-004

 

4471.60

 

6885.20

 

9719.70

 

333.0

 

20.0

 

0

 

0

 

27

 

27

 

 

Appendix 2-4



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC300-005

 

4482.60

 

6913.10

 

9718.90

 

129.0

 

0.0

 

0

 

0

 

25

 

25

 

TC300-006

 

4482.60

 

6913.10

 

9718.90

 

151.0

 

0.0

 

0

 

0

 

25

 

25

 

TC300-007

 

4482.60

 

6913.10

 

9718.90

 

129.0

 

26.0

 

0

 

0

 

36

 

36

 

TC300-008

 

4482.60

 

6913.10

 

9718.90

 

129.0

 

-37.0

 

0

 

0

 

45

 

45

 

TC300-009

 

4482.60

 

6913.10

 

9718.90

 

151.0

 

26.0

 

0

 

0

 

36

 

36

 

TC300-010

 

4482.60

 

6913.10

 

9718.90

 

151.0

 

-37.0

 

0

 

0

 

21

 

21

 

TC300-011

 

4471.60

 

6885.20

 

9719.70

 

310.0

 

-26.0

 

0

 

0

 

25

 

25

 

TC300-012

 

4471.60

 

6885.20

 

9719.70

 

333.0

 

-26.0

 

0

 

0

 

25.5

 

25.5

 

TC300-013

 

4482.60

 

6913.10

 

9718.90

 

115.0

 

0.0

 

0

 

0

 

30

 

30

 

TC300-014

 

4482.60

 

6913.10

 

9718.90

 

115.0

 

26.0

 

0

 

0

 

55

 

55

 

TC300-015

 

4482.60

 

6913.10

 

9718.90

 

115.0

 

-37.0

 

0

 

0

 

70.1

 

70.1

 

TC300-016

 

4482.60

 

6913.10

 

9718.90

 

151.0

 

13.0

 

0

 

0

 

30

 

30

 

TC300-017

 

4482.60

 

6913.10

 

9718.90

 

151.0

 

-18.0

 

0

 

0

 

30.5

 

30.5

 

TC300-018

 

4482.60

 

6913.10

 

9718.90

 

129.0

 

13.0

 

0

 

0

 

30.4

 

30.4

 

TC300-019

 

4482.60

 

6913.10

 

9718.90

 

129.0

 

-18.0

 

0

 

0

 

27

 

27

 

TC300-020

 

4482.60

 

6913.10

 

9718.90

 

115.0

 

13.0

 

0

 

0

 

30

 

30

 

TC300-021

 

4482.60

 

6913.10

 

9718.90

 

115.0

 

-18.0

 

0

 

0

 

30.3

 

30.3

 

TC320-001

 

4514.88

 

6938.05

 

9717.40

 

119.0

 

15.0

 

0

 

0

 

100

 

100

 

TC320-002

 

4516.73

 

6939.84

 

9717.30

 

119.0

 

1.0

 

0

 

0

 

100

 

100

 

TC320-003

 

4513.83

 

6937.87

 

9718.20

 

180.0

 

13.9

 

0

 

0

 

33

 

33

 

TC320-003A

 

4513.83

 

6937.87

 

9718.20

 

175.0

 

15.0

 

0

 

0

 

90

 

90

 

TC320-004

 

4513.49

 

6938.22

 

9719.40

 

175.0

 

40.0

 

0

 

0

 

48

 

48

 

TC320-005

 

4513.83

 

6937.87

 

9716.90

 

175.0

 

-30.0

 

0

 

0

 

79.6

 

79.6

 

TC320-006

 

4513.83

 

6937.87

 

9716.50

 

175.0

 

-30.0

 

0

 

0

 

79.6

 

79.6

 

TC320-007

 

4514.88

 

6938.05

 

9718.00

 

167.0

 

14.0

 

0

 

0

 

81

 

81

 

TC320-008

 

4514.88

 

6938.05

 

9719.30

 

152.5

 

31.1

 

0

 

0

 

81

 

81

 

TC320-009

 

4514.88

 

6938.05

 

9717.00

 

155.0

 

-15.9

 

0

 

0

 

72

 

72

 

TC320-010

 

4514.88

 

6938.05

 

9716.60

 

155.8

 

-30.4

 

0

 

0

 

72

 

72

 

TC320-011

 

4515.57

 

6938.45

 

9716.50

 

136.0

 

-13.0

 

0

 

0

 

72

 

72

 

TC320-012

 

4515.57

 

6938.45

 

9716.90

 

142.0

 

-28.0

 

0

 

0

 

72

 

72

 

TC320-013

 

4516.73

 

6939.84

 

9718.20

 

120.6

 

13.1

 

0

 

0

 

60

 

60

 

TC320-014

 

4516.02

 

6939.50

 

9716.80

 

117.0

 

29.7

 

0

 

0

 

90

 

90

 

TC320-015

 

4516.02

 

6939.50

 

9716.08

 

122.0

 

-16.4

 

0

 

0

 

60

 

60

 

TC320-016

 

4516.02

 

6939.50

 

9716.08

 

125.9

 

-30.6

 

0

 

0

 

60

 

60

 

TC320-017

 

4513.90

 

6937.80

 

9716.50

 

173.9

 

-45.5

 

0

 

0

 

72

 

72

 

TC320-018

 

4513.80

 

6937.90

 

9716.50

 

174.0

 

-59.5

 

0

 

0

 

72

 

72

 

TC320-019

 

4514.90

 

6938.10

 

9716.60

 

154.2

 

-45.2

 

0

 

0

 

70.6

 

70.6

 

TC320-020

 

4514.90

 

6938.10

 

9716.60

 

160.3

 

-60.0

 

0

 

0

 

72

 

72

 

TC320-021

 

4525.45

 

7009.99

 

9709.00

 

163.0

 

23.6

 

0

 

0

 

131

 

131

 

TC320-022

 

4525.45

 

7009.45

 

9708.00

 

165.0

 

1.5

 

0

 

0

 

130.6

 

130.6

 

TC320-023

 

4526.05

 

7009.99

 

9707.90

 

151.9

 

-6.4

 

0

 

0

 

120

 

120

 

TC320-024

 

4525.75

 

7009.99

 

9708.00

 

151.2

 

2.0

 

0

 

0

 

132

 

132

 

 

Appendix 2-5



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC320-025

 

4526.14

 

7010.10

 

9707.97

 

134.4

 

-6.7

 

0

 

0

 

132

 

132

 

TC320-026

 

4525.45

 

7009.99

 

9709.40

 

161.0

 

31.1

 

0

 

0

 

130

 

130

 

TC320-027

 

4525.25

 

7009.99

 

9707.40

 

166.0

 

-31.7

 

0

 

0

 

131

 

131

 

TC320-028

 

4525.75

 

7009.99

 

9709.40

 

152.5

 

22.7

 

0

 

0

 

130.5

 

130.5

 

TC320-029

 

4525.75

 

7009.99

 

9707.15

 

158.2

 

-31.2

 

0

 

0

 

130

 

130

 

TC320-030

 

4525.75

 

7009.99

 

9706.80

 

154.0

 

-51.5

 

0

 

0

 

132

 

132

 

TC320-031

 

4525.85

 

7010.10

 

9709.30

 

147.0

 

24.1

 

0

 

0

 

132

 

132

 

TC320-032

 

4525.85

 

7010.10

 

9708.60

 

147.0

 

12.7

 

0

 

0

 

130.9

 

130.9

 

TC320-033

 

4525.85

 

7010.10

 

9707.70

 

147.2

 

-15.1

 

0

 

0

 

132

 

132

 

TC320-034

 

4525.85

 

7010.10

 

9707.50

 

148.5

 

-22.0

 

0

 

0

 

132

 

132

 

TC320-035

 

4525.45

 

7009.99

 

9707.70

 

165.0

 

-8.9

 

0

 

0

 

132

 

132

 

TC320-036

 

4525.45

 

7009.99

 

9707.55

 

167.5

 

-17.1

 

0

 

0

 

120

 

120

 

TC320-037

 

4526.14

 

7010.10

 

9708.70

 

138.7

 

8.2

 

0

 

0

 

130

 

130

 

TC320-038

 

4526.14

 

7010.10

 

9709.20

 

138.0

 

18.8

 

0

 

0

 

106.5

 

106.5

 

TC320-039

 

4526.14

 

7010.10

 

9709.75

 

135.0

 

29.6

 

0

 

0

 

141

 

141

 

TC320-040

 

4526.14

 

7010.10

 

9707.60

 

144.8

 

-20.3

 

0

 

0

 

110

 

110

 

TC320-041

 

4526.14

 

7010.10

 

9707.10

 

143.0

 

-42.7

 

0

 

0

 

111

 

111

 

TC320-042

 

4525.45

 

7009.99

 

9707.15

 

164.6

 

-39.9

 

0

 

0

 

111

 

111

 

TC320-043

 

4525.45

 

7009.99

 

9706.20

 

163.5

 

-61.2

 

0

 

0

 

102

 

102

 

TC320-044

 

4526.98

 

7010.33

 

9710.50

 

137.0

 

41.2

 

0

 

0

 

132.2

 

132.2

 

TC320-045

 

4526.98

 

7010.33

 

9709.25

 

121.5

 

21.8

 

0

 

0

 

133.4

 

133.4

 

TC320-046

 

4526.98

 

7010.33

 

9708.69

 

128.7

 

12.5

 

0

 

0

 

119

 

119

 

TC320-047

 

4526.98

 

7012.33

 

9708.09

 

128.7

 

0.9

 

0

 

0

 

111

 

111

 

TC320-048

 

4526.98

 

7010.33

 

9707.79

 

125.0

 

-10.1

 

0

 

0

 

102

 

102

 

TC320-049

 

4526.98

 

7010.33

 

9707.24

 

125.0

 

-30.7

 

0

 

0

 

102

 

102

 

TC320-050

 

4527.13

 

7010.33

 

9706.49

 

126.7

 

-49.7

 

0

 

0

 

150

 

150

 

TC320-051

 

4501.40

 

6950.90

 

9717.20

 

205.6

 

-43.0

 

0

 

0

 

101

 

101

 

TC320-052

 

4501.40

 

6950.90

 

9717.20

 

199.0

 

-52.0

 

0

 

0

 

108

 

108

 

TC320-053

 

4501.40

 

6950.90

 

9717.20

 

217.0

 

-65.0

 

0

 

0

 

105

 

105

 

TC320-054

 

4501.40

 

6950.90

 

9717.20

 

219.9

 

-80.7

 

0

 

0

 

102

 

102

 

TC320-055

 

4501.40

 

6950.90

 

9717.20

 

96.1

 

-76.0

 

0

 

0

 

120

 

120

 

TC320-056

 

4501.40

 

6950.90

 

9717.20

 

79.0

 

-67.0

 

0

 

0

 

120

 

120

 

TC320-057

 

4532.80

 

7012.80

 

9707.50

 

119.0

 

-5.0

 

0

 

0

 

120

 

120

 

TC320-058

 

4532.80

 

7012.80

 

9707.50

 

119.0

 

-17.0

 

0

 

0

 

138

 

138

 

TC320-059

 

4532.80

 

7012.80

 

9707.50

 

119.0

 

-25.0

 

0

 

0

 

123

 

123

 

TC320-060

 

4532.80

 

7012.80

 

9707.50

 

110.0

 

0.0

 

0

 

0

 

150

 

150

 

TC320-061

 

4532.80

 

7012.80

 

9707.50

 

110.0

 

-22.0

 

0

 

0

 

120

 

120

 

TC320-062

 

4532.80

 

7012.80

 

9707.50

 

110.0

 

-41.0

 

0

 

0

 

126

 

126

 

TC330-001

 

4501.60

 

6958.30

 

9697.30

 

178.6

 

-23.6

 

0

 

0

 

81

 

81

 

TC330-002

 

4501.60

 

6958.30

 

9696.80

 

180.6

 

-39.7

 

0

 

0

 

81

 

81

 

TC330-003

 

4501.60

 

6958.30

 

9696.20

 

182.7

 

61.7

 

0

 

0

 

81

 

81

 

TC330-004

 

4501.60

 

6958.80

 

9696.20

 

180.0

 

-74.3

 

0

 

0

 

84

 

84

 

 

Appendix 2-6



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC330-005

 

4502.30

 

6958.30

 

9697.60

 

160.0

 

-15.8

 

0

 

0

 

81

 

81

 

TC330-006

 

4501.40

 

6961.40

 

9698.00

 

161.0

 

-36.0

 

0

 

0

 

81

 

81

 

TC330-007

 

4501.40

 

6961.40

 

9698.00

 

163.0

 

-55.1

 

0

 

0

 

93

 

93

 

TC330-008

 

4501.40

 

6961.40

 

9698.00

 

162.6

 

-66.8

 

0

 

0

 

81

 

81

 

TC330-009

 

4501.40

 

6961.40

 

9698.00

 

140.0

 

-11.9

 

0

 

0

 

81

 

81

 

TC330-010

 

4501.40

 

6961.40

 

9698.00

 

139.0

 

-21.8

 

0

 

0

 

81

 

81

 

TC330-011

 

4501.40

 

6961.40

 

9698.00

 

136.0

 

-30.4

 

0

 

0

 

81

 

81

 

TC330-012

 

4501.40

 

6961.40

 

9698.00

 

136.0

 

-40.5

 

0

 

0

 

81

 

81

 

TC330-013

 

4507.30

 

7018.90

 

9696.00

 

148.3

 

-32.0

 

0

 

0

 

126

 

126

 

TC330-014

 

4507.30

 

7018.90

 

9696.00

 

151.9

 

-58.0

 

0

 

0

 

126

 

126

 

TC330-015

 

4507.30

 

7018.90

 

9696.00

 

157.5

 

-27.0

 

0

 

0

 

141

 

141

 

TC330-016

 

4507.30

 

7018.90

 

9696.00

 

157.5

 

-37.0

 

0

 

0

 

141

 

141

 

TC330-017

 

4507.30

 

7018.90

 

9696.00

 

151.3

 

-58.0

 

0

 

0

 

120

 

120

 

TC330-018

 

4507.30

 

7018.90

 

9696.00

 

169.5

 

-31.0

 

0

 

0

 

132

 

132

 

TC330-019

 

4507.30

 

7018.90

 

9696.00

 

169.5

 

-48.0

 

0

 

0

 

132

 

132

 

TC330-020

 

4507.30

 

7018.90

 

9696.00

 

129.2

 

-48.0

 

0

 

0

 

132

 

132

 

TC330-021

 

4507.30

 

7018.90

 

9696.00

 

131.7

 

-61.0

 

0

 

0

 

134.95

 

134.95

 

TC330-025

 

4507.30

 

7018.90

 

9696.00

 

186.4

 

-48.0

 

0

 

0

 

111

 

111

 

TC330-026

 

4507.30

 

7018.90

 

9696.00

 

183.0

 

-61.0

 

0

 

0

 

111

 

111

 

TC330-027

 

4507.30

 

7018.90

 

9696.00

 

191.0

 

-52.0

 

0

 

0

 

144

 

144

 

TC330-028

 

4507.30

 

7018.90

 

9696.00

 

216.0

 

-43.0

 

0

 

0

 

171

 

171

 

TC330-029

 

4507.30

 

7018.90

 

9696.00

 

216.0

 

-64.0

 

0

 

0

 

171

 

171

 

TC330-030

 

4507.30

 

7018.90

 

9696.00

 

136.0

 

-80.0

 

0

 

0

 

155

 

155

 

TC330-031

 

4507.30

 

7018.90

 

9696.00

 

145.6

 

-67.0

 

0

 

0

 

135

 

135

 

TC330-032

 

4507.30

 

7018.90

 

9696.00

 

136.0

 

-59.0

 

0

 

0

 

144

 

144

 

TC330-033

 

4507.30

 

7018.90

 

9696.00

 

136.0

 

-48.0

 

0

 

0

 

141

 

141

 

TC330-034

 

4507.30

 

7018.90

 

9696.00

 

136.0

 

-39.0

 

0

 

0

 

138

 

138

 

TC330-035

 

4507.30

 

7018.90

 

9696.00

 

239.0

 

-61.0

 

0

 

0

 

210

 

210

 

TC330-036

 

4507.30

 

7018.90

 

9696.00

 

239.0

 

-43.0

 

0

 

0

 

183

 

183

 

TC330-037

 

4507.30

 

7018.90

 

9696.00

 

259.0

 

-54.0

 

0

 

0

 

180

 

180

 

TC330-038

 

4507.30

 

7018.90

 

9696.00

 

259.0

 

-68.0

 

0

 

0

 

181.45

 

181.45

 

TC330-039

 

4507.30

 

7018.90

 

9696.00

 

227.0

 

-65.0

 

0

 

0

 

189

 

189

 

TC330-040

 

4507.30

 

7018.90

 

9696.00

 

227.0

 

-59.0

 

0

 

0

 

192

 

192

 

TC330-041

 

4507.30

 

7018.90

 

9696.00

 

227.0

 

-53.0

 

0

 

0

 

183

 

183

 

TC330-042

 

4507.30

 

7018.90

 

9696.00

 

227.0

 

-46.0

 

0

 

0

 

183

 

183

 

TC330-043

 

4507.30

 

7018.90

 

9696.00

 

227.0

 

-38.0

 

0

 

0

 

183

 

183

 

TC350-001

 

4476.80

 

6969.10

 

9668.00

 

110.0

 

4.0

 

0

 

0

 

112

 

112

 

TC350-002

 

4476.80

 

6969.10

 

9668.00

 

110.0

 

25.0

 

0

 

0

 

110

 

110

 

TC350-003

 

4476.80

 

6969.10

 

9668.00

 

119.0

 

4.0

 

0

 

0

 

66

 

66

 

TC350-004

 

4476.80

 

6969.10

 

9668.00

 

134.0

 

-3.0

 

0

 

0

 

63

 

63

 

TC650-001

 

4548.25

 

7438.76

 

9334.55

 

200.4

 

-10.8

 

0

 

0

 

560

 

560

 

 

Appendix 2-7



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC650-002

 

4549.09

 

7439.79

 

9334.92

 

187.0

 

-11.0

 

0

 

0

 

546

 

546

 

TC650-003

 

4549.28

 

7439.81

 

9334.92

 

187.0

 

-12.3

 

0

 

0

 

492.7

 

492.7

 

TC650-004

 

4548.96

 

7440.49

 

9334.92

 

206.0

 

-7.2

 

0

 

0

 

108

 

108

 

TC650-004B

 

4548.96

 

7440.49

 

9334.92

 

199.0

 

-7.0

 

0

 

0

 

510

 

510

 

TC650-005

 

4548.96

 

7440.49

 

9334.92

 

202.8

 

-4.4

 

0

 

0

 

544

 

544

 

TC650-006

 

4548.30

 

7438.80

 

9334.60

 

200.0

 

-18.0

 

0

 

0

 

325.5

 

325.5

 

TC650-007

 

4548.30

 

7438.80

 

9334.60

 

199.0

 

-22.7

 

0

 

0

 

457

 

457

 

TC680-001

 

4499.90

 

7426.90

 

9334.80

 

182.6

 

-52.1

 

0

 

0

 

657

 

657

 

TC680-002

 

4499.90

 

7426.90

 

9334.80

 

199.0

 

-67.2

 

0

 

0

 

711

 

711

 

TC680-003

 

4396.80

 

7422.00

 

9336.20

 

182.0

 

-61.7

 

0

 

0

 

762

 

762

 

TC680-004

 

4396.80

 

7422.00

 

9336.20

 

176.7

 

-70.9

 

0

 

0

 

750

 

750

 

TC680-005

 

4499.90

 

7426.90

 

9334.80

 

198.6

 

-55.2

 

0

 

0

 

825

 

825

 

TC680-006

 

4499.90

 

7426.90

 

9334.80

 

197.8

 

-50.4

 

0

 

0

 

651

 

651

 

TC680-007

 

4394.10

 

7422.00

 

9340.00

 

189.5

 

-55.1

 

0

 

0

 

552

 

552

 

TC680-008

 

4394.10

 

7422.00

 

9340.00

 

188.0

 

-59.0

 

0

 

0

 

600

 

600

 

TC680-009

 

4499.90

 

7426.90

 

9334.80

 

197.0

 

-60.0

 

0

 

0

 

500

 

500

 

TC710-001

 

4497.80

 

7269.40

 

9311.00

 

205.3

 

1.1

 

0

 

0

 

351

 

351

 

TC710-002

 

4497.80

 

7269.40

 

9311.00

 

203.8

 

-8.9

 

0

 

0

 

351

 

351

 

TC710-003

 

4497.80

 

7269.40

 

9311.00

 

207.4

 

8.2

 

0

 

0

 

432

 

432

 

TC710-004

 

4497.80

 

7269.40

 

9311.00

 

204.0

 

-14.9

 

0

 

0

 

351.3

 

351.3

 

TC710-005

 

4498.70

 

7269.40

 

9311.00

 

207.0

 

15.0

 

0

 

0

 

351

 

351

 

TC710-006

 

4497.80

 

7269.40

 

9311.00

 

206.0

 

-21.0

 

0

 

0

 

357

 

357

 

TC710-007

 

4497.80

 

7269.40

 

9311.00

 

183.0

 

14.8

 

0

 

0

 

351

 

351

 

TC710-008

 

4497.80

 

7269.40

 

9311.00

 

184.8

 

-29.7

 

0

 

0

 

402

 

402

 

TC710-009

 

4497.80

 

7269.20

 

9311.00

 

184.3

 

-60.1

 

0

 

0

 

330

 

330

 

TC710-010

 

4497.80

 

7269.40

 

9311.00

 

194.3

 

-48.1

 

0

 

0

 

480

 

480

 

TC710-011

 

4497.80

 

7269.40

 

9311.00

 

196.1

 

-63.0

 

0

 

0

 

510

 

510

 

TC710-012

 

4452.50

 

7264.20

 

9311.00

 

171.9

 

-43.2

 

0

 

0

 

450

 

450

 

TC710-013

 

4440.00

 

7260.00

 

9311.00

 

175.0

 

-55.0

 

0

 

0

 

504

 

504

 

TC710-014

 

4440.00

 

7260.00

 

9311.00

 

175.0

 

-60.0

 

0

 

0

 

550

 

550

 

TC710-015

 

4498.70

 

7269.40

 

9311.00

 

184.5

 

-37.8

 

0

 

0

 

402

 

402

 

TC710-016

 

4497.80

 

7269.40

 

9311.00

 

185.0

 

-56.0

 

0

 

0

 

402

 

402

 

TC710-017

 

4497.80

 

7269.40

 

9311.00

 

201.0

 

-60.0

 

0

 

0

 

400

 

400

 

TC710-018

 

4440.00

 

7269.00

 

9311.00

 

190.4

 

56.8

 

0

 

0

 

459

 

459

 

TC710-019

 

4440.00

 

7269.00

 

9311.00

 

189.1

 

-60.3

 

0

 

0

 

516

 

516

 

TC710-021

 

4497.80

 

7269.40

 

9311.00

 

191.3

 

-32.7

 

0

 

0

 

402

 

402

 

TC710-022

 

4497.80

 

7269.40

 

9311.00

 

180.0

 

3.0

 

0

 

0

 

252

 

252

 

TC710-023

 

4497.80

 

7269.40

 

9311.00

 

180.1

 

13.3

 

0

 

0

 

300

 

300

 

TC710-024

 

4497.80

 

7269.40

 

9311.00

 

177.4

 

22.6

 

0

 

0

 

298.15

 

298.15

 

TC730-001

 

4466.90

 

7088.60

 

9285.60

 

235.9

 

3.2

 

0

 

0

 

150

 

150

 

TC730-002

 

4466.90

 

7088.60

 

9285.60

 

273.9

 

2.5

 

0

 

0

 

150

 

150

 

TC730-003

 

4466.90

 

7088.60

 

9285.60

 

263.1

 

3.0

 

0

 

0

 

150

 

150

 

 

Appendix 2-8



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TC730-004

 

4466.90

 

7088.60

 

9285.60

 

253.3

 

3.5

 

0

 

0

 

150

 

150

 

TC730-005

 

4466.90

 

7088.60

 

9285.60

 

226.0

 

3.0

 

0

 

0

 

150

 

150

 

TC730-006

 

4466.90

 

7088.60

 

9285.60

 

208.0

 

3.0

 

0

 

0

 

150

 

150

 

TC730-007

 

4466.90

 

7088.60

 

9285.60

 

192.0

 

3.0

 

0

 

0

 

150

 

150

 

TC730-008

 

4466.90

 

7088.60

 

9285.60

 

177.6

 

2.8

 

0

 

0

 

150

 

150

 

TC730-009

 

4483.50

 

7077.50

 

9284.10

 

242.8

 

-30.1

 

0

 

0

 

250.4

 

250.4

 

TC730-010

 

4483.50

 

7077.50

 

9284.10

 

242.8

 

30.9

 

0

 

0

 

225

 

225

 

TC730-011

 

4483.50

 

7077.50

 

9284.10

 

259.1

 

21.0

 

0

 

0

 

150

 

150

 

TC730-012

 

4483.50

 

7077.50

 

9284.10

 

256.0

 

30.0

 

0

 

0

 

150

 

150

 

TC730-013

 

4483.50

 

7077.50

 

9284.10

 

256.0

 

-21.0

 

0

 

0

 

177

 

177

 

TC730-014

 

4483.50

 

7077.50

 

9284.10

 

310.0

 

65.0

 

0

 

0

 

79.6

 

79.6

 

TC730-015

 

4483.50

 

7077.50

 

9284.10

 

310.0

 

52.0

 

0

 

0

 

76

 

76

 

TC730-016

 

4483.50

 

7077.50

 

9284.10

 

310.0

 

39.0

 

0

 

0

 

75

 

75

 

TC730-017

 

4483.50

 

7077.75

 

9284.10

 

310.0

 

-25.2

 

0

 

0

 

111

 

111

 

TC730-018

 

4483.50

 

7077.50

 

9284.10

 

310.8

 

-35.6

 

0

 

0

 

120

 

120

 

TC730-019

 

4477.82

 

7099.97

 

9285.00

 

300.0

 

81.9

 

0

 

0

 

100

 

100

 

TC730-020

 

4477.82

 

7099.97

 

9285.00

 

313.0

 

59.3

 

0

 

0

 

111

 

111

 

TC730-021

 

4477.82

 

7099.97

 

9285.00

 

318.8

 

34.1

 

0

 

0

 

111

 

111

 

TC730-022

 

4483.50

 

7077.50

 

9284.10

 

316.0

 

-30.0

 

0

 

0

 

129

 

129

 

TC730-023

 

4477.82

 

7099.70

 

9285.00

 

316.0

 

-45.0

 

0

 

0

 

130

 

130

 

TC730-024

 

4469.43

 

7115.28

 

9284.98

 

256.4

 

1.3

 

0

 

0

 

102

 

102

 

TC730-025

 

4469.09

 

7115.59

 

9284.98

 

287.6

 

0.4

 

0

 

0

 

60

 

60

 

TC730-026

 

4470.08

 

7118.97

 

9284.97

 

320.0

 

1.0

 

0

 

0

 

60

 

60

 

TC730-027

 

4471.06

 

7119.49

 

9284.99

 

349.1

 

1.4

 

0

 

0

 

60

 

60

 

TC730-028

 

4473.22

 

7119.68

 

9285.00

 

16.8

 

2.4

 

0

 

0

 

60

 

60

 

TC730-029

 

4474.71

 

7117.84

 

9284.91

 

0.2

 

50.0

 

0

 

0

 

51

 

51

 

TC730-030

 

4470.04

 

7114.81

 

9283.34

 

244.0

 

-70.2

 

0

 

0

 

591

 

591

 

TC730-031

 

4470.14

 

7118.93

 

9285.21

 

320.6

 

30.6

 

0

 

0

 

51

 

51

 

TC730-032

 

4470.22

 

7118.90

 

9284.47

 

321.3

 

-30.3

 

0

 

0

 

50

 

50

 

TC730-033

 

4470.22

 

7118.90

 

9285.30

 

350.1

 

13.1

 

0

 

0

 

51

 

51

 

TC730-034

 

4471.18

 

7119.46

 

9284.50

 

347.2

 

-51.8

 

0

 

0

 

51

 

51

 

TC730-035

 

4471.28

 

7119.43

 

9283.98

 

347.7

 

-16.0

 

0

 

0

 

51

 

51

 

TC730-036

 

4473.19

 

7119.85

 

9287.00

 

17.3

 

31.3

 

0

 

0

 

51

 

51

 

TC730-037

 

4473.18

 

7119.60

 

9284.10

 

20.4

 

-30.4

 

0

 

0

 

51

 

51

 

TC730-038

 

4474.63

 

7117.89

 

9284.86

 

50.0

 

15.0

 

0

 

0

 

51

 

51

 

TC730-039

 

4474.71

 

7117.30

 

9284.00

 

50.0

 

-15.0

 

0

 

0

 

50

 

50

 

TC730-040

 

4474.71

 

7117.91

 

9284.10

 

46.1

 

-40.5

 

0

 

0

 

51

 

51

 

TC730-041

 

4470.00

 

7095.00

 

9285.40

 

330.7

 

0.5

 

0

 

0

 

60

 

60

 

TC730-042

 

4461.40

 

7089.40

 

9285.50

 

332.3

 

1.0

 

0

 

0

 

60

 

60

 

TC730-051

 

4460.30

 

7082.30

 

9285.50

 

151.9

 

1.0

 

0

 

0

 

71.85

 

71.85

 

TC730-052

 

4443.70

 

7071.70

 

9285.50

 

151.1

 

1.2

 

0

 

0

 

72.7

 

72.7

 

TCGRT 001

 

4472.40

 

6889.50

 

9718.90

 

260.0

 

25.0

 

0

 

0

 

75

 

75

 

 

Appendix 2-9



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

 

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Final Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

TCGRT-002

 

4472.40

 

6889.50

 

9718.50

 

260.0

 

-25.0

 

0

 

0

 

75

 

75

 

TCGRT-003

 

4472.40

 

6889.50

 

9718.90

 

253.0

 

0.0

 

0

 

0

 

102

 

102

 

TCGRT-004

 

4477.80

 

6890.70

 

9718.90

 

55.0

 

30.0

 

0

 

0

 

102

 

102

 

TCGRT-005

 

4477.80

 

6890.70

 

9718.90

 

55.0

 

-25.0

 

0

 

0

 

102

 

102

 

TCGRT-006

 

4477.80

 

6890.70

 

9718.90

 

55.0

 

-35.0

 

0

 

0

 

102

 

102

 

 

 

Total Number of Underground Diamond Drill Holes

 

384

 

 

 

Number of Underground Diamond Drill Holes Recollared

 

22

 

 

 

Number of Underground Diamond Drill Holes In Progress Or Incomplete

 

42

 

 

 

Total Metres Drilled

 

66,809.65

 

 

 

Highlighted in blue are diamond drill holes that are not used in the modeling.

 

Table 10.2b: Underground Diamond Drill Hole Collar and Metreage Information (Timmins Deposit)

 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

110-013

 

4891.20

 

7830.70

 

9907.70

 

223.0

 

11.0

 

0

 

0

 

18.01

 

18.01

 

110-013A

 

4891.20

 

7830.70

 

9907.70

 

223.1

 

11.1

 

0

 

0

 

42

 

42

 

110-017

 

4920.10

 

7814.00

 

9907.50

 

128.0

 

-12.0

 

0

 

0

 

30.4

 

30.4

 

120-001

 

5021.10

 

7924.80

 

9898.80

 

178.0

 

0.0

 

0

 

0

 

81

 

81

 

120-002

 

5021.10

 

7924.60

 

9898.80

 

140.0

 

0.0

 

0

 

0

 

87

 

87

 

120-003

 

5018.80

 

7922.10

 

9901.50

 

211.0

 

20.0

 

0

 

0

 

81

 

81

 

120-004

 

5018.80

 

7922.10

 

9901.50

 

184.0

 

20.0

 

0

 

0

 

15.1

 

15.1

 

120-004a

 

5018.80

 

7922.10

 

9901.50

 

184.0

 

20.0

 

0

 

0

 

87.1

 

87.1

 

120-005a

 

5018.80

 

7922.10

 

9901.50

 

158.0

 

20.0

 

0

 

0

 

81

 

81

 

120-006

 

5041.70

 

7933.70

 

9901.50

 

179.0

 

1.0

 

0

 

0

 

15

 

15

 

120-006a

 

5041.70

 

7933.70

 

9901.50

 

179.0

 

1.0

 

0

 

0

 

72

 

72

 

120-007a

 

5041.80

 

7933.80

 

9901.50

 

161.0

 

1.0

 

0

 

0

 

66

 

66

 

120-008a

 

5041.90

 

7933.90

 

9901.50

 

145.0

 

1.0

 

0

 

0

 

66

 

66

 

120-009

 

5041.70

 

7933.70

 

9901.70

 

179.0

 

15.0

 

0

 

0

 

72.05

 

72.05

 

120-010

 

5041.70

 

7933.70

 

9901.30

 

179.0

 

-15.0

 

0

 

0

 

66

 

66

 

120-011

 

5041.80

 

7933.80

 

9901.70

 

161.0

 

18.0

 

0

 

0

 

72

 

72

 

120-012

 

5041.80

 

7933.60

 

9901.30

 

161.0

 

-15.0

 

0

 

0

 

15.05

 

15.05

 

120-012A

 

5041.80

 

7933.80

 

9901.30

 

161.0

 

-15.0

 

0

 

0

 

66.05

 

66.05

 

120-013

 

5041.90

 

7933.90

 

9901.70

 

145.0

 

15.0

 

0

 

0

 

72

 

72

 

120-015

 

4977.60

 

7903.90

 

9895.20

 

150.0

 

30.0

 

0

 

0

 

14

 

14

 

120-015a

 

4977.60

 

7903.90

 

9895.20

 

150.0

 

30.0

 

0

 

0

 

15

 

15

 

120-015b

 

4977.60

 

7903.90

 

9895.20

 

144.4

 

30.0

 

0

 

0

 

60

 

60

 

 

Appendix 2-10



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

120-016

 

4977.60

 

7903.90

 

9895.20

 

144.8

 

1.0

 

0

 

0

 

22.55

 

22.55

 

120-017

 

4977.60

 

7903.90

 

9895.20

 

150.0

 

-25.0

 

0

 

0

 

45.05

 

45.05

 

120-018

 

4965.10

 

7900.40

 

9896.70

 

165.0

 

25.0

 

0

 

0

 

42

 

42

 

120-019a

 

4965.10

 

7900.40

 

9896.70

 

165.0

 

1.0

 

0

 

0

 

42

 

42

 

120-021

 

4977.60

 

7903.90

 

9895.20

 

150.0

 

15.0

 

0

 

0

 

57.05

 

57.05

 

120-022

 

4977.60

 

7903.90

 

9895.20

 

150.0

 

23.0

 

0

 

0

 

45

 

45

 

120-023

 

4977.60

 

7903.90

 

9895.20

 

150.0

 

33.0

 

0

 

0

 

42.01

 

42.01

 

120-025

 

4989.40

 

7908.70

 

9897.40

 

137.0

 

23.0

 

0

 

0

 

57

 

57

 

120-026

 

4989.40

 

7908.70

 

9897.40

 

137.0

 

30.0

 

0

 

0

 

51

 

51

 

120-027

 

4989.40

 

7908.70

 

9897.40

 

152.0

 

23.0

 

0

 

0

 

15

 

15

 

120-027a

 

4989.40

 

7908.70

 

9897.40

 

152.0

 

23.0

 

0

 

0

 

57

 

57

 

120-028

 

4989.40

 

7908.70

 

9897.40

 

152.0

 

30.0

 

0

 

0

 

51

 

51

 

140-002

 

4871.30

 

7888.00

 

9878.50

 

205.0

 

-19.0

 

0

 

0

 

102

 

102

 

140-004a

 

4871.70

 

7887.80

 

9879.70

 

189.0

 

21.0

 

0

 

0

 

96

 

96

 

140-011

 

4884.50

 

7846.00

 

9875.50

 

167.0

 

-24.0

 

0

 

0

 

65

 

65

 

140-012

 

4887.00

 

7850.80

 

9876.40

 

141.0

 

1.0

 

0

 

0

 

105.01

 

105.01

 

140-013

 

4887.00

 

7850.80

 

9877.60

 

141.0

 

1.0

 

0

 

0

 

6

 

6

 

140-014

 

4887.80

 

7850.80

 

9877.60

 

141.0

 

13.0

 

0

 

0

 

15.05

 

15.05

 

140-014a

 

4887.80

 

7850.80

 

9876.80

 

141.0

 

13.0

 

0

 

0

 

113.05

 

113.05

 

140-015

 

4887.80

 

7850.80

 

9875.70

 

141.0

 

-17.0

 

0

 

0

 

93

 

93

 

140-017

 

4924.60

 

7858.60

 

9875.30

 

173.0

 

21.0

 

0

 

0

 

81.05

 

81.05

 

140-019

 

4924.60

 

7858.60

 

9874.40

 

195.0

 

5.0

 

0

 

0

 

120.01

 

120.01

 

140-020

 

4924.60

 

7858.60

 

9874.20

 

195.0

 

-7.0

 

0

 

0

 

81

 

81

 

140-021

 

4924.60

 

7858.60

 

9874.10

 

195.0

 

18.0

 

0

 

0

 

81

 

81

 

140-022

 

4925.10

 

7858.70

 

9875.10

 

161.0

 

16.0

 

0

 

0

 

81

 

81

 

140-023

 

4925.10

 

7858.70

 

9874.90

 

162.0

 

6.0

 

0

 

0

 

76.05

 

76.05

 

140-025

 

4925.10

 

7858.70

 

9874.90

 

194.8

 

-30.8

 

0

 

0

 

111

 

111

 

140-026

 

4925.10

 

7858.70

 

9875.10

 

161.0

 

-24.0

 

0

 

0

 

90

 

90

 

140-027

 

4925.10

 

7858.70

 

9874.90

 

173.0

 

-34.0

 

0

 

0

 

15

 

15

 

140-027a

 

4925.10

 

7858.70

 

9874.90

 

173.0

 

-34.0

 

0

 

0

 

90

 

90

 

150-001

 

4995.00

 

7937.80

 

9865.60

 

170.0

 

1.0

 

0

 

0

 

57.01

 

57.01

 

150-002

 

4995.60

 

7938.00

 

9865.60

 

158.0

 

1.0

 

0

 

0

 

55.71

 

55.71

 

150-003

 

4996.30

 

7938.20

 

9866.00

 

132.0

 

1.0

 

0

 

0

 

65.01

 

65.01

 

150-004

 

4996.40

 

7938.40

 

9866.00

 

120.0

 

1.0

 

0

 

0

 

72.01

 

72.01

 

150-005

 

4996.60

 

7938.40

 

9866.40

 

120.0

 

10.0

 

0

 

0

 

75.01

 

75.01

 

150-006

 

4996.60

 

7938.40

 

9866.90

 

120.0

 

20.0

 

0

 

0

 

75.01

 

75.01

 

150-007

 

4996.30

 

7938.20

 

9866.80

 

132.0

 

15.0

 

0

 

0

 

75.01

 

75.01

 

150-008

 

4987.50

 

7934.70

 

9865.60

 

175.0

 

1.0

 

0

 

0

 

75.01

 

75.01

 

150-009

 

4975.90

 

7926.40

 

9865.70

 

175.0

 

1.0

 

0

 

0

 

75.01

 

75.01

 

150-012

 

4999.90

 

7940.10

 

9866.60

 

191.0

 

19.0

 

0

 

0

 

140

 

140

 

150-013

 

4999.90

 

7940.10

 

9865.90

 

191.0

 

15.0

 

0

 

0

 

132.01

 

132.01

 

150-015

 

4987.90

 

7934.80

 

9866.40

 

191.0

 

15.0

 

0

 

0

 

130

 

130

 

 

Appendix 2-11



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

150-016

 

4987.90

 

7934.80

 

9865.60

 

191.0

 

-12.0

 

0

 

0

 

120

 

120

 

150-017

 

4975.90

 

7926.40

 

9866.60

 

191.0

 

15.0

 

0

 

0

 

132.01

 

132.01

 

150-018

 

4975.90

 

7926.40

 

9865.70

 

180.0

 

-4.0

 

0

 

0

 

120

 

120

 

150-019

 

4975.90

 

7926.40

 

9865.30

 

180.0

 

-19.0

 

0

 

0

 

90.01

 

90.01

 

150-020

 

4965.10

 

7923.10

 

9866.20

 

191.0

 

14.0

 

0

 

0

 

7

 

7

 

150-020A

 

4965.10

 

7923.10

 

9866.20

 

191.0

 

14.0

 

0

 

0

 

130

 

130

 

150-021

 

4967.50

 

7921.50

 

9866.20

 

191.0

 

-23.0

 

0

 

0

 

8

 

8

 

170-001

 

4867.00

 

7855.00

 

9846.50

 

173.0

 

1.0

 

0

 

0

 

57

 

57

 

170-002

 

4868.00

 

7855.50

 

9846.50

 

152.0

 

1.0

 

0

 

0

 

16.01

 

16.01

 

170-002a

 

4868.00

 

7855.50

 

9846.50

 

152.0

 

1.0

 

0

 

0

 

57.01

 

57.01

 

170-003

 

4868.00

 

7856.30

 

9846.50

 

135.0

 

1.0

 

0

 

0

 

71

 

71

 

170-004

 

4868.10

 

7856.70

 

9846.50

 

120.0

 

1.0

 

0

 

0

 

66.01

 

66.01

 

170-005

 

4868.00

 

7855.50

 

9846.70

 

152.0

 

20.0

 

0

 

0

 

56

 

56

 

170-006

 

4868.00

 

7855.50

 

9846.90

 

152.0

 

45.0

 

0

 

0

 

30

 

30

 

170-007

 

4868.00

 

7855.70

 

9846.70

 

146.2

 

20.7

 

0

 

0

 

66

 

66

 

170-008

 

4868.00

 

7856.70

 

9846.50

 

120.0

 

26.0

 

0

 

0

 

45.01

 

45.01

 

170-009

 

4867.00

 

7855.00

 

9846.50

 

173.0

 

20.0

 

0

 

0

 

51

 

51

 

170-010

 

4867.00

 

7855.00

 

9846.50

 

173.0

 

-16.0

 

0

 

0

 

48.01

 

48.01

 

170-011

 

4865.70

 

7857.20

 

9846.50

 

222.0

 

1.0

 

0

 

0

 

66.05

 

66.05

 

170-012

 

4865.70

 

7857.20

 

9846.50

 

222.0

 

1.0

 

0

 

0

 

60.05

 

60.05

 

170-013

 

4867.80

 

7856.50

 

9846.90

 

152.0

 

-16.0

 

0

 

0

 

48.05

 

48.05

 

170-014

 

4873.90

 

7824.70

 

9847.70

 

348.0

 

28.0

 

0

 

0

 

45.01

 

45.01

 

170-015

 

4873.90

 

7824.70

 

9847.70

 

327.0

 

28.0

 

0

 

0

 

45

 

45

 

170-016

 

4873.90

 

7824.70

 

9847.70

 

327.0

 

28.0

 

0

 

0

 

45.01

 

45.01

 

170-017

 

4873.90

 

7824.70

 

9847.70

 

348.0

 

28.0

 

0

 

0

 

45.01

 

45.01

 

180-002

 

4985.58

 

7930.76

 

9837.70

 

180.0

 

2.0

 

0

 

0

 

133.45

 

133.45

 

180-003

 

5010.82

 

7936.33

 

9838.20

 

185.0

 

5.0

 

0

 

0

 

150.01

 

150.01

 

180-004

 

5038.60

 

7940.63

 

9838.98

 

180.0

 

2.0

 

0

 

0

 

126.05

 

126.05

 

180-007

 

5041.13

 

7940.63

 

9838.90

 

143.0

 

2.0

 

0

 

0

 

100.05

 

100.05

 

180-008

 

4975.00

 

7928.50

 

9837.55

 

180.0

 

11.0

 

0

 

0

 

45.05

 

45.05

 

180-009

 

4985.37

 

7930.71

 

9838.37

 

180.0

 

30.0

 

0

 

0

 

26

 

26

 

180-010

 

5000.00

 

7934.11

 

9838.73

 

180.0

 

30.0

 

0

 

0

 

27.05

 

27.05

 

180-011

 

5000.00

 

7934.11

 

9837.73

 

180.0

 

-5.0

 

0

 

0

 

12.05

 

12.05

 

180-012

 

4975.00

 

7928.50

 

9838.15

 

180.0

 

30.0

 

0

 

0

 

30.05

 

30.05

 

180-013

 

4999.89

 

7930.23

 

9839.40

 

180.0

 

30.0

 

0

 

0

 

9

 

9

 

180-013A

 

4999.89

 

7930.23

 

9839.40

 

195.0

 

-15.0

 

0

 

0

 

90.01

 

90.01

 

180-014

 

4999.89

 

7930.23

 

9838.00

 

180.0

 

-5.0

 

0

 

0

 

150

 

150

 

180-015

 

4999.89

 

7930.23

 

9837.80

 

180.0

 

-15.0

 

0

 

0

 

156

 

156

 

180-016

 

4999.89

 

7930.23

 

9837.60

 

180.0

 

-30.0

 

0

 

0

 

150

 

150

 

180-017

 

4999.68

 

7930.23

 

9837.20

 

180.0

 

-45.0

 

0

 

0

 

130

 

130

 

180-018

 

4999.89

 

7930.23

 

9836.40

 

180.0

 

-70.0

 

0

 

0

 

141

 

141

 

180-019

 

4999.68

 

7930.23

 

9838.10

 

192.0

 

0.0

 

0

 

0

 

150

 

150

 

 

Appendix 2-12



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

180-020

 

4999.68

 

7930.23

 

9837.90

 

192.0

 

-5.0

 

0

 

0

 

150

 

150

 

180-021

 

4974.61

 

7924.20

 

9838.60

 

180.0

 

0.0

 

0

 

0

 

156

 

156

 

180-022

 

4974.61

 

7924.20

 

9838.30

 

180.0

 

-11.0

 

0

 

0

 

156

 

156

 

180-023

 

4974.10

 

7924.20

 

9838.20

 

192.0

 

0.0

 

0

 

0

 

156

 

156

 

180-024

 

4974.10

 

7924.20

 

9838.30

 

192.0

 

-11.0

 

0

 

0

 

156

 

156

 

180-025

 

4974.61

 

7924.20

 

9837.27

 

180.0

 

-15.0

 

0

 

0

 

150

 

150

 

180-026

 

4974.61

 

7924.20

 

9836.87

 

180.0

 

-30.0

 

0

 

0

 

156.1

 

156.1

 

180-027

 

4974.61

 

7924.20

 

9836.47

 

180.0

 

-44.0

 

0

 

0

 

160

 

160

 

180-028

 

4974.61

 

7924.20

 

9836.27

 

180.0

 

-55.0

 

0

 

0

 

165.1

 

165.1

 

180-029

 

5034.36

 

7939.20

 

9839.42

 

188.0

 

5.0

 

0

 

0

 

171

 

171

 

180-030

 

5034.36

 

7939.20

 

9838.62

 

185.0

 

-22.0

 

0

 

0

 

171.1

 

171.1

 

180-031

 

5033.70

 

7939.50

 

9838.80

 

190.0

 

13.0

 

0

 

0

 

177.1

 

177.1

 

180-032

 

5040.20

 

7940.60

 

9839.20

 

158.0

 

10.0

 

0

 

0

 

162.1

 

162.1

 

180-033A

 

5040.20

 

7940.60

 

9839.20

 

158.0

 

-12.0

 

0

 

0

 

162.01

 

162.01

 

180-034

 

5033.70

 

7939.50

 

9838.80

 

188.0

 

-5.0

 

0

 

0

 

147

 

147

 

180-035

 

5000.00

 

7930.20

 

9838.00

 

171.0

 

-8.0

 

0

 

0

 

150.1

 

150.1

 

180-036

 

5000.00

 

7930.20

 

9838.00

 

171.0

 

-21.0

 

0

 

0

 

156.1

 

156.1

 

180-037

 

5000.00

 

7930.20

 

9838.00

 

179.0

 

5.0

 

0

 

0

 

150.1

 

150.1

 

180-038

 

5000.00

 

7930.20

 

9838.00

 

190.0

 

-13.0

 

0

 

0

 

90.1

 

90.1

 

180-039

 

5000.00

 

7930.20

 

9838.00

 

190.0

 

-24.0

 

0

 

0

 

93

 

93

 

180-040

 

5005.40

 

7813.40

 

9839.90

 

215.0

 

1.0

 

0

 

0

 

51

 

51

 

180-041

 

5005.40

 

7813.40

 

9839.90

 

215.0

 

-22.0

 

0

 

0

 

51

 

51

 

180-042

 

5009.00

 

7814.40

 

9839.90

 

129.0

 

1.0

 

0

 

0

 

51

 

51

 

180-043

 

5009.00

 

7813.40

 

9839.90

 

129.0

 

-22.0

 

0

 

0

 

51.6

 

51.6

 

180-044

 

5009.00

 

7814.40

 

9839.90

 

129.0

 

22.0

 

0

 

0

 

51

 

51

 

180-045

 

5009.00

 

7814.40

 

9839.90

 

108.0

 

-22.0

 

0

 

0

 

51

 

51

 

180-046

 

5009.00

 

7814.40

 

9839.90

 

108.0

 

1.0

 

0

 

0

 

51

 

51

 

180-047

 

5009.00

 

7814.40

 

9839.90

 

108.0

 

22.0

 

0

 

0

 

51

 

51

 

180-048

 

5005.40

 

7813.40

 

9839.90

 

129.0

 

-40.0

 

0

 

0

 

60

 

60

 

180-049

 

5005.40

 

7813.40

 

9839.90

 

129.0

 

-50.0

 

0

 

0

 

60

 

60

 

180-050

 

5005.40

 

7813.40

 

9839.90

 

240.0

 

15.0

 

0

 

0

 

60

 

60

 

180-051

 

5005.40

 

7813.40

 

9839.90

 

240.0

 

0.0

 

0

 

0

 

60

 

60

 

180-052

 

5005.40

 

7813.40

 

9839.90

 

240.0

 

-15.0

 

0

 

0

 

60.5

 

60.5

 

200-001

 

4850.00

 

7912.60

 

9820.00

 

194.6

 

25.0

 

0

 

0

 

71

 

71

 

200-002

 

4850.00

 

7912.60

 

9820.00

 

208.0

 

-18.0

 

0

 

0

 

75

 

75

 

200-003

 

4850.00

 

7912.60

 

9820.00

 

192.0

 

19.0

 

0

 

0

 

95

 

95

 

200-004

 

4850.00

 

7912.60

 

9820.00

 

192.0

 

-16.0

 

0

 

0

 

96

 

96

 

200-005

 

4850.00

 

7912.60

 

9820.00

 

180.0

 

13.0

 

0

 

0

 

102

 

102

 

200-006

 

4850.00

 

7912.60

 

9820.00

 

180.0

 

-13.0

 

0

 

0

 

100

 

100

 

200-007

 

4862.50

 

7905.00

 

9817.50

 

180.0

 

-10.0

 

0

 

0

 

90

 

90

 

200-008

 

4862.50

 

7905.00

 

9817.50

 

183.6

 

-13.0

 

0

 

0

 

90

 

90

 

200-009

 

4875.00

 

7900.00

 

9815.40

 

180.0

 

13.0

 

0

 

0

 

102

 

102

 

 

Appendix 2-13



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

20-001

 

5092.00

 

7761.00

 

9991.00

 

132.0

 

-8.0

 

0

 

0

 

51

 

51

 

200-010

 

4875.00

 

7900.00

 

9815.40

 

180.0

 

-10.0

 

0

 

0

 

102

 

102

 

20-002

 

5092.00

 

7761.00

 

9991.00

 

132.0

 

-20.0

 

0

 

0

 

111

 

111

 

20-005

 

5089.00

 

7761.00

 

9991.00

 

152.0

 

-28.0

 

0

 

0

 

111

 

111

 

20-006

 

5089.00

 

7761.00

 

9991.00

 

152.0

 

-44.0

 

0

 

0

 

51

 

51

 

20-007

 

5090.00

 

7761.00

 

9991.00

 

180.0

 

-9.0

 

0

 

0

 

42

 

42

 

20-009

 

5090.00

 

7761.00

 

9991.00

 

180.0

 

-52.0

 

0

 

0

 

60

 

60

 

20-010

 

5089.00

 

7761.00

 

9991.00

 

198.0

 

-8.0

 

0

 

0

 

42

 

42

 

20-011

 

5089.00

 

7761.00

 

9991.00

 

198.0

 

-30.0

 

0

 

0

 

105

 

105

 

20-012

 

5089.00

 

7761.00

 

9991.00

 

198.0

 

-57.0

 

0

 

0

 

147

 

147

 

20-013

 

5089.00

 

7761.00

 

9991.00

 

180.0

 

11.0

 

0

 

0

 

15

 

15

 

200-400 FUEL

 

4643.80

 

7712.10

 

9811.10

 

40.0

 

-64.0

 

0

 

0

 

208

 

208

 

210-001

 

4953.20

 

7941.30

 

9807.00

 

154.0

 

-20.0

 

0

 

0

 

72

 

72

 

210-002

 

4953.20

 

7941.30

 

9807.00

 

154.0

 

-38.0

 

0

 

0

 

78

 

78

 

210-003

 

4953.20

 

7941.30

 

9807.00

 

154.0

 

-51.0

 

0

 

0

 

78.1

 

78.1

 

210-004

 

4953.20

 

7941.30

 

9807.00

 

140.0

 

-20.0

 

0

 

0

 

70

 

70

 

210-005

 

4953.20

 

7941.30

 

9807.00

 

140.0

 

-38.0

 

0

 

0

 

70

 

70

 

210-006

 

4953.20

 

7941.30

 

9807.00

 

360.0

 

-90.0

 

0

 

0

 

72

 

72

 

210-007

 

4953.20

 

7941.30

 

9807.00

 

168.0

 

-20.0

 

0

 

0

 

90.1

 

90.1

 

210-008

 

4953.20

 

7941.30

 

9807.00

 

168.0

 

-37.0

 

0

 

0

 

90

 

90

 

210-009

 

4964.80

 

7886.10

 

9808.50

 

158.0

 

9.0

 

0

 

0

 

150

 

150

 

210-010

 

4959.40

 

7897.62

 

9808.50

 

160.0

 

1.0

 

0

 

0

 

150

 

150

 

210-011

 

4953.20

 

7941.30

 

9807.00

 

126.0

 

-20.0

 

0

 

0

 

120.1

 

120.1

 

210-012

 

4953.20

 

7941.30

 

9807.00

 

126.0

 

-38.0

 

0

 

0

 

120

 

120

 

210-013

 

4953.20

 

7941.30

 

9807.00

 

130.0

 

-51.0

 

0

 

0

 

126

 

126

 

210-014

 

4959.40

 

7897.60

 

9808.50

 

150.0

 

8.0

 

0

 

0

 

150.1

 

150.1

 

210-015

 

4959.40

 

7897.60

 

9808.50

 

148.0

 

1.0

 

0

 

0

 

9

 

9

 

210-015A

 

4959.40

 

7897.60

 

9808.50

 

151.0

 

1.0

 

0

 

0

 

150

 

150

 

210-016

 

4959.40

 

7897.60

 

9808.50

 

144.0

 

0.0

 

0

 

0

 

102

 

102

 

210-017

 

4988.60

 

7882.20

 

9809.50

 

144.0

 

9.0

 

0

 

0

 

100.5

 

100.5

 

210-018

 

4988.60

 

7882.20

 

9809.50

 

144.0

 

-9.0

 

0

 

0

 

106.5

 

106.5

 

210-019

 

5000.30

 

7886.40

 

9809.50

 

143.0

 

0.0

 

0

 

0

 

102

 

102

 

210-020

 

5000.30

 

7886.40

 

9809.50

 

143.0

 

9.0

 

0

 

0

 

102

 

102

 

210-021

 

5000.30

 

7886.40

 

9809.50

 

143.0

 

-9.0

 

0

 

0

 

100.7

 

100.7

 

210-029

 

5020.00

 

7811.60

 

9810.00

 

4.0

 

-15.0

 

0

 

0

 

100

 

100

 

210-030

 

5020.00

 

7811.60

 

9810.00

 

4.0

 

-30.0

 

0

 

0

 

100

 

100

 

210-031

 

5020.00

 

7811.60

 

9810.00

 

4.0

 

-37.0

 

0

 

0

 

94

 

94

 

210-032

 

5020.00

 

7811.60

 

9810.00

 

4.0

 

-23.0

 

0

 

0

 

102

 

102

 

230-001

 

4796.70

 

7955.70

 

9792.50

 

148.0

 

-11.0

 

0

 

0

 

150

 

150

 

230-002

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-10.0

 

0

 

0

 

150

 

150

 

230-003

 

4796.70

 

7955.70

 

9792.50

 

146.0

 

10.0

 

0

 

0

 

150

 

150

 

230-004

 

4796.70

 

7955.70

 

9792.50

 

146.0

 

6.0

 

0

 

0

 

44

 

44

 

 

Appendix 2-14



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

230-004A

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-16.0

 

0

 

0

 

150

 

150

 

230-005

 

4796.70

 

7955.70

 

9792.50

 

146.0

 

6.0

 

0

 

0

 

159

 

159

 

230-006

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-16.0

 

0

 

0

 

150.1

 

150.1

 

230-007

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-1.0

 

0

 

0

 

150

 

150

 

230-008

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-10.0

 

0

 

0

 

150

 

150

 

230-009

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-16.0

 

0

 

0

 

150.1

 

150.1

 

230-010

 

4796.70

 

7955.70

 

9792.50

 

154.0

 

-22.0

 

0

 

0

 

150

 

150

 

230-011

 

4796.70

 

7955.70

 

9792.50

 

162.0

 

-10.0

 

0

 

0

 

150

 

150

 

230-012

 

4796.70

 

7955.70

 

9792.50

 

162.0

 

-2.0

 

0

 

0

 

150.1

 

150.1

 

230-013

 

4796.70

 

7955.70

 

9792.50

 

162.0

 

-10.0

 

0

 

0

 

150.1

 

150.1

 

230-014

 

4796.70

 

7955.70

 

9792.50

 

162.0

 

-18.0

 

0

 

0

 

150

 

150

 

230-015

 

4796.70

 

7955.70

 

9792.50

 

169.0

 

-16.0

 

0

 

0

 

150.1

 

150.1

 

230-016

 

4796.70

 

7955.70

 

9792.50

 

169.0

 

-3.0

 

0

 

0

 

150.1

 

150.1

 

230-017

 

4796.70

 

7955.70

 

9792.50

 

169.0

 

-11.0

 

0

 

0

 

150

 

150

 

230-018

 

4796.70

 

7955.70

 

9792.50

 

169.0

 

-19.0

 

0

 

0

 

150.01

 

150.01

 

230-019

 

4796.70

 

7955.70

 

9792.50

 

177.0

 

5.0

 

0

 

0

 

150

 

150

 

230-020

 

4796.70

 

7955.70

 

9792.50

 

177.0

 

11.0

 

0

 

0

 

150.1

 

150.1

 

230-021

 

4796.70

 

7955.70

 

9792.50

 

177.0

 

-3.0

 

0

 

0

 

150

 

150

 

230-023

 

4796.70

 

7955.70

 

9792.50

 

177.0

 

0.0

 

0

 

0

 

105

 

105

 

240-001

 

4936.40

 

7950.40

 

9779.40

 

136.0

 

-21.0

 

0

 

0

 

15

 

15

 

240-001A

 

4936.40

 

7950.40

 

9779.40

 

136.0

 

-35.0

 

0

 

0

 

250

 

250

 

240-002

 

4936.40

 

7950.40

 

9779.40

 

136.0

 

-46.0

 

0

 

0

 

150

 

150

 

240-003

 

4936.40

 

7950.40

 

9779.40

 

136.0

 

-46.0

 

0

 

0

 

150

 

150

 

240-004

 

4936.40

 

7950.40

 

9779.40

 

125.0

 

-21.0

 

0

 

0

 

150

 

150

 

240-005

 

4936.40

 

7950.40

 

9779.40

 

125.0

 

-35.0

 

0

 

0

 

150

 

150

 

240-006

 

4936.40

 

7950.40

 

9779.40

 

125.0

 

-63.0

 

0

 

0

 

150.1

 

150.1

 

240-007A

 

4936.40

 

7950.40

 

9779.40

 

119.0

 

-21.0

 

0

 

0

 

150

 

150

 

240-008

 

4936.40

 

7950.40

 

9779.40

 

116.0

 

-35.0

 

0

 

0

 

153

 

153

 

240-009

 

4936.40

 

7950.40

 

9779.40

 

136.0

 

-63.0

 

0

 

0

 

150

 

150

 

240-010

 

4939.30

 

7950.50

 

9779.40

 

120.0

 

-25.0

 

0

 

0

 

150

 

150

 

240-011

 

4939.30

 

7950.50

 

9779.40

 

118.0

 

-40.0

 

0

 

0

 

150

 

150

 

240-012

 

4939.30

 

7950.50

 

9779.40

 

118.0

 

-90.0

 

0

 

0

 

225

 

225

 

240-013

 

4936.40

 

7950.40

 

9779.40

 

153.0

 

-63.4

 

0

 

0

 

198

 

198

 

240-014

 

4936.40

 

7950.40

 

9779.40

 

150.0

 

-25.0

 

0

 

0

 

150

 

150

 

240-015

 

4936.40

 

7950.40

 

9779.40

 

150.0

 

-38.0

 

0

 

0

 

150

 

150

 

240-016

 

4936.40

 

7950.40

 

9779.40

 

150.0

 

-63.0

 

0

 

0

 

150

 

150

 

240-017

 

4936.40

 

7950.40

 

9779.40

 

116.0

 

-63.0

 

0

 

0

 

150

 

150

 

240-018

 

4936.40

 

7950.40

 

9779.40

 

116.0

 

-63.0

 

0

 

0

 

150

 

150

 

240-019

 

4936.40

 

7950.40

 

9779.40

 

150.0

 

-55.0

 

0

 

0

 

180

 

180

 

240-020

 

4936.40

 

7950.40

 

9779.40

 

125.0

 

-50.0

 

0

 

0

 

180

 

180

 

240-021

 

4936.40

 

7950.40

 

9779.40

 

170.0

 

-45.0

 

0

 

0

 

180

 

180

 

240-022

 

4936.40

 

7950.40

 

9779.40

 

170.0

 

-63.0

 

0

 

0

 

180

 

180

 

 

Appendix 2-15



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

240-028

 

4961.10

 

7902.20

 

9778.40

 

135.0

 

-18.0

 

0

 

0

 

120

 

120

 

240-029

 

4917.00

 

7950.70

 

9777.90

 

171.0

 

-7.0

 

0

 

0

 

150

 

150

 

240-030

 

4917.00

 

7950.70

 

9777.90

 

171.0

 

-15.0

 

0

 

0

 

150

 

150

 

240-031

 

4917.00

 

7950.70

 

9777.90

 

171.0

 

-30.0

 

0

 

0

 

150

 

150

 

260-001

 

4792.30

 

7971.90

 

9764.40

 

168.0

 

-5.0

 

0

 

0

 

150.1

 

150.1

 

260-002

 

4792.30

 

7971.90

 

9764.40

 

168.0

 

-13.0

 

0

 

0

 

150

 

150

 

260-003

 

4792.30

 

7971.90

 

9764.40

 

168.0

 

-21.0

 

0

 

0

 

171.1

 

171.1

 

260-004

 

4792.30

 

7971.90

 

9764.40

 

158.0

 

-9.0

 

0

 

0

 

150.1

 

150.1

 

260-005

 

4792.30

 

7971.90

 

9764.40

 

158.0

 

-19.0

 

0

 

0

 

150

 

150

 

260-006

 

4792.30

 

7971.90

 

9764.40

 

165.0

 

-7.0

 

0

 

0

 

153.1

 

153.1

 

260-007

 

4792.30

 

7971.90

 

9764.40

 

162.0

 

-15.0

 

0

 

0

 

150

 

150

 

260-008

 

4792.30

 

7971.90

 

9764.40

 

202.0

 

-12.0

 

0

 

0

 

300

 

300

 

260-009

 

4792.30

 

7971.90

 

9764.40

 

196.0

 

-7.0

 

0

 

0

 

201.1

 

201.1

 

260-010

 

4792.30

 

7971.90

 

9764.40

 

194.7

 

-23.0

 

0

 

0

 

201

 

201

 

260-011

 

4792.30

 

7971.90

 

9764.40

 

158.0

 

-5.0

 

0

 

0

 

150.1

 

150.1

 

260-012

 

4792.30

 

7971.90

 

9764.40

 

201.0

 

0.0

 

0

 

0

 

150

 

150

 

260-013

 

4792.30

 

7971.90

 

9764.40

 

202.0

 

-12.0

 

0

 

0

 

150

 

150

 

260-014

 

4792.30

 

7971.90

 

9764.40

 

200.0

 

11.0

 

0

 

0

 

150

 

150

 

260-015

 

4792.30

 

7971.90

 

9764.40

 

162.0

 

-30.0

 

0

 

0

 

207

 

207

 

260-016

 

4792.30

 

7971.90

 

9764.50

 

148.0

 

-30.0

 

0

 

0

 

15

 

15

 

260-016A

 

4792.30

 

7971.90

 

9764.40

 

148.0

 

-30.0

 

0

 

0

 

15

 

15

 

260-016B

 

4792.30

 

7971.90

 

9764.60

 

148.0

 

-30.0

 

0

 

0

 

252

 

252

 

260-017

 

4759.70

 

7972.80

 

9765.40

 

180.0

 

5.0

 

0

 

0

 

150

 

150

 

260-018

 

4759.70

 

7972.80

 

9765.40

 

179.7

 

14.9

 

0

 

0

 

150

 

150

 

260-019

 

4759.70

 

7972.80

 

9765.40

 

179.6

 

-23.2

 

0

 

0

 

150

 

150

 

260-020

 

4759.70

 

7972.80

 

9765.40

 

190.4

 

4.0

 

0

 

0

 

150

 

150

 

260-021

 

4759.70

 

7972.80

 

9765.40

 

190.0

 

-6.6

 

0

 

0

 

150

 

150

 

260-022

 

4759.70

 

7972.80

 

9765.40

 

189.9

 

-22.2

 

0

 

0

 

150

 

150

 

260-023

 

4759.70

 

7972.80

 

9765.40

 

170.2

 

-5.7

 

0

 

0

 

150

 

150

 

260-024

 

4759.70

 

7972.80

 

9765.40

 

171.2

 

-32.3

 

0

 

0

 

150

 

150

 

260-025

 

4759.70

 

7972.80

 

9765.40

 

173.0

 

-45.0

 

0

 

0

 

200

 

200

 

260-026

 

4759.70

 

7972.80

 

9765.40

 

162.5

 

20.4

 

0

 

0

 

150

 

150

 

260-027

 

4759.70

 

7972.80

 

9765.40

 

164.0

 

1.0

 

0

 

0

 

150

 

150

 

260-028

 

4759.70

 

7972.80

 

9765.40

 

164.0

 

-20.0

 

0

 

0

 

150

 

150

 

260-029

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

17.0

 

0

 

0

 

132

 

132

 

260-030

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

10.0

 

0

 

0

 

150

 

150

 

260-031

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

1.0

 

0

 

0

 

150

 

150

 

260-032

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

-10.0

 

0

 

0

 

150

 

150

 

260-033

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

-21.0

 

0

 

0

 

150

 

150

 

260-034

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

-31.0

 

0

 

0

 

150

 

150

 

260-035

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

-40.0

 

0

 

0

 

150

 

150

 

260-036

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

-60.0

 

0

 

0

 

225

 

225

 

 

Appendix 2-16



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

260-037

 

4759.70

 

7972.80

 

9765.40

 

180.0

 

-30.0

 

0

 

0

 

180

 

180

 

260-038

 

4759.70

 

7972.80

 

9765.40

 

180.0

 

-40.0

 

0

 

0

 

180

 

180

 

260-039

 

4759.70

 

7972.80

 

9765.40

 

192.0

 

-40.0

 

0

 

0

 

180

 

180

 

260-040

 

4759.70

 

7972.80

 

9765.40

 

192.0

 

-40.0

 

0

 

0

 

180

 

180

 

260-041

 

4759.70

 

7972.80

 

9765.40

 

192.0

 

-16.0

 

0

 

0

 

180

 

180

 

260-042

 

4759.70

 

7972.80

 

9765.40

 

199.0

 

-55.0

 

0

 

0

 

180

 

180

 

260-043

 

4759.70

 

7972.80

 

9765.40

 

191.2

 

-60.8

 

0

 

0

 

180

 

180

 

260-044

 

4759.70

 

7972.80

 

9765.40

 

182.3

 

-55.0

 

0

 

0

 

225

 

225

 

260-045

 

4731.70

 

7972.90

 

9763.40

 

180.0

 

-65.0

 

0

 

0

 

225

 

225

 

260-046

 

4731.70

 

7972.90

 

9763.40

 

180.0

 

-48.0

 

0

 

0

 

250

 

250

 

260-047

 

4731.70

 

7972.90

 

9763.40

 

180.0

 

-70.0

 

0

 

0

 

270

 

270

 

260-048

 

4759.70

 

7972.80

 

9765.40

 

175.0

 

-28.0

 

0

 

0

 

141

 

141

 

260-049

 

4759.70

 

7972.80

 

9765.40

 

185.0

 

-20.0

 

0

 

0

 

135

 

135

 

260-050

 

4759.70

 

7972.80

 

9765.40

 

185.0

 

-27.0

 

0

 

0

 

165

 

165

 

260-051

 

4759.70

 

7972.80

 

9765.40

 

175.0

 

8.0

 

0

 

0

 

135

 

135

 

260-052

 

4759.70

 

7972.80

 

9765.40

 

175.0

 

0.0

 

0

 

0

 

135

 

135

 

260-053

 

4759.70

 

7972.80

 

9765.40

 

175.0

 

-8.0

 

0

 

0

 

140

 

140

 

260-054

 

4759.70

 

7972.80

 

9765.40

 

175.0

 

-22.0

 

0

 

0

 

150

 

150

 

260-055

 

4759.70

 

7972.80

 

9765.40

 

175.0

 

-28.0

 

0

 

0

 

170

 

170

 

260-056

 

4759.70

 

7972.80

 

9765.40

 

145.0

 

-15.0

 

0

 

0

 

171

 

171

 

260-057

 

4759.70

 

7972.80

 

9765.40

 

145.0

 

-21.0

 

0

 

0

 

170

 

170

 

260-058

 

4759.70

 

7972.80

 

9765.40

 

155.5

 

-11.0

 

0

 

0

 

160

 

160

 

260-059

 

4759.70

 

7972.80

 

9765.40

 

155.5

 

-20.0

 

0

 

0

 

170.6

 

170.6

 

260-060

 

4759.70

 

7972.80

 

9765.40

 

156.3

 

-26.0

 

0

 

0

 

171

 

171

 

260-061

 

4745.00

 

7874.50

 

9759.00

 

0.0

 

20.0

 

0

 

0

 

30

 

30

 

260-062

 

4745.00

 

7875.50

 

9759.00

 

0.0

 

0.0

 

0

 

0

 

30

 

30

 

260-065

 

4755.00

 

7871.00

 

9759.00

 

0.0

 

0.0

 

0

 

0

 

30

 

30

 

270-001

 

4981.20

 

7920.60

 

9752.80

 

180.0

 

45.0

 

0

 

0

 

51

 

51

 

270-002

 

4981.20

 

7920.60

 

9752.80

 

171.0

 

-51.0

 

0

 

0

 

45

 

45

 

270-003

 

4981.20

 

7920.60

 

9752.80

 

180.0

 

0.0

 

0

 

0

 

28

 

28

 

270-004

 

4981.20

 

7920.60

 

9752.80

 

180.0

 

-32.0

 

0

 

0

 

45

 

45

 

270-005

 

4987.50

 

7920.60

 

9752.80

 

180.0

 

40.0

 

0

 

0

 

50.7

 

50.7

 

270-006

 

4987.50

 

7920.60

 

9752.80

 

180.0

 

21.0

 

0

 

0

 

68

 

68

 

270-007

 

4987.50

 

7920.80

 

9752.80

 

180.0

 

0.0

 

0

 

0

 

51

 

51

 

270-008

 

4987.50

 

7920.80

 

9752.80

 

180.0

 

-34.0

 

0

 

0

 

45

 

45

 

270-009

 

4987.50

 

7920.80

 

9752.80

 

180.0

 

-59.0

 

0

 

0

 

45

 

45

 

270-010

 

4987.50

 

7920.80

 

9752.80

 

128.0

 

22.0

 

0

 

0

 

60

 

60

 

270-011

 

4987.50

 

7920.80

 

9752.80

 

128.0

 

-3.0

 

0

 

0

 

45

 

45

 

270-012

 

4987.50

 

7920.80

 

9752.80

 

128.0

 

-42.0

 

0

 

0

 

51

 

51

 

270-013

 

4997.60

 

7892.30

 

9757.20

 

155.0

 

0.0

 

0

 

0

 

71

 

71

 

270-014

 

4997.60

 

7892.30

 

9757.20

 

165.5

 

-13.0

 

0

 

0

 

72

 

72

 

270-015

 

4997.60

 

7892.30

 

9757.20

 

165.5

 

13.0

 

0

 

0

 

70

 

70

 

 

Appendix 2-17



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

270-016

 

4997.60

 

7892.30

 

9757.20

 

143.0

 

0.0

 

0

 

0

 

72

 

72

 

270-017

 

4997.60

 

7892.30

 

9757.20

 

143.0

 

-11.0

 

0

 

0

 

72

 

72

 

270-018

 

4997.60

 

7892.30

 

9757.20

 

143.0

 

11.0

 

0

 

0

 

72

 

72

 

270-019

 

4997.60

 

7892.30

 

9757.20

 

129.0

 

0.0

 

0

 

0

 

72

 

72

 

270-020

 

4997.60

 

7892.30

 

9757.20

 

129.0

 

-10.0

 

0

 

0

 

70

 

70

 

270-021

 

4997.60

 

7892.30

 

9757.20

 

129.0

 

10.0

 

0

 

0

 

150

 

150

 

270-024

 

4989.40

 

7877.50

 

9752.50

 

9.0

 

-10.0

 

0

 

0

 

72

 

72

 

270-025

 

4989.40

 

7877.50

 

9752.50

 

9.0

 

-19.0

 

0

 

0

 

73.5

 

73.5

 

270-026

 

4989.40

 

7877.50

 

9752.50

 

19.0

 

-10.0

 

0

 

0

 

75

 

75

 

270-027

 

4989.40

 

7877.50

 

9752.50

 

19.0

 

-19.0

 

0

 

0

 

75

 

75

 

270-028

 

4989.40

 

7877.50

 

9752.50

 

29.0

 

-9.0

 

0

 

0

 

81

 

81

 

270-029

 

4989.40

 

7877.50

 

9752.50

 

29.0

 

-17.0

 

0

 

0

 

81

 

81

 

270-030

 

5011.20

 

7841.70

 

9756.80

 

8.0

 

45.0

 

0

 

0

 

63.2

 

63.2

 

270-031

 

5006.10

 

7851.30

 

9755.10

 

1.0

 

38.0

 

0

 

0

 

77

 

77

 

270-032

 

5006.10

 

7851.30

 

9755.10

 

1.0

 

20.0

 

0

 

0

 

87

 

87

 

400 Fuel

 

4796.70

 

7669.80

 

10020.02

 

0.0

 

0.0

 

0

 

0

 

425

 

425

 

40-024

 

5037.80

 

7810.60

 

9976.00

 

20.0

 

-40.0

 

0

 

0

 

141

 

141

 

40-025

 

5000.00

 

7802.80

 

9970.50

 

17.2

 

-25.0

 

0

 

0

 

9.01

 

9.01

 

40-027

 

5037.80

 

7810.70

 

9975.00

 

359.0

 

-42.0

 

0

 

0

 

141.01

 

141.01

 

40-044

 

5037.80

 

7810.70

 

9975.60

 

9.0

 

-25.0

 

0

 

0

 

107.1

 

107.1

 

40-045

 

5037.80

 

7810.70

 

9975.00

 

9.0

 

-30.0

 

0

 

0

 

117.01

 

117.01

 

40-046

 

5037.80

 

7810.70

 

9975.00

 

9.0

 

-34.0

 

0

 

0

 

125

 

125

 

40-047

 

5037.80

 

7810.70

 

9975.00

 

9.0

 

-38.0

 

0

 

0

 

135

 

135

 

480-001

 

4807.00

 

7973.00

 

9540.00

 

141.8

 

0.0

 

0

 

0

 

114

 

114

 

480-002

 

4807.00

 

7973.00

 

9540.00

 

140.0

 

0.0

 

0

 

0

 

114

 

114

 

480-003

 

4807.00

 

7973.00

 

9540.00

 

121.0

 

0.0

 

0

 

0

 

120

 

120

 

480-004

 

4807.00

 

7973.00

 

9540.00

 

109.0

 

0.0

 

0

 

0

 

141

 

141

 

480-006

 

4791.30

 

8000.50

 

9540.00

 

124.0

 

26.0

 

0

 

0

 

190.55

 

190.55

 

480-007

 

4791.30

 

8000.50

 

9540.00

 

124.0

 

30.0

 

0

 

0

 

201

 

201

 

480-008

 

4791.30

 

8000.50

 

9540.00

 

124.0

 

34.0

 

0

 

0

 

203

 

203

 

480-009

 

4791.30

 

8000.50

 

9540.00

 

119.0

 

37.0

 

0

 

0

 

190

 

190

 

480-010

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

30.0

 

0

 

0

 

252

 

252

 

480-011

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

27.0

 

0

 

0

 

252

 

252

 

480-012

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

24.0

 

0

 

0

 

258

 

258

 

480-013

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

20.0

 

0

 

0

 

252

 

252

 

480-014

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

-31.0

 

0

 

0

 

132

 

132

 

480-015

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

-35.0

 

0

 

0

 

130

 

130

 

480-016

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

-39.0

 

0

 

0

 

132

 

132

 

480-017

 

4807.90

 

8006.30

 

9540.00

 

120.0

 

-43.0

 

0

 

0

 

132

 

132

 

480-018

 

4807.90

 

8006.30

 

9540.00

 

138.0

 

37.0

 

0

 

0

 

300

 

300

 

480-019

 

4807.90

 

8006.30

 

9540.00

 

138.0

 

34.0

 

0

 

0

 

300

 

300

 

480-020

 

4807.90

 

8006.30

 

9540.00

 

138.0

 

30.0

 

0

 

0

 

300

 

300

 

 

Appendix 2-18



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

480-021

 

4807.90

 

8006.30

 

9540.00

 

138.0

 

26.0

 

0

 

0

 

300

 

300

 

480-026

 

4807.90

 

8006.30

 

9540.00

 

144.0

 

37.0

 

0

 

0

 

300

 

300

 

480-027

 

4807.90

 

8006.30

 

9540.00

 

144.0

 

33.0

 

0

 

0

 

300

 

300

 

500-001

 

4739.50

 

8015.60

 

9531.00

 

128.0

 

0.0

 

0

 

0

 

201

 

201

 

500-002

 

4739.50

 

8015.60

 

9531.00

 

128.0

 

5.0

 

0

 

0

 

207

 

207

 

500-003

 

4739.50

 

8015.60

 

9531.00

 

128.0

 

9.0

 

0

 

0

 

216

 

216

 

500-004

 

4739.50

 

8015.60

 

9531.00

 

128.0

 

14.0

 

0

 

0

 

225

 

225

 

500-005

 

4739.50

 

8015.60

 

9531.00

 

128.0

 

18.0

 

0

 

0

 

225

 

225

 

500-006

 

4739.50

 

8015.60

 

9531.00

 

123.0

 

0.0

 

0

 

0

 

204

 

204

 

500-007

 

4739.50

 

8015.60

 

9531.00

 

123.0

 

5.0

 

0

 

0

 

210

 

210

 

500-008

 

4739.50

 

8015.60

 

9531.00

 

123.0

 

9.0

 

0

 

0

 

222

 

222

 

500-009

 

4739.50

 

8015.60

 

9531.00

 

123.0

 

14.0

 

0

 

0

 

231

 

231

 

500-010

 

4739.50

 

8015.60

 

9531.00

 

123.0

 

18.0

 

0

 

0

 

261

 

261

 

500-011

 

4739.50

 

8015.60

 

9531.00

 

116.3

 

0.0

 

0

 

0

 

213

 

213

 

500-012

 

4739.50

 

8015.60

 

9531.00

 

115.6

 

5.0

 

0

 

0

 

225

 

225

 

500-013

 

4739.50

 

8015.60

 

9531.00

 

116.6

 

9.0

 

0

 

0

 

205

 

205

 

500-036

 

4744.90

 

7968.00

 

9510.60

 

180.0

 

-46.0

 

0

 

0

 

111

 

111

 

500-037

 

4744.90

 

7968.00

 

9510.60

 

180.0

 

-51.0

 

0

 

0

 

111

 

111

 

500-038

 

4744.90

 

7968.00

 

9510.60

 

180.0

 

-56.0

 

0

 

0

 

111

 

111

 

500-039

 

4744.90

 

7968.00

 

9510.60

 

170.0

 

-47.0

 

0

 

0

 

111

 

111

 

500-040

 

4744.90

 

7968.00

 

9510.60

 

170.0

 

-52.0

 

0

 

0

 

102

 

102

 

500-041

 

4744.90

 

7968.00

 

9510.60

 

170.0

 

-57.0

 

0

 

0

 

111

 

111

 

525-001

 

4703.20

 

7791.90

 

9492.30

 

0.0

 

14.0

 

0

 

0

 

177.01

 

177.01

 

525-003

 

4703.20

 

7791.90

 

9491.80

 

360.0

 

-17.0

 

0

 

0

 

171.05

 

171.05

 

525-004

 

4703.20

 

7791.90

 

9491.60

 

360.0

 

-28.0

 

0

 

0

 

165.01

 

165.01

 

525-007

 

4702.80

 

7792.00

 

9492.00

 

346.0

 

1.0

 

0

 

0

 

186.01

 

186.01

 

525-008

 

4702.80

 

7792.00

 

9491.80

 

346.0

 

-12.0

 

0

 

0

 

195.01

 

195.01

 

525-011

 

4703.70

 

7791.80

 

9492.00

 

15.0

 

1.0

 

0

 

0

 

183.01

 

183.01

 

525-012

 

4703.70

 

7791.80

 

9491.70

 

15.0

 

-16.0

 

0

 

0

 

126.01

 

126.01

 

525-014

 

4702.20

 

7792.10

 

9492.00

 

335.0

 

1.0

 

0

 

0

 

122.01

 

122.01

 

525-015

 

4702.20

 

7792.10

 

9491.60

 

335.0

 

-20.0

 

0

 

0

 

126.01

 

126.01

 

525-016

 

4702.20

 

7792.10

 

9491.80

 

335.0

 

-30.0

 

0

 

0

 

135.01

 

135.01

 

525-017

 

4703.90

 

7791.70

 

9491.70

 

21.0

 

-23.0

 

0

 

0

 

126.01

 

126.01

 

525-018

 

4704.10

 

7791.70

 

9492.00

 

27.0

 

1.0

 

0

 

0

 

120.05

 

120.05

 

525-019

 

4704.10

 

7791.70

 

9491.70

 

27.0

 

-16.0

 

0

 

0

 

120.01

 

120.01

 

525-020

 

4704.10

 

7791.70

 

9491.70

 

27.0

 

-26.0

 

0

 

0

 

135.01

 

135.01

 

525-021

 

4704.10

 

7791.70

 

9492.20

 

27.0

 

10.0

 

0

 

0

 

132.01

 

132.01

 

525-023

 

4701.80

 

7792.20

 

9492.00

 

327.0

 

1.0

 

0

 

0

 

126.01

 

126.01

 

525-024

 

4701.80

 

7792.20

 

9491.70

 

327.0

 

-26.0

 

0

 

0

 

132.01

 

132.01

 

525-025

 

4704.50

 

7791.60

 

9492.00

 

39.0

 

1.0

 

0

 

0

 

117.01

 

117.01

 

525-026

 

4704.50

 

7791.60

 

9492.20

 

39.0

 

11.0

 

0

 

0

 

130.01

 

130.01

 

525-027

 

4704.90

 

7791.50

 

9492.00

 

48.0

 

1.0

 

0

 

0

 

141.01

 

141.01

 

 

Appendix 2-19



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

525-029

 

4695.60

 

7761.10

 

9492.00

 

174.0

 

4.0

 

0

 

0

 

506.01

 

506.01

 

525-030

 

4696.40

 

7761.10

 

9492.00

 

174.0

 

4.0

 

0

 

0

 

510

 

510

 

525-031

 

4696.40

 

7761.10

 

9492.00

 

174.0

 

-20.0

 

0

 

0

 

501.01

 

501.01

 

525-032

 

4696.40

 

7761.10

 

9492.00

 

152.0

 

-21.0

 

0

 

0

 

501

 

501

 

525-033

 

4696.40

 

7761.10

 

9492.00

 

139.0

 

-40.0

 

0

 

0

 

704.501

 

704.501

 

525-034

 

4632.30

 

7837.70

 

9493.70

 

337.6

 

20.2

 

0

 

0

 

180

 

180

 

525-035

 

4632.30

 

7837.70

 

9493.70

 

338.9

 

1.7

 

0

 

0

 

180

 

180

 

525-036

 

4632.30

 

7837.70

 

9493.70

 

338.7

 

12.4

 

0

 

0

 

160.5

 

160.5

 

525-037

 

4632.30

 

7837.70

 

9493.70

 

338.8

 

-8.4

 

0

 

0

 

160

 

160

 

525-038

 

4632.30

 

7837.70

 

9493.70

 

338.3

 

-16.8

 

0

 

0

 

162

 

162

 

525-039

 

4632.30

 

7837.70

 

9493.70

 

327.7

 

21.1

 

0

 

0

 

180

 

180

 

525-040

 

4632.30

 

7837.70

 

9493.70

 

328.9

 

-7.3

 

0

 

0

 

181.2

 

181.2

 

525-041

 

4632.30

 

7837.70

 

9493.70

 

351.0

 

20.0

 

0

 

0

 

180

 

180

 

525-042

 

4632.30

 

7837.70

 

9493.70

 

351.1

 

-8.7

 

0

 

0

 

180

 

180

 

525-043

 

4632.30

 

7837.70

 

9493.70

 

351.1

 

-8.7

 

0

 

0

 

180

 

180

 

525-044

 

4631.60

 

7836.90

 

9493.70

 

325.0

 

11.0

 

0

 

0

 

180

 

180

 

525-045

 

4631.60

 

7836.90

 

9493.70

 

325.0

 

1.0

 

0

 

0

 

180

 

180

 

525-046

 

4717.80

 

7913.20

 

9493.70

 

151.0

 

-58.0

 

0

 

0

 

132

 

132

 

525-047

 

4717.80

 

7913.20

 

9493.70

 

151.0

 

-45.0

 

0

 

0

 

132

 

132

 

525-048

 

4717.80

 

7913.20

 

9493.70

 

151.0

 

-31.0

 

0

 

0

 

132

 

132

 

525-049

 

4717.80

 

7913.20

 

9493.70

 

151.0

 

-17.0

 

0

 

0

 

130

 

130

 

525-050

 

4717.80

 

7913.20

 

9493.70

 

161.0

 

-58.0

 

0

 

0

 

130

 

130

 

525-051

 

4717.80

 

7913.20

 

9493.70

 

161.0

 

-45.0

 

0

 

0

 

132

 

132

 

525-052

 

4717.80

 

7913.20

 

9493.70

 

161.0

 

-30.0

 

0

 

0

 

132

 

132

 

525-053

 

4717.80

 

7913.20

 

9493.70

 

161.0

 

-58.0

 

0

 

0

 

132

 

132

 

525-054

 

4717.80

 

7913.20

 

9493.70

 

161.0

 

-3.0

 

0

 

0

 

130

 

130

 

525-055

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

-61.0

 

0

 

0

 

130.8

 

130.8

 

525-056

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

-51.0

 

0

 

0

 

130

 

130

 

525-057

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

-39.0

 

0

 

0

 

132

 

132

 

525-058

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

-27.0

 

0

 

0

 

132

 

132

 

525-059

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

-11.0

 

0

 

0

 

130

 

130

 

525-060

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

-6.0

 

0

 

0

 

132

 

132

 

525-061

 

4717.80

 

7913.20

 

9493.70

 

181.0

 

-55.0

 

0

 

0

 

130

 

130

 

525-062

 

4717.80

 

7913.20

 

9493.70

 

181.0

 

-42.0

 

0

 

0

 

130

 

130

 

525-063

 

4717.80

 

7913.20

 

9493.70

 

181.0

 

-28.0

 

0

 

0

 

130

 

130

 

525-064

 

4717.80

 

7913.20

 

9493.70

 

181.0

 

-14.0

 

0

 

0

 

130

 

130

 

525-065

 

4717.80

 

7913.20

 

9493.70

 

206.0

 

-40.0

 

0

 

0

 

110

 

110

 

525-066

 

4717.80

 

7913.20

 

9493.70

 

191.0

 

-45.0

 

0

 

0

 

132

 

132

 

525-067

 

4717.80

 

7913.20

 

9493.70

 

191.0

 

-31.0

 

0

 

0

 

132

 

132

 

525-068

 

4717.80

 

7913.20

 

9493.70

 

196.0

 

-48.0

 

0

 

0

 

110.5

 

110.5

 

525-069

 

4717.80

 

7913.20

 

9493.70

 

196.0

 

-34.0

 

0

 

0

 

111

 

111

 

525-070

 

4717.80

 

7913.20

 

9493.70

 

156.2

 

12.1

 

0

 

0

 

111

 

111

 

 

Appendix 2-20



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

525-071

 

4717.80

 

7913.20

 

9493.70

 

206.0

 

-40.0

 

0

 

0

 

126

 

126

 

525-072

 

4717.80

 

7913.20

 

9493.70

 

206.0

 

-26.0

 

0

 

0

 

126

 

126

 

525-073

 

4717.80

 

7913.20

 

9493.70

 

206.0

 

-10.0

 

0

 

0

 

126

 

126

 

525-074

 

4717.80

 

7913.20

 

9493.70

 

206.0

 

30.0

 

0

 

0

 

150.6

 

150.6

 

525-075

 

4717.80

 

7913.20

 

9493.70

 

191.0

 

30.0

 

0

 

0

 

150

 

150

 

525-076

 

4717.80

 

7913.20

 

9493.70

 

171.0

 

30.0

 

0

 

0

 

150

 

150

 

525-077

 

4821.00

 

7930.00

 

9506.30

 

35.0

 

-18.0

 

0

 

0

 

60

 

60

 

525-078

 

4821.00

 

7930.00

 

9506.30

 

35.0

 

0.0

 

0

 

0

 

60

 

60

 

525-079

 

4821.00

 

7930.00

 

9506.00

 

61.1

 

0.0

 

0

 

0

 

60

 

60

 

525-080

 

4821.00

 

7930.00

 

9506.30

 

57.0

 

-14.0

 

0

 

0

 

60

 

60

 

525-081

 

4821.00

 

7930.00

 

9506.30

 

61.1

 

0.0

 

0

 

0

 

60

 

60

 

525-082

 

4821.00

 

7930.00

 

9506.30

 

61.7

 

14.0

 

0

 

0

 

60

 

60

 

525-083

 

4821.00

 

7930.00

 

9506.30

 

63.6

 

-10.0

 

0

 

0

 

90

 

90

 

525-084

 

4821.00

 

7930.00

 

9506.30

 

68.0

 

0.0

 

0

 

0

 

90

 

90

 

525-085

 

4821.00

 

7930.00

 

9506.30

 

68.0

 

10.0

 

0

 

0

 

90

 

90

 

525-086

 

4821.00

 

7927.30

 

9506.30

 

105.0

 

-14.0

 

0

 

0

 

57

 

57

 

525-087

 

4821.20

 

7927.30

 

9506.30

 

105.0

 

0.0

 

0

 

0

 

57

 

57

 

525-088

 

4821.20

 

7927.30

 

9506.30

 

105.0

 

14.0

 

0

 

0

 

72

 

72

 

525-089

 

4821.20

 

7927.30

 

9506.30

 

125.0

 

-27.0

 

0

 

0

 

40

 

40

 

525-090

 

4821.20

 

7927.30

 

9506.30

 

125.0

 

0.0

 

0

 

0

 

40

 

40

 

525-091

 

4821.20

 

7927.30

 

9506.30

 

125.0

 

27.0

 

0

 

0

 

42

 

42

 

525-092

 

4717.80

 

7913.20

 

9493.70

 

151.0

 

30.0

 

0

 

0

 

209.3

 

209.3

 

525-093

 

4821.20

 

7927.30

 

9506.30

 

171.0

 

30.0

 

0

 

0

 

189

 

189

 

525-094

 

4660.00

 

7924.60

 

9494.90

 

180.0

 

-38.0

 

0

 

0

 

141

 

141

 

525-095

 

4660.00

 

7924.60

 

9494.90

 

180.0

 

-29.0

 

0

 

0

 

132

 

132

 

525-096

 

4660.00

 

7924.60

 

9494.90

 

180.0

 

-20.5

 

0

 

0

 

120

 

120

 

525-097

 

4660.00

 

7924.60

 

9494.90

 

180.0

 

-12.0

 

0

 

0

 

120

 

120

 

525-098

 

4647.00

 

7924.80

 

9494.90

 

177.4

 

-40.0

 

0

 

0

 

135

 

135

 

525-099

 

4647.00

 

7924.80

 

9494.90

 

177.7

 

-30.2

 

0

 

0

 

135

 

135

 

525-100

 

4647.00

 

7924.80

 

9494.90

 

177.1

 

-19.8

 

0

 

0

 

135

 

135

 

525-101

 

4660.00

 

7924.60

 

9494.90

 

170.0

 

-42.0

 

0

 

0

 

141

 

141

 

525-102

 

4660.00

 

7924.60

 

9494.90

 

170.0

 

-35.0

 

0

 

0

 

141

 

141

 

525-103

 

4830.20

 

7955.50

 

9506.60

 

181.0

 

0.0

 

0

 

0

 

28

 

28

 

525-104

 

4840.00

 

7956.20

 

9506.60

 

180.0

 

0.0

 

0

 

0

 

27

 

27

 

525-105

 

4850.00

 

7956.10

 

9506.60

 

180.0

 

0.0

 

0

 

0

 

30

 

30

 

525-106

 

4865.20

 

7948.80

 

9506.60

 

180.0

 

0.0

 

0

 

0

 

29

 

29

 

525-107

 

4835.40

 

7918.60

 

9507.70

 

359.0

 

0.0

 

0

 

0

 

27

 

27

 

525-108

 

4845.40

 

7918.20

 

9507.70

 

0.0

 

20.0

 

0

 

0

 

27

 

27

 

525-109

 

4858.80

 

7919.40

 

9507.70

 

358.0

 

20.0

 

0

 

0

 

27

 

27

 

525-110

 

4871.20

 

7923.60

 

9503.60

 

0.0

 

0.0

 

0

 

0

 

10.5

 

10.5

 

525-111

 

4871.20

 

7920.60

 

9503.60

 

0.0

 

20.0

 

0

 

0

 

15

 

15

 

525-112

 

4871.20

 

7920.60

 

9503.60

 

28.0

 

0.0

 

0

 

0

 

30

 

30

 

 

Appendix 2-21



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

525-113

 

4871.20

 

7920.60

 

9503.60

 

28.0

 

20.0

 

0

 

0

 

21

 

21

 

525-114

 

4617.90

 

7930.20

 

9496.50

 

333.0

 

20.0

 

0

 

0

 

10

 

10

 

525-115

 

4617.90

 

7930.20

 

9496.50

 

333.0

 

0.0

 

0

 

0

 

17

 

17

 

525-116

 

4617.90

 

7930.20

 

9496.50

 

333.0

 

-20.0

 

0

 

0

 

10

 

10

 

525-117

 

4617.90

 

7930.20

 

9496.50

 

319.0

 

20.0

 

0

 

0

 

20

 

20

 

525-119

 

4617.90

 

7930.20

 

9496.50

 

319.0

 

-13.0

 

0

 

0

 

21

 

21

 

525-120

 

4605.30

 

7930.50

 

9496.50

 

340.0

 

0.0

 

0

 

0

 

12

 

12

 

525-130

 

4582.20

 

7934.90

 

9497.00

 

327.0

 

20.0

 

0

 

0

 

30

 

30

 

525-131

 

4582.20

 

7934.90

 

9497.00

 

327.0

 

0.0

 

0

 

0

 

30

 

30

 

525-132

 

4582.20

 

7934.90

 

9497.00

 

327.0

 

-20.0

 

0

 

0

 

30

 

30

 

525-133

 

4686.70

 

7938.60

 

9497.00

 

327.0

 

20.0

 

0

 

0

 

30

 

30

 

525-134

 

4686.70

 

7938.60

 

9497.00

 

327.0

 

0.0

 

0

 

0

 

30

 

30

 

525-135

 

4686.70

 

7938.60

 

9497.00

 

327.0

 

-20.0

 

0

 

0

 

30

 

30

 

540-001

 

4561.00

 

7881.50

 

9480.00

 

20.0

 

39.0

 

0

 

0

 

111

 

111

 

540-002

 

4561.00

 

7881.50

 

9480.00

 

20.0

 

-10.0

 

0

 

0

 

102

 

102

 

540-003

 

4561.00

 

7881.50

 

9480.00

 

18.1

 

-7.0

 

0

 

0

 

111

 

111

 

540-004

 

4561.00

 

7881.50

 

9480.00

 

20.0

 

-23.0

 

0

 

0

 

100

 

100

 

540-005

 

4561.00

 

7881.50

 

9480.00

 

2.0

 

19.0

 

0

 

0

 

132

 

132

 

540-006

 

4561.00

 

7881.50

 

9480.00

 

2.0

 

-7.0

 

0

 

0

 

132

 

132

 

540-007

 

4561.00

 

7881.50

 

9480.00

 

2.0

 

-16.0

 

0

 

0

 

140

 

140

 

540-008

 

4559.00

 

7881.90

 

9480.00

 

342.3

 

24.0

 

0

 

0

 

102

 

102

 

540-009

 

4559.00

 

7881.90

 

9480.00

 

342.5

 

0.0

 

0

 

0

 

102

 

102

 

540-010

 

4559.00

 

7881.90

 

9480.00

 

342.8

 

-14.0

 

0

 

0

 

111

 

111

 

540-011

 

4578.00

 

7935.80

 

9478.80

 

352.0

 

30.0

 

0

 

0

 

15

 

15

 

540-011A

 

4548.50

 

7867.50

 

9483.00

 

1.0

 

7.0

 

0

 

0

 

130

 

130

 

540-012

 

4578.00

 

7935.80

 

9478.40

 

352.0

 

15.0

 

0

 

0

 

18

 

18

 

540-012A

 

4548.50

 

7867.50

 

9483.00

 

1.0

 

-2.0

 

0

 

0

 

132

 

132

 

540-013

 

4578.00

 

7935.80

 

9478.00

 

352.0

 

0.0

 

0

 

0

 

30

 

30

 

540-014

 

4578.00

 

7935.80

 

9477.60

 

352.0

 

-15.0

 

0

 

0

 

25

 

25

 

540-015

 

4578.00

 

7935.80

 

9477.20

 

352.0

 

-30.0

 

0

 

0

 

21

 

21

 

540-016

 

4578.10

 

7931.90

 

9478.50

 

189.0

 

20.0

 

0

 

0

 

20

 

20

 

540-017

 

4578.10

 

7931.90

 

9478.00

 

189.0

 

0.0

 

0

 

0

 

15

 

15

 

540-018

 

4578.10

 

7931.90

 

9477.50

 

189.0

 

-20.0

 

0

 

0

 

15

 

15

 

540-024

 

4548.50

 

7867.50

 

9483.00

 

343.0

 

34.0

 

0

 

0

 

130

 

130

 

540-025

 

4548.50

 

7867.50

 

9483.00

 

343.0

 

27.0

 

0

 

0

 

130

 

130

 

540-026

 

4548.50

 

7867.50

 

9483.00

 

343.0

 

14.0

 

0

 

0

 

130

 

130

 

540-027

 

4548.50

 

7867.50

 

9483.00

 

343.0

 

-5.0

 

0

 

0

 

130

 

130

 

540-028

 

4548.50

 

7867.50

 

9483.00

 

343.0

 

-18.0

 

0

 

0

 

130

 

130

 

540-029

 

4548.50

 

7867.50

 

9483.00

 

343.0

 

-27.0

 

0

 

0

 

177

 

177

 

540-030

 

4548.50

 

7867.50

 

9483.00

 

326.0

 

34.0

 

0

 

0

 

150

 

150

 

540-031

 

4548.50

 

7867.50

 

9483.00

 

326.0

 

24.0

 

0

 

0

 

150

 

150

 

540-032

 

4548.50

 

7867.50

 

9483.00

 

326.0

 

12.0

 

0

 

0

 

150

 

150

 

 

Appendix 2-22



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

540-033

 

4548.50

 

7867.50

 

9483.00

 

326.0

 

-5.0

 

0

 

0

 

175

 

175

 

565-001

 

4729.70

 

7901.20

 

9452.00

 

74.0

 

0.0

 

0

 

0

 

42

 

42

 

565-002

 

4729.70

 

7901.20

 

9452.00

 

74.0

 

-15.0

 

0

 

0

 

41

 

41

 

565-003

 

4729.70

 

7901.20

 

9452.00

 

74.0

 

-30.0

 

0

 

0

 

40

 

40

 

585-001

 

4737.80

 

7914.60

 

9435.50

 

160.0

 

0.0

 

0

 

0

 

15

 

15

 

585-002

 

4747.50

 

7918.00

 

9435.50

 

160.0

 

0.0

 

0

 

0

 

15

 

15

 

585-003

 

4757.00

 

7921.30

 

9435.50

 

160.0

 

0.0

 

0

 

0

 

15.6

 

15.6

 

585-004

 

4766.38

 

7924.28

 

9435.50

 

160.0

 

0.0

 

0

 

0

 

15

 

15

 

585-005

 

4764.50

 

7929.00

 

9435.50

 

340.0

 

0.0

 

0

 

0

 

10.7

 

10.7

 

585-006

 

4755.00

 

7926.00

 

9435.50

 

340.0

 

0.0

 

0

 

0

 

15

 

15

 

585-007

 

4745.40

 

7922.80

 

9435.50

 

340.0

 

0.0

 

0

 

0

 

15

 

15

 

585-008

 

4735.90

 

7919.50

 

9435.50

 

340.0

 

0.0

 

0

 

0

 

15

 

15

 

585-009

 

4775.10

 

7929.90

 

9433.00

 

72.0

 

0.0

 

0

 

0

 

36

 

36

 

585-010

 

4775.10

 

7929.90

 

9433.00

 

35.0

 

0.0

 

0

 

0

 

40

 

40

 

585-011

 

4775.10

 

7929.90

 

9433.00

 

100.0

 

20.0

 

0

 

0

 

30

 

30

 

585-012

 

4775.10

 

7929.90

 

9433.00

 

72.0

 

20.0

 

0

 

0

 

24

 

24

 

585-013

 

4775.10

 

7929.90

 

9433.00

 

35.0

 

20.0

 

0

 

0

 

24.4

 

24.4

 

585-014

 

4775.10

 

7929.90

 

9433.00

 

100.0

 

20.0

 

0

 

0

 

24

 

24

 

585-015

 

4764.53

 

7929.00

 

9435.50

 

340.0

 

20.0

 

0

 

0

 

24

 

24

 

585-016

 

4755.00

 

7926.00

 

9435.50

 

340.0

 

20.0

 

0

 

0

 

6

 

6

 

585-017

 

4745.40

 

7922.80

 

9435.50

 

340.0

 

20.0

 

0

 

0

 

26

 

26

 

585-020

 

4747.50

 

7918.00

 

9435.50

 

160.0

 

20.0

 

0

 

0

 

30

 

30

 

585-021

 

4757.00

 

7921.30

 

9435.50

 

160.0

 

20.0

 

0

 

0

 

29.6

 

29.6

 

585-022

 

4766.40

 

7924.70

 

9435.50

 

160.0

 

20.0

 

0

 

0

 

27

 

27

 

590-001

 

4537.88

 

7938.50

 

9415.00

 

335.0

 

20.0

 

0

 

0

 

30

 

30

 

590-002

 

4537.88

 

7938.50

 

9415.00

 

335.0

 

0.0

 

0

 

0

 

30

 

30

 

590-003

 

4537.88

 

7938.50

 

9415.00

 

335.0

 

-20.0

 

0

 

0

 

30

 

30

 

590-004

 

4537.88

 

7938.50

 

9415.00

 

315.0

 

20.0

 

0

 

0

 

30

 

30

 

590-005

 

4537.88

 

7938.50

 

9415.00

 

315.0

 

0.0

 

0

 

0

 

30

 

30

 

590-006

 

4537.88

 

7938.50

 

9415.00

 

315.0

 

-20.0

 

0

 

0

 

30

 

30

 

590-007

 

4536.10

 

7957.90

 

9418.50

 

15.0

 

0.0

 

0

 

0

 

30

 

30

 

590-008

 

4536.10

 

7957.90

 

9418.50

 

30.0

 

0.0

 

0

 

0

 

30

 

30

 

590-009

 

4536.10

 

7957.90

 

9418.50

 

45.0

 

0.0

 

0

 

0

 

30

 

30

 

590-010

 

4536.10

 

7957.90

 

9418.50

 

60.0

 

0.0

 

0

 

0

 

30

 

30

 

590-011

 

4545.70

 

7930.60

 

9417.50

 

0.0

 

0.0

 

0

 

0

 

30.3

 

30.3

 

590-012

 

4545.70

 

7930.60

 

9417.50

 

20.0

 

0.0

 

0

 

0

 

30

 

30

 

590-013

 

4545.70

 

7930.60

 

9417.50

 

40.0

 

0.0

 

0

 

0

 

30

 

30

 

590-014

 

4545.70

 

7930.60

 

9417.50

 

60.0

 

0.0

 

0

 

0

 

30.5

 

30.5

 

590-016

 

4545.70

 

7930.60

 

9417.50

 

20.0

 

20.0

 

0

 

0

 

27

 

27

 

590-017

 

4545.70

 

7930.60

 

9417.50

 

40.0

 

20.0

 

0

 

0

 

21

 

21

 

590-018

 

4545.70

 

7930.60

 

9417.50

 

60.0

 

20.0

 

0

 

0

 

20.4

 

20.4

 

60-004

 

4941.60

 

7858.60

 

9959.00

 

181.0

 

-20.0

 

0

 

0

 

110.01

 

110.01

 

 

Appendix 2-23



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

610-001

 

4509.10

 

7905.10

 

9399.70

 

338.0

 

1.0

 

0

 

0

 

126

 

126

 

610-002

 

4509.10

 

7905.10

 

9399.70

 

336.0

 

25.0

 

0

 

0

 

150

 

150

 

610-003

 

4510.50

 

7905.50

 

9399.70

 

25.0

 

50.0

 

0

 

0

 

150

 

150

 

610-004

 

4510.50

 

7905.50

 

9399.70

 

25.0

 

25.0

 

0

 

0

 

150

 

150

 

610-005

 

4509.10

 

7905.10

 

9399.70

 

25.0

 

0.0

 

0

 

0

 

150

 

150

 

610-006

 

4509.10

 

7905.10

 

9399.70

 

25.0

 

-25.0

 

0

 

0

 

150

 

150

 

610-007

 

4509.10

 

7905.10

 

9399.70

 

359.0

 

50.0

 

0

 

0

 

126

 

126

 

610-008

 

4509.10

 

7905.10

 

9399.70

 

0.0

 

25.0

 

0

 

0

 

125

 

125

 

610-009

 

4509.10

 

7905.10

 

9399.70

 

0.0

 

1.0

 

0

 

0

 

126

 

126

 

610-010

 

4509.10

 

7905.10

 

9399.70

 

358.0

 

-25.0

 

0

 

0

 

161.7

 

161.7

 

610-011

 

4509.10

 

7905.10

 

9399.70

 

328.2

 

10.9

 

0

 

0

 

126

 

126

 

610-012

 

4509.10

 

7905.10

 

9399.70

 

322.9

 

-15.1

 

0

 

0

 

150

 

150

 

610-013

 

4509.10

 

7905.10

 

9399.70

 

215.0

 

1.0

 

0

 

0

 

126

 

126

 

610-014

 

4509.10

 

7905.10

 

9399.70

 

348.0

 

-15.0

 

0

 

0

 

150

 

150

 

610-015

 

4509.10

 

7905.10

 

9399.70

 

11.0

 

12.0

 

0

 

0

 

125.3

 

125.3

 

610-016

 

4509.10

 

7905.10

 

9399.70

 

11.0

 

-15.0

 

0

 

0

 

150

 

150

 

610-017

 

4509.10

 

7905.10

 

9399.70

 

325.0

 

1.0

 

0

 

0

 

126

 

126

 

610-018

 

4509.10

 

7905.10

 

9399.70

 

348.0

 

1.0

 

0

 

0

 

126

 

126

 

610-019

 

4509.10

 

7905.10

 

9399.70

 

11.0

 

1.0

 

0

 

0

 

126

 

126

 

630-001

 

4705.10

 

7912.00

 

9390.00

 

347.0

 

37.0

 

0

 

0

 

102

 

102

 

630-002

 

4705.10

 

7912.00

 

9390.00

 

347.0

 

16.0

 

0

 

0

 

105

 

105

 

630-003

 

4703.20

 

7912.30

 

9390.00

 

341.0

 

22.0

 

0

 

0

 

105

 

105

 

630-004

 

4703.20

 

7912.30

 

9390.00

 

17.0

 

39.0

 

0

 

0

 

111

 

111

 

630-005

 

4703.20

 

7912.30

 

9390.00

 

17.0

 

18.0

 

0

 

0

 

117

 

117

 

630-006

 

4703.20

 

7912.30

 

9390.00

 

17.0

 

0.0

 

0

 

0

 

135

 

135

 

630-007

 

4703.20

 

7912.30

 

9390.00

 

23.0

 

33.0

 

0

 

0

 

115

 

115

 

630-008

 

4703.20

 

7912.30

 

9390.00

 

33.0

 

8.0

 

0

 

0

 

126

 

126

 

630-009

 

4703.20

 

7912.30

 

9390.00

 

33.0

 

8.0

 

0

 

0

 

105

 

105

 

630-010

 

4703.20

 

7912.30

 

9390.00

 

33.0

 

-17.0

 

0

 

0

 

120

 

120

 

630-011

 

4620.50

 

7942.20

 

9387.30

 

206.0

 

-72.0

 

0

 

0

 

150

 

150

 

630-012

 

4620.50

 

7942.20

 

9387.30

 

206.0

 

-64.0

 

0

 

0

 

150

 

150

 

630-013

 

4620.50

 

7942.20

 

9387.30

 

206.0

 

-54.0

 

0

 

0

 

153

 

153

 

630-014

 

4620.50

 

7942.20

 

9387.30

 

206.0

 

-38.0

 

0

 

0

 

150

 

150

 

630-015

 

4620.50

 

7942.20

 

9387.30

 

206.0

 

-27.0

 

0

 

0

 

150

 

150

 

630-016

 

4620.50

 

7942.20

 

9387.30

 

235.0

 

-20.0

 

0

 

0

 

102

 

102

 

630-017

 

4620.50

 

7942.20

 

9387.30

 

235.0

 

-36.0

 

0

 

0

 

102

 

102

 

630-018

 

4620.50

 

7942.20

 

9387.30

 

235.0

 

-51.0

 

0

 

0

 

150

 

150

 

630-019

 

4620.50

 

7942.20

 

9387.30

 

235.0

 

-60.0

 

0

 

0

 

360

 

360

 

650-008

 

4705.10

 

7834.00

 

9367.60

 

350.0

 

13.0

 

0

 

0

 

111.01

 

111.01

 

650-009

 

4671.00

 

7775.70

 

9365.00

 

350.0

 

13.0

 

0

 

0

 

15

 

15

 

650-009A

 

4671.00

 

7775.70

 

9365.00

 

350.0

 

13.0

 

0

 

0

 

237

 

237

 

650-010

 

4671.00

 

7775.70

 

9365.00

 

350.0

 

1.0

 

0

 

0

 

261

 

261

 

 

Appendix 2-24



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

650-011

 

4671.00

 

7775.70

 

9365.00

 

350.0

 

-5.0

 

0

 

0

 

15

 

15

 

650-011a

 

4671.00

 

7775.70

 

9365.00

 

350.0

 

-5.0

 

0

 

0

 

303.1

 

303.1

 

650-015

 

4704.90

 

7834.00

 

9367.80

 

341.0

 

21.0

 

0

 

0

 

111.01

 

111.01

 

650-016

 

4705.00

 

7834.00

 

9367.80

 

8.0

 

38.0

 

0

 

0

 

120.05

 

120.05

 

650-017

 

4705.50

 

7834.00

 

9367.80

 

8.0

 

24.0

 

0

 

0

 

117.01

 

117.01

 

650-018

 

4705.50

 

7834.00

 

9367.60

 

8.0

 

12.0

 

0

 

0

 

117

 

117

 

650-019

 

4705.50

 

7834.00

 

9367.60

 

8.0

 

1.0

 

0

 

0

 

30.01

 

30.01

 

650-019a

 

4705.50

 

7834.00

 

9367.60

 

8.0

 

1.0

 

0

 

0

 

204.2

 

204.2

 

650-020

 

4705.30

 

7834.00

 

9367.80

 

359.0

 

25.0

 

0

 

0

 

117

 

117

 

650-021

 

4671.00

 

7775.70

 

9365.00

 

340.0

 

5.0

 

0

 

0

 

15

 

15

 

650-021a

 

4671.00

 

7775.70

 

9365.00

 

340.0

 

5.0

 

0

 

0

 

267

 

267

 

650-022

 

4705.30

 

7834.00

 

9367.60

 

359.0

 

12.0

 

0

 

0

 

117

 

117

 

650-023

 

4705.30

 

7834.00

 

9367.60

 

359.0

 

1.0

 

0

 

0

 

234

 

234

 

650-024

 

4671.00

 

7775.70

 

9365.00

 

340.0

 

12.0

 

0

 

0

 

276

 

276

 

650-025

 

4671.00

 

7775.70

 

9365.00

 

340.0

 

-2.0

 

0

 

0

 

15.1

 

15.1

 

650-025a

 

4671.00

 

7775.70

 

9365.00

 

340.0

 

-2.0

 

0

 

0

 

246

 

246

 

650-026a

 

4671.00

 

7775.70

 

9365.00

 

334.0

 

-1.0

 

0

 

0

 

255.01

 

255.01

 

650-027

 

4671.00

 

7775.70

 

9365.00

 

333.0

 

0.6

 

0

 

0

 

12

 

12

 

650-027a

 

4671.00

 

7775.70

 

9365.00

 

335.7

 

1.0

 

0

 

0

 

12

 

12

 

650-027b

 

4671.00

 

7775.70

 

9365.00

 

332.1

 

0.4

 

0

 

0

 

150

 

150

 

650-028

 

4671.00

 

7775.70

 

9365.00

 

330.0

 

-6.0

 

0

 

0

 

156.01

 

156.01

 

650-029

 

4671.00

 

7775.70

 

9365.00

 

330.0

 

-12.0

 

0

 

0

 

192.01

 

192.01

 

650-030

 

4671.00

 

7775.70

 

9365.00

 

324.0

 

-10.0

 

0

 

0

 

157.01

 

157.01

 

650-031

 

4671.00

 

7775.70

 

9365.00

 

334.0

 

-5.0

 

0

 

0

 

252

 

252

 

650-032

 

4700.36

 

7833.44

 

9368.36

 

2.6

 

19.6

 

0

 

0

 

162

 

162

 

650-033

 

4705.10

 

7834.00

 

9367.60

 

350.0

 

1.0

 

0

 

0

 

147.1

 

147.1

 

650-034

 

4705.70

 

7834.00

 

9367.90

 

17.0

 

34.0

 

0

 

0

 

120.01

 

120.01

 

650-035

 

4705.70

 

7834.00

 

9367.80

 

17.0

 

22.0

 

0

 

0

 

117.01

 

117.01

 

650-036

 

4705.70

 

7834.00

 

9367.60

 

17.0

 

11.0

 

0

 

0

 

117.01

 

117.01

 

650-038

 

4705.80

 

7834.00

 

9367.90

 

23.0

 

30.0

 

0

 

0

 

120.05

 

120.05

 

650-039

 

4705.80

 

7834.00

 

9367.80

 

23.0

 

9.5

 

0

 

0

 

120.05

 

120.05

 

650-042

 

4705.00

 

7834.00

 

9367.80

 

23.0

 

38.0

 

0

 

0

 

120.05

 

120.05

 

650-043

 

4705.30

 

7834.00

 

9367.80

 

359.0

 

44.0

 

0

 

0

 

117.05

 

117.05

 

650-044

 

4705.80

 

7834.00

 

9367.80

 

350.0

 

42.0

 

0

 

0

 

112.01

 

112.01

 

650-045

 

4705.00

 

7834.00

 

9367.80

 

341.0

 

36.0

 

0

 

0

 

117.05

 

117.05

 

650-046

 

4705.10

 

7834.00

 

9367.80

 

350.0

 

55.0

 

0

 

0

 

111.05

 

111.05

 

650-047

 

4705.00

 

7834.00

 

9367.80

 

8.0

 

55.0

 

0

 

0

 

120.05

 

120.05

 

650-048

 

4705.00

 

7834.00

 

9367.80

 

359.0

 

58.0

 

0

 

0

 

120.05

 

120.05

 

650-049

 

4700.34

 

7833.56

 

9367.16

 

358.8

 

-7.2

 

0

 

0

 

210

 

210

 

650-050

 

4705.70

 

7834.00

 

9367.80

 

17.0

 

1.0

 

0

 

0

 

87

 

87

 

650-051

 

4680.78

 

7830.60

 

9368.73

 

5.8

 

26.0

 

0

 

0

 

141

 

141

 

650-052

 

4615.40

 

7874.30

 

9369.50

 

261.0

 

1.0

 

0

 

0

 

15.01

 

15.01

 

 

Appendix 2-25



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

650-052A

 

4615.40

 

7874.30

 

9369.50

 

261.0

 

1.0

 

0

 

0

 

75.01

 

75.01

 

650-053

 

4615.50

 

7874.70

 

9369.50

 

231.0

 

1.0

 

0

 

0

 

15.01

 

15.01

 

650-053A

 

4615.50

 

7874.70

 

9369.50

 

231.0

 

1.0

 

0

 

0

 

75.01

 

75.01

 

650-054

 

4727.00

 

7912.00

 

9368.00

 

106.0

 

14.0

 

0

 

0

 

165.05

 

165.05

 

650-055

 

4680.70

 

7830.65

 

9368.29

 

0.8

 

19.0

 

0

 

0

 

141

 

141

 

650-055A

 

4727.00

 

7912.00

 

9368.00

 

87.0

 

15.0

 

0

 

0

 

15.01

 

15.01

 

650-056

 

4680.94

 

7830.55

 

9368.04

 

0.0

 

11.0

 

0

 

0

 

45

 

45

 

650-056A

 

4680.69

 

7830.61

 

9368.06

 

0.0

 

14.0

 

0

 

0

 

84

 

84

 

650-057

 

4724.00

 

7916.00

 

9370.00

 

10.5

 

15.0

 

0

 

0

 

89.5

 

89.5

 

650-058

 

4725.00

 

7916.00

 

9370.00

 

10.5

 

-16.0

 

0

 

0

 

90

 

90

 

650-059

 

4726.00

 

7916.00

 

9370.00

 

30.0

 

30.0

 

0

 

0

 

90

 

90

 

650-060

 

4727.00

 

7916.00

 

9370.00

 

30.0

 

-25.0

 

0

 

0

 

90

 

90

 

650-061

 

4712.50

 

7930.00

 

9370.00

 

0.0

 

20.0

 

0

 

0

 

81

 

81

 

650-062

 

4712.50

 

7924.00

 

9368.00

 

186.0

 

-45.0

 

0

 

0

 

102

 

102

 

650-063

 

4612.50

 

7948.40

 

9369.80

 

193.0

 

-13.0

 

0

 

0

 

126

 

126

 

650-064

 

4612.50

 

7948.40

 

9369.80

 

193.0

 

-40.0

 

0

 

0

 

126.01

 

126.01

 

650-065

 

4612.50

 

7948.40

 

9369.80

 

193.0

 

-80.0

 

0

 

0

 

150.01

 

150.01

 

650-066

 

4612.50

 

7948.40

 

9369.80

 

180.0

 

-42.0

 

0

 

0

 

150

 

150

 

650-067

 

4612.50

 

7948.40

 

9369.80

 

180.0

 

-60.0

 

0

 

0

 

171

 

171

 

650-068

 

4612.50

 

7948.40

 

9369.80

 

180.0

 

-80.0

 

0

 

0

 

150

 

150

 

650-069

 

4612.50

 

7948.40

 

9369.80

 

167.8

 

-35.0

 

0

 

0

 

111

 

111

 

650-070

 

4612.50

 

7948.40

 

9369.80

 

167.0

 

-54.0

 

0

 

0

 

120

 

120

 

650-071

 

4687.50

 

7905.30

 

9370.00

 

0.0

 

70.0

 

0

 

0

 

72.01

 

72.01

 

650-072

 

4687.50

 

7905.30

 

9370.00

 

0.0

 

23.0

 

0

 

0

 

51.01

 

51.01

 

650-073

 

4637.50

 

7938.74

 

9370.00

 

180.0

 

-24.0

 

0

 

0

 

90.01

 

90.01

 

650-074

 

4637.50

 

7938.74

 

9370.00

 

180.0

 

-40.0

 

0

 

0

 

90

 

90

 

650-075

 

4637.50

 

7938.74

 

9370.00

 

180.0

 

-60.0

 

0

 

0

 

115

 

115

 

650-076

 

4680.65

 

7830.78

 

9367.11

 

0.0

 

-7.0

 

0

 

0

 

28

 

28

 

650-076A

 

4680.65

 

7830.73

 

9367.06

 

0.0

 

-9.0

 

0

 

0

 

28

 

28

 

650-076B

 

4680.92

 

7830.66

 

9367.05

 

0.0

 

-13.0

 

0

 

0

 

27

 

27

 

650-076C

 

4665.00

 

7842.30

 

9368.90

 

18.0

 

-12.0

 

0

 

0

 

225

 

225

 

650-077

 

4700.06

 

7833.50

 

9368.82

 

349.3

 

25.6

 

0

 

0

 

162.01

 

162.01

 

650-078

 

4700.05

 

7833.42

 

9367.92

 

348.2

 

11.9

 

0

 

0

 

156

 

156

 

650-079

 

4700.04

 

7833.45

 

9367.09

 

359.4

 

-9.8

 

0

 

0

 

171.01

 

171.01

 

650-080

 

4625.72

 

7838.49

 

9372.65

 

2.6

 

11.0

 

0

 

0

 

150

 

150

 

650-081

 

4625.78

 

7838.64

 

9373.36

 

2.5

 

24.0

 

0

 

0

 

156

 

156

 

650-082

 

4625.77

 

7838.46

 

9374.01

 

1.8

 

35.9

 

0

 

0

 

162

 

162

 

650-083

 

4706.10

 

7834.13

 

9368.51

 

1.6

 

35.0

 

0

 

0

 

165

 

165

 

650-084

 

4707.50

 

7834.90

 

9368.70

 

1.5

 

-5.0

 

0

 

0

 

215

 

215

 

650-085

 

4706.28

 

7835.18

 

9369.34

 

8.3

 

33.0

 

0

 

0

 

165

 

165

 

650-086

 

4706.37

 

7835.38

 

9367.88

 

10.0

 

10.0

 

0

 

0

 

168

 

168

 

650-087

 

4705.89

 

7835.16

 

9367.27

 

6.0

 

-5.0

 

0

 

0

 

216

 

216

 

 

Appendix 2-26



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

650-088

 

4633.06

 

7835.57

 

9371.95

 

0.5

 

13.4

 

0

 

0

 

150

 

150

 

650-089

 

4664.70

 

7845.30

 

9368.50

 

0.0

 

45.0

 

0

 

0

 

201

 

201

 

650-090

 

4664.70

 

7845.30

 

9368.50

 

0.0

 

-23.0

 

0

 

0

 

200.5

 

200.5

 

650-091

 

4706.47

 

7835.31

 

9368.61

 

14.2

 

21.3

 

0

 

0

 

177

 

177

 

650-092

 

4706.53

 

7835.49

 

9367.19

 

12.0

 

-6.0

 

0

 

0

 

225

 

225

 

650-093

 

4666.70

 

7842.80

 

9367.70

 

358.0

 

40.0

 

0

 

0

 

162.01

 

162.01

 

650-094

 

4666.70

 

7842.80

 

9367.70

 

358.0

 

30.0

 

0

 

0

 

165

 

165

 

650-095

 

4666.70

 

7842.80

 

9367.70

 

358.0

 

-10.0

 

0

 

0

 

171

 

171

 

650-096

 

4666.70

 

7842.80

 

9367.70

 

6.0

 

12.0

 

0

 

0

 

171

 

171

 

650-097

 

4666.70

 

7842.80

 

9367.70

 

6.0

 

27.0

 

0

 

0

 

165

 

165

 

650-098

 

4666.70

 

7842.80

 

9367.70

 

6.0

 

38.0

 

0

 

0

 

160

 

160

 

650-099

 

4707.50

 

7834.90

 

9368.90

 

16.0

 

-8.0

 

0

 

0

 

30

 

30

 

650-099A

 

4707.50

 

7834.90

 

9368.90

 

350.0

 

16.0

 

0

 

0

 

225

 

225

 

650-100

 

4663.20

 

7842.30

 

9368.90

 

350.0

 

39.0

 

0

 

0

 

9

 

9

 

650-100A

 

4663.20

 

7842.30

 

9368.90

 

350.0

 

39.0

 

0

 

0

 

132

 

132

 

650-101

 

4663.20

 

7842.30

 

9368.90

 

348.0

 

46.0

 

0

 

0

 

135

 

135

 

650-102

 

4663.20

 

7842.30

 

9368.90

 

350.0

 

-9.0

 

0

 

0

 

132

 

132

 

650-103

 

4707.50

 

7834.90

 

9368.90

 

20.0

 

-5.8

 

0

 

0

 

201.01

 

201.01

 

650-104

 

4707.50

 

7834.90

 

9368.90

 

20.0

 

6.4

 

0

 

0

 

201.01

 

201.01

 

650-105

 

4707.50

 

7834.90

 

9368.90

 

19.4

 

13.1

 

0

 

0

 

201.01

 

201.01

 

650-106

 

4707.50

 

7834.90

 

9368.90

 

20.0

 

19.6

 

0

 

0

 

201

 

201

 

650-107

 

4707.50

 

7834.90

 

9368.90

 

24.0

 

-5.0

 

0

 

0

 

200

 

200

 

650-108

 

4707.50

 

7834.90

 

9368.90

 

24.0

 

8.6

 

0

 

0

 

201.01

 

201.01

 

650-109

 

4707.50

 

7834.90

 

9368.90

 

348.0

 

46.0

 

0

 

0

 

201.01

 

201.01

 

650-110

 

4707.50

 

7834.90

 

9368.90

 

24.0

 

20.0

 

0

 

0

 

201

 

201

 

650-111

 

4648.50

 

7846.50

 

9368.90

 

0.0

 

45.0

 

0

 

0

 

168

 

168

 

650-112

 

4648.50

 

7846.50

 

9368.90

 

0.0

 

33.0

 

0

 

0

 

174

 

174

 

650-113

 

4648.50

 

7846.50

 

9368.90

 

0.0

 

18.0

 

0

 

0

 

171

 

171

 

650-114

 

4648.50

 

7846.50

 

9368.90

 

0.0

 

-15.0

 

0

 

0

 

201

 

201

 

650-115

 

4648.50

 

7846.50

 

9368.90

 

348.0

 

46.0

 

0

 

0

 

171

 

171

 

650-116

 

4648.50

 

7846.50

 

9368.90

 

348.0

 

34.0

 

0

 

0

 

171

 

171

 

650-117

 

4707.50

 

7834.90

 

9368.90

 

24.0

 

26.0

 

0

 

0

 

225

 

225

 

650-118

 

4648.50

 

7846.50

 

9368.90

 

348.0

 

20.0

 

0

 

0

 

174

 

174

 

650-119

 

4707.50

 

7834.90

 

9368.90

 

20.0

 

33.0

 

0

 

0

 

201

 

201

 

650-120

 

4707.50

 

7834.90

 

9368.70

 

12.0

 

41.0

 

0

 

0

 

176

 

176

 

650-121

 

4648.50

 

7846.50

 

9368.90

 

348.0

 

66.0

 

0

 

0

 

225

 

225

 

650-122

 

4707.50

 

7834.90

 

9368.70

 

0.0

 

41.0

 

0

 

0

 

201.01

 

201.01

 

650-123

 

4648.50

 

7846.50

 

9368.90

 

0.0

 

-32.0

 

0

 

0

 

222

 

222

 

650-124

 

4700.00

 

7833.50

 

9368.70

 

0.0

 

34.0

 

0

 

0

 

225

 

225

 

650-125

 

4700.00

 

7833.50

 

9368.70

 

355.0

 

42.0

 

0

 

0

 

225

 

225

 

650-126

 

4700.00

 

7833.50

 

9368.70

 

355.0

 

-18.0

 

0

 

0

 

225

 

225

 

650-127

 

4664.70

 

7845.30

 

9368.50

 

0.0

 

-28.0

 

0

 

0

 

201

 

201

 

 

Appendix 2-27



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

650-128

 

4664.70

 

7845.30

 

9368.50

 

16.7

 

-30.0

 

0

 

0

 

201

 

201

 

650-129

 

4664.70

 

7845.30

 

9368.50

 

15.0

 

-19.0

 

0

 

0

 

201

 

201

 

650-130

 

4687.50

 

7905.60

 

9370.20

 

0.0

 

55.0

 

0

 

0

 

20

 

20

 

650-131

 

4687.50

 

7905.60

 

9370.20

 

10.0

 

11.0

 

0

 

0

 

60

 

60

 

650-132

 

4687.50

 

7905.60

 

9369.40

 

10.0

 

11.0

 

0

 

0

 

65

 

65

 

650-133

 

4687.50

 

7905.60

 

9369.40

 

10.0

 

-15.0

 

0

 

0

 

72

 

72

 

650-134

 

4700.00

 

7918.36

 

9369.40

 

0.0

 

46.0

 

0

 

0

 

63

 

63

 

650-135

 

4700.00

 

7918.30

 

9369.40

 

2.0

 

16.0

 

0

 

0

 

63

 

63

 

650-136

 

4700.00

 

7918.30

 

9369.40

 

0.0

 

-20.0

 

0

 

0

 

60

 

60

 

650-137

 

4716.60

 

7912.50

 

9369.40

 

3.0

 

49.0

 

0

 

0

 

90

 

90

 

650-138

 

4716.60

 

7912.50

 

9369.40

 

3.0

 

16.0

 

0

 

0

 

102

 

102

 

650-139

 

4684.70

 

7897.90

 

9369.40

 

353.0

 

20.0

 

0

 

0

 

87

 

87

 

650-140

 

4684.70

 

7897.90

 

9369.40

 

352.0

 

-12.0

 

0

 

0

 

87.1

 

87.1

 

650-141

 

4684.70

 

7897.90

 

9369.40

 

326.0

 

16.0

 

0

 

0

 

81

 

81

 

650-142

 

4684.70

 

7897.90

 

9369.40

 

326.0

 

-12.0

 

0

 

0

 

81

 

81

 

650-143

 

4653.10

 

7894.30

 

9369.20

 

0.0

 

10.0

 

0

 

0

 

150

 

150

 

650-144

 

4653.10

 

7894.30

 

9369.20

 

0.0

 

-15.0

 

0

 

0

 

80

 

80

 

650-145

 

4653.10

 

7894.30

 

9369.20

 

0.0

 

-32.0

 

0

 

0

 

175

 

175

 

650-146

 

4664.70

 

7846.20

 

9369.80

 

20.0

 

50.0

 

0

 

0

 

150

 

150

 

650-147

 

4664.70

 

7846.20

 

9369.80

 

20.0

 

60.0

 

0

 

0

 

150

 

150

 

650-148

 

4665.00

 

7846.10

 

9370.00

 

360.0

 

78.0

 

0

 

0

 

150

 

150

 

650-149

 

4665.00

 

7846.10

 

9370.00

 

344.0

 

55.0

 

0

 

0

 

140.9

 

140.9

 

650-150

 

4665.00

 

7846.10

 

9370.00

 

343.0

 

65.0

 

0

 

0

 

150.2

 

150.2

 

650-151

 

4667.00

 

7845.50

 

9370.00

 

35.0

 

54.0

 

0

 

0

 

150

 

150

 

650-152

 

4665.00

 

7846.10

 

9372.40

 

317.0

 

67.0

 

0

 

0

 

183

 

183

 

650-153

 

4661.90

 

7845.30

 

9372.40

 

300.0

 

65.0

 

0

 

0

 

30

 

30

 

650-153A

 

4661.90

 

7845.30

 

9372.40

 

305.0

 

65.0

 

0

 

0

 

212.6

 

212.6

 

650-154

 

4637.50

 

7938.70

 

9370.00

 

170.0

 

-15.0

 

0

 

0

 

300

 

300

 

650-155

 

4637.50

 

7938.70

 

9370.00

 

170.0

 

-33.0

 

0

 

0

 

300

 

300

 

650-156

 

4637.50

 

7938.70

 

9370.00

 

169.0

 

-20.0

 

0

 

0

 

195

 

195

 

650-157

 

4637.50

 

7938.70

 

9370.00

 

169.0

 

-40.0

 

0

 

0

 

180

 

180

 

650-158

 

4637.50

 

7938.70

 

9370.00

 

174.1

 

-62.0

 

0

 

0

 

180

 

180

 

650-159

 

4637.50

 

7938.70

 

9370.00

 

180.0

 

-48.0

 

0

 

0

 

180

 

180

 

650-160

 

4625.00

 

7943.60

 

9370.00

 

180.0

 

-21.0

 

0

 

0

 

252

 

252

 

650-161

 

4625.00

 

7943.60

 

9370.00

 

180.0

 

-30.0

 

0

 

0

 

130

 

130

 

650-162

 

4625.00

 

7943.60

 

9370.00

 

180.0

 

-50.0

 

0

 

0

 

171

 

171

 

650-163

 

4612.50

 

7948.40

 

9370.00

 

180.0

 

-18.0

 

0

 

0

 

120

 

120

 

650-164

 

4612.50

 

7948.40

 

9370.00

 

180.0

 

-21.0

 

0

 

0

 

120

 

120

 

650-165

 

4612.50

 

7948.40

 

9370.00

 

180.0

 

-34.0

 

0

 

0

 

141

 

141

 

650-166

 

4612.50

 

7948.40

 

9370.00

 

180.0

 

-49.0

 

0

 

0

 

180

 

180

 

650-167

 

4600.00

 

7953.40

 

9370.00

 

180.0

 

-20.0

 

0

 

0

 

150

 

150

 

650-168

 

4600.00

 

7953.40

 

9370.00

 

180.0

 

-47.0

 

0

 

0

 

162

 

162

 

 

Appendix 2-28



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

650-169

 

4625.00

 

7943.70

 

9370.00

 

180.0

 

-45.0

 

0

 

0

 

495

 

495

 

650-170

 

4625.00

 

7943.70

 

9370.00

 

180.0

 

-72.0

 

0

 

0

 

501

 

501

 

650-171

 

4637.50

 

7938.70

 

9370.00

 

170.0

 

-51.0

 

0

 

0

 

300

 

300

 

650-172

 

4675.00

 

7941.00

 

9368.00

 

180.0

 

-30.0

 

0

 

0

 

300

 

300

 

650-173

 

4675.00

 

7941.00

 

9368.00

 

180.0

 

-50.0

 

0

 

0

 

300

 

300

 

650-174

 

4675.00

 

7941.00

 

9368.00

 

180.0

 

-70.0

 

0

 

0

 

300

 

300

 

650-175

 

4675.00

 

7941.00

 

9368.00

 

200.0

 

-28.0

 

0

 

0

 

300

 

300

 

650-176

 

4675.00

 

7941.00

 

9368.00

 

200.0

 

-48.0

 

0

 

0

 

300

 

300

 

650-177

 

4675.00

 

7941.00

 

9368.00

 

200.0

 

-66.0

 

0

 

0

 

300

 

300

 

650-178

 

4675.00

 

7941.00

 

9368.00

 

159.0

 

-25.0

 

0

 

0

 

300

 

300

 

650-179

 

4675.00

 

7941.00

 

9368.00

 

159.0

 

-43.0

 

0

 

0

 

300

 

300

 

650-180

 

4675.00

 

7941.00

 

9368.00

 

159.0

 

-65.0

 

0

 

0

 

300

 

300

 

650-181

 

4675.00

 

7941.00

 

9368.00

 

140.0

 

-20.0

 

0

 

0

 

381

 

381

 

650-182

 

4675.00

 

7941.00

 

9368.00

 

140.0

 

-37.0

 

0

 

0

 

381

 

381

 

650-183

 

4675.00

 

7941.00

 

9368.00

 

140.0

 

-56.0

 

0

 

0

 

381

 

381

 

650-184

 

4675.00

 

7941.00

 

9368.00

 

140.0

 

-73.0

 

0

 

0

 

380

 

380

 

650-185

 

4675.00

 

7941.00

 

9368.00

 

180.0

 

-76.0

 

0

 

0

 

350

 

350

 

650-186

 

4675.00

 

7941.00

 

9368.00

 

180.0

 

-82.0

 

0

 

0

 

300

 

300

 

650-187

 

4675.00

 

7941.00

 

9368.00

 

200.0

 

-74.0

 

0

 

0

 

351

 

351

 

650-188

 

4675.00

 

7941.00

 

9368.00

 

200.0

 

-80.0

 

0

 

0

 

351

 

351

 

650-189

 

4675.00

 

7941.00

 

9368.00

 

200.0

 

-87.0

 

0

 

0

 

351

 

351

 

650-190

 

4675.00

 

7941.00

 

9368.00

 

140.0

 

-79.0

 

0

 

0

 

351

 

351

 

650-191

 

4675.00

 

7941.00

 

9368.00

 

140.0

 

-84.0

 

0

 

0

 

350

 

350

 

650-192

 

4675.00

 

7941.00

 

9368.00

 

159.0

 

-78.0

 

0

 

0

 

417

 

417

 

650-194

 

4643.30

 

7936.30

 

9368.00

 

180.0

 

-27.0

 

0

 

0

 

180

 

180

 

650-195

 

4643.30

 

7936.30

 

9368.00

 

180.0

 

-36.0

 

0

 

0

 

200

 

200

 

650-196

 

4643.30

 

7936.30

 

9368.00

 

180.0

 

-55.0

 

0

 

0

 

201

 

201

 

650-197

 

4643.30

 

7963.30

 

9368.00

 

180.0

 

-68.0

 

0

 

0

 

220

 

220

 

650-198

 

4643.30

 

7936.30

 

9368.00

 

180.0

 

-77.0

 

0

 

0

 

250

 

250

 

650-199

 

4643.30

 

7936.30

 

9368.00

 

180.0

 

-84.0

 

0

 

0

 

270

 

270

 

650-200

 

4589.50

 

7958.20

 

9368.00

 

180.0

 

-35.0

 

0

 

0

 

201

 

201

 

650-201

 

4589.50

 

7958.20

 

9368.00

 

180.0

 

-46.0

 

0

 

0

 

231

 

231

 

650-202

 

4589.50

 

7958.20

 

9368.00

 

180.0

 

-56.0

 

0

 

0

 

231

 

231

 

650-203

 

4589.50

 

7958.20

 

9368.00

 

180.0

 

-66.0

 

0

 

0

 

231

 

231

 

650-204

 

4589.50

 

7958.20

 

9368.00

 

180.0

 

-75.0

 

0

 

0

 

250

 

250

 

650-205

 

4589.50

 

7958.20

 

9368.00

 

180.0

 

-82.0

 

0

 

0

 

350

 

350

 

650-220

 

4589.50

 

7958.20

 

9368.00

 

200.0

 

-38.0

 

0

 

0

 

201

 

201

 

650-221

 

4589.50

 

7958.20

 

9368.00

 

200.0

 

-57.0

 

0

 

0

 

250

 

250

 

670-001

 

4559.00

 

7932.40

 

9345.00

 

92.0

 

0.0

 

0

 

0

 

171

 

171

 

670-002

 

4559.00

 

7932.40

 

9345.00

 

101.0

 

0.0

 

0

 

0

 

171

 

171

 

670-003

 

4559.00

 

7932.40

 

9345.00

 

110.0

 

0.0

 

0

 

0

 

171

 

171

 

670-004

 

4559.00

 

7932.40

 

9345.00

 

110.9

 

0.0

 

0

 

0

 

171

 

171

 

 

Appendix 2-29



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

670-005

 

4559.00

 

7932.40

 

9345.00

 

119.0

 

0.0

 

0

 

0

 

171

 

171

 

670-006

 

4559.00

 

7932.40

 

9345.00

 

121.9

 

-20.0

 

0

 

0

 

171

 

171

 

670-007

 

4559.00

 

7932.40

 

9345.00

 

112.7

 

-20.0

 

0

 

0

 

177

 

177

 

670-008

 

4559.00

 

7932.40

 

9345.00

 

110.0

 

-20.0

 

0

 

0

 

171

 

171

 

670-009

 

4559.00

 

7932.40

 

9345.00

 

101.0

 

-20.0

 

0

 

0

 

174

 

174

 

670-010

 

4559.00

 

7932.40

 

9345.00

 

92.0

 

-20.0

 

0

 

0

 

171

 

171

 

670-011

 

4574.40

 

7901.80

 

9345.00

 

12.0

 

5.0

 

0

 

0

 

126

 

126

 

670-012

 

4574.40

 

7901.80

 

9345.00

 

12.0

 

-6.0

 

0

 

0

 

125

 

125

 

670-013

 

4574.40

 

7901.80

 

9345.00

 

12.0

 

-16.0

 

0

 

0

 

125

 

125

 

670-014

 

4574.40

 

7901.80

 

9345.00

 

12.0

 

-26.0

 

0

 

0

 

150

 

150

 

670-015

 

4574.40

 

7901.80

 

9345.00

 

12.0

 

-35.0

 

0

 

0

 

150

 

150

 

670-016

 

4574.40

 

7901.80

 

9345.00

 

12.0

 

-43.0

 

0

 

0

 

180

 

180

 

670-017

 

4574.40

 

7901.80

 

9345.00

 

21.0

 

11.0

 

0

 

0

 

126

 

126

 

670-018

 

4574.40

 

7901.80

 

9345.00

 

21.0

 

3.0

 

0

 

0

 

124.75

 

124.75

 

670-019

 

4574.40

 

7901.80

 

9345.00

 

21.0

 

-7.0

 

0

 

0

 

125

 

125

 

670-020

 

4574.40

 

7901.80

 

9345.00

 

21.0

 

-16.0

 

0

 

0

 

201

 

201

 

670-021

 

4574.40

 

7901.80

 

9345.00

 

21.0

 

-26.0

 

0

 

0

 

201

 

201

 

670-022

 

4574.40

 

7901.80

 

9345.00

 

21.0

 

-35.0

 

0

 

0

 

201

 

201

 

670-023

 

4574.40

 

7901.80

 

9345.00

 

32.0

 

11.0

 

0

 

0

 

150

 

150

 

670-024

 

4574.40

 

7901.80

 

9345.00

 

32.0

 

0.0

 

0

 

0

 

148

 

148

 

670-025

 

4574.40

 

7901.80

 

9345.00

 

32.0

 

-12.0

 

0

 

0

 

150

 

150

 

670-026

 

4574.40

 

7901.80

 

9345.00

 

32.0

 

-24.0

 

0

 

0

 

180

 

180

 

670-027

 

4574.40

 

7901.80

 

9345.00

 

32.0

 

-35.0

 

0

 

0

 

101.5

 

101.5

 

670-028

 

4574.40

 

7901.80

 

9345.00

 

32.0

 

-46.0

 

0

 

0

 

200

 

200

 

670-029

 

4574.40

 

7901.80

 

9345.00

 

44.0

 

3.0

 

0

 

0

 

199.4

 

199.4

 

670-031

 

4574.40

 

7901.80

 

9345.00

 

44.0

 

-8.0

 

0

 

0

 

200

 

200

 

670-032

 

4574.40

 

7901.80

 

9345.00

 

44.0

 

-19.0

 

0

 

0

 

200

 

200

 

670-033

 

4574.40

 

7901.80

 

9345.00

 

44.0

 

-26.0

 

0

 

0

 

200

 

200

 

680-001

 

4501.04

 

7430.00

 

9335.30

 

359.2

 

-49.5

 

0

 

0

 

1500

 

1500

 

680-001A

 

4501.04

 

7430.00

 

9335.30

 

359.2

 

-49.5

 

0

 

0

 

1401

 

1401

 

680-002

 

4395.37

 

7429.17

 

9337.33

 

0.5

 

-48.6

 

0

 

0

 

1507

 

1507

 

680-002A

 

4395.37

 

7429.17

 

9337.33

 

0.5

 

-48.6

 

0

 

0

 

1305.9

 

1305.9

 

730-001

 

4524.31

 

7957.60

 

9298.40

 

95.0

 

0.0

 

0

 

0

 

156

 

156

 

730-002

 

4524.31

 

7957.60

 

9298.40

 

101.0

 

0.0

 

0

 

0

 

141.2

 

141.2

 

730-003

 

4524.30

 

7957.60

 

9298.40

 

109.0

 

0.0

 

0

 

0

 

150

 

150

 

730-004

 

4524.30

 

7957.60

 

9298.40

 

128.0

 

0.0

 

0

 

0

 

150

 

150

 

730-005

 

4524.30

 

7957.60

 

9298.40

 

134.0

 

0.0

 

0

 

0

 

141

 

141

 

730-006

 

4524.30

 

7957.60

 

9298.40

 

143.0

 

0.0

 

0

 

0

 

129

 

129

 

730-007

 

4524.30

 

7957.60

 

9298.40

 

150.7

 

0.9

 

0

 

0

 

150

 

150

 

730-008

 

4524.30

 

7957.60

 

9298.40

 

166.0

 

0.0

 

0

 

0

 

150

 

150

 

90-002

 

4974.30

 

7885.70

 

9929.30

 

196.0

 

-58.0

 

0

 

0

 

104

 

104

 

90-004

 

4973.40

 

7886.60

 

9929.30

 

183.0

 

-43.0

 

0

 

0

 

96

 

96

 

 

Appendix 2-30



 

 

 

Easting

 

Northing

 

 

 

 

 

 

 

Casing

 

Start

 

Final

 

Total

 

Hole

 

Mine Grid

 

Elevation

 

Azimuth

 

Dip

 

Depth

 

Depth

 

Depth

 

Drilled

 

Number

 

(m)

 

(m)

 

(m)

 

(°)

 

(°)

 

(m)

 

(m)

 

(m)

 

(m)

 

90-007

 

4974.20

 

7887.80

 

9930.80

 

154.0

 

-39.0

 

0

 

0

 

99.01

 

99.01

 

90-008

 

4978.00

 

7887.00

 

9931.00

 

163.0

 

0.0

 

0

 

0

 

75.01

 

75.01

 

90-009

 

4978.20

 

7887.20

 

9931.00

 

147.0

 

0.0

 

0

 

0

 

78

 

78

 

90-010

 

4978.40

 

7887.40

 

9931.00

 

127.0

 

0.0

 

0

 

0

 

36

 

36

 

90-011

 

4983.10

 

7839.20

 

9931.20

 

203.0

 

0.0

 

0

 

0

 

30

 

30

 

90-012

 

4984.00

 

7839.70

 

9931.20

 

176.0

 

0.0

 

0

 

0

 

30

 

30

 

90-013

 

4984.60

 

7840.00

 

9931.20

 

148.0

 

0.0

 

0

 

0

 

30

 

30

 

90-014

 

5009.70

 

7875.70

 

9931.30

 

140.0

 

0.0

 

0

 

0

 

12

 

12

 

90-020

 

5010.60

 

7876.20

 

9931.30

 

112.0

 

0.0

 

0

 

0

 

21

 

21

 

90-022

 

5021.30

 

7850.80

 

9925.00

 

20.0

 

2.0

 

0

 

0

 

51

 

51

 

90-023

 

5012.30

 

7850.80

 

9925.00

 

20.0

 

-15.0

 

0

 

0

 

46

 

46

 

90-024

 

5021.30

 

7850.80

 

9925.00

 

18.0

 

11.0

 

0

 

0

 

53

 

53

 

90-025

 

5021.30

 

7850.80

 

9925.00

 

18.0

 

21.0

 

0

 

0

 

53

 

53

 

90-026

 

5021.30

 

7850.80

 

9925.00

 

18.0

 

31.0

 

0

 

0

 

51

 

51

 

90-027

 

5007.50

 

7850.90

 

9925.00

 

360.0

 

10.0

 

0

 

0

 

39

 

39

 

90-028

 

5007.50

 

7850.90

 

9925.00

 

360.0

 

22.0

 

0

 

0

 

41

 

41

 

90-030

 

5007.50

 

7850.90

 

9925.00

 

360.0

 

-11.0

 

0

 

0

 

42

 

42

 

90-031

 

5003.50

 

7834.50

 

9935.40

 

179.0

 

5.0

 

0

 

0

 

129

 

129

 

90-032

 

5003.50

 

7834.50

 

9935.20

 

179.0

 

-18.0

 

0

 

0

 

126

 

126

 

90-034

 

5003.50

 

7834.50

 

9935.20

 

164.0

 

-22.0

 

0

 

0

 

15.01

 

15.01

 

90-034a

 

5003.50

 

7834.50

 

9935.20

 

164.0

 

-22.0

 

0

 

0

 

120

 

120

 

90-035

 

5007.50

 

7850.90

 

9925.00

 

180.0

 

1.0

 

0

 

0

 

25.7

 

25.7

 

90-036

 

5007.50

 

7850.90

 

9925.00

 

180.0

 

20.0

 

0

 

0

 

27

 

27

 

 

Total Number of Underground Diamond Drill Holes

 

885

 

Number of Underground Diamond Drill Holes Recollared

 

41

 

Number of Underground Diamond Drill Wege Splays

 

2

 

Number of Diamond Drill Holes In Progress Or Incomplete

 

121

 

Total Meters Drilled

 

118,632.96

 

 

Holes highlighted blue either have no assays associated with them or were incomplete at the effective cut-off date of January 31, 2012.

 

Appendix 2-31



 

APPENDIX 3

 

TABLE 10.3 DIAMOND DRILL CORE SAMPLING SUMMARY

 

Appendix 3-1



 

TABLE 10.3a: DIAMOND DRILL CORE SAMPLING SUMMARY (THUNDER CREEK)

 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC03-01

 

167

 

3

 

0

 

167

 

 

 

 

 

167

 

TC03-02

 

170

 

1

 

0

 

170

 

 

 

 

 

170

 

TC03-03

 

105

 

0

 

0

 

105

 

 

 

 

 

105

 

TC03-04

 

74

 

0

 

0

 

74

 

 

 

 

 

74

 

TC03-05

 

138

 

2

 

0

 

138

 

 

 

 

 

138

 

TC03-06

 

128

 

5

 

0

 

128

 

 

 

 

 

128

 

TC03-06EXT

 

184

 

0

 

0

 

184

 

 

 

 

 

184

 

TC03-07

 

83

 

0

 

0

 

83

 

 

 

 

 

83

 

TC04-08

 

98

 

0

 

0

 

98

 

 

 

 

 

98

 

TC04-09

 

11

 

0

 

0

 

11

 

 

 

 

 

11

 

TC04-10

 

88

 

1

 

0

 

88

 

 

 

 

 

88

 

TC04-11

 

77

 

0

 

0

 

77

 

 

 

 

 

77

 

TC04-12

 

140

 

1

 

0

 

140

 

1

 

 

 

140

 

TC04-13

 

132

 

0

 

0

 

132

 

 

 

 

 

132

 

TC04-14

 

145

 

0

 

0

 

145

 

 

 

 

 

145

 

TC04-15

 

135

 

0

 

0

 

135

 

 

 

 

 

135

 

TC04-16

 

12

 

0

 

0

 

12

 

 

 

 

 

12

 

TC04-17

 

11

 

0

 

0

 

11

 

 

 

 

 

11

 

TC04-18

 

226

 

2

 

0

 

226

 

 

 

 

 

226

 

TC04-18EXT

 

111

 

0

 

0

 

111

 

 

 

 

 

111

 

TC04-19

 

267

 

7

 

0

 

267

 

1

 

 

 

267

 

TC04-50EXT

 

53

 

0

 

0

 

53

 

 

 

 

 

53

 

TC05-20

 

81

 

0

 

0

 

81

 

 

 

 

 

81

 

TC05-21

 

210

 

0

 

0

 

210

 

 

 

 

 

210

 

TC05-22

 

29

 

0

 

0

 

29

 

 

 

 

 

29

 

TC05-23

 

51

 

0

 

0

 

51

 

 

 

 

 

51

 

TC05-24

 

173

 

11

 

0

 

173

 

3

 

 

 

173

 

TC05-25

 

180

 

0

 

0

 

180

 

 

 

 

 

180

 

TC07-26

 

298

 

0

 

0

 

298

 

 

 

 

 

298

 

TC07-27

 

217

 

0

 

0

 

217

 

 

 

 

 

217

 

TC07-28

 

249

 

2

 

0

 

249

 

 

 

 

 

249

 

TC07-29

 

72

 

0

 

0

 

72

 

 

 

 

 

72

 

TC07-30

 

285

 

19

 

1

 

275

 

14

 

36

 

285

 

TC07-31

 

362

 

14

 

0

 

362

 

6

 

 

 

362

 

TC07-32

 

288

 

3

 

0

 

288

 

1

 

 

 

288

 

TC07-33

 

183

 

9

 

0

 

183

 

2

 

 

 

183

 

TC07-34

 

266

 

5

 

0

 

266

 

2

 

 

 

266

 

TC07-35

 

212

 

9

 

0

 

212

 

8

 

 

 

212

 

TC07-36

 

217

 

16

 

3

 

217

 

14

 

17

 

217

 

TC07-37

 

359

 

1

 

0

 

359

 

 

 

 

 

359

 

TC07-38

 

306

 

3

 

0

 

306

 

2

 

 

 

306

 

 

Appendix 3-2



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC07-39

 

227

 

2

 

0

 

227

 

1

 

 

 

227

 

TC07-40

 

252

 

0

 

0

 

252

 

 

 

 

 

252

 

TC07-41

 

306

 

12

 

0

 

306

 

7

 

 

 

306

 

TC07-42

 

163

 

1

 

0

 

163

 

 

 

42

 

163

 

TC07-43

 

247

 

16

 

3

 

247

 

10

 

 

 

247

 

TC07-44

 

160

 

0

 

0

 

160

 

 

 

 

 

47

 

TC07-45

 

238

 

6

 

0

 

238

 

3

 

 

 

238

 

TC08-46

 

393

 

3

 

0

 

393

 

1

 

 

 

157

 

TC08-47

 

309

 

6

 

1

 

309

 

3

 

 

 

309

 

TC08-48

 

475

 

0

 

0

 

475

 

 

 

 

 

 

 

TC08-49

 

369

 

1

 

0

 

369

 

 

 

 

 

 

 

TC08-50

 

244

 

1

 

0

 

244

 

 

 

 

 

 

 

TC08-51

 

246

 

0

 

0

 

246

 

 

 

 

 

 

 

TC08-52

 

325

 

6

 

0

 

325

 

4

 

 

 

 

 

TC08-53

 

96

 

0

 

0

 

96

 

 

 

 

 

 

 

TC08-54

 

584

 

54

 

2

 

523

 

4

 

61

 

56

 

TC08-54A

 

207

 

28

 

0

 

166

 

7

 

41

 

 

 

TC08-54B

 

255

 

14

 

0

 

255

 

 

 

27

 

 

 

TC08-54C

 

186

 

16

 

0

 

136

 

 

 

50

 

 

 

TC08-54D

 

326

 

46

 

1

 

326

 

4

 

78

 

 

 

TC08-55

 

264

 

6

 

0

 

264

 

1

 

 

 

 

 

TC08-56

 

356

 

11

 

0

 

356

 

2

 

 

 

 

 

TC08-57

 

418

 

6

 

0

 

418

 

4

 

 

 

 

 

TC08-58

 

246

 

7

 

0

 

246

 

5

 

 

 

 

 

TC08-59

 

180

 

0

 

0

 

180

 

 

 

 

 

 

 

TC08-60

 

386

 

28

 

0

 

355

 

4

 

44

 

31

 

TC08-61

 

354

 

4

 

0

 

354

 

1

 

 

 

 

 

TC08-62

 

356

 

0

 

0

 

356

 

 

 

 

 

 

 

TC08-63

 

467

 

1

 

0

 

467

 

 

 

 

 

 

 

TC08-64

 

603

 

19

 

0

 

576

 

 

 

27

 

 

 

TC08-65

 

492

 

1

 

0

 

492

 

 

 

 

 

 

 

TC08-66

 

329

 

0

 

0

 

329

 

 

 

 

 

 

 

TC09-67

 

282

 

0

 

0

 

282

 

 

 

 

 

 

 

TC09-68

 

670

 

77

 

2

 

670

 

16

 

74

 

 

 

TC09-68A

 

130

 

27

 

2

 

130

 

 

 

68

 

 

 

TC09-68B

 

582

 

102

 

7

 

482

 

3

 

179

 

 

 

TC09-68C

 

460

 

88

 

0

 

315

 

9

 

145

 

 

 

TC09-68D

 

407

 

89

 

2

 

388

 

4

 

146

 

 

 

TC09-68E

 

204

 

33

 

2

 

157

 

4

 

47

 

 

 

TC09-68F

 

186

 

42

 

2

 

135

 

1

 

51

 

 

 

TC09-69

 

443

 

60

 

4

 

442

 

8

 

48

 

 

 

 

Appendix 3-3



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC09-69A

 

381

 

72

 

4

 

326

 

9

 

127

 

 

 

TC09-69B

 

414

 

37

 

5

 

348

 

 

 

66

 

 

 

TC09-69C

 

405

 

39

 

1

 

405

 

4

 

34

 

 

 

TC09-69D

 

231

 

37

 

0

 

227

 

17

 

 

 

 

 

TC09-69E

 

197

 

42

 

1

 

197

 

15

 

 

 

 

 

TC09-69F

 

542

 

93

 

2

 

519

 

34

 

23

 

 

 

TC09-69G

 

287

 

42

 

4

 

287

 

21

 

 

 

 

 

TC09-69H

 

364

 

17

 

0

 

364

 

11

 

 

 

 

 

TC09-69J

 

100

 

13

 

0

 

100

 

8

 

 

 

 

 

TC09-69K

 

173

 

10

 

1

 

173

 

3

 

 

 

 

 

TC09-70

 

520

 

9

 

0

 

520

 

 

 

29

 

 

 

TC09-71

 

768

 

2

 

0

 

768

 

 

 

 

 

 

 

TC09-71A

 

617

 

0

 

0

 

617

 

 

 

 

 

 

 

TC09-72

 

288

 

1

 

0

 

288

 

1

 

 

 

 

 

TC09-73

 

594

 

4

 

0

 

594

 

1

 

 

 

 

 

TC09-73A

 

797

 

2

 

0

 

797

 

 

 

 

 

 

 

TC09-73B

 

127

 

0

 

0

 

127

 

 

 

 

 

 

 

TC09-73C

 

607

 

20

 

0

 

603

 

7

 

4

 

 

 

TC09-73D

 

623

 

15

 

1

 

623

 

4

 

8

 

 

 

TC09-73E

 

502

 

30

 

0

 

501

 

9

 

22

 

 

 

TC09-73F

 

565

 

3

 

0

 

565

 

1

 

 

 

 

 

TC09-74

 

757

 

3

 

0

 

757

 

 

 

 

 

 

 

TC09-75

 

717

 

5

 

0

 

717

 

 

 

36

 

 

 

TC09-76

 

600

 

0

 

0

 

600

 

 

 

 

 

 

 

TC09-77

 

619

 

2

 

0

 

619

 

1

 

 

 

 

 

TC09-77A

 

28

 

0

 

0

 

28

 

 

 

 

 

 

 

TC09-78

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC09-79

 

524

 

19

 

0

 

524

 

2

 

20

 

 

 

TC09-79A

 

454

 

14

 

0

 

451

 

1

 

 

 

 

 

TC09-79B

 

681

 

1

 

0

 

680

 

30

 

 

 

 

 

TC09-79C

 

283

 

20

 

 

 

283

 

2

 

 

 

 

 

TC09-80

 

586

 

35

 

1

 

584

 

9

 

53

 

 

 

TC09-80A

 

496

 

37

 

0

 

464

 

7

 

32

 

 

 

TC09-80B

 

329

 

35

 

0

 

297

 

11

 

32

 

 

 

TC09-80C

 

302

 

45

 

2

 

219

 

5

 

83

 

 

 

TC09-80D

 

9

 

0

 

0

 

9

 

 

 

 

 

 

 

TC09-80E

 

357

 

20

 

0

 

357

 

2

 

 

 

 

 

TC09-80F

 

332

 

63

 

0

 

332

 

5

 

 

 

 

 

TC09-81

 

348

 

7

 

0

 

345

 

2

 

 

 

 

 

TC10-82

 

4

 

0

 

0

 

4

 

 

 

 

 

 

 

TC10-83

 

1

 

0

 

0

 

1

 

 

 

 

 

 

 

 

Appendix 3-4



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC10-83A

 

501

 

3

 

0

 

501

 

1

 

12

 

 

 

TC10-84

 

219

 

0

 

0

 

219

 

 

 

 

 

 

 

TC10-85

 

47

 

1

 

0

 

47

 

 

 

 

 

42

 

TC10-85A

 

504

 

7

 

0

 

492

 

 

 

 

 

313

 

TC10-85B

 

122

 

1

 

0

 

122

 

 

 

 

 

122

 

TC10-85C

 

180

 

2

 

0

 

180

 

 

 

 

 

180

 

TC11-101

 

151

 

0

 

0

 

151

 

 

 

 

 

 

 

TC11-102

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-103

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-104

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-105

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-106

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-107

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-108

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-109

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-110

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC11-111

 

192

 

2

 

0

 

144

 

 

 

48

 

 

 

TC11-111A

 

101

 

4

 

0

 

101

 

2

 

 

 

 

 

TC11-111B

 

150

 

12

 

1

 

150

 

2

 

 

 

 

 

TC11-111C

 

46

 

0

 

0

 

46

 

 

 

 

 

 

 

TC11-111D

 

149

 

0

 

0

 

149

 

 

 

 

 

 

 

TC11-112

 

287

 

86

 

6

 

184

 

4

 

141

 

 

 

TC11-112A

 

210

 

66

 

1

 

11

 

 

 

145

 

 

 

TC11-113

 

290

 

3

 

0

 

290

 

1

 

 

 

 

 

TC11-113A

 

227

 

24

 

4

 

227

 

6

 

 

 

 

 

TC11-114

 

216

 

34

 

1

 

216

 

8

 

 

 

 

 

TC11-115

 

277

 

28

 

0

 

228

 

5

 

49

 

 

 

TC11-86

 

405

 

0

 

0

 

405

 

 

 

 

 

 

 

TC11-87

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-001

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-001A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-001B

 

302

 

3

 

0

 

302

 

 

 

 

 

 

 

TC200-002

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-002A

 

211

 

15

 

1

 

211

 

10

 

 

 

 

 

TC200-003

 

148

 

1

 

0

 

148

 

 

 

 

 

 

 

TC200-004

 

174

 

20

 

3

 

174

 

6

 

 

 

 

 

TC200-005

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-005A

 

106

 

7

 

0

 

106

 

3

 

 

 

 

 

TC200-006

 

108

 

6

 

0

 

108

 

4

 

 

 

 

 

TC200-007

 

79

 

3

 

0

 

79

 

 

 

 

 

 

 

TC200-008

 

104

 

9

 

1

 

104

 

4

 

 

 

 

 

 

Appendix 3-5



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC200-009

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-009A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-009B

 

73

 

5

 

0

 

73

 

1

 

13

 

 

 

TC200-010

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-010A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-010B

 

79

 

5

 

0

 

79

 

 

 

 

 

 

 

TC200-011

 

48

 

9

 

0

 

48

 

 

 

 

 

 

 

TC200-012

 

59

 

3

 

0

 

59

 

 

 

 

 

 

 

TC200-013

 

45

 

3

 

0

 

45

 

 

 

 

 

 

 

TC200-014

 

62

 

8

 

0

 

62

 

2

 

 

 

 

 

TC200-016

 

51

 

3

 

0

 

51

 

 

 

 

 

 

 

TC200-017

 

48

 

1

 

0

 

48

 

1

 

 

 

 

 

TC200-018

 

35

 

9

 

0

 

35

 

 

 

 

 

 

 

TC200-019

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC200-019A

 

129

 

19

 

1

 

129

 

6

 

 

 

 

 

TC200-020

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC260-001

 

78

 

24

 

0

 

78

 

1

 

 

 

 

 

TC260-002

 

104

 

7

 

0

 

104

 

1

 

 

 

 

 

TC260-003

 

90

 

5

 

0

 

90

 

1

 

 

 

 

 

TC260-004

 

131

 

19

 

0

 

131

 

2

 

 

 

 

 

TC260-005

 

109

 

7

 

0

 

109

 

5

 

 

 

 

 

TC260-006

 

81

 

4

 

1

 

81

 

1

 

 

 

 

 

TC260-007

 

30

 

0

 

0

 

30

 

 

 

 

 

 

 

TC260-008

 

33

 

0

 

1

 

33

 

 

 

 

 

 

 

TC260-009

 

72

 

0

 

0

 

72

 

 

 

 

 

 

 

TC260-010

 

101

 

0

 

0

 

101

 

 

 

 

 

 

 

TC260-011

 

97

 

0

 

0

 

97

 

 

 

 

 

 

 

TC260-012

 

34

 

0

 

0

 

34

 

 

 

 

 

 

 

TC260-013

 

114

 

0

 

0

 

114

 

 

 

 

 

 

 

TC260-014

 

85

 

1

 

0

 

85

 

 

 

 

 

 

 

TC260-015

 

84

 

17

 

1

 

84

 

6

 

 

 

 

 

TC260-016

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC260-017

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC260-018

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC260-019

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC260-020

 

171

 

2

 

0

 

171

 

 

 

 

 

 

 

TC260-021

 

122

 

 

 

 

 

75

 

 

 

 

 

 

 

TC260-022

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC260-023

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-001

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-001A

 

33

 

2

 

0

 

33

 

 

 

 

 

 

 

 

Appendix 3-6



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC280-002

 

80

 

11

 

0

 

80

 

1

 

 

 

 

 

TC280-003

 

75

 

16

 

0

 

75

 

2

 

 

 

 

 

TC280-004

 

88

 

9

 

0

 

88

 

1

 

 

 

 

 

TC280-005

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-005A

 

36

 

8

 

0

 

36

 

2

 

 

 

 

 

TC280-006

 

42

 

12

 

0

 

42

 

1

 

 

 

 

 

TC280-007

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-007A

 

66

 

11

 

0

 

66

 

5

 

 

 

 

 

TC280-008

 

40

 

12

 

0

 

40

 

1

 

 

 

 

 

TC280-009

 

34

 

5

 

0

 

34

 

 

 

 

 

 

 

TC280-010

 

6

 

0

 

0

 

6

 

 

 

 

 

 

 

TC280-011

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-011A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-011B

 

63

 

11

 

0

 

63

 

3

 

 

 

 

 

TC280-012

 

53

 

4

 

0

 

53

 

 

 

 

 

 

 

TC280-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-013A

 

75

 

9

 

0

 

75

 

1

 

 

 

 

 

TC280-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-014A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-014B

 

41

 

2

 

0

 

41

 

1

 

 

 

 

 

TC280-015

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-015A

 

101

 

15

 

1

 

101

 

3

 

 

 

 

 

TC280-016

 

60

 

11

 

0

 

60

 

1

 

 

 

 

 

TC280-017

 

82

 

10

 

0

 

82

 

3

 

 

 

 

 

TC280-018

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-018A

 

47

 

18

 

0

 

47

 

3

 

 

 

 

 

TC280-019

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-019A

 

43

 

14

 

1

 

43

 

2

 

 

 

 

 

TC280-020

 

70

 

3

 

0

 

70

 

 

 

 

 

 

 

TC280-021

 

68

 

8

 

0

 

68

 

2

 

 

 

 

 

TC280-022

 

54

 

8

 

0

 

54

 

2

 

 

 

 

 

TC280-023

 

91

 

6

 

0

 

91

 

2

 

 

 

 

 

TC280-024

 

43

 

7

 

0

 

43

 

1

 

 

 

 

 

TC280-025

 

111

 

6

 

0

 

111

 

1

 

 

 

 

 

TC280-026

 

30

 

3

 

0

 

30

 

 

 

 

 

 

 

TC280-027

 

58

 

11

 

0

 

58

 

2

 

 

 

 

 

TC280-028

 

65

 

1

 

0

 

65

 

 

 

 

 

 

 

TC280-029

 

56

 

11

 

0

 

56

 

1

 

 

 

 

 

TC280-030

 

94

 

10

 

0

 

94

 

1

 

 

 

 

 

TC280-031

 

54

 

5

 

0

 

54

 

1

 

 

 

 

 

 

Appendix 3-7



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC280-032

 

108

 

9

 

0

 

108

 

 

 

 

 

 

 

TC280-033

 

84

 

6

 

0

 

84

 

1

 

 

 

 

 

TC280-034

 

81

 

10

 

1

 

55

 

 

 

26

 

 

 

TC280-035

 

72

 

10

 

0

 

72

 

 

 

 

 

 

 

TC280-036

 

51

 

6

 

0

 

51

 

3

 

 

 

 

 

TC280-037

 

58

 

13

 

0

 

58

 

1

 

 

 

 

 

TC280-038

 

100

 

9

 

0

 

100

 

 

 

 

 

 

 

TC280-040

 

42

 

3

 

0

 

42

 

 

 

 

 

 

 

TC280-041

 

52

 

1

 

0

 

52

 

 

 

 

 

 

 

TC280-042

 

33

 

7

 

0

 

33

 

 

 

 

 

 

 

TC280-043

 

30

 

5

 

0

 

30

 

1

 

 

 

 

 

TC280-044

 

77

 

2

 

0

 

77

 

1

 

 

 

 

 

TC280-045

 

97

 

6

 

0

 

97

 

1

 

 

 

 

 

TC280-046

 

99

 

12

 

0

 

99

 

 

 

 

 

 

 

TC280-047

 

83

 

9

 

0

 

83

 

1

 

 

 

 

 

TC280-048

 

69

 

14

 

1

 

69

 

5

 

 

 

 

 

TC280-049

 

76

 

3

 

0

 

76

 

 

 

 

 

 

 

TC280-050

 

62

 

6

 

0

 

62

 

 

 

 

 

 

 

TC280-051

 

70

 

12

 

0

 

70

 

1

 

 

 

 

 

TC280-052

 

94

 

20

 

0

 

94

 

2

 

 

 

 

 

TC280-053

 

141

 

8

 

3

 

141

 

2

 

 

 

 

 

TC280-054

 

119

 

10

 

1

 

119

 

2

 

 

 

 

 

TC280-055

 

95

 

2

 

0

 

95

 

 

 

 

 

 

 

TC280-056

 

53

 

9

 

0

 

53

 

1

 

 

 

 

 

TC280-057

 

68

 

12

 

0

 

68

 

1

 

 

 

 

 

TC280-058

 

36

 

5

 

0

 

36

 

 

 

 

 

 

 

TC280-059

 

50

 

6

 

0

 

50

 

1

 

 

 

 

 

TC280-060

 

67

 

8

 

0

 

67

 

 

 

 

 

 

 

TC280-061

 

75

 

9

 

0

 

75

 

1

 

 

 

 

 

TC280-062

 

43

 

2

 

0

 

43

 

 

 

 

 

 

 

TC280-063

 

98

 

0

 

0

 

98

 

 

 

 

 

 

 

TC280-064

 

132

 

3

 

0

 

132

 

 

 

 

 

 

 

TC280-065

 

37

 

2

 

0

 

37

 

 

 

 

 

 

 

TC280-066

 

81

 

3

 

0

 

81

 

 

 

 

 

 

 

TC280-067

 

41

 

4

 

0

 

41

 

 

 

 

 

 

 

TC280-068

 

75

 

12

 

0

 

75

 

 

 

 

 

 

 

TC280-069

 

109

 

0

 

0

 

109

 

 

 

 

 

 

 

TC280-070

 

180

 

12

 

0

 

180

 

1

 

 

 

 

 

TC280-071

 

59

 

4

 

0

 

59

 

2

 

 

 

 

 

TC280-072

 

63

 

1

 

0

 

63

 

 

 

 

 

 

 

TC280-073

 

71

 

9

 

0

 

71

 

1

 

 

 

 

 

 

Appendix 3-8



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC280-074

 

50

 

11

 

0

 

50

 

1

 

 

 

 

 

TC280-075

 

95

 

7

 

0

 

95

 

 

 

 

 

 

 

TC280-076

 

144

 

20

 

0

 

144

 

 

 

 

 

 

 

TC280-077

 

113

 

0

 

0

 

113

 

 

 

 

 

 

 

TC280-078

 

77

 

3

 

0

 

77

 

1

 

 

 

 

 

TC280-080

 

81

 

11

 

0

 

81

 

1

 

 

 

 

 

TC280-081

 

16

 

0

 

0

 

16

 

 

 

 

 

 

 

TC280-082

 

23

 

3

 

0

 

23

 

 

 

 

 

 

 

TC280-083

 

26

 

2

 

0

 

26

 

 

 

 

 

 

 

TC280-084

 

28

 

1

 

0

 

28

 

 

 

 

 

 

 

TC280-085

 

28

 

0

 

0

 

28

 

 

 

 

 

 

 

TC280-086

 

10

 

0

 

0

 

10

 

 

 

 

 

 

 

TC280-087

 

26

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-088

 

22

 

0

 

0

 

22

 

 

 

 

 

 

 

TC280-089

 

11

 

0

 

0

 

11

 

 

 

 

 

 

 

TC280-090

 

23

 

6

 

0

 

23

 

 

 

 

 

 

 

TC280-091

 

17

 

3

 

0

 

17

 

 

 

 

 

 

 

TC280-092

 

75

 

15

 

0

 

75

 

 

 

 

 

 

 

TC280-093

 

27

 

2

 

0

 

27

 

 

 

 

 

 

 

TC280-094

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

TC280-100

 

37

 

11

 

0

 

37

 

 

 

 

 

 

 

TC280-101

 

46

 

8

 

0

 

46

 

 

 

 

 

 

 

TC280-102

 

45

 

5

 

0

 

45

 

 

 

 

 

 

 

TC280-103

 

33

 

7

 

0

 

33

 

 

 

 

 

 

 

TC280-104

 

45

 

0

 

0

 

45

 

 

 

 

 

 

 

TC280-105

 

42

 

7

 

0

 

42

 

 

 

 

 

 

 

TC280-106

 

55

 

0

 

0

 

55

 

 

 

 

 

 

 

TC280-107

 

44

 

2

 

0

 

44

 

 

 

 

 

 

 

TC280-108

 

61

 

8

 

0

 

61

 

 

 

 

 

 

 

TC280-109

 

63

 

0

 

0

 

63

 

1

 

 

 

 

 

TC280-110

 

68

 

17

 

0

 

68

 

 

 

 

 

 

 

TC280-111

 

51

 

2

 

0

 

51

 

 

 

 

 

 

 

TC300-001

 

14

 

5

 

0

 

14

 

 

 

 

 

 

 

TC300-002

 

16

 

8

 

0

 

16

 

 

 

 

 

 

 

TC300-003

 

26

 

7

 

0

 

26

 

 

 

 

 

 

 

TC300-004

 

22

 

9

 

0

 

22

 

 

 

 

 

 

 

TC300-005

 

29

 

9

 

0

 

29

 

 

 

 

 

 

 

TC300-006

 

28

 

7

 

0

 

28

 

 

 

 

 

 

 

TC300-007

 

38

 

3

 

0

 

38

 

 

 

 

 

 

 

TC300-008

 

48

 

8

 

0

 

48

 

 

 

 

 

 

 

TC300-009

 

38

 

8

 

0

 

38

 

 

 

 

 

 

 

 

Appendix 3-9



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC300-010

 

17

 

7

 

0

 

17

 

 

 

 

 

 

 

TC300-011

 

19

 

10

 

0

 

19

 

 

 

 

 

 

 

TC300-012

 

26

 

18

 

0

 

26

 

 

 

 

 

 

 

TC300-013

 

32

 

9

 

0

 

32

 

 

 

 

 

 

 

TC300-014

 

44

 

3

 

0

 

44

 

 

 

 

 

 

 

TC300-015

 

49

 

11

 

0

 

44

 

4

 

 

 

 

 

TC300-016

 

26

 

4

 

0

 

26

 

 

 

 

 

 

 

TC300-017

 

27

 

6

 

0

 

27

 

 

 

 

 

 

 

TC300-018

 

20

 

6

 

0

 

20

 

 

 

 

 

 

 

TC300-019

 

31

 

11

 

0

 

31

 

 

 

 

 

 

 

TC300-020

 

19

 

2

 

0

 

19

 

 

 

 

 

 

 

TC300-021

 

30

 

8

 

0

 

30

 

 

 

 

 

 

 

TC320-001

 

43

 

4

 

0

 

43

 

 

 

 

 

 

 

TC320-002

 

65

 

5

 

0

 

65

 

 

 

 

 

 

 

TC320-003

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC320-003A

 

57

 

5

 

0

 

57

 

 

 

 

 

 

 

TC320-004

 

37

 

4

 

0

 

37

 

 

 

 

 

 

 

TC320-005

 

58

 

2

 

1

 

58

 

1

 

 

 

 

 

TC320-006

 

52

 

5

 

0

 

52

 

 

 

 

 

 

 

TC320-007

 

68

 

7

 

0

 

68

 

 

 

 

 

 

 

TC320-008

 

52

 

9

 

0

 

52

 

2

 

 

 

 

 

TC320-009

 

39

 

2

 

0

 

39

 

1

 

 

 

 

 

TC320-010

 

70

 

2

 

0

 

70

 

 

 

 

 

 

 

TC320-011

 

70

 

3

 

0

 

70

 

 

 

 

 

 

 

TC320-012

 

31

 

3

 

0

 

31

 

 

 

 

 

 

 

TC320-013

 

53

 

8

 

1

 

42

 

 

 

11

 

 

 

TC320-014

 

67

 

9

 

0

 

59

 

1

 

8

 

 

 

TC320-015

 

46

 

5

 

0

 

46

 

1

 

 

 

 

 

TC320-016

 

59

 

4

 

0

 

59

 

 

 

 

 

 

 

TC320-017

 

66

 

6

 

0

 

66

 

 

 

 

 

 

 

TC320-018

 

35

 

7

 

0

 

35

 

1

 

 

 

 

 

TC320-019

 

48

 

4

 

0

 

48

 

1

 

 

 

 

 

TC320-020

 

30

 

3

 

0

 

30

 

 

 

 

 

 

 

TC320-021

 

40

 

10

 

0

 

40

 

 

 

 

 

 

 

TC320-022

 

65

 

7

 

0

 

65

 

1

 

 

 

 

 

TC320-023

 

52

 

13

 

0

 

52

 

3

 

 

 

 

 

TC320-024

 

55

 

8

 

0

 

55

 

3

 

 

 

 

 

TC320-025

 

66

 

5

 

0

 

66

 

1

 

 

 

 

 

TC320-026

 

32

 

0

 

0

 

32

 

 

 

 

 

 

 

TC320-027

 

59

 

2

 

0

 

59

 

 

 

 

 

 

 

TC320-028

 

47

 

4

 

0

 

47

 

 

 

 

 

 

 

 

Appendix 3-10



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC320-029

 

58

 

4

 

0

 

58

 

1

 

 

 

 

 

TC320-030

 

56

 

3

 

0

 

56

 

1

 

 

 

 

 

TC320-031

 

43

 

1

 

0

 

43

 

 

 

 

 

 

 

TC320-032

 

72

 

6

 

0

 

72

 

 

 

 

 

 

 

TC320-033

 

54

 

12

 

0

 

54

 

2

 

 

 

 

 

TC320-034

 

50

 

9

 

0

 

50

 

1

 

 

 

 

 

TC320-035

 

46

 

7

 

0

 

46

 

 

 

 

 

 

 

TC320-036

 

39

 

1

 

0

 

39

 

 

 

 

 

 

 

TC320-037

 

62

 

3

 

0

 

62

 

 

 

 

 

 

 

TC320-038

 

33

 

1

 

0

 

33

 

 

 

 

 

 

 

TC320-039

 

25

 

1

 

0

 

25

 

 

 

 

 

 

 

TC320-040

 

52

 

7

 

0

 

52

 

 

 

 

 

 

 

TC320-041

 

45

 

4

 

0

 

45

 

 

 

 

 

 

 

TC320-042

 

33

 

1

 

0

 

33

 

1

 

 

 

 

 

TC320-043

 

45

 

5

 

0

 

45

 

 

 

 

 

 

 

TC320-044

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC320-045

 

59

 

0

 

0

 

59

 

 

 

 

 

 

 

TC320-046

 

29

 

1

 

0

 

29

 

 

 

 

 

 

 

TC320-047

 

50

 

3

 

0

 

50

 

 

 

 

 

 

 

TC320-048

 

49

 

6

 

0

 

49

 

2

 

 

 

 

 

TC320-049

 

86

 

5

 

0

 

86

 

1

 

 

 

 

 

TC320-050

 

66

 

3

 

1

 

66

 

1

 

 

 

 

 

TC320-051

 

38

 

10

 

0

 

38

 

2

 

 

 

 

 

TC320-052

 

41

 

13

 

0

 

41

 

1

 

 

 

 

 

TC320-053

 

53

 

14

 

0

 

53

 

3

 

 

 

 

 

TC320-054

 

81

 

13

 

0

 

81

 

 

 

 

 

 

 

TC320-055

 

78

 

14

 

1

 

78

 

 

 

 

 

 

 

TC320-056

 

75

 

4

 

0

 

65

 

 

 

 

 

 

 

TC320-057

 

68

 

1

 

0

 

68

 

 

 

 

 

 

 

TC320-058

 

65

 

3

 

0

 

65

 

 

 

 

 

 

 

TC320-059

 

63

 

7

 

0

 

51

 

 

 

 

 

 

 

TC320-060

 

109

 

3

 

0

 

109

 

 

 

 

 

 

 

TC320-061

 

79

 

5

 

0

 

79

 

 

 

 

 

 

 

TC320-062

 

85

 

3

 

0

 

85

 

 

 

 

 

 

 

TC330-001

 

35

 

10

 

0

 

35

 

1

 

 

 

 

 

TC330-002

 

39

 

8

 

0

 

39

 

1

 

 

 

 

 

TC330-003

 

33

 

13

 

0

 

33

 

2

 

 

 

 

 

TC330-004

 

64

 

12

 

0

 

64

 

2

 

 

 

 

 

TC330-005

 

53

 

4

 

0

 

53

 

1

 

 

 

 

 

TC330-006

 

42

 

5

 

1

 

42

 

 

 

 

 

 

 

 

Appendix 3-11



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC330-007

 

53

 

6

 

0

 

53

 

 

 

 

 

 

 

TC330-008

 

69

 

10

 

0

 

69

 

 

 

 

 

 

 

TC330-009

 

55

 

4

 

0

 

55

 

 

 

 

 

 

 

TC330-010

 

56

 

1

 

0

 

56

 

 

 

 

 

 

 

TC330-011

 

53

 

7

 

0

 

53

 

 

 

 

 

 

 

TC330-012

 

54

 

7

 

0

 

54

 

1

 

 

 

 

 

TC330-013

 

38

 

4

 

0

 

38

 

 

 

 

 

 

 

TC330-014

 

48

 

0

 

0

 

48

 

 

 

 

 

 

 

TC330-015

 

35

 

8

 

0

 

35

 

3

 

 

 

 

 

TC330-016

 

55

 

1

 

0

 

55

 

 

 

 

 

 

 

TC330-017

 

50

 

5

 

0

 

50

 

 

 

 

 

 

 

TC330-018

 

32

 

7

 

0

 

32

 

 

 

 

 

 

 

TC330-019

 

39

 

9

 

0

 

39

 

1

 

 

 

 

 

TC330-020

 

58

 

5

 

0

 

58

 

1

 

 

 

 

 

TC330-021

 

75

 

5

 

1

 

75

 

1

 

 

 

 

 

TC330-025

 

53

 

8

 

1

 

53

 

3

 

 

 

 

 

TC330-026

 

53

 

18

 

0

 

53

 

1

 

 

 

 

 

TC330-027

 

86

 

16

 

0

 

86

 

3

 

 

 

 

 

TC330-028

 

72

 

0

 

0

 

72

 

 

 

 

 

 

 

TC330-029

 

90

 

18

 

0

 

90

 

2

 

 

 

 

 

TC330-030

 

121

 

7

 

0

 

121

 

2

 

 

 

 

 

TC330-031

 

67

 

4

 

0

 

67

 

 

 

 

 

 

 

TC330-032

 

56

 

1

 

0

 

56

 

 

 

 

 

 

 

TC330-033

 

66

 

3

 

0

 

66

 

 

 

 

 

 

 

TC330-034

 

85

 

3

 

0

 

85

 

 

 

 

 

 

 

TC330-035

 

85

 

3

 

0

 

85

 

 

 

 

 

 

 

TC330-036

 

20

 

0

 

0

 

20

 

 

 

 

 

 

 

TC330-037

 

32

 

0

 

0

 

32

 

 

 

 

 

 

 

TC330-038

 

58

 

1

 

0

 

58

 

 

 

 

 

 

 

TC330-039

 

97

 

28

 

3

 

97

 

10

 

 

 

 

 

TC330-040

 

87

 

4

 

0

 

87

 

 

 

 

 

 

 

TC330-041

 

72

 

0

 

0

 

72

 

 

 

 

 

 

 

TC330-042

 

86

 

5

 

0

 

86

 

 

 

 

 

 

 

TC330-043

 

77

 

0

 

0

 

77

 

 

 

 

 

 

 

TC350-001

 

90

 

6

 

0

 

90

 

 

 

 

 

 

 

TC350-002

 

41

 

12

 

1

 

41

 

 

 

 

 

 

 

TC350-003

 

37

 

8

 

0

 

37

 

 

 

 

 

 

 

TC350-004

 

39

 

12

 

0

 

39

 

 

 

 

 

 

 

 

Appendix 3-12



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC650-001

 

227

 

55

 

4

 

227

 

7

 

 

 

 

 

TC650-002

 

246

 

8

 

0

 

246

 

 

 

 

 

 

 

TC650-003

 

234

 

1

 

0

 

234

 

 

 

 

 

 

 

TC650-004

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC650-004B

 

181

 

51

 

2

 

181

 

10

 

 

 

 

 

TC650-005

 

144

 

32

 

0

 

144

 

9

 

 

 

 

 

TC650-006

 

21

 

0

 

0

 

21

 

 

 

 

 

 

 

TC650-007

 

197

 

40

 

0

 

197

 

2

 

 

 

 

 

TC680-001

 

197

 

0

 

0

 

163

 

 

 

 

 

 

 

TC680-002

 

325

 

0

 

0

 

325

 

 

 

 

 

 

 

TC680-003

 

456

 

1

 

0

 

456

 

 

 

 

 

 

 

TC680-004

 

401

 

 

 

 

 

 

 

 

 

 

 

 

 

TC680-005

 

601

 

 

 

 

 

 

 

 

 

 

 

 

 

TC680-006

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC680-007

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC680-008

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC680-009

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-001

 

186

 

40

 

0

 

186

 

 

 

 

 

 

 

TC710-002

 

189

 

19

 

0

 

189

 

 

 

 

 

 

 

TC710-003

 

214

 

16

 

0

 

214

 

 

 

 

 

 

 

TC710-004

 

160

 

36

 

0

 

160

 

3

 

 

 

 

 

TC710-005

 

130

 

24

 

2

 

130

 

 

 

 

 

 

 

TC710-006

 

209

 

37

 

0

 

209

 

7

 

 

 

 

 

TC710-007

 

221

 

0

 

0

 

75

 

 

 

 

 

 

 

TC710-008

 

265

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-009

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-010

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-011

 

476

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-012

 

281

 

21

 

0

 

281

 

 

 

 

 

 

 

TC710-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-015

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-016

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-017

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-018

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-019

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-021

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-022

 

161

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-023

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TC710-024

 

191

 

41

 

0

 

135

 

 

 

 

 

 

 

TC730-001

 

157

 

48

 

1

 

58

 

 

 

133

 

 

 

 

Appendix 3-13



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC730-002

 

101

 

30

 

0

 

101

 

8

 

 

 

 

 

TC730-003

 

113

 

25

 

4

 

96

 

 

 

17

 

 

 

TC730-004

 

140

 

63

 

6

 

140

 

24

 

 

 

 

 

TC730-005

 

156

 

61

 

0

 

156

 

11

 

 

 

 

 

TC730-006

 

123

 

41

 

0

 

123

 

4

 

 

 

 

 

TC730-007

 

104

 

26

 

0

 

104

 

4

 

 

 

 

 

TC730-008

 

108

 

27

 

2

 

108

 

6

 

 

 

 

 

TC730-009

 

222

 

58

 

4

 

198

 

5

 

24

 

 

 

TC730-010

 

177

 

75

 

4

 

177

 

21

 

 

 

 

 

TC730-011

 

146

 

67

 

4

 

146

 

24

 

 

 

 

 

TC730-012

 

141

 

65

 

8

 

141

 

20

 

 

 

 

 

TC730-013

 

173

 

52

 

1

 

173

 

8

 

 

 

 

 

TC730-014

 

86

 

31

 

0

 

86

 

3

 

 

 

 

 

TC730-015

 

83

 

17

 

1

 

83

 

3

 

 

 

 

 

TC730-016

 

84

 

21

 

1

 

84

 

2

 

 

 

 

 

TC730-017

 

95

 

25

 

0

 

95

 

3

 

 

 

 

 

TC730-018

 

112

 

31

 

2

 

112

 

7

 

 

 

 

 

TC730-019

 

103

 

45

 

1

 

103

 

11

 

 

 

 

 

TC730-020

 

92

 

21

 

3

 

83

 

3

 

 

 

 

 

TC730-021

 

66

 

15

 

0

 

66

 

1

 

 

 

 

 

TC730-022

 

71

 

26

 

0

 

71

 

 

 

 

 

 

 

TC730-023

 

106

 

28

 

1

 

106

 

2

 

 

 

 

 

TC730-024

 

102

 

8

 

1

 

102

 

1

 

 

 

 

 

TC730-025

 

39

 

9

 

0

 

39

 

 

 

 

 

 

 

TC730-026

 

33

 

3

 

0

 

33

 

1

 

 

 

 

 

TC730-027

 

49

 

3

 

0

 

49

 

 

 

 

 

 

 

TC730-028

 

47

 

4

 

0

 

47

 

1

 

 

 

 

 

TC730-029

 

49

 

14

 

0

 

49

 

2

 

 

 

 

 

TC730-030

 

608

 

55

 

2

 

608

 

4

 

 

 

 

 

TC730-031

 

44

 

4

 

0

 

44

 

1

 

 

 

 

 

TC730-032

 

48

 

4

 

0

 

48

 

 

 

 

 

 

 

TC730-033

 

61

 

6

 

0

 

61

 

 

 

 

 

 

 

TC730-034

 

57

 

10

 

0

 

57

 

 

 

 

 

 

 

TC730-035

 

54

 

10

 

0

 

54

 

 

 

 

 

 

 

TC730-036

 

60

 

4

 

1

 

60

 

1

 

 

 

 

 

TC730-037

 

58

 

9

 

0

 

58

 

 

 

 

 

 

 

TC730-038

 

53

 

12

 

1

 

53

 

3

 

 

 

 

 

TC730-039

 

52

 

19

 

2

 

52

 

5

 

 

 

 

 

TC730-040

 

56

 

16

 

0

 

56

 

2

 

 

 

 

 

TC730-041

 

52

 

16

 

0

 

52

 

1

 

 

 

 

 

TC730-042

 

52

 

21

 

0

 

52

 

8

 

 

 

 

 

 

Appendix 3-14



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TC730-051

 

81

 

34

 

0

 

81

 

4

 

 

 

 

 

TC730-052

 

77

 

29

 

4

 

77

 

7

 

 

 

 

 

TCGRT-001

 

36

 

4

 

0

 

36

 

2

 

 

 

 

 

TCGRT-002

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TCGRT-003

 

55

 

7

 

0

 

55

 

 

 

 

 

 

 

TCGRT-004

 

76

 

6

 

0

 

76

 

 

 

 

 

 

 

TCGRT-005

 

114

 

2

 

0

 

114

 

 

 

 

 

 

 

TCGRT-006

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Totals

 

67,949

 

5,298

 

157

 

64,190

 

863

 

2,377

 

9,283

 

 

Highlighted diamond drill holes are incomplete at the closure of the database for the effective date of October 28, 2011.

 

TABLE 10.3b: DIAMOND DRILL CORE SAMPLING SUMMARY (TIMMINS DEPOSIT)

 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

TG05-74D

 

108

 

0

 

0

 

108

 

 

 

 

 

 

 

TG05-74E

 

337

 

17

 

0

 

274

 

3

 

63

 

 

 

TG05-74F

 

404

 

40

 

1

 

364

 

9

 

40

 

 

 

TG06-75P

 

350

 

2

 

0

 

243

 

 

 

107

 

 

 

TG06-96E

 

24

 

0

 

0

 

24

 

 

 

 

 

 

 

TG06-96F

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

TG08-178B

 

434

 

8

 

0

 

394

 

 

 

40

 

 

 

TG08-178C

 

345

 

8

 

0

 

260

 

 

 

85

 

 

 

TG08-178D

 

79

 

0

 

0

 

79

 

 

 

 

 

 

 

TG08-178E

 

234

 

15

 

0

 

136

 

 

 

98

 

 

 

TG08-178F

 

459

 

11

 

0

 

419

 

 

 

40

 

 

 

TG08-178G

 

250

 

8

 

0

 

228

 

2

 

 

 

 

 

TG08-178H

 

6

 

0

 

0

 

6

 

 

 

 

 

 

 

TG08-178J

 

271

 

9

 

0

 

197

 

 

 

74

 

 

 

TG09-181

 

299

 

8

 

0

 

259

 

 

 

40

 

 

 

110-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

110-013A

 

5

 

1

 

0

 

5

 

 

 

 

 

 

 

110-017

 

22

 

4

 

1

 

22

 

1

 

 

 

 

 

 

Appendix 3-15



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

120-001

 

24

 

0

 

0

 

24

 

 

 

 

 

 

 

120-002

 

42

 

0

 

0

 

42

 

 

 

 

 

 

 

120-003

 

43

 

0

 

0

 

43

 

 

 

 

 

 

 

120-004

 

8

 

0

 

0

 

8

 

 

 

 

 

 

 

120-004a

 

32

 

2

 

0

 

32

 

 

 

 

 

 

 

120-005a

 

39

 

3

 

0

 

39

 

 

 

 

 

 

 

120-006

 

14

 

0

 

0

 

14

 

 

 

 

 

 

 

120-006a

 

55

 

0

 

0

 

55

 

 

 

 

 

 

 

120-007a

 

64

 

0

 

1

 

64

 

3

 

3

 

 

 

120-008a

 

66

 

0

 

0

 

66

 

 

 

 

 

 

 

120-009

 

34

 

0

 

0

 

34

 

 

 

 

 

 

 

120-010

 

49

 

0

 

0

 

49

 

 

 

 

 

 

 

120-011

 

60

 

0

 

0

 

60

 

 

 

 

 

 

 

120-012

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

120-012A

 

13

 

3

 

1

 

13

 

2

 

 

 

 

 

120-013

 

51

 

4

 

0

 

51

 

 

 

 

 

 

 

120-015

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

120-015a

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

120-015b

 

33

 

10

 

0

 

33

 

 

 

 

 

 

 

120-016

 

6

 

1

 

0

 

6

 

 

 

 

 

 

 

120-017

 

21

 

1

 

0

 

21

 

 

 

 

 

 

 

120-018

 

30

 

0

 

0

 

30

 

 

 

 

 

 

 

120-019a

 

34

 

2

 

0

 

34

 

 

 

 

 

 

 

120-021

 

21

 

3

 

0

 

21

 

 

 

 

 

 

 

120-022

 

21

 

5

 

2

 

21

 

3

 

 

 

 

 

120-023

 

17

 

0

 

0

 

17

 

 

 

 

 

 

 

120-025

 

12

 

0

 

0

 

12

 

 

 

 

 

 

 

120-026

 

26

 

2

 

0

 

26

 

 

 

 

 

 

 

120-027

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

120-027a

 

13

 

1

 

1

 

13

 

1

 

 

 

 

 

120-028

 

18

 

2

 

0

 

18

 

 

 

 

 

 

 

140-002

 

28

 

2

 

0

 

28

 

 

 

 

 

 

 

140-004a

 

10

 

0

 

0

 

10

 

3

 

 

 

 

 

140-011

 

80

 

10

 

0

 

80

 

2

 

 

 

 

 

140-012

 

62

 

23

 

1

 

62

 

2

 

 

 

 

 

140-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

140-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

140-014a

 

52

 

23

 

1

 

52

 

1

 

 

 

 

 

140-015

 

96

 

17

 

1

 

96

 

2

 

 

 

 

 

140-017

 

41

 

8

 

0

 

41

 

1

 

1

 

 

 

140-019

 

43

 

11

 

1

 

43

 

2

 

 

 

 

 

 

Appendix 3-16



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

140-020

 

72

 

5

 

0

 

72

 

 

 

 

 

 

 

140-021

 

80

 

2

 

0

 

80

 

 

 

 

 

 

 

140-022

 

79

 

9

 

0

 

79

 

1

 

 

 

 

 

140-023

 

45

 

3

 

0

 

45

 

 

 

1

 

 

 

140-025

 

37

 

3

 

0

 

37

 

 

 

 

 

 

 

140-026

 

99

 

0

 

0

 

99

 

 

 

 

 

 

 

140-027

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

140-027a

 

83

 

6

 

0

 

83

 

2

 

1

 

 

 

150-001

 

11

 

1

 

0

 

11

 

 

 

 

 

 

 

150-002

 

11

 

1

 

0

 

11

 

 

 

 

 

 

 

150-003

 

14

 

1

 

0

 

14

 

 

 

 

 

 

 

150-004

 

24

 

4

 

0

 

24

 

 

 

 

 

 

 

150-005

 

11

 

1

 

0

 

11

 

 

 

 

 

 

 

150-006

 

5

 

0

 

0

 

5

 

 

 

 

 

 

 

150-007

 

25

 

2

 

0

 

25

 

 

 

 

 

 

 

150-008

 

26

 

3

 

0

 

26

 

1

 

 

 

 

 

150-009

 

35

 

5

 

0

 

35

 

 

 

 

 

 

 

150-012

 

74

 

7

 

1

 

74

 

 

 

 

 

 

 

150-013

 

110

 

11

 

0

 

110

 

 

 

 

 

 

 

150-015

 

55

 

9

 

0

 

55

 

 

 

 

 

 

 

150-016

 

50

 

9

 

0

 

50

 

 

 

 

 

 

 

150-017

 

98

 

6

 

0

 

98

 

 

 

 

 

 

 

150-018

 

47

 

6

 

0

 

47

 

 

 

 

 

 

 

150-019

 

62

 

7

 

0

 

62

 

 

 

 

 

 

 

150-020

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

150-020A

 

70

 

7

 

0

 

70

 

 

 

 

 

 

 

150-021

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

170-001

 

49

 

18

 

0

 

49

 

3

 

 

 

 

 

170-002

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

170-002a

 

70

 

22

 

0

 

70

 

2

 

 

 

 

 

170-003

 

83

 

30

 

1

 

83

 

4

 

 

 

 

 

170-004

 

46

 

10

 

1

 

46

 

3

 

 

 

 

 

170-005

 

70

 

19

 

1

 

70

 

1

 

1

 

 

 

170-006

 

37

 

6

 

1

 

37

 

2

 

2

 

 

 

170-007

 

72

 

25

 

0

 

72

 

3

 

3

 

 

 

170-008

 

21

 

14

 

0

 

21

 

1

 

 

 

 

 

170-009

 

45

 

17

 

1

 

45

 

1

 

3

 

 

 

170-010

 

52

 

22

 

0

 

52

 

 

 

 

 

 

 

170-011

 

56

 

17

 

0

 

56

 

 

 

 

 

 

 

170-012

 

29

 

13

 

0

 

29

 

2

 

2

 

 

 

170-013

 

44

 

17

 

0

 

44

 

2

 

 

 

 

 

 

Appendix 3-17



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

170-014

 

28

 

16

 

1

 

28

 

 

 

 

 

 

 

170-015

 

25

 

12

 

2

 

25

 

 

 

 

 

 

 

170-016

 

39

 

11

 

0

 

39

 

 

 

 

 

 

 

170-017

 

37

 

13

 

0

 

37

 

 

 

 

 

 

 

180-002

 

69

 

10

 

0

 

69

 

 

 

 

 

 

 

180-003

 

98

 

19

 

0

 

98

 

 

 

 

 

 

 

180-004

 

22

 

4

 

0

 

22

 

1

 

 

 

 

 

180-007

 

42

 

9

 

0

 

42

 

 

 

 

 

 

 

180-008

 

14

 

3

 

0

 

14

 

 

 

 

 

 

 

180-009

 

7

 

0

 

0

 

7

 

 

 

 

 

 

 

180-010

 

10

 

0

 

0

 

10

 

 

 

 

 

 

 

180-011

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

180-012

 

8

 

0

 

0

 

8

 

 

 

 

 

 

 

180-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

180-013A

 

46

 

2

 

0

 

46

 

 

 

 

 

 

 

180-014

 

86

 

13

 

1

 

86

 

2

 

3

 

 

 

180-015

 

85

 

17

 

1

 

85

 

 

 

 

 

 

 

180-016

 

93

 

25

 

0

 

93

 

 

 

 

 

 

 

180-017

 

71

 

21

 

0

 

71

 

 

 

 

 

 

 

180-018

 

67

 

12

 

0

 

67

 

 

 

3

 

 

 

180-019

 

78

 

10

 

0

 

78

 

 

 

 

 

 

 

180-020

 

89

 

12

 

0

 

89

 

 

 

 

 

 

 

180-021

 

77

 

13

 

0

 

77

 

 

 

 

 

 

 

180-022

 

74

 

10

 

0

 

74

 

 

 

 

 

 

 

180-023

 

38

 

4

 

0

 

38

 

 

 

 

 

 

 

180-024

 

78

 

6

 

0

 

78

 

1

 

 

 

 

 

180-025

 

75

 

12

 

0

 

75

 

 

 

3

 

 

 

180-026

 

40

 

2

 

0

 

40

 

 

 

 

 

 

 

180-027

 

78

 

18

 

0

 

78

 

 

 

 

 

 

 

180-028

 

42

 

6

 

1

 

42

 

1

 

 

 

 

 

180-029

 

54

 

9

 

0

 

54

 

1

 

 

 

 

 

180-030

 

35

 

15

 

0

 

35

 

 

 

 

 

 

 

180-031

 

68

 

15

 

2

 

68

 

 

 

 

 

 

 

180-032

 

126

 

22

 

0

 

126

 

 

 

 

 

 

 

180-033A

 

79

 

8

 

0

 

79

 

 

 

 

 

 

 

180-034

 

75

 

30

 

0

 

75

 

 

 

 

 

 

 

180-035

 

87

 

21

 

0

 

87

 

1

 

 

 

 

 

180-036

 

95

 

12

 

1

 

95

 

 

 

 

 

 

 

180-037

 

101

 

20

 

0

 

101

 

 

 

 

 

 

 

180-038

 

49

 

6

 

0

 

49

 

 

 

 

 

 

 

180-039

 

83

 

15

 

0

 

83

 

 

 

 

 

 

 

 

Appendix 3-18



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

180-040

 

48

 

11

 

0

 

48

 

 

 

 

 

 

 

180-041

 

54

 

9

 

0

 

54

 

 

 

 

 

 

 

180-042

 

46

 

16

 

0

 

46

 

 

 

 

 

 

 

180-043

 

51

 

9

 

1

 

51

 

1

 

 

 

 

 

180-044

 

38

 

6

 

0

 

38

 

 

 

 

 

 

 

180-045

 

45

 

1

 

0

 

45

 

 

 

 

 

 

 

180-046

 

45

 

9

 

0

 

45

 

 

 

 

 

 

 

180-047

 

47

 

7

 

0

 

47

 

 

 

 

 

 

 

180-048

 

40

 

4

 

0

 

40

 

 

 

 

 

 

 

180-049

 

42

 

8

 

0

 

42

 

 

 

 

 

 

 

180-050

 

58

 

0

 

0

 

58

 

 

 

 

 

 

 

180-051

 

62

 

3

 

0

 

62

 

 

 

 

 

 

 

180-052

 

65

 

10

 

0

 

65

 

 

 

 

 

 

 

200-001

 

14

 

0

 

0

 

14

 

 

 

 

 

 

 

200-002

 

30

 

19

 

0

 

30

 

1

 

 

 

 

 

200-003

 

27

 

6

 

0

 

27

 

 

 

 

 

 

 

200-004

 

51

 

18

 

0

 

51

 

1

 

 

 

 

 

200-005

 

43

 

26

 

0

 

43

 

5

 

3

 

 

 

200-006

 

64

 

26

 

0

 

64

 

5

 

1

 

 

 

200-007

 

51

 

23

 

0

 

51

 

3

 

1

 

 

 

200-008

 

59

 

16

 

0

 

59

 

 

 

 

 

 

 

200-009

 

66

 

5

 

0

 

66

 

1

 

 

 

 

 

20-001

 

56

 

6

 

0

 

56

 

1

 

 

 

 

 

200-010

 

58

 

7

 

0

 

58

 

 

 

 

 

 

 

20-002

 

107

 

7

 

0

 

107

 

 

 

 

 

 

 

20-005

 

87

 

12

 

0

 

87

 

3

 

 

 

 

 

20-006

 

48

 

10

 

1

 

48

 

2

 

 

 

 

 

20-007

 

17

 

0

 

0

 

17

 

 

 

 

 

 

 

20-009

 

56

 

5

 

0

 

56

 

 

 

 

 

 

 

20-010

 

32

 

0

 

0

 

32

 

 

 

 

 

 

 

20-011

 

78

 

0

 

0

 

78

 

 

 

 

 

 

 

20-012

 

80

 

4

 

0

 

80

 

 

 

 

 

 

 

20-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

200-400 FUEL

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

210-001

 

70

 

6

 

0

 

70

 

 

 

 

 

 

 

210-002

 

25

 

3

 

0

 

25

 

 

 

 

 

 

 

210-003

 

47

 

12

 

2

 

47

 

 

 

 

 

 

 

210-004

 

29

 

8

 

0

 

29

 

 

 

 

 

 

 

210-005

 

32

 

8

 

1

 

32

 

 

 

 

 

 

 

210-006

 

26

 

6

 

0

 

26

 

 

 

 

 

 

 

210-007

 

54

 

4

 

0

 

54

 

 

 

 

 

 

 

 

Appendix 3-19



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

210-008

 

34

 

1

 

0

 

34

 

 

 

 

 

 

 

210-009

 

54

 

10

 

0

 

54

 

 

 

 

 

 

 

210-010

 

33

 

6

 

0

 

33

 

 

 

 

 

 

 

210-011

 

80

 

16

 

2

 

80

 

1

 

 

 

 

 

210-012

 

50

 

11

 

3

 

50

 

2

 

 

 

 

 

210-013

 

43

 

7

 

0

 

43

 

 

 

 

 

 

 

210-014

 

85

 

7

 

0

 

85

 

 

 

 

 

 

 

210-015

 

12

 

1

 

0

 

12

 

 

 

 

 

 

 

210-015A

 

48

 

6

 

0

 

48

 

 

 

 

 

 

 

210-016

 

90

 

13

 

0

 

90

 

 

 

 

 

 

 

210-017

 

83

 

8

 

0

 

83

 

 

 

 

 

 

 

210-018

 

76

 

7

 

0

 

76

 

 

 

 

 

 

 

210-019

 

88

 

11

 

0

 

88

 

1

 

 

 

 

 

210-020

 

56

 

7

 

0

 

56

 

 

 

 

 

 

 

210-021

 

86

 

12

 

0

 

86

 

 

 

 

 

 

 

210-029

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

210-030

 

74

 

20

 

0

 

74

 

 

 

 

 

 

 

210-031

 

87

 

12

 

0

 

87

 

1

 

 

 

 

 

210-032

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

230-001

 

66

 

2

 

0

 

66

 

 

 

 

 

 

 

230-002

 

72

 

19

 

0

 

72

 

 

 

 

 

 

 

230-003

 

62

 

10

 

1

 

62

 

 

 

 

 

 

 

230-004

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

230-004A

 

71

 

14

 

0

 

71

 

 

 

 

 

 

 

230-005

 

64

 

17

 

1

 

64

 

 

 

 

 

 

 

230-006

 

59

 

29

 

1

 

59

 

 

 

 

 

 

 

230-007

 

77

 

30

 

2

 

77

 

 

 

 

 

 

 

230-008

 

64

 

23

 

1

 

64

 

 

 

 

 

 

 

230-009

 

63

 

18

 

2

 

63

 

 

 

 

 

 

 

230-010

 

55

 

7

 

0

 

55

 

 

 

 

 

 

 

230-011

 

56

 

18

 

0

 

56

 

 

 

 

 

 

 

230-012

 

46

 

26

 

0

 

46

 

 

 

 

 

 

 

230-013

 

47

 

21

 

0

 

47

 

 

 

 

 

 

 

230-014

 

42

 

28

 

2

 

42

 

 

 

 

 

 

 

230-015

 

51

 

10

 

1

 

51

 

 

 

 

 

 

 

230-016

 

46

 

19

 

1

 

46

 

 

 

 

 

 

 

230-017

 

53

 

26

 

2

 

53

 

 

 

 

 

 

 

230-018

 

33

 

18

 

0

 

33

 

 

 

 

 

 

 

230-019

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

230-020

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

230-021

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3-20



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

230-023

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

240-001

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

240-001A

 

96

 

24

 

1

 

96

 

 

 

 

 

 

 

240-002

 

92

 

18

 

0

 

92

 

 

 

 

 

 

 

240-003

 

88

 

27

 

0

 

88

 

2

 

 

 

 

 

240-004

 

50

 

10

 

0

 

50

 

 

 

 

 

 

 

240-005

 

79

 

8

 

0

 

79

 

 

 

 

 

 

 

240-006

 

108

 

10

 

0

 

108

 

1

 

 

 

 

 

240-007A

 

72

 

10

 

1

 

72

 

1

 

 

 

 

 

240-008

 

73

 

4

 

0

 

73

 

 

 

 

 

 

 

240-009

 

104

 

15

 

1

 

104

 

1

 

 

 

 

 

240-010

 

59

 

12

 

0

 

59

 

2

 

 

 

 

 

240-011

 

93

 

12

 

0

 

93

 

 

 

 

 

 

 

240-012

 

66

 

8

 

0

 

66

 

1

 

 

 

 

 

240-013

 

175

 

26

 

0

 

175

 

4

 

 

 

 

 

240-014

 

105

 

23

 

0

 

105

 

 

 

 

 

 

 

240-015

 

119

 

20

 

0

 

119

 

 

 

 

 

 

 

240-016

 

88

 

19

 

0

 

88

 

1

 

 

 

 

 

240-017

 

100

 

17

 

0

 

100

 

2

 

 

 

 

 

240-018

 

126

 

30

 

4

 

126

 

7

 

 

 

 

 

240-019

 

85

 

15

 

1

 

85

 

1

 

 

 

 

 

240-020

 

99

 

17

 

1

 

99

 

1

 

 

 

 

 

240-021

 

132

 

15

 

0

 

132

 

 

 

 

 

 

 

240-022

 

64

 

7

 

0

 

64

 

 

 

 

 

 

 

240-028

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

240-029

 

73

 

1

 

0

 

73

 

 

 

 

 

 

 

240-030

 

124

 

0

 

0

 

124

 

 

 

 

 

 

 

240-031

 

3

 

0

 

0

 

3

 

 

 

 

 

 

 

260-001

 

59

 

29

 

0

 

59

 

1

 

 

 

 

 

260-002

 

36

 

10

 

1

 

36

 

 

 

 

 

 

 

260-003

 

46

 

8

 

1

 

46

 

 

 

 

 

 

 

260-004

 

77

 

23

 

0

 

77

 

1

 

 

 

 

 

260-005

 

59

 

6

 

0

 

59

 

 

 

 

 

 

 

260-006

 

89

 

19

 

0

 

89

 

 

 

 

 

 

 

260-007

 

78

 

15

 

1

 

78

 

 

 

 

 

 

 

260-008

 

74

 

25

 

0

 

74

 

 

 

 

 

 

 

260-009

 

41

 

12

 

0

 

41

 

 

 

 

 

 

 

260-010

 

47

 

4

 

0

 

47

 

 

 

 

 

 

 

260-011

 

94

 

23

 

0

 

94

 

 

 

 

 

 

 

260-012

 

22

 

7

 

0

 

22

 

 

 

 

 

 

 

260-013

 

28

 

16

 

1

 

28

 

1

 

 

 

 

 

 

Appendix 3-21



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

260-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-015

 

34

 

6

 

0

 

34

 

 

 

 

 

 

 

260-016

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-016A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-016B

 

63

 

3

 

0

 

63

 

 

 

 

 

 

 

260-017

 

49

 

11

 

1

 

49

 

2

 

 

 

 

 

260-018

 

24

 

0

 

0

 

24

 

 

 

 

 

 

 

260-019

 

28

 

11

 

0

 

28

 

 

 

 

 

 

 

260-020

 

10

 

0

 

0

 

10

 

 

 

 

 

 

 

260-021

 

23

 

0

 

0

 

23

 

 

 

 

 

 

 

260-022

 

56

 

13

 

1

 

56

 

 

 

 

 

 

 

260-023

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-024

 

75

 

3

 

0

 

75

 

 

 

 

 

 

 

260-025

 

74

 

3

 

0

 

74

 

 

 

 

 

 

 

260-026

 

6

 

0

 

0

 

6

 

 

 

 

 

 

 

260-027

 

16

 

0

 

0

 

16

 

 

 

 

 

 

 

260-028

 

18

 

0

 

0

 

18

 

 

 

 

 

 

 

260-029

 

7

 

1

 

0

 

7

 

 

 

 

 

 

 

260-030

 

14

 

0

 

0

 

14

 

 

 

 

 

 

 

260-031

 

15

 

0

 

0

 

15

 

 

 

 

 

 

 

260-032

 

8

 

0

 

0

 

8

 

 

 

 

 

 

 

260-033

 

31

 

19

 

2

 

31

 

3

 

 

 

 

 

260-034

 

64

 

8

 

0

 

64

 

2

 

 

 

 

 

260-035

 

56

 

7

 

0

 

56

 

 

 

 

 

 

 

260-036

 

51

 

3

 

0

 

51

 

 

 

 

 

 

 

260-037

 

50

 

16

 

0

 

50

 

 

 

 

 

 

 

260-038

 

95

 

10

 

0

 

95

 

1

 

 

 

 

 

260-039

 

65

 

10

 

0

 

65

 

 

 

 

 

 

 

260-040

 

60

 

8

 

1

 

60

 

1

 

 

 

 

 

260-041

 

48

 

15

 

2

 

48

 

1

 

 

 

 

 

260-042

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-043

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-044

 

102

 

21

 

1

 

102

 

4

 

 

 

 

 

260-045

 

68

 

4

 

0

 

68

 

 

 

 

 

 

 

260-046

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-047

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-048

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-049

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-050

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-051

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-052

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3-22



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

260-053

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-054

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-055

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-056

 

82

 

12

 

0

 

82

 

 

 

 

 

 

 

260-057

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-058

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-059

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-060

 

34

 

0

 

0

 

34

 

 

 

 

 

 

 

260-061

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-062

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

260-065

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

270-001

 

27

 

1

 

0

 

27

 

 

 

 

 

 

 

270-002

 

25

 

3

 

0

 

25

 

 

 

 

 

 

 

270-003

 

25

 

2

 

0

 

25

 

 

 

 

 

 

 

270-004

 

32

 

8

 

0

 

32

 

 

 

 

 

 

 

270-005

 

64

 

9

 

1

 

64

 

1

 

 

 

 

 

270-006

 

66

 

7

 

0

 

66

 

 

 

 

 

 

 

270-007

 

54

 

4

 

1

 

54

 

1

 

 

 

 

 

270-008

 

46

 

1

 

0

 

46

 

 

 

 

 

 

 

270-009

 

41

 

4

 

0

 

41

 

 

 

 

 

 

 

270-010

 

61

 

13

 

0

 

61

 

 

 

 

 

 

 

270-011

 

43

 

6

 

0

 

43

 

 

 

 

 

 

 

270-012

 

44

 

5

 

0

 

44

 

 

 

 

 

 

 

270-013

 

40

 

9

 

0

 

40

 

 

 

 

 

 

 

270-014

 

40

 

19

 

0

 

40

 

 

 

 

 

 

 

270-015

 

62

 

18

 

0

 

62

 

 

 

 

 

 

 

270-016

 

75

 

7

 

0

 

75

 

 

 

 

 

 

 

270-017

 

67

 

15

 

0

 

67

 

 

 

 

 

 

 

270-018

 

55

 

7

 

0

 

55

 

 

 

 

 

 

 

270-019

 

57

 

9

 

0

 

57

 

 

 

 

 

 

 

270-020

 

73

 

14

 

0

 

73

 

 

 

 

 

 

 

270-021

 

57

 

10

 

0

 

57

 

 

 

 

 

 

 

270-024

 

89

 

11

 

1

 

89

 

1

 

 

 

 

 

270-025

 

37

 

8

 

0

 

37

 

 

 

 

 

 

 

270-026

 

78

 

9

 

1

 

78

 

1

 

 

 

 

 

270-027

 

54

 

9

 

0

 

54

 

 

 

 

 

 

 

270-028

 

38

 

10

 

0

 

38

 

1

 

 

 

 

 

270-029

 

47

 

9

 

0

 

47

 

 

 

 

 

 

 

270-030

 

68

 

11

 

0

 

68

 

 

 

 

 

 

 

270-031

 

87

 

17

 

1

 

87

 

1

 

 

 

 

 

270-032

 

105

 

21

 

0

 

105

 

 

 

 

 

 

 

 

Appendix 3-23



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400 FUEL

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

40-024

 

27

 

0

 

0

 

27

 

 

 

 

 

 

 

40-025

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

40-027

 

34

 

0

 

0

 

34

 

 

 

 

 

 

 

40-044

 

64

 

0

 

0

 

64

 

 

 

 

 

 

 

40-045

 

81

 

3

 

0

 

81

 

 

 

 

 

 

 

40-046

 

31

 

1

 

0

 

31

 

 

 

 

 

 

 

40-047

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

480-001

 

97

 

9

 

0

 

97

 

1

 

 

 

31

 

480-002

 

98

 

15

 

0

 

98

 

1

 

 

 

 

 

480-003

 

71

 

31

 

0

 

71

 

 

 

 

 

 

 

480-004

 

85

 

19

 

0

 

85

 

 

 

 

 

 

 

480-006

 

133

 

14

 

0

 

133

 

1

 

 

 

 

 

480-007

 

129

 

3

 

0

 

129

 

 

 

 

 

 

 

480-008

 

151

 

0

 

0

 

151

 

 

 

 

 

 

 

480-009

 

51

 

7

 

0

 

51

 

 

 

 

 

 

 

480-010

 

200

 

25

 

1

 

200

 

 

 

 

 

 

 

480-011

 

207

 

32

 

0

 

207

 

1

 

 

 

 

 

480-012

 

134

 

30

 

0

 

134

 

 

 

 

 

 

 

480-013

 

177

 

26

 

1

 

177

 

2

 

 

 

 

 

480-014

 

98

 

5

 

0

 

98

 

 

 

 

 

 

 

480-015

 

86

 

2

 

0

 

86

 

 

 

 

 

 

 

480-016

 

99

 

5

 

0

 

99

 

 

 

 

 

 

 

480-017

 

93

 

4

 

0

 

93

 

1

 

 

 

 

 

480-018

 

204

 

6

 

1

 

204

 

1

 

 

 

 

 

480-019

 

194

 

0

 

0

 

194

 

 

 

 

 

 

 

480-020

 

150

 

7

 

0

 

150

 

 

 

 

 

 

 

480-021

 

177

 

21

 

0

 

177

 

 

 

 

 

 

 

480-026

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

480-027

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-001

 

115

 

29

 

0

 

115

 

 

 

 

 

 

 

500-002

 

117

 

45

 

1

 

117

 

 

 

 

 

 

 

500-003

 

106

 

25

 

0

 

106

 

 

 

 

 

 

 

500-004

 

96

 

23

 

0

 

96

 

 

 

 

 

 

 

500-005

 

114

 

26

 

0

 

114

 

 

 

 

 

 

 

500-006

 

104

 

35

 

0

 

104

 

 

 

 

 

 

 

500-007

 

84

 

39

 

0

 

84

 

 

 

 

 

 

 

500-008

 

80

 

19

 

0

 

80

 

 

 

 

 

 

 

500-009

 

106

 

25

 

0

 

106

 

 

 

 

 

 

 

500-010

 

83

 

13

 

0

 

83

 

 

 

 

 

 

 

500-011

 

104

 

25

 

1

 

104

 

3

 

 

 

 

 

 

Appendix 3-24



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500-012

 

118

 

29

 

0

 

118

 

1

 

 

 

 

 

500-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-036

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-037

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-038

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-039

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-040

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

500-041

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-001

 

36

 

2

 

0

 

36

 

 

 

 

 

 

 

525-003

 

55

 

4

 

0

 

55

 

 

 

 

 

 

 

525-004

 

143

 

36

 

0

 

143

 

3

 

 

 

 

 

525-007

 

32

 

0

 

0

 

32

 

 

 

 

 

 

 

525-008

 

62

 

6

 

1

 

62

 

1

 

 

 

 

 

525-011

 

78

 

8

 

0

 

78

 

 

 

 

 

 

 

525-012

 

41

 

6

 

0

 

41

 

 

 

 

 

 

 

525-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-015

 

62

 

11

 

0

 

62

 

 

 

 

 

 

 

525-016

 

55

 

15

 

0

 

55

 

1

 

 

 

 

 

525-017

 

42

 

10

 

0

 

42

 

1

 

 

 

 

 

525-018

 

48

 

6

 

0

 

48

 

 

 

 

 

 

 

525-019

 

55

 

10

 

0

 

55

 

 

 

 

 

 

 

525-020

 

44

 

5

 

0

 

44

 

 

 

 

 

 

 

525-021

 

53

 

3

 

0

 

53

 

 

 

 

 

 

 

525-023

 

27

 

0

 

0

 

27

 

 

 

 

 

 

 

525-024

 

65

 

3

 

0

 

65

 

1

 

 

 

 

 

525-025

 

38

 

1

 

0

 

38

 

 

 

 

 

 

 

525-026

 

64

 

1

 

1

 

64

 

1

 

 

 

 

 

525-027

 

30

 

5

 

0

 

30

 

 

 

2

 

 

 

525-029

 

92

 

0

 

0

 

92

 

 

 

 

 

 

 

525-030

 

86

 

1

 

0

 

86

 

 

 

 

 

 

 

525-031

 

97

 

0

 

0

 

97

 

 

 

 

 

 

 

525-032

 

153

 

1

 

0

 

153

 

 

 

 

 

 

 

525-033

 

169

 

0

 

0

 

169

 

 

 

 

 

 

 

525-034

 

44

 

5

 

0

 

44

 

2

 

 

 

 

 

525-035

 

62

 

10

 

0

 

62

 

3

 

 

 

 

 

525-036

 

57

 

7

 

1

 

57

 

2

 

 

 

 

 

525-037

 

44

 

7

 

0

 

44

 

 

 

 

 

 

 

525-038

 

56

 

2

 

0

 

56

 

 

 

 

 

 

 

525-039

 

40

 

8

 

0

 

40

 

 

 

 

 

 

 

525-040

 

55

 

10

 

0

 

55

 

2

 

 

 

 

 

525-041

 

67

 

15

 

0

 

67

 

3

 

 

 

 

 

 

Appendix 3-25



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525-042

 

114

 

5

 

1

 

114

 

2

 

 

 

 

 

525-043

 

76

 

0

 

0

 

76

 

 

 

 

 

 

 

525-044

 

46

 

6

 

0

 

46

 

 

 

 

 

 

 

525-045

 

39

 

4

 

0

 

39

 

 

 

 

 

 

 

525-046

 

47

 

11

 

1

 

47

 

3

 

 

 

 

 

525-047

 

22

 

0

 

0

 

22

 

 

 

 

 

 

 

525-048

 

11

 

2

 

1

 

11

 

2

 

 

 

 

 

525-049

 

60

 

5

 

0

 

60

 

 

 

 

 

 

 

525-050

 

41

 

19

 

2

 

41

 

3

 

 

 

 

 

525-051

 

23

 

4

 

0

 

23

 

1

 

 

 

 

 

525-052

 

23

 

7

 

0

 

23

 

 

 

 

 

 

 

525-053

 

65

 

8

 

0

 

65

 

 

 

 

 

 

 

525-054

 

55

 

8

 

0

 

55

 

1

 

 

 

 

 

525-055

 

41

 

13

 

0

 

41

 

2

 

 

 

 

 

525-056

 

40

 

15

 

1

 

40

 

3

 

 

 

 

 

525-057

 

64

 

9

 

2

 

64

 

2

 

 

 

 

 

525-058

 

31

 

5

 

0

 

31

 

 

 

 

 

 

 

525-059

 

55

 

7

 

0

 

55

 

 

 

 

 

 

 

525-060

 

57

 

10

 

0

 

57

 

 

 

 

 

 

 

525-061

 

48

 

16

 

4

 

48

 

10

 

 

 

 

 

525-062

 

60

 

13

 

1

 

60

 

4

 

 

 

 

 

525-063

 

56

 

12

 

0

 

56

 

 

 

 

 

 

 

525-064

 

47

 

8

 

0

 

47

 

 

 

 

 

 

 

525-065

 

25

 

0

 

0

 

25

 

 

 

 

 

 

 

525-066

 

69

 

28

 

0

 

69

 

5

 

 

 

 

 

525-067

 

69

 

16

 

2

 

69

 

2

 

 

 

 

 

525-068

 

77

 

23

 

1

 

77

 

8

 

 

 

 

 

525-069

 

55

 

28

 

1

 

55

 

10

 

 

 

 

 

525-070

 

63

 

11

 

0

 

63

 

4

 

 

 

 

 

525-071

 

71

 

30

 

1

 

71

 

7

 

 

 

 

 

525-072

 

67

 

19

 

1

 

67

 

3

 

 

 

 

 

525-073

 

13

 

0

 

0

 

13

 

 

 

 

 

 

 

525-074

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-075

 

10

 

0

 

0

 

10

 

 

 

 

 

 

 

525-076

 

17

 

1

 

0

 

17

 

 

 

 

 

 

 

525-077

 

61

 

23

 

0

 

61

 

 

 

 

 

 

 

525-078

 

49

 

17

 

1

 

49

 

2

 

 

 

 

 

525-079

 

68

 

3

 

0

 

68

 

 

 

 

 

 

 

525-080

 

56

 

14

 

0

 

56

 

1

 

 

 

 

 

525-081

 

68

 

24

 

0

 

68

 

 

 

 

 

 

 

525-082

 

71

 

6

 

0

 

71

 

 

 

 

 

 

 

 

Appendix 3-26



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525-083

 

79

 

16

 

0

 

79

 

 

 

 

 

 

 

525-084

 

94

 

18

 

0

 

94

 

 

 

 

 

 

 

525-085

 

70

 

24

 

0

 

70

 

 

 

 

 

 

 

525-086

 

36

 

8

 

0

 

36

 

 

 

 

 

 

 

525-087

 

53

 

16

 

0

 

53

 

 

 

 

 

 

 

525-088

 

37

 

24

 

0

 

37

 

 

 

 

 

 

 

525-089

 

51

 

18

 

0

 

51

 

 

 

 

 

 

 

525-090

 

26

 

9

 

0

 

26

 

 

 

 

 

 

 

525-091

 

15

 

0

 

0

 

15

 

 

 

 

 

 

 

525-092

 

22

 

2

 

0

 

22

 

 

 

 

 

 

 

525-093

 

13

 

0

 

0

 

13

 

 

 

 

 

 

 

525-094

 

89

 

3

 

0

 

89

 

 

 

 

 

 

 

525-095

 

39

 

1

 

0

 

39

 

 

 

 

 

 

 

525-096

 

46

 

1

 

0

 

46

 

 

 

 

 

 

 

525-097

 

62

 

1

 

0

 

62

 

 

 

 

 

 

 

525-098

 

51

 

0

 

0

 

51

 

 

 

 

 

 

 

525-099

 

43

 

2

 

0

 

43

 

 

 

 

 

 

 

525-100

 

47

 

3

 

0

 

47

 

 

 

 

 

 

 

525-101

 

117

 

44

 

2

 

117

 

9

 

 

 

 

 

525-102

 

104

 

22

 

3

 

104

 

6

 

 

 

 

 

525-103

 

25

 

1

 

0

 

25

 

 

 

 

 

 

 

525-104

 

26

 

10

 

0

 

26

 

 

 

 

 

 

 

525-105

 

38

 

26

 

0

 

38

 

2

 

 

 

 

 

525-106

 

41

 

19

 

0

 

41

 

 

 

 

 

 

 

525-107

 

25

 

3

 

0

 

25

 

 

 

 

 

 

 

525-108

 

31

 

11

 

0

 

31

 

 

 

 

 

 

 

525-109

 

31

 

20

 

0

 

31

 

 

 

 

 

 

 

525-110

 

14

 

5

 

0

 

14

 

 

 

 

 

 

 

525-111

 

26

 

11

 

0

 

26

 

 

 

 

 

 

 

525-112

 

22

 

9

 

0

 

22

 

 

 

 

 

 

 

525-113

 

21

 

5

 

0

 

21

 

 

 

 

 

 

 

525-114

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-115

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-116

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-117

 

29

 

6

 

1

 

29

 

1

 

 

 

 

 

525-119

 

15

 

0

 

0

 

15

 

 

 

 

 

 

 

525-120

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-130

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-131

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-132

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-133

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3-27



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

525-134

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

525-135

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-001

 

23

 

1

 

0

 

23

 

 

 

 

 

 

 

540-002

 

26

 

5

 

1

 

26

 

1

 

 

 

 

 

540-003

 

34

 

8

 

0

 

34

 

 

 

 

 

 

 

540-004

 

70

 

5

 

0

 

70

 

 

 

 

 

 

 

540-005

 

6

 

1

 

0

 

6

 

 

 

 

 

 

 

540-006

 

36

 

4

 

0

 

36

 

 

 

 

 

 

 

540-007

 

36

 

7

 

0

 

36

 

 

 

 

 

 

 

540-008

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-009

 

26

 

4

 

0

 

26

 

 

 

 

 

 

 

540-010

 

24

 

0

 

0

 

24

 

 

 

 

 

 

 

540-011

 

14

 

5

 

0

 

14

 

 

 

 

 

 

 

540-011A

 

54

 

6

 

1

 

54

 

2

 

 

 

 

 

540-012

 

16

 

1

 

0

 

16

 

 

 

 

 

 

 

540-012A

 

31

 

3

 

0

 

31

 

 

 

 

 

 

 

540-013

 

33

 

3

 

0

 

33

 

 

 

 

 

 

 

540-014

 

32

 

5

 

0

 

32

 

 

 

 

 

 

 

540-015

 

23

 

3

 

0

 

23

 

1

 

 

 

 

 

540-016

 

21

 

0

 

0

 

21

 

 

 

 

 

 

 

540-017

 

19

 

0

 

0

 

19

 

 

 

 

 

 

 

540-018

 

16

 

1

 

0

 

16

 

 

 

 

 

 

 

540-024

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-025

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-026

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-027

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-028

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-029

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-030

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-031

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-032

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

540-033

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

565-001

 

49

 

9

 

0

 

49

 

 

 

 

 

 

 

565-002

 

48

 

4

 

0

 

48

 

 

 

 

 

 

 

565-003

 

48

 

1

 

0

 

48

 

 

 

 

 

 

 

585-001

 

12

 

4

 

0

 

12

 

 

 

 

 

 

 

585-002

 

15

 

4

 

0

 

15

 

 

 

 

 

 

 

585-003

 

12

 

3

 

0

 

12

 

 

 

 

 

 

 

585-004

 

16

 

4

 

0

 

16

 

 

 

 

 

 

 

585-005

 

12

 

2

 

0

 

12

 

 

 

 

 

 

 

585-006

 

13

 

2

 

0

 

13

 

 

 

 

 

 

 

 

Appendix 3-28



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

585-007

 

13

 

6

 

0

 

13

 

 

 

 

 

 

 

585-008

 

16

 

5

 

0

 

16

 

 

 

 

 

 

 

585-009

 

13

 

2

 

0

 

13

 

 

 

 

 

 

 

585-010

 

39

 

6

 

0

 

39

 

 

 

 

 

 

 

585-011

 

9

 

3

 

0

 

9

 

 

 

 

 

 

 

585-012

 

21

 

3

 

0

 

21

 

 

 

 

 

 

 

585-013

 

27

 

1

 

0

 

27

 

 

 

 

 

 

 

585-014

 

12

 

6

 

0

 

12

 

 

 

 

 

 

 

585-015

 

9

 

2

 

0

 

9

 

 

 

 

 

 

 

585-016

 

6

 

3

 

0

 

6

 

 

 

 

 

 

 

585-017

 

29

 

9

 

0

 

29

 

 

 

 

 

 

 

585-020

 

19

 

8

 

1

 

19

 

1

 

 

 

 

 

585-021

 

13

 

0

 

0

 

13

 

 

 

 

 

 

 

585-022

 

7

 

0

 

0

 

7

 

 

 

 

 

 

 

590-001

 

22

 

1

 

0

 

22

 

 

 

 

 

 

 

590-002

 

27

 

4

 

0

 

27

 

 

 

 

 

 

 

590-003

 

13

 

2

 

0

 

13

 

 

 

 

 

 

 

590-004

 

15

 

0

 

0

 

15

 

 

 

 

 

 

 

590-005

 

32

 

5

 

0

 

32

 

 

 

 

 

 

 

590-006

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

590-007

 

33

 

1

 

0

 

33

 

 

 

 

 

 

 

590-008

 

41

 

1

 

0

 

41

 

 

 

 

 

 

 

590-009

 

39

 

0

 

0

 

39

 

 

 

 

 

 

 

590-010

 

33

 

0

 

0

 

33

 

 

 

 

 

 

 

590-011

 

38

 

3

 

0

 

38

 

 

 

 

 

 

 

590-012

 

36

 

0

 

0

 

36

 

 

 

 

 

 

 

590-013

 

38

 

1

 

0

 

38

 

 

 

 

 

 

 

590-014

 

37

 

0

 

0

 

37

 

 

 

 

 

 

 

590-016

 

28

 

2

 

0

 

28

 

 

 

 

 

 

 

590-017

 

37

 

5

 

1

 

37

 

1

 

 

 

 

 

590-018

 

25

 

0

 

0

 

25

 

 

 

 

 

 

 

60-004

 

79

 

7

 

0

 

79

 

 

 

 

 

 

 

610-001

 

31

 

7

 

1

 

31

 

2

 

 

 

 

 

610-002

 

18

 

1

 

0

 

18

 

 

 

 

 

 

 

610-003

 

11

 

0

 

0

 

11

 

 

 

 

 

 

 

610-004

 

23

 

4

 

0

 

23

 

2

 

 

 

 

 

610-005

 

47

 

0

 

0

 

47

 

 

 

 

 

 

 

610-006

 

25

 

3

 

0

 

25

 

 

 

 

 

 

 

610-007

 

25

 

0

 

0

 

25

 

 

 

 

 

 

 

610-008

 

17

 

4

 

0

 

17

 

2

 

 

 

 

 

610-009

 

51

 

1

 

0

 

51

 

 

 

 

 

 

 

 

Appendix 3-29



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

610-010

 

39

 

0

 

0

 

39

 

 

 

 

 

 

 

610-011

 

29

 

0

 

0

 

29

 

 

 

 

 

 

 

610-012

 

19

 

1

 

0

 

19

 

 

 

 

 

 

 

610-013

 

20

 

1

 

0

 

20

 

 

 

 

 

 

 

610-014

 

29

 

2

 

0

 

29

 

 

 

 

 

 

 

610-015

 

39

 

5

 

0

 

39

 

 

 

 

 

 

 

610-016

 

33

 

2

 

1

 

33

 

1

 

 

 

 

 

610-017

 

6

 

0

 

0

 

6

 

 

 

 

 

 

 

610-018

 

33

 

4

 

1

 

33

 

1

 

 

 

 

 

610-019

 

5

 

0

 

0

 

5

 

 

 

 

 

 

 

630-001

 

54

 

11

 

0

 

54

 

1

 

 

 

 

 

630-002

 

42

 

11

 

1

 

42

 

2

 

 

 

 

 

630-003

 

72

 

23

 

2

 

72

 

5

 

 

 

 

 

630-004

 

86

 

27

 

0

 

86

 

 

 

 

 

 

 

630-005

 

65

 

17

 

0

 

65

 

1

 

 

 

 

 

630-006

 

105

 

19

 

0

 

105

 

 

 

 

 

 

 

630-007

 

99

 

14

 

0

 

99

 

1

 

 

 

 

 

630-008

 

84

 

28

 

0

 

84

 

1

 

 

 

 

 

630-009

 

91

 

20

 

1

 

91

 

1

 

 

 

 

 

630-010

 

91

 

24

 

1

 

91

 

3

 

 

 

 

 

630-011

 

193

 

62

 

3

 

193

 

6

 

 

 

 

 

630-012

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

630-013

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

630-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

630-015

 

57

 

4

 

0

 

57

 

 

 

 

 

 

 

630-016

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

630-017

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

630-018

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

630-019

 

166

 

54

 

3

 

166

 

5

 

 

 

 

 

650-008

 

99

 

35

 

2

 

99

 

12

 

 

 

 

 

650-009

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-009A

 

52

 

11

 

0

 

52

 

5

 

 

 

 

 

650-010

 

117

 

18

 

0

 

117

 

1

 

 

 

 

 

650-011

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-011a

 

97

 

15

 

0

 

97

 

 

 

 

 

 

 

650-015

 

36

 

19

 

1

 

36

 

4

 

8

 

 

 

650-016

 

58

 

25

 

1

 

58

 

5

 

5

 

 

 

650-017

 

24

 

11

 

0

 

24

 

6

 

 

 

 

 

650-018

 

38

 

8

 

0

 

38

 

2

 

 

 

 

 

650-019

 

19

 

0

 

0

 

19

 

 

 

 

 

 

 

650-019a

 

81

 

29

 

1

 

81

 

10

 

 

 

 

 

 

Appendix 3-30



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650-020

 

73

 

30

 

0

 

73

 

6

 

 

 

 

 

650-021

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-021a

 

62

 

17

 

1

 

62

 

4

 

 

 

 

 

650-022

 

43

 

19

 

0

 

43

 

6

 

6

 

 

 

650-023

 

76

 

27

 

0

 

76

 

8

 

 

 

 

 

650-024

 

51

 

5

 

0

 

51

 

 

 

1

 

 

 

650-025

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-025a

 

135

 

42

 

1

 

135

 

4

 

 

 

 

 

650-026a

 

142

 

37

 

3

 

142

 

9

 

 

 

 

 

650-027

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-027a

 

70

 

20

 

0

 

70

 

3

 

 

 

 

 

650-027b

 

70

 

20

 

0

 

 

 

 

 

 

 

 

 

650-028

 

80

 

23

 

0

 

80

 

6

 

3

 

 

 

650-029

 

87

 

25

 

0

 

87

 

5

 

 

 

 

 

650-030

 

53

 

0

 

0

 

53

 

 

 

 

 

 

 

650-031

 

87

 

29

 

0

 

87

 

4

 

 

 

 

 

650-032

 

68

 

37

 

1

 

68

 

7

 

 

 

 

 

650-033

 

68

 

41

 

1

 

68

 

4

 

 

 

 

 

650-034

 

49

 

26

 

1

 

49

 

5

 

 

 

 

 

650-035

 

40

 

13

 

1

 

40

 

3

 

 

 

 

 

650-036

 

56

 

27

 

1

 

56

 

3

 

 

 

 

 

650-038

 

52

 

22

 

0

 

52

 

5

 

 

 

 

 

650-039

 

37

 

12

 

0

 

37

 

 

 

2

 

 

 

650-042

 

41

 

11

 

0

 

41

 

4

 

 

 

 

 

650-043

 

61

 

32

 

4

 

61

 

16

 

16

 

 

 

650-044

 

58

 

27

 

2

 

58

 

10

 

 

 

 

 

650-045

 

48

 

30

 

4

 

48

 

12

 

12

 

 

 

650-046

 

58

 

17

 

1

 

58

 

3

 

3

 

 

 

650-047

 

41

 

18

 

0

 

41

 

1

 

1

 

 

 

650-048

 

57

 

15

 

0

 

57

 

 

 

 

 

 

 

650-049

 

83

 

25

 

0

 

83

 

4

 

 

 

 

 

650-050

 

38

 

0

 

0

 

38

 

 

 

 

 

 

 

650-051

 

87

 

30

 

1

 

87

 

11

 

 

 

 

 

650-052

 

5

 

0

 

0

 

5

 

 

 

 

 

 

 

650-052A

 

7

 

0

 

0

 

7

 

 

 

 

 

 

 

650-053

 

6

 

0

 

0

 

6

 

 

 

 

 

 

 

650-053A

 

6

 

0

 

0

 

6

 

 

 

 

 

 

 

650-054

 

3

 

1

 

0

 

3

 

 

 

 

 

 

 

650-055

 

63

 

33

 

1

 

63

 

 

 

 

 

 

 

650-055A

 

5

 

1

 

0

 

5

 

4

 

 

 

 

 

650-056

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3-31



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650-056A

 

53

 

21

 

0

 

53

 

 

 

 

 

 

 

650-057

 

50

 

22

 

0

 

50

 

4

 

 

 

 

 

650-058

 

50

 

9

 

0

 

50

 

 

 

 

 

 

 

650-059

 

25

 

9

 

0

 

25

 

 

 

 

 

 

 

650-060

 

15

 

5

 

0

 

15

 

 

 

 

 

 

 

650-061

 

63

 

18

 

1

 

63

 

5

 

 

 

 

 

650-062

 

8

 

4

 

0

 

8

 

 

 

 

 

 

 

650-063

 

56

 

7

 

0

 

56

 

1

 

 

 

 

 

650-064

 

101

 

21

 

2

 

101

 

3

 

 

 

 

 

650-065

 

93

 

36

 

2

 

93

 

4

 

 

 

 

 

650-066

 

73

 

16

 

3

 

73

 

4

 

 

 

 

 

650-067

 

74

 

22

 

0

 

74

 

 

 

 

 

 

 

650-068

 

108

 

41

 

1

 

108

 

6

 

 

 

 

 

650-069

 

71

 

15

 

0

 

71

 

2

 

 

 

 

 

650-070

 

87

 

25

 

0

 

87

 

4

 

3

 

 

 

650-071

 

92

 

16

 

0

 

92

 

3

 

 

 

 

 

650-072

 

26

 

5

 

0

 

26

 

1

 

 

 

 

 

650-073

 

51

 

14

 

1

 

51

 

3

 

 

 

 

 

650-074

 

40

 

7

 

2

 

40

 

6

 

 

 

 

 

650-075

 

49

 

11

 

0

 

49

 

1

 

 

 

 

 

650-076

 

7

 

0

 

0

 

7

 

 

 

 

 

 

 

650-076A

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-076B

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-076C

 

136

 

47

 

1

 

136

 

7

 

 

 

 

 

650-077

 

97

 

30

 

2

 

97

 

8

 

 

 

 

 

650-078

 

71

 

40

 

5

 

71

 

10

 

 

 

 

 

650-079

 

83

 

40

 

1

 

83

 

12

 

 

 

 

 

650-080

 

63

 

6

 

0

 

63

 

1

 

 

 

 

 

650-081

 

47

 

2

 

0

 

47

 

1

 

 

 

 

 

650-082

 

35

 

0

 

0

 

35

 

 

 

 

 

 

 

650-083

 

61

 

19

 

0

 

61

 

7

 

 

 

 

 

650-084

 

45

 

21

 

0

 

45

 

3

 

1

 

 

 

650-085

 

88

 

32

 

1

 

88

 

4

 

 

 

 

 

650-086

 

72

 

22

 

1

 

72

 

3

 

 

 

 

 

650-087

 

95

 

24

 

0

 

95

 

6

 

 

 

 

 

650-088

 

77

 

17

 

0

 

77

 

 

 

 

 

 

 

650-089

 

84

 

28

 

1

 

84

 

4

 

 

 

 

 

650-090

 

106

 

44

 

1

 

106

 

7

 

 

 

 

 

650-091

 

118

 

39

 

4

 

118

 

16

 

 

 

 

 

650-092

 

147

 

23

 

0

 

147

 

1

 

 

 

 

 

650-093

 

110

 

32

 

0

 

110

 

10

 

8

 

 

 

 

Appendix 3-32



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650-094

 

90

 

29

 

2

 

90

 

11

 

8

 

 

 

650-095

 

96

 

22

 

1

 

96

 

9

 

 

 

 

 

650-096

 

120

 

49

 

5

 

120

 

19

 

 

 

 

 

650-097

 

93

 

41

 

3

 

93

 

9

 

 

 

 

 

650-098

 

90

 

24

 

1

 

90

 

5

 

 

 

 

 

650-099

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-099A

 

83

 

11

 

0

 

83

 

2

 

 

 

 

 

650-100

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-100A

 

82

 

29

 

2

 

82

 

7

 

 

 

 

 

650-101

 

93

 

21

 

1

 

93

 

6

 

6

 

 

 

650-102

 

100

 

19

 

0

 

100

 

4

 

 

 

 

 

650-103

 

39

 

6

 

0

 

39

 

 

 

 

 

 

 

650-104

 

114

 

21

 

0

 

114

 

4

 

 

 

 

 

650-105

 

105

 

37

 

0

 

105

 

5

 

 

 

 

 

650-106

 

122

 

36

 

3

 

122

 

8

 

 

 

 

 

650-107

 

26

 

0

 

0

 

26

 

 

 

 

 

 

 

650-108

 

99

 

2

 

0

 

99

 

 

 

 

 

 

 

650-109

 

131

 

9

 

0

 

131

 

 

 

 

 

 

 

650-110

 

63

 

9

 

0

 

63

 

1

 

 

 

 

 

650-111

 

106

 

26

 

1

 

106

 

6

 

 

 

 

 

650-112

 

117

 

12

 

2

 

117

 

6

 

 

 

 

 

650-113

 

79

 

16

 

0

 

79

 

1

 

 

 

 

 

650-114

 

95

 

27

 

0

 

95

 

5

 

 

 

 

 

650-115

 

67

 

11

 

0

 

67

 

2

 

 

 

 

 

650-116

 

90

 

9

 

0

 

90

 

3

 

 

 

 

 

650-117

 

120

 

29

 

0

 

120

 

4

 

 

 

 

 

650-118

 

88

 

14

 

0

 

88

 

1

 

 

 

 

 

650-119

 

87

 

30

 

1

 

87

 

6

 

 

 

 

 

650-120

 

75

 

11

 

0

 

75

 

3

 

 

 

 

 

650-121

 

44

 

9

 

0

 

44

 

2

 

 

 

 

 

650-122

 

109

 

14

 

0

 

109

 

1

 

 

 

 

 

650-123

 

136

 

24

 

2

 

136

 

6

 

 

 

 

 

650-124

 

86

 

14

 

0

 

86

 

3

 

 

 

 

 

650-125

 

87

 

25

 

5

 

87

 

11

 

 

 

 

 

650-126

 

114

 

45

 

3

 

114

 

8

 

 

 

 

 

650-127

 

151

 

74

 

7

 

151

 

25

 

 

 

 

 

650-128

 

68

 

9

 

0

 

68

 

 

 

 

 

 

 

650-129

 

180

 

45

 

0

 

180

 

7

 

 

 

 

 

650-130

 

15

 

0

 

0

 

15

 

 

 

 

 

 

 

650-131

 

49

 

16

 

0

 

49

 

1

 

 

 

 

 

650-132

 

75

 

30

 

1

 

75

 

7

 

 

 

 

 

 

Appendix 3-33



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650-133

 

65

 

27

 

3

 

65

 

11

 

 

 

 

 

650-134

 

47

 

17

 

0

 

47

 

2

 

 

 

 

 

650-135

 

47

 

13

 

0

 

47

 

1

 

 

 

 

 

650-136

 

39

 

12

 

0

 

39

 

2

 

 

 

 

 

650-137

 

69

 

18

 

0

 

69

 

5

 

 

 

 

 

650-138

 

54

 

11

 

0

 

54

 

 

 

 

 

 

 

650-139

 

66

 

8

 

0

 

66

 

1

 

 

 

 

 

650-140

 

73

 

38

 

1

 

73

 

7

 

 

 

 

 

650-141

 

64

 

15

 

0

 

64

 

1

 

 

 

 

 

650-142

 

75

 

18

 

0

 

75

 

3

 

 

 

 

 

650-143

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-144

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-145

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-146

 

66

 

22

 

3

 

66

 

12

 

 

 

 

 

650-147

 

61

 

16

 

1

 

61

 

3

 

 

 

 

 

650-148

 

74

 

20

 

1

 

74

 

9

 

 

 

 

 

650-149

 

48

 

17

 

2

 

48

 

6

 

 

 

 

 

650-150

 

64

 

17

 

1

 

64

 

3

 

 

 

 

 

650-151

 

102

 

35

 

1

 

102

 

4

 

 

 

 

 

650-152

 

45

 

15

 

0

 

45

 

3

 

 

 

 

 

650-153

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-153A

 

24

 

0

 

0

 

24

 

 

 

 

 

 

 

650-154

 

69

 

27

 

0

 

69

 

8

 

 

 

 

 

650-155

 

53

 

14

 

0

 

53

 

4

 

 

 

 

 

650-156

 

57

 

25

 

3

 

57

 

8

 

 

 

 

 

650-157

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-158

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-159

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-160

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-161

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-162

 

71

 

14

 

2

 

71

 

8

 

 

 

 

 

650-163

 

109

 

20

 

1

 

109

 

2

 

 

 

 

 

650-164

 

100

 

23

 

0

 

100

 

 

 

 

 

 

 

650-165

 

99

 

12

 

0

 

99

 

 

 

 

 

 

 

650-166

 

124

 

29

 

0

 

124

 

3

 

 

 

 

 

650-167

 

114

 

22

 

0

 

114

 

 

 

 

 

 

 

650-168

 

128

 

13

 

0

 

128

 

2

 

 

 

 

 

650-169

 

100

 

26

 

1

 

100

 

7

 

 

 

 

 

650-170

 

244

 

51

 

2

 

244

 

10

 

 

 

 

 

650-171

 

65

 

14

 

2

 

65

 

2

 

 

 

 

 

650-172

 

65

 

19

 

1

 

65

 

1

 

 

 

 

 

 

Appendix 3-34



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

650-173

 

100

 

21

 

0

 

100

 

3

 

 

 

 

 

650-174

 

97

 

29

 

4

 

97

 

4

 

 

 

 

 

650-175

 

82

 

13

 

0

 

82

 

2

 

 

 

 

 

650-176

 

87

 

8

 

0

 

87

 

1

 

 

 

 

 

650-177

 

79

 

33

 

5

 

79

 

10

 

 

 

 

 

650-178

 

74

 

17

 

0

 

74

 

1

 

 

 

 

 

650-179

 

68

 

19

 

0

 

68

 

2

 

 

 

 

 

650-180

 

247

 

48

 

2

 

247

 

7

 

 

 

 

 

650-181

 

107

 

13

 

0

 

107

 

2

 

 

 

 

 

650-182

 

174

 

20

 

1

 

174

 

4

 

 

 

 

 

650-183

 

160

 

24

 

0

 

160

 

4

 

 

 

 

 

650-184

 

235

 

11

 

0

 

235

 

3

 

 

 

 

 

650-185

 

193

 

45

 

2

 

193

 

11

 

 

 

 

 

650-186

 

209

 

31

 

0

 

209

 

4

 

 

 

 

 

650-187

 

157

 

21

 

1

 

157

 

 

 

 

 

 

 

650-188

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-189

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-190

 

203

 

15

 

1

 

203

 

3

 

 

 

 

 

650-191

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-192

 

228

 

44

 

0

 

228

 

4

 

 

 

 

 

650-194

 

70

 

10

 

0

 

70

 

1

 

 

 

 

 

650-195

 

68

 

13

 

0

 

68

 

 

 

 

 

 

 

650-196

 

81

 

8

 

1

 

81

 

2

 

 

 

 

 

650-197

 

106

 

7

 

0

 

106

 

 

 

 

 

 

 

650-198

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-199

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-200

 

127

 

21

 

0

 

127

 

 

 

 

 

 

 

650-201

 

141

 

0

 

0

 

141

 

 

 

 

 

 

 

650-202

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-203

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-204

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-205

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-220

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

650-221

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-001

 

84

 

28

 

1

 

84

 

5

 

 

 

 

 

670-002

 

136

 

37

 

0

 

136

 

11

 

 

 

 

 

670-003

 

140

 

18

 

1

 

140

 

1

 

 

 

 

 

670-004

 

120

 

11

 

0

 

120

 

 

 

 

 

 

 

670-005

 

103

 

5

 

0

 

103

 

1

 

 

 

 

 

670-006

 

116

 

18

 

0

 

116

 

1

 

 

 

 

 

670-007

 

112

 

21

 

0

 

112

 

 

 

 

 

 

 

 

Appendix 3-35



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

670-008

 

115

 

21

 

0

 

115

 

1

 

 

 

 

 

670-009

 

149

 

16

 

0

 

149

 

 

 

 

 

 

 

670-010

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-011

 

123

 

11

 

0

 

123

 

 

 

 

 

 

 

670-012

 

127

 

19

 

0

 

127

 

 

 

 

 

 

 

670-013

 

104

 

15

 

0

 

104

 

1

 

 

 

 

 

670-014

 

144

 

7

 

0

 

144

 

 

 

 

 

 

 

670-015

 

152

 

0

 

0

 

152

 

 

 

 

 

 

 

670-016

 

185

 

0

 

0

 

185

 

 

 

 

 

 

 

670-017

 

131

 

5

 

0

 

131

 

 

 

 

 

 

 

670-018

 

129

 

20

 

0

 

129

 

 

 

 

 

 

 

670-019

 

90

 

0

 

0

 

90

 

 

 

 

 

 

 

670-020

 

139

 

0

 

0

 

139

 

 

 

 

 

 

 

670-021

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-022

 

156

 

0

 

0

 

156

 

 

 

 

 

 

 

670-023

 

116

 

0

 

0

 

116

 

 

 

 

 

 

 

670-024

 

153

 

0

 

0

 

153

 

 

 

 

 

 

 

670-025

 

82

 

0

 

0

 

82

 

 

 

 

 

 

 

670-026

 

142

 

0

 

0

 

142

 

 

 

 

 

 

 

670-027

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-028

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-029

 

116

 

0

 

0

 

116

 

 

 

 

 

 

 

670-031

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-032

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

670-033

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

680-001

 

237

 

0

 

0

 

237

 

 

 

 

 

 

 

680-001A

 

101

 

0

 

0

 

101

 

 

 

 

 

 

 

680-002

 

332

 

1

 

0

 

332

 

 

 

 

 

 

 

680-002A

 

68

 

0

 

0

 

68

 

 

 

 

 

 

 

730-001

 

134

 

3

 

0

 

134

 

 

 

 

 

 

 

730-002

 

95

 

21

 

0

 

95

 

 

 

 

 

 

 

730-003

 

120

 

7

 

0

 

120

 

 

 

 

 

 

 

730-004

 

110

 

17

 

1

 

110

 

3

 

 

 

 

 

730-005

 

157

 

26

 

2

 

157

 

4

 

 

 

 

 

730-006

 

108

 

0

 

0

 

108

 

 

 

 

 

 

 

730-007

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

730-008

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

90-002

 

65

 

5

 

0

 

65

 

 

 

 

 

 

 

90-004

 

87

 

3

 

0

 

87

 

 

 

 

 

 

 

90-007

 

106

 

9

 

0

 

106

 

 

 

 

 

 

 

90-008

 

61

 

1

 

0

 

61

 

 

 

 

 

 

 

 

Appendix 3-36



 

 

 

 

 

 

 

 

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

Hole

 

Number of

 

Number Assays

 

Number of Assays

 

FA aa

 

FA g

 

metallics

 

aa

 

Number

 

Samples

 

> 1 g/tonne Au

 

> 34.29 g/tonne Au

 

Au

 

Au

 

Au

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90-009

 

43

 

2

 

1

 

43

 

 

 

1

 

 

 

90-010

 

20

 

4

 

1

 

20

 

1

 

1

 

 

 

90-011

 

23

 

1

 

0

 

23

 

 

 

 

 

 

 

90-012

 

24

 

1

 

0

 

24

 

1

 

 

 

 

 

90-013

 

24

 

0

 

0

 

24

 

 

 

 

 

 

 

90-014

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

90-020

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

90-022

 

33

 

1

 

0

 

33

 

 

 

 

 

 

 

90-023

 

22

 

0

 

0

 

22

 

 

 

 

 

 

 

90-024

 

38

 

4

 

0

 

38

 

2

 

 

 

 

 

90-025

 

40

 

3

 

0

 

40

 

1

 

 

 

 

 

90-026

 

29

 

2

 

0

 

29

 

1

 

 

 

 

 

90-027

 

20

 

1

 

0

 

20

 

 

 

 

 

 

 

90-028

 

24

 

1

 

0

 

24

 

 

 

 

 

 

 

90-030

 

22

 

1

 

0

 

22

 

1

 

 

 

 

 

90-031

 

76

 

8

 

0

 

76

 

 

 

 

 

 

 

90-032

 

82

 

2

 

0

 

82

 

 

 

 

 

 

 

90-034

 

3

 

0

 

0

 

3

 

 

 

 

 

 

 

90-034a

 

50

 

0

 

0

 

50

 

 

 

 

 

 

 

90-035

 

5

 

0

 

0

 

5

 

 

 

 

 

 

 

90-036

 

4

 

0

 

0

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Totals

 

52,203

 

8,977

 

274

 

51,524

 

1,080

 

705

 

31

 

 

Highlighted diamond drill holes are incomplete (or have no assay data) at the closure of the database for the effective date of January 31, 2012.

 

Appendix 3-37



 

APPENDIX 4

 

TABLE 10.4:  DIAMOND DRILL HOLES NOT USED IN THE BLOCK MODEL

 

Appendix 4-1



 

TABLE 10.4:  DIAMOND DRILL HOLES NOT USED IN THE BLOCK MODEL

 

Hole Number

 

Comment

TC09-78

 

Hole was abandoned due to extreme deviation, no samples taken.

TC11-102

 

Hole to test area of vent raise, no samples taken.

TC11-103

 

Hole to test area of vent raise, no samples taken.

TC11-104

 

Hole to test area of vent raise, no samples taken.

TC11-105

 

Hole to test area of vent raise, no samples taken.

TC11-106

 

Hole to test area of vent raise, no samples taken.

TC11-107

 

Hole to test area of vent raise, no samples taken.

TC11-108

 

Hole to test area of vent raise, no samples taken.

TC11-109

 

Hole to test area of vent raise, no samples taken.

TC11-110

 

Hole to test area of vent raise, no samples taken.

TC11-87

 

Drill hole is being processed, geology and assays pending.

TC200-001

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-001A

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-002

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-005

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-009

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-009A

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-010

 

Hole was abandoned due to extreme deviation, no samples taken.

TC200-010A

 

Hole was abandoned due to extreme deviation, no samples taken.

TC260-016

 

Drill hole is being processed, geology and assays pending.

TC260-017

 

Drill hole is being processed, geology and assays pending.

TC206-018

 

Hole was abandoned due to extreme deviation, no samples taken.

TC206-019

 

Hole was abandoned due to extreme deviation, no samples taken.

TC206-022

 

Drill hole is being processed, geology and assays pending.

TC206-023

 

Drill hole is being processed, geology and assays pending.

TC280-005

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-007

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-011

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-011A

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-013

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-014

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-014A

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-015

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-018

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-019

 

Hole was abandoned due to extreme deviation, no samples taken.

TC280-087

 

Drill hole is being processed, geology and assays pending.

TC280-094

 

Drill hole is being processed, geology and assays pending.

TC300-015

 

Drill hole is being processed, geology and assays pending.

TC320-003

 

Hole was abandoned due to extreme deviation, no samples taken.

TC320-044

 

Hole was abandoned due to extreme deviation, no samples taken.

TC320-056

 

Drill hole is being processed, geology and assays pending.

TC680-004

 

Drill hole is being processed, geology and assays pending.

TC680-005

 

Drill hole is being processed, geology and assays pending.

TC680-006

 

Drill hole is being processed, geology and assays pending.

TC680-007

 

Drill hole is being processed, geology and assays pending.

 

Appendix 4-2



 

Hole Number

 

Comment

TC680-008

 

Drill hole is being processed, geology and assays pending.

TC680-009

 

Drill hole is being processed, geology and assays pending.

TC710-007

 

Drill hole is being processed, geology and assays pending.

TC710-008

 

Drill hole is being processed, geology and assays pending.

TC710-009

 

Drill hole is being processed, geology and assays pending.

TC710-010

 

Drill hole is being processed, geology and assays pending.

TC710-011

 

Drill hole is being processed, geology and assays pending.

TC710-013

 

Drill hole is being processed, geology and assays pending.

TC710-014

 

Drill hole is being processed, geology and assays pending.

TC710-015

 

Drill hole is being processed, geology and assays pending.

TC710-016

 

Drill hole is being processed, geology and assays pending.

TC710-017

 

Drill hole is being processed, geology and assays pending.

TC710-018

 

Drill hole is being processed, geology and assays pending.

TC710-019

 

Drill hole is being processed, geology and assays pending.

TC710-020

 

Drill hole is being processed, geology and assays pending.

TC710-021

 

Drill hole is being processed, geology and assays pending.

TC710-023

 

Drill hole is being processed, geology and assays pending.

TC730-020

 

Drill hole is being processed, geology and assays pending.

TCGRT-002

 

A grout hole, no samples taken.

TCGRT-006

 

A grout hole, no samples taken.

TG06-96F

 

Hole shut down indefinitely @ 770m; designed to target ultramafic zone west of the existing resource on section 4350E

110-013

 

Hole was abandoned due to extreme deviation, no samples taken.

120-012

 

Hole was abandoned due to extreme deviation, no samples taken.

120-015

 

Hole was abandoned due to extreme deviation, no samples taken.

120-015a

 

Hole was abandoned due to extreme deviation, no samples taken.

120-027

 

Hole was abandoned due to extreme deviation, no samples taken.

140-013

 

Hole was abandoned due to extreme deviation, no samples taken.

140-014

 

Hole was abandoned due to extreme deviation, no samples taken.

140-027

 

Hole was abandoned due to extreme deviation, no samples taken.

150-020

 

Hole was abandoned due to extreme deviation, no samples taken.

150-021

 

No assays taken

170-002

 

Drill hole is being processed, geology and assays pending.

180-011

 

No assays taken

180-013

 

Drill hole is being processed, geology and assays pending.

20-013

 

Hole was abandoned due to extreme deviation, no samples taken.

200-400 FUEL

 

Service Hole (no assays)

210-029

 

Drill hole is being processed, geology and assays pending.

210-032

 

Drill hole is being processed, geology and assays pending.

230-004

 

Hole was abandoned due to extreme deviation, no samples taken.

230-019

 

No assays taken

230-020

 

No assays taken

230-021

 

No assays taken

230-023

 

Drill hole is being processed, geology and assays pending.

240-001

 

Hole was abandoned due to extreme deviation, no samples taken.

240-028

 

Drill hole is being processed, geology and assays pending.

260-014

 

No assays taken

 

Appendix 4-3



 

Hole Number

 

Comment

260-016

 

Hole was abandoned due to extreme deviation, no samples taken.

260-016A

 

Hole was abandoned due to extreme deviation, no samples taken.

260-023

 

No assays taken

260-042

 

Drill hole is being processed, geology and assays pending.

260-043

 

Drill hole is being processed, geology and assays pending.

260-046

 

Drill hole is being processed, geology and assays pending.

260-047

 

Drill hole is being processed, geology and assays pending.

260-048

 

Drill hole is being processed, geology and assays pending.

260-049

 

Drill hole is being processed, geology and assays pending.

260-050

 

Drill hole is being processed, geology and assays pending.

260-051

 

Drill hole is being processed, geology and assays pending.

260-052

 

Drill hole is being processed, geology and assays pending.

260-053

 

Drill hole is being processed, geology and assays pending.

260-054

 

Drill hole is being processed, geology and assays pending.

260-055

 

Drill hole is being processed, geology and assays pending.

260-057

 

Drill hole is being processed, geology and assays pending.

260-058

 

Drill hole is being processed, geology and assays pending.

260-059

 

Drill hole is being processed, geology and assays pending.

260-060

 

Drill hole is being processed, geology and assays pending.

260-061

 

Drill hole is being processed, geology and assays pending.

260-062

 

Drill hole is being processed, geology and assays pending.

260-065

 

Drill hole is being processed, geology and assays pending.

400 FUEL

 

Service Hole (not logged)

40-025

 

Hole was abandoned due to extreme deviation, no samples taken.

40-047

 

Drill hole is being processed, geology and assays pending.

480-013

 

Drill hole is being processed, geology and assays pending.

480-016

 

Drill hole is being processed, geology and assays pending.

480-019

 

Drill hole is being processed, geology and assays pending.

480-020

 

Drill hole is being processed, geology and assays pending.

480-021

 

Drill hole is being processed, geology and assays pending.

480-026

 

Drill hole is being processed, geology and assays pending.

480-027

 

Drill hole is being processed, geology and assays pending.

500-013

 

Drill hole is being processed, geology and assays pending.

500-036

 

Drill hole is being processed, geology and assays pending.

500-037

 

Drill hole is being processed, geology and assays pending.

500-038

 

Drill hole is being processed, geology and assays pending.

500-039

 

Drill hole is being processed, geology and assays pending.

500-040

 

Drill hole is being processed, geology and assays pending.

500-041

 

Drill hole is being processed, geology and assays pending.

525-014

 

No assays taken

525-074

 

No assays taken

525-114

 

Drill hole is being processed, geology and assays pending.

525-115

 

Drill hole is being processed, geology and assays pending.

525-116

 

Drill hole is being processed, geology and assays pending.

525-120

 

Drill hole is being processed, geology and assays pending.

525-130

 

Drill hole is being processed, geology and assays pending.

525-131

 

Drill hole is being processed, geology and assays pending.

 

Appendix 4-4



 

Hole Number

 

Comment

525-132

 

Drill hole is being processed, geology and assays pending.

525-133

 

Drill hole is being processed, geology and assays pending.

525-134

 

No assays taken

525-135

 

Drill hole is being processed, geology and assays pending.

540-008

 

No assays taken

540-024

 

Drill hole is being processed, geology and assays pending.

540-025

 

Drill hole is being processed, geology and assays pending.

540-026

 

Drill hole is being processed, geology and assays pending.

540-027

 

Drill hole is being processed, geology and assays pending.

540-028

 

Drill hole is being processed, geology and assays pending.

540-029

 

Drill hole is being processed, geology and assays pending.

540-030

 

Drill hole is being processed, geology and assays pending.

540-031

 

Drill hole is being processed, geology and assays pending.

540-032

 

Drill hole is being processed, geology and assays pending.

540-033

 

Drill hole is being processed, geology and assays pending.

590-006

 

Drill hole is being processed, geology and assays pending.

630-012

 

Drill hole is being processed, geology and assays pending.

630-013

 

Drill hole is being processed, geology and assays pending.

630-014

 

Drill hole is being processed, geology and assays pending.

630-016

 

Drill hole is being processed, geology and assays pending.

630-017

 

Drill hole is being processed, geology and assays pending.

630-018

 

Drill hole is being processed, geology and assays pending.

650-009

 

Drill hole is being processed, geology and assays pending.

650-011

 

Hole was abandoned due to extreme deviation, no samples taken.

650-021

 

Hole was abandoned due to extreme deviation, no samples taken.

650-025

 

Hole was abandoned due to extreme deviation, no samples taken.

650-027

 

Hole was abandoned due to extreme deviation, no samples taken.

650-027a

 

Hole was abandoned due to extreme deviation, no samples taken.

650-056

 

Hole was abandoned due to extreme deviation, no samples taken.

650-076A

 

Hole was abandoned due to extreme deviation, no samples taken.

650-076B

 

Hole was abandoned due to extreme deviation, no samples taken.

650-099

 

Hole was abandoned due to extreme deviation, no samples taken.

650-100

 

Hole was abandoned due to extreme deviation, no samples taken.

650-143

 

Drill hole is being processed, geology and assays pending.

650-144

 

Drill hole is being processed, geology and assays pending.

650-145

 

Drill hole is being processed, geology and assays pending.

650-153

 

Hole was abandoned due to extreme deviation, no samples taken.

650-157

 

Drill hole is being processed, geology and assays pending.

650-158

 

Drill hole is being processed, geology and assays pending.

650-159

 

Drill hole is being processed, geology and assays pending.

650-160

 

Drill hole is being processed, geology and assays pending.

650-161

 

Drill hole is being processed, geology and assays pending.

650-167

 

Drill hole is being processed, geology and assays pending.

650-174

 

Drill hole is being processed, geology and assays pending.

650-188

 

Drill hole is being processed, geology and assays pending.

650-189

 

Drill hole is being processed, geology and assays pending.

650-190

 

Drill hole is being processed, geology and assays pending.

 

Appendix 4-5



 

Hole Number

 

Comment

650-191

 

Drill hole is being processed, geology and assays pending.

650-197

 

Drill hole is being processed, geology and assays pending.

650-198

 

Drill hole is being processed, geology and assays pending.

650-199

 

Drill hole is being processed, geology and assays pending.

650-200

 

Drill hole is being processed, geology and assays pending.

650-201

 

Drill hole is being processed, geology and assays pending.

650-202

 

Drill hole is being processed, geology and assays pending.

650-203

 

Drill hole is being processed, geology and assays pending.

650-204

 

Drill hole is being processed, geology and assays pending.

650-205

 

Drill hole is being processed, geology and assays pending.

650-220

 

Drill hole is being processed, geology and assays pending.

650-221

 

Drill hole is being processed, geology and assays pending.

670-010

 

Drill hole is being processed, geology and assays pending.

670-014

 

Drill hole is being processed, geology and assays pending.

670-015

 

Drill hole is being processed, geology and assays pending.

670-016

 

Drill hole is being processed, geology and assays pending.

670-017

 

Drill hole is being processed, geology and assays pending.

670-018

 

Drill hole is being processed, geology and assays pending.

670-019

 

Drill hole is being processed, geology and assays pending.

670-020

 

Drill hole is being processed, geology and assays pending.

670-021

 

Drill hole is being processed, geology and assays pending.

670-022

 

Drill hole is being processed, geology and assays pending.

670-023

 

Drill hole is being processed, geology and assays pending.

670-024

 

Drill hole is being processed, geology and assays pending.

670-025

 

Drill hole is being processed, geology and assays pending.

670-026

 

Drill hole is being processed, geology and assays pending.

670-027

 

Drill hole is being processed, geology and assays pending.

670-028

 

Drill hole is being processed, geology and assays pending.

670-029

 

Drill hole is being processed, geology and assays pending.

670-031

 

Drill hole is being processed, geology and assays pending.

670-032

 

Drill hole is being processed, geology and assays pending.

670-033

 

Drill hole is being processed, geology and assays pending.

680-001A

 

Drill hole is being processed, geology and assays pending.

680-002

 

Drill hole is being processed, geology and assays pending.

680-002A

 

Drill hole is being processed, geology and assays pending.

730-003

 

Drill hole is being processed, geology and assays pending.

730-004

 

Drill hole is being processed, geology and assays pending.

730-005

 

Drill hole is being processed, geology and assays pending.

730-006

 

Drill hole is being processed, geology and assays pending.

730-007

 

Drill hole is being processed, geology and assays pending.

730-008

 

Drill hole is being processed, geology and assays pending.

90-014

 

No assays taken

90-020

 

No assays taken

 

Appendix 4-6



 

APPENDIX 5

 

TIMMINS WEST MINE SOLID INTERSECTIONS

 

Appendix 5-1



 

Thunder Creek Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TC08-54

 

644.19

 

684.06

 

4.09

 

4.09

 

39.87

 

PZ1A

 

4471.16

 

7025.31

 

9425.08

 

TC08-54A

 

649.80

 

664.97

 

2.11

 

2.11

 

15.17

 

PZ1A

 

4446.96

 

7008.94

 

9430.19

 

TC08-54B

 

620.00

 

630.47

 

4.88

 

4.88

 

10.47

 

PZ1A

 

4442.41

 

6994.22

 

9471.96

 

TC08-54C

 

619.50

 

629.00

 

1.63

 

1.63

 

9.50

 

PZ1A

 

4444.04

 

6993.07

 

9474.37

 

TC08-54D

 

623.10

 

652.20

 

4.28

 

4.28

 

29.10

 

PZ1A

 

4481.14

 

7011.45

 

9464.29

 

TC08-64

 

581.46

 

598.90

 

2.21

 

2.21

 

17.44

 

PZ1A

 

4417.86

 

6995.26

 

9497.00

 

TC09-68

 

896.05

 

900.44

 

3.49

 

3.49

 

4.40

 

PZ1A

 

4414.90

 

7095.08

 

9252.66

 

TC09-68A

 

895.76

 

900.75

 

9.32

 

9.32

 

4.99

 

PZ1A

 

4415.19

 

7094.52

 

9253.22

 

TC09-68B

 

866.30

 

871.20

 

5.61

 

5.61

 

4.90

 

PZ1A

 

4429.71

 

7085.38

 

9301.34

 

TC09-68C

 

815.80

 

848.00

 

2.80

 

2.80

 

32.20

 

PZ1A

 

4427.77

 

7078.52

 

9355.06

 

TC09-68D

 

823.99

 

839.70

 

4.85

 

4.85

 

15.71

 

PZ1A

 

4451.40

 

7068.84

 

9378.60

 

TC09-68E

 

844.50

 

850.30

 

7.16

 

7.16

 

5.80

 

PZ1A

 

4473.84

 

7096.21

 

9349.06

 

TC09-68F

 

825.50

 

849.20

 

6.54

 

6.54

 

23.70

 

PZ1A

 

4477.79

 

7079.02

 

9382.67

 

TC09-69

 

777.25

 

806.12

 

7.59

 

7.59

 

28.87

 

PZ1A

 

4383.24

 

7039.23

 

9336.72

 

TC09-69A

 

776.84

 

803.55

 

6.01

 

6.01

 

26.71

 

PZ1A

 

4384.90

 

7037.99

 

9340.00

 

TC09-69B

 

758.15

 

776.49

 

11.25

 

11.25

 

18.34

 

PZ1A

 

4395.74

 

7016.75

 

9382.22

 

TC09-69C

 

736.29

 

762.34

 

3.38

 

3.38

 

26.05

 

PZ1A

 

4416.34

 

7010.23

 

9423.03

 

TC09-69D

 

820.75

 

834.00

 

5.58

 

5.58

 

13.25

 

PZ1A

 

4362.20

 

7059.64

 

9282.89

 

TC09-69E

 

817.02

 

830.75

 

4.98

 

4.98

 

13.73

 

PZ1A

 

4359.11

 

7054.14

 

9287.03

 

TC09-69F

 

815.05

 

829.89

 

4.62

 

4.62

 

14.84

 

PZ1A

 

4359.18

 

7053.92

 

9288.91

 

TC09-69G

 

786.80

 

803.20

 

10.82

 

10.82

 

16.40

 

PZ1A

 

4363.58

 

7027.47

 

9330.00

 

TC09-69H

 

753.70

 

763.00

 

6.19

 

6.19

 

9.30

 

PZ1A

 

4370.36

 

7007.41

 

9386.01

 

TC09-69J

 

734.20

 

744.10

 

3.77

 

3.77

 

9.90

 

PZ1A

 

4377.30

 

7007.99

 

9413.51

 

TC09-69K

 

718.90

 

727.80

 

6.72

 

6.72

 

8.90

 

PZ1A

 

4358.43

 

6986.28

 

9441.13

 

TC09-80B

 

883.39

 

891.80

 

1.08

 

1.08

 

8.40

 

PZ1A

 

4455.11

 

7126.10

 

9250.82

 

TC09-80C

 

860.40

 

864.30

 

2.43

 

2.43

 

3.90

 

PZ1A

 

4458.52

 

7115.55

 

9292.20

 

TC09-80F

 

878.56

 

882.85

 

4.20

 

4.20

 

4.29

 

PZ1A

 

4414.00

 

7095.62

 

9251.13

 

TC11-111

 

758.88

 

773.86

 

0.04

 

0.04

 

14.97

 

PZ1A

 

4346.70

 

6988.02

 

9363.21

 

TC11-111A

 

782.50

 

784.50

 

9.09

 

9.09

 

2.00

 

PZ1A

 

4343.22

 

6993.60

 

9333.75

 

TC11-111B

 

726.50

 

731.50

 

9.61

 

9.61

 

5.00

 

PZ1A

 

4345.49

 

6975.30

 

9406.52

 

TC11-111C

 

728.49

 

730.64

 

0.00

 

0.00

 

2.14

 

PZ1A

 

4329.30

 

6956.91

 

9409.99

 

TC11-112

 

669.86

 

704.21

 

3.93

 

3.93

 

34.35

 

PZ1A

 

4458.70

 

7036.85

 

9407.54

 

TC11-112A

 

687.00

 

707.40

 

3.60

 

3.60

 

20.40

 

PZ1A

 

4437.07

 

7040.70

 

9385.57

 

TC11-113A

 

933.70

 

941.30

 

23.90

 

23.90

 

7.60

 

PZ1A

 

4343.83

 

7083.66

 

9215.56

 

TC11-114

 

780.91

 

799.06

 

6.18

 

6.18

 

18.16

 

PZ1A

 

4482.45

 

7104.85

 

9360.80

 

TC11-115

 

924.13

 

934.82

 

6.05

 

6.05

 

10.69

 

PZ1A

 

4355.73

 

7085.77

 

9225.83

 

TC260-003

 

353.60

 

357.10

 

5.88

 

5.88

 

3.50

 

PZ1A

 

4503.82

 

7021.61

 

9491.38

 

TC260-004

 

366.30

 

388.30

 

2.85

 

2.85

 

22.00

 

PZ1A

 

4496.13

 

7039.50

 

9448.07

 

TC260-006

 

373.00

 

379.60

 

3.99

 

3.99

 

6.60

 

PZ1A

 

4494.41

 

7087.18

 

9421.74

 

TC260-015

 

365.03

 

385.96

 

7.27

 

7.27

 

20.93

 

PZ1A

 

4411.11

 

6990.81

 

9495.34

 

TC650-001

 

335.80

 

342.10

 

2.08

 

2.08

 

6.30

 

PZ1A

 

4454.47

 

7119.97

 

9268.36

 

TC650-004B

 

355.79

 

360.53

 

2.17

 

2.17

 

4.75

 

PZ1A

 

4442.55

 

7102.97

 

9280.55

 

TC650-005

 

398.80

 

473.18

 

3.59

 

3.59

 

74.38

 

PZ1A

 

4358.34

 

7049.30

 

9302.48

 

TC710-001

 

207.00

 

250.50

 

5.21

 

5.21

 

43.50

 

PZ1A

 

4395.66

 

7061.58

 

9310.24

 

TC710-002

 

210.31

 

216.40

 

1.46

 

1.46

 

6.10

 

PZ1A

 

4399.52

 

7079.27

 

9276.77

 

TC710-003

 

283.50

 

299.30

 

1.86

 

1.86

 

15.80

 

PZ1A

 

4354.57

 

7015.05

 

9351.68

 

TC710-004

 

200.50

 

215.80

 

3.46

 

3.46

 

15.30

 

PZ1A

 

4409.39

 

7085.41

 

9255.87

 

TC710-005

 

254.02

 

311.67

 

3.52

 

3.52

 

57.65

 

PZ1A

 

4374.11

 

7020.88

 

9380.34

 

TC710-006

 

177.49

 

183.33

 

3.17

 

3.17

 

5.83

 

PZ1A

 

4434.30

 

7110.43

 

9244.03

 

TC710-024

 

169.31

 

269.75

 

2.96

 

2.96

 

100.44

 

PZ1A

 

4473.80

 

7063.76

 

9393.37

 

TC730-002

 

38.70

 

46.64

 

10.13

 

10.13

 

7.94

 

PZ1A

 

4424.38

 

7091.36

 

9287.56

 

TC730-003

 

47.89

 

54.90

 

1.41

 

1.41

 

7.00

 

PZ1A

 

4415.88

 

7083.33

 

9288.69

 

TC730-004

 

70.81

 

109.60

 

14.38

 

14.38

 

38.80

 

PZ1A

 

4379.92

 

7065.44

 

9291.34

 

TC730-010

 

96.60

 

96.78

 

11.28

 

11.28

 

0.18

 

PZ1A

 

4409.08

 

7041.17

 

9333.99

 

TC730-010

 

109.18

 

155.21

 

7.23

 

7.23

 

46.02

 

PZ1A

 

4380.95

 

7029.99

 

9352.50

 

TC730-011

 

79.89

 

126.00

 

11.98

 

11.98

 

46.11

 

PZ1A

 

4389.59

 

7058.34

 

9323.53

 

TC730-012

 

79.40

 

120.40

 

7.89

 

7.89

 

41.00

 

PZ1A

 

4399.24

 

7058.49

 

9334.27

 

TC730-014

 

60.52

 

68.05

 

0.16

 

0.16

 

7.53

 

PZ1A

 

4463.76

 

7095.44

 

9342.58

 

TC730-017

 

54.30

 

58.95

 

5.29

 

5.29

 

4.65

 

PZ1A

 

4444.64

 

7111.18

 

9260.04

 

TC730-018

 

61.70

 

76.12

 

2.20

 

2.20

 

14.42

 

PZ1A

 

4441.20

 

7114.09

 

9243.84

 

TC730-019

 

53.65

 

62.49

 

17.07

 

17.07

 

8.84

 

PZ1A

 

4470.85

 

7104.42

 

9342.48

 

TC730-021

 

28.00

 

30.85

 

3.43

 

3.43

 

2.85

 

PZ1A

 

4461.96

 

7118.45

 

9301.51

 

TC730-022

 

58.45

 

66.19

 

0.01

 

0.01

 

7.75

 

PZ1A

 

4446.01

 

7116.32

 

9252.94

 

TC730-023

 

46.00

 

61.15

 

1.78

 

1.78

 

15.15

 

PZ1A

 

4452.87

 

7128.16

 

9247.09

 

TC730-024

 

14.68

 

22.37

 

0.67

 

0.67

 

7.69

 

PZ1A

 

4451.43

 

7110.95

 

9285.43

 

TC730-025

 

8.94

 

13.90

 

2.60

 

2.60

 

4.95

 

PZ1A

 

4458.21

 

7119.05

 

9285.06

 

 

Appendix 5-2



 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TC730-041

 

23.47

 

28.55

 

0.91

 

0.91

 

5.08

 

PZ1A

 

4457.14

 

7117.60

 

9285.69

 

TC730-042

 

20.75

 

25.59

 

7.46

 

7.46

 

4.84

 

PZ1A

 

4450.57

 

7109.88

 

9285.85

 

TC09-68

 

915.12

 

931.04

 

5.15

 

5.15

 

15.92

 

PZ1B

 

4422.04

 

7082.88

 

9232.24

 

TC09-68A

 

915.10

 

930.10

 

3.81

 

3.81

 

15.00

 

PZ1B

 

4422.50

 

7081.49

 

9234.01

 

TC09-68B

 

885.53

 

923.00

 

15.43

 

13.08

 

37.47

 

PZ1B

 

4442.16

 

7066.14

 

9274.21

 

TC09-68C

 

869.30

 

909.72

 

2.49

 

2.49

 

40.42

 

PZ1B

 

4450.01

 

7043.07

 

9315.47

 

TC09-68D

 

856.50

 

897.80

 

4.82

 

4.82

 

41.30

 

PZ1B

 

4471.82

 

7040.60

 

9349.64

 

TC09-68E

 

855.90

 

866.80

 

4.40

 

4.40

 

10.90

 

PZ1B

 

4480.96

 

7088.92

 

9339.53

 

TC09-69

 

819.57

 

855.01

 

0.91

 

0.91

 

35.44

 

PZ1B

 

4400.02

 

7022.86

 

9297.60

 

TC09-69A

 

815.20

 

857.66

 

2.20

 

2.20

 

42.46

 

PZ1B

 

4403.40

 

7018.70

 

9302.28

 

TC09-69B

 

797.99

 

805.40

 

15.11

 

11.81

 

7.41

 

PZ1B

 

4409.75

 

7000.74

 

9355.22

 

TC09-69C

 

778.50

 

782.15

 

11.81

 

11.81

 

3.65

 

PZ1B

 

4431.95

 

6994.16

 

9401.60

 

TC09-69G

 

818.20

 

823.50

 

4.95

 

4.95

 

5.30

 

PZ1B

 

4371.66

 

7017.47

 

9307.58

 

TC09-73D

 

976.70

 

979.35

 

13.92

 

13.92

 

2.65

 

PZ1B

 

4350.87

 

7115.64

 

9160.71

 

TC09-73E

 

967.00

 

980.90

 

2.50

 

2.50

 

13.90

 

PZ1B

 

4371.47

 

7096.24

 

9189.12

 

TC09-80

 

931.42

 

938.99

 

5.90

 

5.90

 

7.57

 

PZ1B

 

4411.72

 

7141.76

 

9170.36

 

TC09-80A

 

914.50

 

933.40

 

1.72

 

1.72

 

18.90

 

PZ1B

 

4435.93

 

7126.32

 

9197.98

 

TC09-80B

 

901.70

 

918.00

 

1.24

 

1.24

 

16.30

 

PZ1B

 

4465.71

 

7117.57

 

9233.20

 

TC09-80C

 

868.56

 

908.50

 

2.97

 

2.97

 

39.94

 

PZ1B

 

4471.99

 

7103.03

 

9273.57

 

TC09-80E

 

920.20

 

927.20

 

6.28

 

6.28

 

7.00

 

PZ1B

 

4404.20

 

7128.35

 

9184.91

 

TC09-80F

 

897.00

 

913.62

 

1.11

 

1.11

 

16.62

 

PZ1B

 

4422.19

 

7084.36

 

9230.84

 

TC11-112

 

712.67

 

731.36

 

9.90

 

9.90

 

18.69

 

PZ1B

 

4470.66

 

7025.74

 

9376.61

 

TC11-112A

 

724.00

 

771.50

 

2.66

 

2.66

 

47.50

 

PZ1B

 

4450.76

 

7025.10

 

9339.48

 

TC11-113

 

971.06

 

974.41

 

0.49

 

0.49

 

3.35

 

PZ1B

 

4337.86

 

7096.45

 

9163.94

 

TC11-114

 

807.79

 

812.18

 

1.17

 

1.17

 

4.39

 

PZ1B

 

4489.48

 

7094.35

 

9345.29

 

TC650-001

 

361.50

 

406.50

 

7.69

 

5.37

 

45.00

 

PZ1B

 

4443.33

 

7077.51

 

9258.24

 

TC650-002

 

282.51

 

304.42

 

0.01

 

0.01

 

21.91

 

PZ1B

 

4504.91

 

7156.25

 

9273.86

 

TC650-002

 

320.51

 

347.10

 

0.62

 

0.62

 

26.59

 

PZ1B

 

4498.72

 

7117.50

 

9264.49

 

TC650-004B

 

377.20

 

430.80

 

3.46

 

3.46

 

53.60

 

PZ1B

 

4430.04

 

7059.75

 

9271.76

 

TC650-007

 

334.00

 

343.10

 

4.21

 

4.21

 

9.10

 

PZ1B

 

4461.58

 

7138.63

 

9204.27

 

TC710-001

 

274.68

 

284.00

 

2.25

 

2.25

 

9.33

 

PZ1B

 

4373.27

 

7016.26

 

9308.19

 

TC710-004

 

231.16

 

248.75

 

1.30

 

1.30

 

17.60

 

PZ1B

 

4396.37

 

7057.78

 

9247.01

 

TC710-006

 

200.10

 

223.11

 

7.37

 

4.61

 

23.01

 

PZ1B

 

4424.16

 

7083.60

 

9231.78

 

TC710-012

 

159.12

 

167.20

 

1.10

 

1.10

 

8.08

 

PZ1B

 

4463.38

 

7142.35

 

9200.53

 

TC710-022

 

137.85

 

222.50

 

9.25

 

7.45

 

84.65

 

PZ1B

 

4488.08

 

7085.83

 

9313.87

 

TC730-001

 

0.00

 

67.00

 

4.51

 

4.51

 

67.00

 

PZ1B

 

4439.15

 

7069.93

 

9287.44

 

TC730-001

 

87.46

 

105.00

 

2.48

 

2.48

 

17.54

 

PZ1B

 

4386.81

 

7035.52

 

9290.70

 

TC730-001

 

108.79

 

116.74

 

1.28

 

1.28

 

7.95

 

PZ1B

 

4372.82

 

7026.76

 

9291.58

 

TC730-002

 

0.00

 

22.38

 

3.88

 

3.88

 

22.38

 

PZ1B

 

4455.74

 

7089.36

 

9286.09

 

TC730-003

 

0.00

 

25.45

 

29.61

 

14.73

 

25.45

 

PZ1B

 

4454.28

 

7087.08

 

9286.27

 

TC730-004

 

0.00

 

29.97

 

3.79

 

3.79

 

29.97

 

PZ1B

 

4452.56

 

7084.34

 

9286.52

 

TC730-005

 

0.00

 

102.10

 

3.10

 

3.10

 

102.10

 

PZ1B

 

4429.17

 

7054.33

 

9287.74

 

TC730-006

 

0.00

 

85.94

 

1.88

 

1.88

 

85.94

 

PZ1B

 

4445.96

 

7051.13

 

9287.53

 

TC730-007

 

0.00

 

53.20

 

1.91

 

1.91

 

53.20

 

PZ1B

 

4461.19

 

7062.64

 

9286.70

 

TC730-008

 

0.00

 

45.74

 

5.63

 

5.63

 

45.74

 

PZ1B

 

4467.59

 

7065.78

 

9286.71

 

TC730-009

 

0.00

 

61.64

 

25.02

 

5.47

 

61.64

 

PZ1B

 

4459.54

 

7065.71

 

9268.73

 

TC730-010

 

0.00

 

70.00

 

4.24

 

4.08

 

70.00

 

PZ1B

 

4456.64

 

7064.07

 

9302.07

 

TC730-011

 

0.00

 

53.00

 

4.63

 

3.36

 

53.00

 

PZ1B

 

4459.06

 

7073.92

 

9295.72

 

TC730-012

 

0.00

 

56.30

 

7.97

 

6.72

 

56.30

 

PZ1B

 

4459.79

 

7071.81

 

9298.16

 

TC730-013

 

0.00

 

102.99

 

7.58

 

3.00

 

102.99

 

PZ1B

 

4436.97

 

7066.41

 

9265.03

 

TC730-014

 

0.00

 

55.50

 

2.69

 

2.69

 

55.50

 

PZ1B

 

4474.68

 

7085.06

 

9309.30

 

TC730-015

 

0.00

 

46.81

 

2.83

 

2.83

 

46.81

 

PZ1B

 

4472.30

 

7086.52

 

9302.56

 

TC730-016

 

0.00

 

41.69

 

3.81

 

3.81

 

41.69

 

PZ1B

 

4470.92

 

7087.79

 

9297.15

 

TC730-017

 

0.00

 

43.69

 

1.63

 

1.63

 

43.69

 

PZ1B

 

4468.40

 

7090.51

 

9274.80

 

TC730-018

 

0.00

 

52.45

 

5.68

 

4.04

 

52.45

 

PZ1B

 

4467.36

 

7091.43

 

9268.82

 

TC730-019

 

0.00

 

49.65

 

5.00

 

5.00

 

49.65

 

PZ1B

 

4474.80

 

7101.77

 

9309.57

 

TC730-021

 

0.00

 

22.34

 

2.56

 

2.56

 

22.34

 

PZ1B

 

4471.73

 

7106.93

 

9291.26

 

TC730-022

 

0.00

 

47.23

 

3.11

 

3.11

 

47.23

 

PZ1B

 

4469.29

 

7092.21

 

9272.29

 

TC730-023

 

0.00

 

29.50

 

9.11

 

5.10

 

29.50

 

PZ1B

 

4470.85

 

7107.45

 

9274.57

 

TC730-024

 

0.00

 

7.94

 

5.76

 

5.76

 

7.94

 

PZ1B

 

4465.57

 

7114.35

 

9285.07

 

TC730-025

 

0.00

 

4.48

 

1.26

 

1.26

 

4.48

 

PZ1B

 

4466.95

 

7116.27

 

9285.00

 

TC730-026

 

0.00

 

2.95

 

3.26

 

3.26

 

2.95

 

PZ1B

 

4469.13

 

7120.10

 

9285.00

 

TC730-027

 

0.00

 

4.26

 

0.56

 

0.56

 

4.26

 

PZ1B

 

4470.66

 

7121.58

 

9285.04

 

TC730-028

 

0.00

 

12.00

 

2.28

 

2.28

 

12.00

 

PZ1B

 

4474.95

 

7125.42

 

9285.25

 

TC730-029

 

0.00

 

32.80

 

2.22

 

2.22

 

32.80

 

PZ1B

 

4487.28

 

7128.37

 

9284.97

 

TC730-030

 

0.00

 

80.69

 

2.52

 

2.52

 

80.69

 

PZ1B

 

4458.06

 

7108.15

 

9245.40

 

TC730-031

 

0.00

 

3.00

 

4.23

 

4.23

 

3.00

 

PZ1B

 

4469.35

 

7119.96

 

9285.96

 

TC730-032

 

0.00

 

4.50

 

0.97

 

0.97

 

4.50

 

PZ1B

 

4469.00

 

7120.41

 

9283.34

 

 

Appendix 5-3



 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TC730-033

 

0.00

 

3.71

 

2.56

 

2.56

 

3.71

 

PZ1B

 

4469.91

 

7120.68

 

9285.72

 

TC730-034

 

0.00

 

6.63

 

4.89

 

4.89

 

6.63

 

PZ1B

 

4470.73

 

7121.46

 

9281.90

 

TC730-035

 

0.00

 

5.30

 

9.88

 

9.88

 

5.30

 

PZ1B

 

4470.74

 

7121.92

 

9283.25

 

TC730-036

 

0.00

 

9.69

 

1.18

 

1.18

 

9.69

 

PZ1B

 

4474.42

 

7123.80

 

9289.52

 

TC730-037

 

0.00

 

30.15

 

1.21

 

1.21

 

30.15

 

PZ1B

 

4477.71

 

7131.77

 

9276.44

 

TC730-038

 

0.00

 

33.55

 

2.97

 

2.97

 

33.55

 

PZ1B

 

4487.04

 

7128.31

 

9289.20

 

TC730-039

 

0.00

 

32.05

 

4.88

 

4.88

 

32.05

 

PZ1B

 

4486.57

 

7127.25

 

9279.85

 

TC730-040

 

0.00

 

39.28

 

1.84

 

1.84

 

39.28

 

PZ1B

 

4485.59

 

7128.11

 

9271.33

 

TC730-041

 

0.00

 

19.43

 

4.21

 

4.21

 

19.43

 

PZ1B

 

4465.24

 

7103.47

 

9285.48

 

TC730-042

 

0.00

 

16.70

 

5.82

 

5.82

 

16.70

 

PZ1B

 

4457.52

 

7096.79

 

9285.65

 

TC730-051

 

0.00

 

34.25

 

5.51

 

5.51

 

34.25

 

PZ1B

 

4468.39

 

7067.20

 

9285.53

 

TC730-052

 

0.00

 

38.20

 

7.99

 

7.99

 

38.20

 

PZ1B

 

4452.97

 

7055.01

 

9285.91

 

TC09-68

 

952.81

 

970.56

 

4.12

 

4.12

 

17.75

 

PZ1C

 

4432.81

 

7063.69

 

9200.51

 

TC09-68B

 

927.00

 

956.50

 

15.93

 

6.18

 

29.50

 

PZ1C

 

4455.17

 

7045.57

 

9245.70

 

TC09-69F

 

911.55

 

932.80

 

2.54

 

2.54

 

21.25

 

PZ1C

 

4390.97

 

7020.61

 

9200.51

 

TC09-73C

 

1026.20

 

1030.90

 

10.80

 

10.80

 

4.70

 

PZ1C

 

4353.86

 

7126.17

 

9099.48

 

TC09-73D

 

1015.80

 

1020.76

 

0.34

 

0.34

 

4.96

 

PZ1C

 

4368.11

 

7098.63

 

9128.55

 

TCO9-73E

 

1016.66

 

1018.78

 

0.29

 

0.29

 

2.12

 

PZ1C

 

4391.95

 

7071.06

 

9159.76

 

TC09-80B

 

942.40

 

963.90

 

1.44

 

1.44

 

21.50

 

PZ1C

 

4486.32

 

7100.93

 

9198.95

 

TC09-80C

 

918.60

 

930.50

 

3.17

 

3.17

 

11.90

 

PZ1C

 

4490.31

 

7085.75

 

9247.81

 

TC09-80F

 

935.35

 

952.87

 

1.23

 

1.23

 

17.52

 

PZ1C

 

4434.97

 

7066.38

 

9198.92

 

TC650-001

 

440.03

 

446.90

 

3.02

 

3.02

 

6.88

 

PZ1C

 

4428.28

 

7021.60

 

9244.70

 

TC650-004B

 

446.80

 

472.03

 

3.66

 

3.66

 

25.23

 

PZ1C

 

4414.56

 

7007.70

 

9260.80

 

TC650-007

 

378.23

 

400.00

 

1.00

 

1.00

 

21.77

 

PZ1C

 

4449.77

 

7094.12

 

9183.37

 

TC710-006

 

266.54

 

284.10

 

0.98

 

0.98

 

17.57

 

PZ1C

 

4403.93

 

7028.96

 

9206.00

 

TC730-030

 

93.90

 

118.55

 

2.34

 

2.34

 

24.65

 

PZ1C

 

4439.29

 

7096.30

 

9183.37

 

TC09-68

 

1004.74

 

1008.16

 

0.60

 

0.60

 

3.41

 

PZ3

 

4444.63

 

7041.07

 

9163.74

 

TC09-69F

 

952.20

 

954.20

 

7.19

 

7.19

 

2.00

 

PZ3

 

4401.13

 

7010.37

 

9173.05

 

TC09-73E

 

1054.50

 

1057.00

 

3.60

 

3.60

 

2.50

 

PZ3

 

4409.04

 

7048.19

 

9134.63

 

TC09-79

 

1032.15

 

1034.10

 

2.70

 

2.70

 

1.95

 

PZ3

 

4346.80

 

7023.09

 

9128.34

 

TC09-79C

 

1019.90

 

1022.60

 

6.61

 

6.61

 

2.70

 

PZ3

 

4365.70

 

7002.37

 

9161.82

 

TC09-80

 

1022.49

 

1027.17

 

16.73

 

16.73

 

4.67

 

PZ3

 

4440.70

 

7112.77

 

9090.66

 

TC09-80A

 

1005.20

 

1009.20

 

0.40

 

0.40

 

4.00

 

PZ3

 

4466.14

 

7095.12

 

9126.96

 

TC09-80F

 

985.07

 

989.00

 

2.57

 

2.57

 

3.93

 

PZ3

 

4449.93

 

7046.80

 

9163.78

 

TC11-113A

 

1038.00

 

1040.00

 

3.13

 

3.13

 

2.00

 

PZ3

 

4382.90

 

7037.07

 

9134.33

 

TC11-115

 

1031.97

 

1034.08

 

0.19

 

0.19

 

2.10

 

PZ3

 

4387.17

 

7030.13

 

9144.35

 

TC650-007

 

450.00

 

454.00

 

1.95

 

1.95

 

4.00

 

PZ3

 

4435.18

 

7038.85

 

9157.17

 

TC710-012

 

242.20

 

245.20

 

3.35

 

3.35

 

3.00

 

PZ3

 

4473.93

 

7083.29

 

9146.82

 

TC320-023

 

82.00

 

87.00

 

5.06

 

5.06

 

5.00

 

RZ2

 

4562.82

 

6934.56

 

9698.29

 

TC320-025

 

87.00

 

91.18

 

0.34

 

0.34

 

4.18

 

RZ2

 

4590.10

 

6949.01

 

9697.33

 

TC320-033

 

83.90

 

87.00

 

9.49

 

9.49

 

3.10

 

RZ2

 

4569.51

 

6939.78

 

9686.49

 

TC320-034

 

84.20

 

86.40

 

1.37

 

1.37

 

2.20

 

RZ2

 

4566.62

 

6942.53

 

9675.13

 

TC320-035

 

88.60

 

92.20

 

2.62

 

2.62

 

3.60

 

RZ2

 

4549.17

 

6924.02

 

9693.01

 

TC320-040

 

82.90

 

87.50

 

2.95

 

2.95

 

4.60

 

RZ2

 

4574.28

 

6946.46

 

9677.79

 

TC320-041

 

82.47

 

83.58

 

0.54

 

0.54

 

1.12

 

RZ2

 

4563.09

 

6961.39

 

9650.93

 

TC320-048

 

82.90

 

88.90

 

5.68

 

5.68

 

6.00

 

RZ2

 

4595.57

 

6960.98

 

9692.34

 

TC320-049

 

80.00

 

82.00

 

11.23

 

11.23

 

2.00

 

RZ2

 

4583.50

 

6969.62

 

9665.90

 

TC320-050

 

85.90

 

89.40

 

13.70

 

13.70

 

3.50

 

RZ2

 

4573.33

 

6976.70

 

9640.04

 

TC320-058

 

80.91

 

84.97

 

1.09

 

1.09

 

4.06

 

RZ2

 

4601.81

 

6973.69

 

9683.28

 

TC320-059

 

79.77

 

82.27

 

3.12

 

3.12

 

2.49

 

RZ2

 

4598.35

 

6979.85

 

9673.17

 

TC320-061

 

83.30

 

85.80

 

3.64

 

3.64

 

2.50

 

RZ2

 

4606.68

 

6988.51

 

9674.34

 

TC320-062

 

82.23

 

85.31

 

0.40

 

0.40

 

3.08

 

RZ2

 

4590.86

 

6987.92

 

9652.50

 

TC330-021

 

102.05

 

105.05

 

15.18

 

15.18

 

3.00

 

RZ2

 

4548.80

 

6986.11

 

9607.01

 

TC07-33

 

425.27

 

428.72

 

1.66

 

1.66

 

3.44

 

RZ2A

 

4541.68

 

6906.91

 

9730.70

 

TC07-34

 

423.81

 

430.95

 

0.79

 

0.79

 

7.14

 

RZ2A

 

4565.64

 

6930.58

 

9728.61

 

TC280-034

 

125.34

 

137.03

 

12.53

 

7.27

 

11.69

 

RZ2A

 

4546.70

 

6901.85

 

9754.03

 

TC280-035

 

132.01

 

136.40

 

0.64

 

0.64

 

4.39

 

RZ2A

 

4543.38

 

6896.90

 

9769.52

 

TC280-036

 

125.76

 

129.00

 

1.64

 

1.64

 

3.24

 

RZ2A

 

4541.03

 

6899.29

 

9756.70

 

TC280-037

 

142.70

 

148.30

 

4.35

 

4.35

 

5.60

 

RZ2A

 

4545.47

 

6888.74

 

9785.45

 

TC280-047

 

134.10

 

136.10

 

0.87

 

0.87

 

2.00

 

RZ2A

 

4531.10

 

6888.02

 

9753.19

 

TC280-048

 

137.80

 

153.80

 

11.40

 

9.40

 

16.00

 

RZ2A

 

4552.47

 

6909.26

 

9758.02

 

TC280-049

 

141.40

 

144.40

 

1.30

 

1.30

 

3.00

 

RZ2A

 

4526.27

 

6874.46

 

9771.32

 

TC280-050

 

140.30

 

143.10

 

0.79

 

0.79

 

2.80

 

RZ2A

 

4533.77

 

6886.02

 

9768.69

 

TC320-008

 

54.84

 

57.80

 

3.88

 

3.88

 

2.96

 

RZ2A

 

4537.56

 

6895.47

 

9748.36

 

TC320-013

 

41.70

 

48.00

 

13.06

 

13.06

 

6.30

 

RZ2A

 

4553.56

 

6916.33

 

9728.20

 

TC320-014

 

49.50

 

59.65

 

6.17

 

6.17

 

10.15

 

RZ2A

 

4557.93

 

6917.22

 

9743.73

 

TC320-021

 

103.00

 

117.45

 

1.47

 

1.47

 

14.45

 

RZ2A

 

4555.20

 

6912.64

 

9751.26

 

TC320-028

 

93.92

 

104.70

 

1.06

 

1.06

 

10.78

 

RZ2A

 

4566.10

 

6927.32

 

9746.77

 

 

Appendix 5-4



 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TC07-35

 

466.21

 

468.70

 

5.96

 

5.96

 

2.49

 

RZ3

 

4526.14

 

6966.54

 

9630.58

 

TC07-41

 

508.75

 

516.95

 

2.64

 

2.64

 

8.20

 

RZ3

 

4451.16

 

6978.84

 

9556.53

 

TC07-43

 

483.65

 

492.65

 

8.57

 

8.57

 

9.00

 

RZ3

 

4487.94

 

6955.58

 

9608.53

 

TC08-60

 

548.05

 

567.95

 

3.64

 

3.64

 

19.90

 

RZ3

 

4491.42

 

6974.34

 

9579.88

 

TC260-001

 

320.70

 

346.50

 

3.39

 

3.39

 

25.80

 

RZ3

 

4484.37

 

6986.91

 

9563.37

 

TC280-011B

 

117.60

 

120.50

 

7.59

 

7.59

 

2.90

 

RZ3

 

4469.80

 

6936.81

 

9616.72

 

TC280-014B

 

145.50

 

147.70

 

8.56

 

8.56

 

2.20

 

RZ3

 

4452.78

 

6952.49

 

9581.45

 

TC280-015A

 

130.50

 

141.36

 

1.08

 

1.08

 

10.86

 

RZ3

 

4467.16

 

6963.25

 

9593.31

 

TC280-019A

 

112.30

 

114.70

 

4.04

 

4.04

 

2.40

 

RZ3

 

4495.38

 

6939.90

 

9632.05

 

TC280-052

 

127.70

 

137.89

 

3.15

 

3.15

 

10.19

 

RZ3

 

4498.94

 

6951.24

 

9621.98

 

TC280-053

 

132.00

 

141.90

 

1.75

 

1.75

 

9.90

 

RZ3

 

4477.80

 

6950.67

 

9604.12

 

TC280-054

 

145.03

 

157.71

 

0.10

 

0.10

 

12.68

 

RZ3

 

4506.60

 

6976.69

 

9605.38

 

TC320-054

 

87.75

 

101.75

 

0.23

 

0.23

 

14.00

 

RZ3

 

4490.82

 

6938.91

 

9623.81

 

TC330-019

 

87.95

 

88.01

 

0.01

 

0.01

 

0.06

 

RZ3

 

4518.30

 

6961.58

 

9630.19

 

TC330-019

 

88.04

 

90.88

 

0.01

 

0.01

 

2.84

 

RZ3

 

4518.48

 

6960.60

 

9629.10

 

TC330-025

 

96.23

 

106.24

 

0.07

 

0.07

 

10.01

 

RZ3

 

4499.40

 

6951.87

 

9620.55

 

TC330-026

 

92.60

 

105.70

 

3.77

 

3.77

 

13.10

 

RZ3

 

4503.64

 

6970.91

 

9609.32

 

TC330-027

 

96.70

 

110.40

 

2.57

 

2.57

 

13.70

 

RZ3

 

4495.14

 

6956.32

 

9614.40

 

TC330-029

 

125.24

 

128.35

 

5.24

 

5.24

 

3.11

 

RZ3

 

4474.63

 

6973.93

 

9582.04

 

TC330-039

 

133.20

 

153.99

 

16.63

 

16.05

 

20.78

 

RZ3

 

4461.18

 

6980.74

 

9565.49

 

TC330-040

 

133.30

 

143.88

 

1.03

 

1.03

 

10.58

 

RZ3

 

4458.93

 

6964.71

 

9578.00

 

TC07-30

 

407.04

 

417.80

 

5.24

 

5.24

 

10.76

 

RZ3A

 

4503.08

 

6908.26

 

9721.06

 

TC07-31

 

424.70

 

435.60

 

2.14

 

2.14

 

10.90

 

RZ3A

 

4479.86

 

6917.75

 

9677.18

 

TC07-35

 

457.04

 

463.26

 

1.70

 

1.70

 

6.22

 

RZ3A

 

4522.99

 

6969.27

 

9636.57

 

TC07-36

 

342.82

 

357.64

 

11.91

 

11.91

 

14.83

 

RZ3A

 

4478.03

 

6896.89

 

9717.01

 

TC07-43

 

474.00

 

475.50

 

20.95

 

20.95

 

1.50

 

RZ3A

 

4482.56

 

6960.62

 

9619.72

 

TC07-45

 

429.17

 

437.70

 

0.21

 

0.21

 

8.53

 

RZ3A

 

4493.74

 

6923.20

 

9697.35

 

TC200-002A

 

368.75

 

389.82

 

4.84

 

4.84

 

21.07

 

RZ3A

 

4474.51

 

6905.24

 

9705.33

 

TC200-003

 

387.99

 

390.29

 

0.01

 

0.01

 

2.30

 

RZ3A

 

4481.65

 

6891.92

 

9724.80

 

TC200-005A

 

173.44

 

186.23

 

0.50

 

0.50

 

12.79

 

RZ3A

 

4484.28

 

6898.07

 

9719.81

 

TC200-006

 

210.19

 

215.86

 

0.98

 

0.98

 

5.67

 

RZ3A

 

4463.86

 

6869.82

 

9738.20

 

TC200-008

 

162.00

 

178.33

 

5.51

 

5.51

 

16.33

 

RZ3A

 

4485.93

 

6909.44

 

9706.53

 

TC200-012

 

213.28

 

214.47

 

0.02

 

0.02

 

1.19

 

RZ3A

 

4445.93

 

6875.68

 

9716.29

 

TC200-018

 

154.18

 

162.40

 

3.78

 

3.78

 

8.22

 

RZ3A

 

4497.01

 

6919.01

 

9704.59

 

TC280-001A

 

98.28

 

107.46

 

0.13

 

0.13

 

9.18

 

RZ3A

 

4475.35

 

6890.01

 

9725.78

 

TC280-002

 

86.55

 

101.15

 

1.59

 

1.59

 

14.60

 

RZ3A

 

4476.42

 

6899.98

 

9711.97

 

TC280-003

 

81.69

 

99.15

 

3.00

 

3.00

 

17.46

 

RZ3A

 

4474.83

 

6904.38

 

9706.13

 

TC280-005A

 

81.50

 

91.50

 

6.09

 

6.09

 

10.00

 

RZ3A

 

4486.14

 

6910.77

 

9702.53

 

TC280-006

 

110.69

 

124.44

 

2.54

 

2.54

 

13.75

 

RZ3A

 

4464.19

 

6875.38

 

9730.47

 

TC280-007A

 

78.56

 

92.20

 

5.59

 

5.59

 

13.65

 

RZ3A

 

4480.85

 

6912.21

 

9698.37

 

TC280-008

 

89.50

 

97.80

 

4.25

 

4.25

 

8.30

 

RZ3A

 

4459.25

 

6885.00

 

9702.51

 

TC280-016

 

74.94

 

88.21

 

2.82

 

2.82

 

13.26

 

RZ3A

 

4470.00

 

6900.01

 

9707.12

 

TC280-017

 

72.41

 

85.80

 

3.28

 

3.28

 

13.39

 

RZ3A

 

4478.04

 

6905.65

 

9708.25

 

TC280-018A

 

81.93

 

90.70

 

2.97

 

2.97

 

8.77

 

RZ3A

 

4495.84

 

6937.26

 

9669.51

 

TC280-019A

 

96.67

 

106.70

 

9.15

 

9.15

 

10.03

 

RZ3A

 

4489.68

 

6943.41

 

9641.79

 

TC280-028

 

101.98

 

103.06

 

0.39

 

0.39

 

1.08

 

RZ3A

 

4446.48

 

6875.06

 

9704.37

 

TC280-029

 

73.90

 

83.00

 

2.57

 

2.57

 

9.10

 

RZ3A

 

4464.44

 

6907.39

 

9690.08

 

TC280-051

 

111.06

 

128.46

 

0.17

 

0.17

 

17.41

 

RZ3A

 

4505.76

 

6956.14

 

9645.69

 

TC280-051

 

128.50

 

134.30

 

4.19

 

4.19

 

5.80

 

RZ3A

 

4514.33

 

6956.01

 

9637.82

 

TC280-052

 

112.20

 

125.36

 

4.87

 

4.87

 

13.16

 

RZ3A

 

4490.37

 

6952.53

 

9633.01

 

TC280-056

 

71.29

 

79.60

 

1.22

 

1.22

 

8.31

 

RZ3A

 

4463.14

 

6865.80

 

9736.66

 

TC280-057

 

70.60

 

78.45

 

3.36

 

3.36

 

7.85

 

RZ3A

 

4470.34

 

6874.90

 

9736.06

 

TC300-001

 

4.46

 

10.74

 

3.90

 

3.90

 

6.28

 

RZ3A

 

4465.78

 

6890.08

 

9719.70

 

TC300-002

 

3.24

 

11.50

 

3.37

 

3.37

 

8.26

 

RZ3A

 

4468.25

 

6891.77

 

9719.70

 

TC300-003

 

4.20

 

9.50

 

7.91

 

7.91

 

5.30

 

RZ3A

 

4466.67

 

6889.34

 

9722.04

 

TC300-004

 

2.87

 

9.00

 

6.68

 

6.68

 

6.13

 

RZ3A

 

4469.07

 

6890.17

 

9721.73

 

TC300-005

 

8.70

 

19.53

 

3.83

 

3.83

 

10.83

 

RZ3A

 

4493.57

 

6904.22

 

9718.90

 

TC300-006

 

8.97

 

16.00

 

5.78

 

5.78

 

7.03

 

RZ3A

 

4488.65

 

6902.18

 

9718.90

 

TC300-008

 

7.44

 

15.06

 

5.68

 

5.68

 

7.62

 

RZ3A

 

4489.58

 

6907.45

 

9712.13

 

TC300-010

 

7.71

 

15.50

 

9.81

 

9.81

 

7.79

 

RZ3A

 

4487.09

 

6904.99

 

9711.92

 

TC300-011

 

6.00

 

18.10

 

2.54

 

2.54

 

12.10

 

RZ3A

 

4463.30

 

6892.16

 

9714.42

 

TC300-012

 

4.93

 

18.80

 

6.17

 

6.17

 

13.87

 

RZ3A

 

4466.76

 

6894.70

 

9714.50

 

TC300-013

 

9.01

 

24.30

 

5.55

 

5.55

 

15.29

 

RZ3A

 

4497.69

 

6906.06

 

9718.90

 

TC300-016

 

10.69

 

19.54

 

1.12

 

1.12

 

8.84

 

RZ3A

 

4489.74

 

6900.22

 

9722.30

 

TC300-017

 

8.00

 

16.28

 

3.17

 

3.17

 

8.27

 

RZ3A

 

4488.20

 

6903.00

 

9715.15

 

TC300-018

 

10.55

 

20.30

 

7.34

 

7.34

 

9.75

 

RZ3A

 

4494.28

 

6903.64

 

9722.37

 

TC300-019

 

7.80

 

17.97

 

9.92

 

9.92

 

10.17

 

RZ3A

 

4492.12

 

6905.39

 

9714.92

 

TC300-020

 

11.02

 

21.10

 

0.99

 

0.99

 

10.07

 

RZ3A

 

4496.78

 

6906.49

 

9722.51

 

 

Appendix 5-5



 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TC300-021

 

8.02

 

22.10

 

8.24

 

8.24

 

14.08

 

RZ3A

 

4495.58

 

6907.05

 

9714.25

 

TC320-006

 

20.60

 

24.82

 

2.50

 

2.50

 

4.22

 

RZ3A

 

4515.54

 

6918.36

 

9705.01

 

TC320-017

 

20.00

 

23.90

 

2.17

 

2.17

 

3.90

 

RZ3A

 

4515.56

 

6922.51

 

9700.84

 

TC320-018

 

21.59

 

26.69

 

5.18

 

5.18

 

5.10

 

RZ3A

 

4515.07

 

6925.69

 

9695.71

 

TC320-019

 

17.02

 

21.40

 

4.89

 

4.89

 

4.38

 

RZ3A

 

4520.79

 

6925.91

 

9702.97

 

TC320-020

 

19.15

 

23.80

 

1.97

 

1.97

 

4.65

 

RZ3A

 

4518.56

 

6927.87

 

9698.08

 

TC320-027

 

66.20

 

73.44

 

1.35

 

1.35

 

7.24

 

RZ3A

 

4538.93

 

6952.14

 

9670.78

 

TC320-042

 

67.27

 

72.67

 

1.81

 

1.81

 

5.40

 

RZ3A

 

4539.65

 

6957.95

 

9662.59

 

TC320-051

 

37.00

 

54.59

 

3.27

 

3.27

 

17.59

 

RZ3A

 

4487.17

 

6920.67

 

9685.90

 

TC320-052

 

39.05

 

47.90

 

3.36

 

3.36

 

8.85

 

RZ3A

 

4491.22

 

6925.86

 

9683.16

 

TC320-053

 

46.92

 

64.80

 

4.90

 

4.90

 

17.88

 

RZ3A

 

4485.53

 

6933.27

 

9666.63

 

TC320-054

 

46.64

 

78.87

 

0.86

 

0.86

 

32.23

 

RZ3A

 

4494.55

 

6943.03

 

9655.32

 

TC320-055

 

39.20

 

49.90

 

1.84

 

1.84

 

10.70

 

RZ3A

 

4511.07

 

6949.40

 

9673.74

 

TC330-001

 

36.66

 

40.37

 

0.18

 

0.18

 

3.71

 

RZ3A

 

4502.40

 

6923.03

 

9681.85

 

TC330-002

 

30.07

 

37.14

 

3.21

 

3.21

 

7.07

 

RZ3A

 

4501.73

 

6932.43

 

9675.35

 

TC330-003

 

25.11

 

45.00

 

2.40

 

2.40

 

19.89

 

RZ3A

 

4500.95

 

6941.62

 

9665.38

 

TC330-004

 

25.51

 

45.50

 

3.47

 

3.47

 

19.99

 

RZ3A

 

4501.61

 

6949.11

 

9662.04

 

TC330-005

 

32.08

 

36.90

 

1.43

 

1.43

 

4.82

 

RZ3A

 

4513.58

 

6927.12

 

9688.11

 

TC330-006

 

32.35

 

41.22

 

5.67

 

5.67

 

8.88

 

RZ3A

 

4511.06

 

6933.25

 

9676.38

 

TC330-007

 

25.60

 

34.99

 

1.17

 

1.17

 

9.39

 

RZ3A

 

4506.39

 

6944.74

 

9673.20

 

TC330-008

 

25.40

 

44.04

 

2.60

 

2.60

 

18.64

 

RZ3A

 

4505.52

 

6948.30

 

9666.11

 

TC330-009

 

31.70

 

35.00

 

1.24

 

1.24

 

3.30

 

RZ3A

 

4522.58

 

6936.57

 

9691.12

 

TC330-010

 

30.90

 

36.06

 

0.23

 

0.23

 

5.16

 

RZ3A

 

4521.82

 

6937.97

 

9685.57

 

TC330-011

 

31.70

 

37.80

 

1.62

 

1.62

 

6.10

 

RZ3A

 

4522.22

 

6939.79

 

9680.48

 

TC330-012

 

29.48

 

37.60

 

2.54

 

2.54

 

8.12

 

RZ3A

 

4519.04

 

6942.87

 

9676.31

 

TC330-015

 

74.70

 

80.40

 

6.20

 

6.20

 

5.70

 

RZ3A

 

4529.85

 

6954.60

 

9659.03

 

TC330-016

 

72.36

 

77.08

 

0.22

 

0.22

 

4.72

 

RZ3A

 

4530.40

 

6964.91

 

9649.89

 

TC330-018

 

78.80

 

84.10

 

2.27

 

2.27

 

5.30

 

RZ3A

 

4520.77

 

6951.09

 

9652.94

 

TC330-019

 

77.00

 

85.00

 

6.95

 

6.95

 

8.00

 

RZ3A

 

4517.42

 

6966.22

 

9635.33

 

TC330-025

 

85.10

 

90.84

 

19.91

 

17.37

 

5.74

 

RZ3A

 

4500.45

 

6960.69

 

9630.40

 

TC330-027

 

83.70

 

93.70

 

5.12

 

5.12

 

10.00

 

RZ3A

 

4496.88

 

6965.29

 

9626.10

 

TC350-001

 

57.27

 

67.40

 

2.47

 

2.47

 

10.13

 

RZ3A

 

4535.23

 

6947.83

 

9672.35

 

TC350-003

 

30.08

 

44.07

 

0.51

 

0.51

 

13.99

 

RZ3A

 

4509.14

 

6951.17

 

9670.59

 

TC350-003

 

49.22

 

51.35

 

0.22

 

0.22

 

2.13

 

RZ3A

 

4520.68

 

6944.78

 

9671.51

 

TC350-004

 

28.84

 

41.47

 

2.06

 

2.06

 

12.62

 

RZ3A

 

4502.05

 

6944.71

 

9669.84

 

TCGRT-001

 

0.00

 

11.13

 

1.83

 

1.83

 

11.13

 

RZ3A

 

4467.43

 

6888.57

 

9721.23

 

TCGRT-003

 

0.00

 

3.81

 

1.12

 

1.12

 

3.81

 

RZ3A

 

4470.58

 

6888.94

 

9718.90

 

TCGRT-003

 

4.74

 

17.20

 

0.84

 

0.84

 

12.46

 

RZ3A

 

4461.89

 

6886.35

 

9718.82

 

TCGRT-004

 

0.00

 

10.67

 

0.22

 

0.22

 

10.67

 

RZ3A

 

4481.63

 

6893.26

 

9721.58

 

TCGRT-005

 

0.00

 

12.85

 

0.28

 

0.28

 

12.85

 

RZ3A

 

4482.52

 

6894.09

 

9716.17

 

TC280-060

 

82.14

 

90.10

 

1.02

 

1.02

 

7.95

 

RZ3A1

 

4439.47

 

6839.63

 

9738.13

 

TC280-061

 

93.99

 

97.12

 

11.13

 

11.13

 

3.13

 

RZ3A1

 

4427.61

 

6826.95

 

9738.67

 

TC280-067

 

99.50

 

102.00

 

6.23

 

6.23

 

2.50

 

RZ3A1

 

4419.11

 

6820.63

 

9736.88

 

TC280-068

 

111.00

 

113.45

 

5.11

 

5.11

 

2.45

 

RZ3A1

 

4405.80

 

6809.11

 

9738.23

 

TC280-074

 

101.60

 

105.20

 

5.55

 

5.55

 

3.60

 

RZ3A1

 

4440.61

 

6824.64

 

9756.55

 

TC280-107

 

12.08

 

20.62

 

0.06

 

0.06

 

8.53

 

RZ3A1

 

4444.42

 

6839.44

 

9747.51

 

TC08-57

 

601.30

 

602.20

 

12.52

 

12.52

 

0.90

 

RZ3B

 

4494.27

 

7013.92

 

9509.94

 

TC260-002

 

324.00

 

336.00

 

2.66

 

2.66

 

12.00

 

RZ3B

 

4502.06

 

7009.81

 

9539.31

 

TC260-003

 

336.94

 

339.58

 

0.01

 

0.01

 

2.63

 

RZ3B

 

4503.03

 

7033.13

 

9503.98

 

TC260-004

 

348.60

 

351.20

 

8.85

 

8.85

 

2.60

 

RZ3B

 

4495.77

 

7055.38

 

9470.40

 

TC280-054

 

177.81

 

180.80

 

12.69

 

12.69

 

2.99

 

RZ3B

 

4523.09

 

6980.28

 

9583.11

 

TC330-030

 

138.60

 

145.30

 

4.75

 

4.75

 

6.70

 

RZ3B

 

4526.93

 

6995.00

 

9557.51

 

TC330-031

 

110.90

 

113.90

 

5.06

 

5.06

 

3.00

 

RZ3B

 

4534.40

 

6982.87

 

9593.09

 

TC03-02

 

264.04

 

265.72

 

0.00

 

0.00

 

1.67

 

RZ5

 

4468.80

 

6818.69

 

9835.73

 

TC08-47

 

280.00

 

285.40

 

5.05

 

5.05

 

5.40

 

RZ5

 

4461.47

 

6847.40

 

9782.70

 

TC260-005

 

428.60

 

433.20

 

17.10

 

17.10

 

4.60

 

RZ5

 

4485.28

 

6835.03

 

9831.97

 

TC280-021

 

109.37

 

114.50

 

1.38

 

1.38

 

5.13

 

RZ5

 

4480.67

 

6876.96

 

9767.27

 

TC280-022

 

136.59

 

145.49

 

1.90

 

1.90

 

8.90

 

RZ5

 

4442.29

 

6838.22

 

9769.48

 

TC280-023

 

115.75

 

122.48

 

4.71

 

4.71

 

6.72

 

RZ5

 

4466.77

 

6863.94

 

9767.59

 

TC280-025

 

119.00

 

123.11

 

1.86

 

1.86

 

4.10

 

RZ5

 

4451.76

 

6856.12

 

9757.32

 

TC280-045

 

108.32

 

113.00

 

0.84

 

0.84

 

4.68

 

RZ5

 

4461.42

 

6860.96

 

9764.62

 

TC280-070

 

97.45

 

107.08

 

2.40

 

2.40

 

9.63

 

RZ5

 

4456.38

 

6844.06

 

9782.98

 

TC280-075

 

110.20

 

119.20

 

2.38

 

2.38

 

9.00

 

RZ5

 

4440.76

 

6824.02

 

9786.52

 

TC280-076

 

116.60

 

133.70

 

2.47

 

2.47

 

17.10

 

RZ5

 

4437.42

 

6817.83

 

9798.53

 

TC280-077

 

118.80

 

121.80

 

5.22

 

5.22

 

3.00

 

RZ5

 

4474.88

 

6862.51

 

9778.71

 

TC280-080

 

90.15

 

96.45

 

2.99

 

2.99

 

6.30

 

RZ5

 

4430.91

 

6835.37

 

9764.29

 

 

Appendix 5-6



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

150-008

 

36.60

 

39.20

 

7.47

 

7.47

 

2.60

 

525_V1

 

4990.80

 

7896.95

 

9866.26

 

150-009

 

29.93

 

32.71

 

0.05

 

0.05

 

2.77

 

525_V1

 

4978.63

 

7895.20

 

9866.25

 

150-009

 

67.80

 

70.90

 

2.77

 

2.77

 

3.10

 

525_V3

 

4981.94

 

7857.32

 

9866.91

 

150-013

 

87.00

 

92.70

 

1.65

 

1.65

 

5.70

 

525_V3A

 

5000.42

 

7850.50

 

9868.03

 

150-015

 

85.30

 

88.70

 

2.04

 

2.04

 

3.39

 

525_V3

 

4980.66

 

7849.67

 

9881.45

 

150-016

 

67.94

 

70.40

 

1.00

 

1.00

 

2.46

 

525_V3

 

4984.80

 

7867.52

 

9850.25

 

150-016

 

34.30

 

36.80

 

4.24

 

4.24

 

2.50

 

525_V1

 

4985.90

 

7900.23

 

9857.95

 

150-018

 

30.97

 

33.49

 

8.66

 

8.66

 

2.52

 

525_V1

 

4974.93

 

7894.32

 

9862.85

 

150-018

 

63.40

 

69.00

 

0.72

 

0.72

 

5.60

 

525_V3

 

4973.04

 

7860.56

 

9859.60

 

150-019

 

59.70

 

65.20

 

2.42

 

2.42

 

5.50

 

525_V3

 

4972.98

 

7867.84

 

9843.82

 

180-002

 

22.80

 

24.80

 

1.11

 

1.11

 

2.00

 

525_V1

 

4985.58

 

7906.97

 

9838.53

 

180-002

 

58.76

 

62.93

 

2.54

 

2.54

 

4.17

 

525_V3

 

4985.58

 

7869.95

 

9839.82

 

180-003

 

26.45

 

29.09

 

0.00

 

0.00

 

2.64

 

525_V1

 

5008.63

 

7908.76

 

9840.53

 

180-003

 

38.90

 

44.90

 

2.74

 

2.74

 

6.00

 

525_V2

 

5007.69

 

7894.71

 

9841.65

 

180-003

 

80.82

 

88.53

 

0.95

 

0.95

 

7.71

 

525_V3A

 

5005.54

 

7852.15

 

9844.75

 

180-004

 

103.97

 

108.15

 

0.00

 

0.00

 

4.18

 

525_V3B

 

5038.60

 

7834.64

 

9842.68

 

180-014

 

51.02

 

54.07

 

0.04

 

0.04

 

3.06

 

525_V3

 

5002.15

 

7878.00

 

9832.73

 

180-014

 

17.14

 

20.94

 

1.15

 

1.15

 

3.80

 

525_V1

 

5000.52

 

7911.29

 

9836.26

 

180-014

 

76.10

 

80.40

 

15.06

 

11.64

 

4.30

 

525_V3A

 

5003.27

 

7852.51

 

9829.63

 

180-014

 

32.76

 

38.39

 

0.05

 

0.05

 

5.62

 

525_V2

 

5001.32

 

7894.85

 

9834.59

 

180-015

 

49.39

 

51.42

 

0.04

 

0.04

 

2.03

 

525_V3

 

5001.64

 

7881.79

 

9823.99

 

180-015

 

16.65

 

19.92

 

1.37

 

1.37

 

3.27

 

525_V1

 

5000.40

 

7912.63

 

9832.89

 

180-015

 

122.70

 

126.10

 

9.16

 

9.16

 

3.40

 

525_FW1

 

5004.44

 

7811.10

 

9802.31

 

180-015

 

77.30

 

82.20

 

2.09

 

2.09

 

4.90

 

525_V3A

 

5002.77

 

7853.71

 

9815.53

 

180-015

 

31.14

 

39.00

 

1.14

 

1.14

 

7.86

 

525_V2

 

5001.04

 

7896.50

 

9828.28

 

180-016

 

16.00

 

18.00

 

4.03

 

4.03

 

2.00

 

525_V1

 

5000.46

 

7915.53

 

9829.08

 

180-016

 

121.10

 

125.00

 

1.36

 

1.36

 

3.90

 

525_FW1

 

5005.07

 

7824.43

 

9775.00

 

180-016

 

47.00

 

51.00

 

2.14

 

2.14

 

4.00

 

525_V3

 

5001.86

 

7887.97

 

9812.87

 

180-016

 

78.80

 

84.50

 

3.62

 

3.62

 

5.70

 

525_V3A

 

5003.21

 

7859.96

 

9796.17

 

180-016

 

31.30

 

38.00

 

2.47

 

2.47

 

6.70

 

525_V2

 

5001.25

 

7900.32

 

9820.17

 

180-017

 

53.60

 

55.60

 

0.34

 

0.34

 

2.00

 

525_V3

 

5000.31

 

7891.55

 

9798.67

 

180-017

 

34.54

 

38.40

 

0.76

 

0.76

 

3.86

 

525_V2

 

5000.04

 

7904.42

 

9811.44

 

180-017

 

106.80

 

112.60

 

3.83

 

3.83

 

5.80

 

525_FW1

 

5001.30

 

7852.37

 

9759.94

 

180-018

 

122.20

 

134.14

 

0.82

 

0.82

 

11.94

 

525_FW1

 

5002.40

 

7884.23

 

9716.81

 

180-019

 

22.20

 

24.58

 

0.03

 

0.03

 

2.38

 

525_V1

 

4994.32

 

7907.46

 

9838.14

 

180-019

 

59.16

 

63.78

 

0.72

 

0.72

 

4.63

 

525_V3

 

4985.12

 

7870.51

 

9838.07

 

180-020

 

20.97

 

23.26

 

0.02

 

0.02

 

2.28

 

525_V1

 

4994.81

 

7908.77

 

9835.73

 

180-020

 

56.20

 

58.90

 

3.14

 

3.14

 

2.70

 

525_V3

 

4987.04

 

7874.46

 

9831.47

 

180-021

 

51.36

 

57.00

 

0.45

 

0.45

 

5.64

 

525_V3

 

4973.16

 

7870.06

 

9837.77

 

180-022

 

48.95

 

53.84

 

1.03

 

1.03

 

4.89

 

525_V3

 

4974.01

 

7873.91

 

9827.72

 

180-023

 

53.10

 

56.70

 

3.30

 

3.30

 

3.60

 

525_V3

 

4960.91

 

7870.91

 

9837.95

 

180-024

 

49.00

 

54.10

 

0.47

 

0.47

 

5.10

 

525_V3

 

4962.14

 

7875.16

 

9827.85

 

180-025

 

48.41

 

52.32

 

0.29

 

0.29

 

3.91

 

525_V3

 

4973.36

 

7875.80

 

9823.40

 

180-026

 

48.10

 

51.74

 

0.50

 

0.50

 

3.64

 

525_V3

 

4973.87

 

7880.99

 

9811.88

 

180-027

 

52.80

 

55.40

 

2.55

 

2.55

 

2.60

 

525_V3

 

4974.68

 

7885.66

 

9798.50

 

180-027

 

108.90

 

114.00

 

1.82

 

1.82

 

5.10

 

525_FW1

 

4976.68

 

7844.51

 

9758.63

 

180-028

 

126.22

 

126.83

 

0.00

 

0.00

 

0.61

 

525_FW2

 

4976.18

 

7849.58

 

9734.13

 

180-029

 

80.00

 

85.30

 

5.99

 

5.99

 

5.30

 

525_V3A

 

5021.09

 

7857.92

 

9846.05

 

180-030

 

72.00

 

77.01

 

1.01

 

1.01

 

5.00

 

525_V3A

 

5024.53

 

7870.97

 

9810.39

 

180-031

 

84.90

 

95.50

 

1.92

 

1.92

 

10.60

 

525_V3A

 

5020.14

 

7852.81

 

9859.69

 

180-032

 

116.90

 

125.20

 

1.64

 

1.64

 

8.30

 

525_V3B

 

5080.36

 

7828.02

 

9858.10

 

180-033A

 

72.00

 

74.60

 

2.00

 

2.00

 

2.60

 

525_V3B

 

5062.78

 

7872.70

 

9823.36

 

180-034

 

80.40

 

92.79

 

1.40

 

1.40

 

12.39

 

525_V3A

 

5015.85

 

7855.13

 

9831.38

 

180-035

 

50.30

 

53.00

 

5.18

 

5.18

 

2.70

 

525_V3

 

5005.52

 

7879.48

 

9830.02

 

180-035

 

75.71

 

78.81

 

1.52

 

1.52

 

3.09

 

525 V3A

 

5007.99

 

7854.43

 

9825.37

 

180-035

 

15.90

 

20.10

 

4.39

 

4.39

 

4.20

 

525_V1

 

5002.27

 

7912.53

 

9835.42

 

180-035

 

31.17

 

37.05

 

0.36

 

0.36

 

5.87

 

525_V2

 

5003.84

 

7896.70

 

9832.92

 

180-036

 

16.40

 

18.94

 

69.24

 

16.15

 

2.54

 

525_V1

 

5002.05

 

7913.87

 

9831.58

 

180-036

 

47.60

 

50.30

 

3.08

 

3.08

 

2.70

 

525_V3

 

5005.06

 

7884.92

 

9820.12

 

180-036

 

30.09

 

35.51

 

0.72

 

0.72

 

5.41

 

525_V2

 

5003.56

 

7899.86

 

9826.06

 

180-036

 

76.07

 

81.65

 

1.18

 

1.18

 

5.58

 

525_V3A

 

5007.66

 

7857.29

 

9808.97

 

180-037

 

19.00

 

21.31

 

3.62

 

3.62

 

2.31

 

525_V1

 

5000.03

 

7910.13

 

9839.86

 

180-037

 

54.00

 

57.20

 

1.10

 

1.10

 

3.20

 

525_V3

 

4999.60

 

7874.82

 

9842.94

 

180-037

 

36.00

 

40.10

 

0.73

 

0.73

 

4.10

 

525_V2

 

4999.85

 

7892.31

 

9841.47

 

180-037

 

74.50

 

82.20

 

2.58

 

2.58

 

7.70

 

525_V3A

 

4999.10

 

7852.15

 

9844.70

 

180-038

 

18.60

 

21.02

 

0.00

 

0.00

 

2.42

 

525_V1

 

4997.01

 

7911.16

 

9833.42

 

 

Appendix 5-7



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

180-038

 

54.20

 

57.70

 

1.40

 

1.40

 

3.50

 

525_V3

 

4991.02

 

7876.62

 

9824.65

 

180-038

 

32.14

 

39.66

 

0.65

 

0.65

 

7.53

 

525_V2

 

4994.39

 

7895.76

 

9829.59

 

180-039

 

18.34

 

19.00

 

20.33

 

20.33

 

0.66

 

525_V1

 

4997.40

 

7913.40

 

9830.29

 

180-039

 

53.90

 

56.67

 

0.23

 

0.23

 

2.77

 

525_V3

 

4992.45

 

7880.51

 

9814.98

 

180-039

 

31.50

 

38.67

 

1.70

 

1.70

 

7.17

 

525_V2

 

4995.18

 

7898.65

 

9823.44

 

200-002

 

65.49

 

74.69

 

3.01

 

3.01

 

9.19

 

525_MZ1A

 

4820.73

 

7853.36

 

9796.72

 

200-004

 

62.26

 

73.90

 

0.80

 

0.80

 

11.64

 

525_MZ1A

 

4836.76

 

7849.31

 

9798.77

 

200-006

 

60.11

 

67.04

 

8.59

 

8.59

 

6.93

 

525_MZ1A

 

4848.23

 

7851.37

 

9803.05

 

200-008

 

53.00

 

62.50

 

2.89

 

2.89

 

9.50

 

525_MZ1A

 

4859.63

 

7849.14

 

9803.16

 

210-003

 

71.90

 

74.80

 

6.45

 

6.45

 

2.90

 

525_V3

 

4973.44

 

7899.81

 

9750.00

 

210-004

 

69.01

 

70.00

 

0.02

 

0.02

 

0.99

 

525_V3

 

4995.18

 

7891.27

 

9783.23

 

210-009

 

1.59

 

6.26

 

1.92

 

1.92

 

4.67

 

525_V3

 

4966.23

 

7882.50

 

9809.11

 

210-010

 

13.47

 

18.00

 

1.01

 

1.01

 

4.53

 

525_V3

 

4964.73

 

7882.82

 

9808.73

 

210-011

 

68.70

 

73.60

 

1.52

 

1.52

 

4.90

 

525_V3

 

5003.36

 

7897.25

 

9782.51

 

210-013

 

78.60

 

82.30

 

1.77

 

1.77

 

3.70

 

525_V3

 

4991.50

 

7906.54

 

9745.40

 

210-014

 

16.09

 

21.09

 

1.47

 

1.47

 

5.00

 

525_V3

 

4968.58

 

7881.64

 

9811.05

 

210-015A

 

15.00

 

19.47

 

0.84

 

0.84

 

4.47

 

525_V3

 

4967.56

 

7882.42

 

9808.80

 

210-016

 

16.58

 

21.35

 

0.01

 

0.01

 

4.77

 

525_V3

 

4970.55

 

7882.26

 

9808.50

 

210-017

 

1.83

 

4.08

 

0.08

 

0.08

 

2.25

 

525_V3

 

4990.32

 

7879.84

 

9809.96

 

210-017

 

31.14

 

35.44

 

0.08

 

0.08

 

4.30

 

525_V3A

 

5007.92

 

7855.60

 

9814.71

 

210-018

 

1.72

 

3.76

 

0.27

 

0.27

 

2.04

 

525_V3

 

4990.19

 

7880.01

 

9809.07

 

210-018

 

28.19

 

33.14

 

1.60

 

1.60

 

4.95

 

525_V3A

 

5006.40

 

7857.70

 

9804.70

 

210-019

 

23.74

 

28.80

 

0.66

 

0.66

 

5.06

 

525_V3A

 

5016.11

 

7865.42

 

9809.50

 

210-020

 

24.15

 

30.70

 

1.57

 

1.57

 

6.55

 

525_V3A

 

5016.60

 

7864.77

 

9813.79

 

210-021

 

23.26

 

28.21

 

1.27

 

1.27

 

4.95

 

525_V3A

 

5015.60

 

7866.10

 

9805.47

 

210-031

 

39.00

 

43.00

 

1.99

 

1.99

 

4.00

 

525_FW1A

 

5022.28

 

7844.26

 

9785.33

 

230-004A

 

123.20

 

132.60

 

1.99

 

1.99

 

9.40

 

525_MZ1A

 

4865.96

 

7848.49

 

9788.82

 

230-005

 

121.93

 

133.80

 

2.23

 

2.23

 

11.87

 

525_MZ1A

 

4865.47

 

7848.48

 

9803.30

 

230-006

 

112.49

 

120.00

 

2.39

 

2.39

 

7.51

 

525_MZ1A

 

4845.08

 

7850.60

 

9798.76

 

230-007

 

112.01

 

117.76

 

11.65

 

9.42

 

5.75

 

525_MZ1A

 

4847.58

 

7852.77

 

9789.83

 

230-008

 

107.00

 

112.32

 

2.38

 

2.38

 

5.32

 

525_MZ1A

 

4843.70

 

7858.83

 

9771.70

 

230-009

 

106.50

 

110.90

 

2.42

 

2.42

 

4.40

 

525_MZ1A

 

4841.27

 

7861.48

 

9761.68

 

230-010

 

108.36

 

115.50

 

0.45

 

0.45

 

7.14

 

525_MZ1A

 

4841.52

 

7863.11

 

9748.42

 

230-011

 

106.70

 

116.50

 

2.60

 

2.60

 

9.80

 

525_MZ1A

 

4832.62

 

7850.58

 

9803.09

 

230-012

 

102.89

 

113.15

 

0.84

 

0.84

 

10.26

 

525_MZ1A

 

4830.14

 

7853.03

 

9790.66

 

230-013

 

100.92

 

105.90

 

1.02

 

1.02

 

4.99

 

525_MZ1A

 

4827.27

 

7858.59

 

9774.38

 

230-014

 

102.07

 

106.52

 

2.84

 

2.84

 

4.45

 

525_MZ1A

 

4829.69

 

7862.67

 

9758.86

 

230-014

 

127.15

 

131.85

 

0.00

 

0.00

 

4.70

 

525_MZ1B

 

4837.89

 

7840.48

 

9750.18

 

230-016

 

97.50

 

105.00

 

5.85

 

5.85

 

7.50

 

525_MZ1A

 

4817.01

 

7856.71

 

9786.45

 

230-017

 

94.60

 

101.90

 

2.66

 

2.66

 

7.30

 

525_MZ1A

 

4814.46

 

7861.14

 

9772.67

 

230-018

 

127.95

 

131.78

 

0.00

 

0.00

 

3.84

 

525_MZ1B

 

4819.65

 

7835.94

 

9747.82

 

230-018

 

95.00

 

101.00

 

3.99

 

3.99

 

6.00

 

525_MZ1A

 

4814.07

 

7865.29

 

9758.91

 

240-002

 

71.14

 

76.20

 

0.39

 

0.39

 

5.05

 

525_V3

 

4977.05

 

7906.75

 

9736.31

 

240-002

 

107.58

 

116.23

 

1.17

 

1.17

 

8.65

 

525_FW1

 

4997.09

 

7883.10

 

9713.94

 

240-003

 

115.90

 

118.50

 

3.34

 

3.34

 

2.60

 

525_FW1

 

4992.11

 

7890.85

 

9695.23

 

240-003

 

72.20

 

75.80

 

1.59

 

1.59

 

3.60

 

525_V3

 

4971.58

 

7913.17

 

9726.00

 

240-003

 

44.30

 

51.00

 

2.32

 

2.32

 

6.70

 

525_V2

 

4959.24

 

7926.58

 

9745.03

 

240-005

 

77.00

 

82.89

 

1.89

 

1.89

 

5.89

 

525_V3

 

4988.44

 

7912.13

 

9732.34

 

240-007A

 

80.63

 

90.10

 

1.50

 

1.50

 

9.47

 

525_V3

 

5005.91

 

7912.77

 

9747.21

 

240-008

 

84.72

 

88.40

 

2.65

 

2.65

 

3.67

 

525_V3

 

4997.96

 

7917.30

 

9728.36

 

240-009

 

50.62

 

56.24

 

0.33

 

0.33

 

5.62

 

525_V2

 

4968.08

 

7933.61

 

9740.14

 

240-009

 

87.80

 

94.50

 

5.81

 

5.81

 

6.70

 

525_V3

 

4990.85

 

7921.01

 

9712.82

 

240-010

 

76.97

 

85.54

 

2.11

 

2.11

 

8.56

 

525_V3

 

5002.08

 

7912.94

 

9744.08

 

240-011

 

46.40

 

48.70

 

2.05

 

2.05

 

2.30

 

525_V2

 

4971.07

 

7932.86

 

9748.74

 

240-011

 

83.87

 

89.00

 

2.73

 

2.73

 

5.13

 

525_V3

 

4996.40

 

7917.75

 

9723.41

 

240-013

 

117.80

 

120.60

 

4.19

 

4.19

 

2.80

 

525_FW1

 

4972.83

 

7908.72

 

9673.90

 

240-013

 

86.10

 

91.80

 

4.12

 

4.12

 

5.70

 

525_V3

 

4963.49

 

7919.60

 

9700.54

 

240-013

 

47.50

 

56.40

 

1.12

 

1.12

 

8.89

 

525_V2

 

4952.04

 

7932.54

 

9733.26

 

240-014

 

66.10

 

68.00

 

1.71

 

1.71

 

1.90

 

525_V3

 

4966.78

 

7897.77

 

9751.06

 

240-014

 

120.30

 

124.00

 

3.17

 

3.17

 

3.70

 

525_FW2

 

4991.75

 

7854.53

 

9727.78

 

240-014

 

103.40

 

111.60

 

3.32

 

3.32

 

8.20

 

525_FW1

 

4985.11

 

7866.02

 

9733.97

 

240-015

 

65.00

 

66.30

 

6.50

 

6.50

 

1.30

 

525_V3

 

4962.27

 

7905.60

 

9738.98

 

240-015

 

123.00

 

127.50

 

3.38

 

3.38

 

4.50

 

525_FW2

 

4985.75

 

7864.92

 

9702.29

 

240-015

 

102.20

 

107.85

 

1.23

 

1.23

 

5.66

 

525_FW1

 

4977.78

 

7878.73

 

9714.74

 

240-016

 

75.20

 

78.00

 

6.37

 

6.37

 

2.80

 

525_V3

 

4954.13

 

7920.44

 

9711.17

 

240-016

 

130.80

 

134.10

 

3.91

 

3.91

 

3.30

 

525_FW2

 

4967.51

 

7897.74

 

9661.93

 

 

Appendix 5-8



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

240-016

 

47.44

 

55.86

 

0.22

 

0.22

 

8.42

 

525_V2

 

4948.29

 

7930.31

 

9733.33

 

240-017

 

92.50

 

96.50

 

5.64

 

5.64

 

4.00

 

525_V3

 

4972.09

 

7922.76

 

9696.42

 

240-017

 

49.80

 

65.49

 

1.23

 

1.23

 

15.70

 

525_V2

 

4958.49

 

7934.22

 

9728.70

 

240-018

 

100.20

 

105.00

 

6.05

 

6.05

 

4.80

 

525_V3

 

4977.96

 

7927.71

 

9688.40

 

240-018

 

56.79

 

73.39

 

9.51

 

9.51

 

16.59

 

525_V2

 

4962.84

 

7936.58

 

9721.55

 

240-019

 

123.39

 

125.77

 

0.03

 

0.03

 

2.38

 

525_FW2

 

4970.86

 

7885.48

 

9678.87

 

240-019

 

70.46

 

74.17

 

0.00

 

0.00

 

3.72

 

525_V3

 

4955.95

 

7913.58

 

9720.31

 

240-019

 

41.50

 

48.10

 

0.90

 

0.90

 

6.60

 

525_V2

 

4948.66

 

7927.77

 

9742.73

 

240-020

 

81.70

 

87.55

 

6.57

 

6.57

 

5.85

 

525_V3

 

4979.64

 

7918.43

 

9714.06

 

240-020

 

119.20

 

126.00

 

1.73

 

1.73

 

6.80

 

525_FW1

 

4998.96

 

7903.98

 

9684.74

 

240-020

 

47.60

 

55.85

 

2.60

 

2.60

 

8.24

 

525_V2

 

4962.93

 

7930.93

 

9739.50

 

240-021

 

45.60

 

50.60

 

1.67

 

1.67

 

5.00

 

525_V2

 

4942.31

 

7916.90

 

9745.39

 

240-022

 

82.00

 

87.00

 

7.86

 

7.86

 

5.00

 

525_V3A

 

4943.06

 

7912.62

 

9704.11

 

240-022

 

49.04

 

58.10

 

0.26

 

0.26

 

9.06

 

525_V2

 

4940.62

 

7926.45

 

9731.67

 

260-001

 

139.97

 

141.65

 

0.00

 

0.00

 

1.68

 

525_MZ1B

 

4818.90

 

7834.54

 

9748.65

 

260-001

 

107.00

 

111.00

 

0.90

 

0.90

 

4.00

 

525_MZ1A

 

4813.26

 

7865.60

 

9752.60

 

260-004

 

136.90

 

140.90

 

1.56

 

1.56

 

4.00

 

525_ MZ1B

 

4840.96

 

7844.13

 

9739.99

 

260-004

 

115.50

 

121.51

 

5.57

 

5.57

 

6.02

 

525_ MZ1A

 

4833.93

 

7862.87

 

9743.88

 

260-005

 

135.30

 

137.10

 

6.26

 

6.26

 

1.80

 

525_MZ1B

 

4840.54

 

7852.50

 

9720.06

 

260-006

 

139.70

 

143.30

 

2.94

 

2.94

 

3.60

 

525_MZ1B

 

4829.24

 

7836.61

 

9745.70

 

260-006

 

108.24

 

114.05

 

2.07

 

2.07

 

5.81

 

525_MZ1A

 

4821.10

 

7865.50

 

9750.21

 

260-007

 

137.40

 

139.20

 

5.41

 

5.41

 

1.80

 

525_MZ1B

 

4831.35

 

7844.60

 

9727.07

 

260-008

 

114.90

 

125.60

 

3.85

 

3.85

 

10.70

 

525_MZ1B

 

4762.90

 

7859.82

 

9732.27

 

260-008

 

99.90

 

112.70

 

2.89

 

2.89

 

12.80

 

525_MZ1A

 

4766.15

 

7872.84

 

9736.07

 

260-009

 

103.40

 

108.00

 

1.30

 

1.30

 

4.60

 

525_MZ1A

 

4763.81

 

7871.09

 

9750.36

 

260-009

 

114.30

 

120.00

 

5.98

 

5.98

 

5.70

 

525_MZ1B

 

4760.88

 

7860.17

 

9748.58

 

260-010

 

137.99

 

141.18

 

0.19

 

0.19

 

3.19

 

525_MZ2

 

4759.32

 

7847.72

 

9709.88

 

260-010

 

98.21

 

107.02

 

0.00

 

0.00

 

8.81

 

525_MZ1A

 

4767.74

 

7880.68

 

9724.35

 

260-011

 

113.20

 

118.20

 

2.35

 

2.35

 

5.00

 

525_MZ1A

 

4833.11

 

7864.14

 

9754.32

 

260-011

 

136.40

 

143.10

 

3.78

 

3.78

 

6.70

 

525_MZ1B

 

4841.31

 

7841.66

 

9751.83

 

260-012

 

100.80

 

105.40

 

3.50

 

3.50

 

4.60

 

525_MZ1A

 

4755.66

 

7875.54

 

9764.54

 

260-013

 

105.18

 

118.58

 

5.22

 

5.22

 

13.40

 

525_MZ1A

 

4752.52

 

7869.97

 

9741.07

 

260-017

 

97.91

 

104.19

 

10.55

 

10.55

 

6.28

 

525_MZ1A

 

4759.70

 

7872.14

 

9774.21

 

260-019

 

135.40

 

138.50

 

1.65

 

1.65

 

3.10

 

525_MZ2

 

4760.91

 

7847.82

 

9709.46

 

260-019

 

94.40

 

105.30

 

2.85

 

2.85

 

10.90

 

525_MZ1A

 

4760.08

 

7881.40

 

9725.22

 

260-022

 

116.90

 

120.10

 

6.23

 

6.23

 

3.20

 

525_MZ1C

 

4743.96

 

7866.41

 

9715.87

 

260-022

 

98.60

 

109.60

 

4.52

 

4.52

 

11.00

 

525_MZ1A

 

4745.31

 

7879.11

 

9722.51

 

260-025

 

136.70

 

139.00

 

4.68

 

4.68

 

2.30

 

525_MZ2

 

4771.58

 

7876.05

 

9667.93

 

260-033

 

99.80

 

109.70

 

19.57

 

15.35

 

9.90

 

525_MZ1A

 

4727.95

 

7882.15

 

9723.77

 

260-034

 

109.00

 

112.90

 

2.49

 

2.49

 

3.90

 

525_MZ1A

 

4728.73

 

7885.19

 

9704.84

 

260-036

 

163.80

 

166.43

 

0.50

 

0.50

 

2.63

 

525_MZ2

 

4739.62

 

7891.04

 

9623.64

 

260-037

 

110.74

 

114.32

 

2.86

 

2.86

 

3.58

 

525_MZ1C

 

4759.49

 

7876.33

 

9707.48

 

260-037

 

137.10

 

143.30

 

2.03

 

2.03

 

6.20

 

525_MZ2

 

4760.51

 

7852.80

 

9692.97

 

260-037

 

91.10

 

101.30

 

1.84

 

1.84

 

10.20

 

525_MZ1A

 

4759.26

 

7890.22

 

9716.06

 

260-038

 

143.50

 

145.20

 

1.31

 

1.31

 

1.70

 

525_MZ2

 

4761.33

 

7861.42

 

9673.61

 

260-039

 

101.76

 

105.00

 

1.81

 

1.81

 

3.24

 

525_MZ1A

 

4743.63

 

7887.02

 

9710.05

 

260-039

 

110.90

 

115.50

 

2.58

 

2.58

 

4.60

 

525_MZ1C

 

4742.55

 

7878.94

 

9704.58

 

260-040

 

150.00

 

152.56

 

7.82

 

7.82

 

2.56

 

525_MZ2

 

4741.58

 

7859.57

 

9666.85

 

260-041

 

102.30

 

114.60

 

25.05

 

11.28

 

12.30

 

525_MZ1A

 

4740.20

 

7871.28

 

9732.71

 

260-044

 

157.20

 

164.00

 

9.87

 

9.87

 

6.80

 

525_MZ2

 

4763.03

 

7881.14

 

9633.66

 

260-045

 

165.00

 

168.00

 

4.20

 

4.20

 

3.00

 

525_MZ2

 

4741.00

 

7899.86

 

9614.20

 

260-056

 

151.37

 

153.80

 

1.96

 

1.96

 

2.43

 

525_MZ1B

 

4841.50

 

7851.88

 

9721.15

 

270-001

 

48.10

 

50.58

 

0.00

 

0.00

 

2.48

 

525_V3

 

4981.20

 

7885.71

 

9787.69

 

270-004

 

17.01

 

19.80

 

0.49

 

0.49

 

2.80

 

525_V3

 

4981.20

 

7904.99

 

9743.05

 

270-005

 

48.30

 

50.30

 

85.97

 

21.97

 

2.00

 

525_V3

 

4987.50

 

7882.83

 

9784.49

 

270-008

 

15.42

 

19.50

 

3.92

 

3.92

 

4.08

 

525_V3

 

4987.50

 

7906.33

 

9743.04

 

270-009

 

17.20

 

24.00

 

1.25

 

1.25

 

6.80

 

525_V3

 

4987.50

 

7910.19

 

9735.14

 

270-011

 

15.72

 

23.30

 

0.33

 

0.33

 

7.58

 

525_V3

 

5002.85

 

7908.81

 

9751.78

 

270-012

 

14.28

 

21.29

 

0.84

 

0.84

 

7.01

 

525_V3

 

4997.92

 

7912.66

 

9740.90

 

270-013

 

23.79

 

30.31

 

1.23

 

1.23

 

6.52

 

525_FW1A

 

5009.03

 

7867.78

 

9757.20

 

270-014

 

29.40

 

35.46

 

2.06

 

2.06

 

6.06

 

525_FW1

 

5005.51

 

7861.71

 

9749.91

 

270-015

 

35.46

 

41.06

 

1.21

 

1.21

 

5.61

 

525_FW1A

 

5006.93

 

7856.21

 

9765.81

 

270-016

 

27.00

 

33.97

 

0.42

 

0.42

 

6.97

 

525_FW1A

 

5015.95

 

7867.95

 

9757.20

 

270-017

 

27.00

 

32.00

 

4.41

 

4.41

 

5.00

 

525_FW1A

 

5015.03

 

7869.17

 

9751.57

 

270-018

 

42.00

 

45.00

 

1.93

 

1.93

 

3.00

 

525_FW1A

 

5023.30

 

7858.20

 

9765.50

 

270-020

 

31.00

 

34.00

 

1.77

 

1.77

 

3.00

 

525_FW1A

 

5022.47

 

7872.16

 

9751.56

 

 

Appendix 5-9



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

270-024

 

27.28

 

34.57

 

0.24

 

0.24

 

7.28

 

525_V3

 

4994.16

 

7907.58

 

9747.13

 

270-025

 

31.76

 

41.57

 

0.39

 

0.39

 

9.81

 

525_V3

 

4994.82

 

7911.74

 

9740.56

 

270-026

 

30.86

 

42.57

 

1.56

 

1.56

 

11.71

 

525_V3

 

5001.17

 

7911.69

 

9746.12

 

270-027

 

36.31

 

47.23

 

1.03

 

1.03

 

10.92

 

525_V3

 

5002.26

 

7914.85

 

9738.90

 

270-028

 

35.62

 

48.70

 

1.74

 

1.74

 

13.08

 

525_V3

 

5009.59

 

7913.92

 

9745.90

 

270-029

 

43.50

 

53.10

 

3.16

 

3.16

 

9.60

 

525_V3

 

5011.79

 

7917.90

 

9738.38

 

270-030

 

15.00

 

25.50

 

2.89

 

2.89

 

10.50

 

525_FW1A

 

5013.19

 

7855.88

 

9771.12

 

270-031

 

11.00

 

17.00

 

0.73

 

0.73

 

6.00

 

525_FW1A

 

5006.29

 

7862.33

 

9763.72

 

270-031

 

1.49

 

8.29

 

7.48

 

6.43

 

6.81

 

525_FW1

 

5006.17

 

7855.15

 

9758.11

 

270-032

 

82.35

 

84.20

 

7.66

 

7.66

 

1.85

 

525_V2

 

5007.47

 

7929.54

 

9783.58

 

270-032

 

12.00

 

18.00

 

3.03

 

3.03

 

6.00

 

525_FW1A

 

5006.35

 

7865.39

 

9760.23

 

270-032

 

1.67

 

9.14

 

1.85

 

1.85

 

7.47

 

525_FW1

 

5006.19

 

7856.38

 

9756.95

 

480-001

 

85.21

 

86.77

 

0.00

 

0.00

 

1.56

 

525_FW2C

 

4858.78

 

7904.38

 

9538.73

 

480-001

 

68.98

 

77.72

 

0.91

 

0.91

 

8.74

 

525_FW2B

 

4851.17

 

7914.47

 

9539.02

 

480-002

 

89.30

 

96.50

 

2.25

 

2.25

 

7.20

 

525_FW2C

 

4867.86

 

7902.87

 

9538.17

 

480-002

 

72.22

 

79.45

 

7.72

 

7.72

 

7.23

 

525_FW2B

 

4856.83

 

7915.86

 

9538.88

 

480-003

 

61.83

 

95.63

 

2.15

 

2.15

 

33.80

 

525_FW2A

 

4874.48

 

7932.45

 

9540.00

 

480-004

 

77.81

 

98.74

 

4.56

 

4.56

 

20.92

 

525_FW2A

 

4888.56

 

7939.25

 

9540.45

 

480-012

 

64.08

 

96.65

 

0.80

 

0.00

 

32.57

 

525_V3B

 

4869.05

 

7965.84

 

9572.81

 

500-001

 

162.52

 

173.10

 

1.40

 

1.40

 

10.59

 

525_FW2C

 

4873.80

 

7915.64

 

9520.81

 

500-001

 

129.99

 

147.98

 

2.63

 

2.63

 

17.99

 

525_FW2B

 

4851.00

 

7933.10

 

9523.25

 

500-002

 

176.90

 

186.50

 

4.07

 

4.07

 

9.60

 

525_FW2B

 

4886.21

 

7909.59

 

9546.03

 

500-002

 

143.66

 

162.07

 

1.50

 

1.50

 

18.41

 

525_FW2A

 

4863.48

 

7927.21

 

9543.92

 

500-003

 

182.04

 

189.30

 

2.16

 

2.16

 

7.27

 

525_FW2B

 

4886.35

 

7904.80

 

9555.73

 

500-003

 

151.35

 

167.48

 

1.14

 

1.14

 

16.14

 

525_FW2A

 

4865.71

 

7920.79

 

9553.05

 

500-004

 

177.65

 

183.43

 

0.00

 

0.00

 

5.79

 

525_FW2A

 

4881.61

 

7912.69

 

9572.80

 

500-006

 

145.84

 

165.60

 

3.87

 

3.87

 

19.76

 

525_FW2B

 

4871.09

 

7933.01

 

9524.43

 

500-007

 

141.17

 

176.61

 

1.87

 

1.87

 

35.44

 

525_FW2A

 

4875.50

 

7933.95

 

9539.86

 

500-008

 

159.97

 

178.74

 

0.60

 

0.60

 

18.77

 

525_FW2A

 

4878.27

 

7921.51

 

9554.04

 

500-009

 

178.50

 

189.19

 

2.52

 

2.52

 

10.69

 

525_FW2A

 

4889.57

 

7918.21

 

9572.66

 

500-010

 

181.48

 

190.86

 

1.20

 

1.20

 

9.38

 

525_FW2A

 

4888.00

 

7914.96

 

9579.89

 

500-011

 

134.79

 

164.50

 

1.12

 

1.12

 

29.71

 

525_FW2A

 

4872.30

 

7946.84

 

9531.75

 

500-012

 

158.70

 

180.46

 

2.72

 

2.72

 

21.76

 

525_FW2A

 

4889.12

 

7936.73

 

9542.13

 

525-004

 

131.00

 

135.70

 

4.49

 

4.49

 

4.70

 

650_UM2

 

4709.74

 

7910.15

 

9430.74

 

525-004

 

42.51

 

77.81

 

5.32

 

5.32

 

35.31

 

650_UM1

 

4705.47

 

7845.10

 

9463.79

 

525-005

 

42.69

 

85.75

 

4.55

 

4.55

 

43.05

 

650_UM1

 

4713.35

 

7848.38

 

9463.32

 

525-006

 

44.36

 

75.69

 

1.81

 

1.81

 

31.33

 

650_UM1

 

4719.47

 

7844.21

 

9467.20

 

525-011

 

40.46

 

43.01

 

5.86

 

5.86

 

2.55

 

650_UM1

 

4717.61

 

7830.82

 

9492.84

 

525-012

 

41.10

 

44.50

 

6.99

 

6.99

 

3.40

 

650_UM1

 

4714.35

 

7831.54

 

9479.90

 

525-015

 

51.99

 

54.54

 

3.81

 

3.81

 

2.55

 

650_UM1

 

4685.61

 

7839.76

 

9474.86

 

525-015

 

93.93

 

97.61

 

0.01

 

0.01

 

3.68

 

650_UM2E

 

4675.86

 

7879.41

 

9463.12

 

525-016

 

107.67

 

110.44

 

0.64

 

0.64

 

2.77

 

650_UM2E

 

4668.88

 

7880.84

 

9438.13

 

525-016

 

65.39

 

74.30

 

6.03

 

6.03

 

8.91

 

650_UM1

 

4680.46

 

7848.63

 

9457.21

 

525-016

 

120.62

 

134.99

 

0.24

 

0.24

 

14.36

 

650_UM2

 

4663.44

 

7896.31

 

9429.03

 

525-017

 

43.98

 

51.01

 

2.48

 

2.48

 

7.03

 

650_UM1

 

4717.35

 

7835.30

 

9478.84

 

525-019

 

64.28

 

68.00

 

3.03

 

3.03

 

3.72

 

650_UM1

 

4736.43

 

7846.36

 

9473.62

 

525-020

 

74.00

 

82.65

 

0.56

 

0.56

 

8.65

 

650_UM1

 

4739.04

 

7853.05

 

9457.88

 

525-034

 

80.10

 

86.70

 

4.69

 

4.69

 

6.60

 

525_MZ1A

 

4604.31

 

7910.47

 

9523.28

 

525-035

 

89.20

 

93.20

 

5.61

 

5.61

 

4.00

 

525_MZ1A

 

4600.48

 

7923.05

 

9497.95

 

525-036

 

82.78

 

87.30

 

9.75

 

9.55

 

4.52

 

525_MZ1A

 

4603.08

 

7915.26

 

9512.74

 

525-040

 

103.70

 

110.10

 

5.78

 

5.78

 

6.40

 

525_MZ1A

 

4579.96

 

7930.30

 

9484.11

 

525-041

 

80.80

 

84.80

 

5.31

 

5.31

 

4.00

 

525_MZ1A

 

4619.80

 

7913.24

 

9525.19

 

525-045

 

98.90

 

102.60

 

1.91

 

1.91

 

3.70

 

525_MZ1A

 

4575.54

 

7920.55

 

9496.64

 

525-046

 

72.80

 

77.50

 

39.36

 

19.80

 

4.70

 

650_UM1

 

4735.93

 

7878.89

 

9429.35

 

525-047

 

74.40

 

76.99

 

0.00

 

0.00

 

2.59

 

650_UM1

 

4743.24

 

7865.42

 

9440.81

 

525-048

 

73.30

 

74.70

 

0.01

 

0.01

 

1.40

 

650_UM1

 

4746.61

 

7856.99

 

9455.16

 

525-050

 

63.12

 

80.99

 

6.17

 

6.17

 

17.88

 

650_UM1

 

4725.74

 

7875.09

 

9433.12

 

525-051

 

69.40

 

74.00

 

5.59

 

5.59

 

4.60

 

650_UM1

 

4733.96

 

7864.85

 

9443.28

 

525-052

 

71.30

 

73.80

 

2.59

 

2.59

 

2.50

 

650_UM1

 

4741.55

 

7855.29

 

9457.05

 

525-053

 

76.99

 

79.35

 

1.19

 

1.19

 

2.36

 

650_UM1

 

4743.47

 

7842.82

 

9471.44

 

525-055

 

60.20

 

79.51

 

2.55

 

2.55

 

19.31

 

650_UM1

 

4722.23

 

7879.41

 

9432.73

 

525-056

 

61.21

 

78.60

 

4.92

 

4.92

 

17.39

 

650_UM1

 

4723.58

 

7867.83

 

9440.86

 

525-057

 

64.20

 

75.00

 

6.26

 

6.26

 

10.80

 

650_UM1

 

4726.26

 

7859.78

 

9449.90

 

525-058

 

66.20

 

75.70

 

1.61

 

1.61

 

9.50

 

650_UM1

 

4727.58

 

7850.91

 

9461.18

 

525-059

 

72.80

 

76.50

 

2.11

 

2.11

 

3.70

 

650_UM1

 

4728.55

 

7840.76

 

9479.36

 

525-060

 

75.20

 

79.00

 

4.66

 

4.66

 

3.80

 

650_UM1

 

4728.31

 

7837.43

 

9484.34

 

 

Appendix 5-10



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

525-061

 

59.10

 

82.52

 

13.11

 

13.10

 

23.42

 

650_UM1

 

4717.69

 

7872.81

 

9435.54

 

525-062

 

61.19

 

61.70

 

0.23

 

0.23

 

0.51

 

650_UM1

 

4720.44

 

7867.81

 

9452.40

 

525-062

 

61.70

 

77.55

 

3.27

 

3.27

 

15.85

 

650_UM1

 

4720.88

 

7861.77

 

9446.90

 

525-063

 

65.30

 

79.90

 

6.16

 

6.16

 

14.60

 

650_UM1

 

4717.16

 

7849.18

 

9459.53

 

525-064

 

77.39

 

86.90

 

4.13

 

4.13

 

9.50

 

650_UM1

 

4712.75

 

7834.50

 

9471.14

 

525-066

 

61.70

 

85.00

 

5.60

 

5.60

 

23.30

 

650_UM1

 

4710.14

 

7862.99

 

9440.80

 

525-067

 

66.80

 

86.00

 

4.20

 

4.20

 

19.20

 

650_UM1

 

4707.93

 

7848.43

 

9454.40

 

525-068

 

63.50

 

88.10

 

8.44

 

8.44

 

24.60

 

650_UM1

 

4705.92

 

7866.01

 

9435.60

 

525-069

 

66.52

 

89.00

 

7.68

 

7.68

 

22.48

 

650_UM1

 

4703.00

 

7851.08

 

9449.35

 

525-070

 

75.50

 

85.80

 

4.34

 

4.34

 

10.30

 

650_UM1

 

4698.04

 

7840.20

 

9465.72

 

525-071

 

70.21

 

101.00

 

4.26

 

4.26

 

30.79

 

650_UM1

 

4690.26

 

7854.85

 

9437.47

 

525-072

 

76.50

 

85.50

 

7.34

 

7.34

 

9.00

 

650_UM1

 

4686.40

 

7847.87

 

9457.56

 

525-077

 

11.64

 

41.57

 

2.25

 

2.25

 

29.92

 

525_FW2B

 

4836.70

 

7949.74

 

9497.87

 

525-078

 

6.86

 

39.24

 

2.35

 

2.35

 

32.38

 

525_FW2B

 

4834.93

 

7948.33

 

9506.36

 

525-080

 

19.82

 

36.31

 

1.61

 

1.61

 

16.49

 

525_FW2B

 

4844.17

 

7944.40

 

9499.74

 

525-081

 

11.25

 

48.90

 

2.11

 

2.11

 

37.65

 

525_FW2B

 

4847.28

 

7944.61

 

9506.65

 

525-082

 

50.16

 

60.00

 

0.24

 

0.24

 

9.84

 

525_FW2A

 

4867.29

 

7956.38

 

9520.21

 

525-082

 

19.39

 

33.62

 

0.09

 

0.09

 

14.24

 

525_FW2B

 

4843.50

 

7942.34

 

9512.92

 

525-083

 

23.66

 

38.85

 

2.17

 

2.17

 

15.19

 

525_FW2B

 

4848.91

 

7943.00

 

9500.94

 

525-084

 

19.83

 

54.05

 

0.78

 

0.78

 

34.22

 

525_FW2B

 

4855.13

 

7944.12

 

9506.71

 

525-085

 

17.91

 

58.69

 

2.60

 

2.60

 

40.78

 

525_FW2B

 

4856.04

 

7943.76

 

9513.28

 

525-086

 

22.69

 

29.80

 

4.02

 

4.02

 

7.11

 

525_FW3

 

4845.65

 

7921.19

 

9499.67

 

525-087

 

29.20

 

36.39

 

5.38

 

5.38

 

7.19

 

525_FW3

 

4852.80

 

7918.56

 

9506.65

 

525-088

 

33.25

 

63.65

 

2.87

 

2.87

 

30.41

 

525_FW2C

 

4866.83

 

7916.28

 

9518.25

 

525-089

 

14.80

 

25.00

 

2.57

 

2.57

 

10.20

 

525_FW3

 

4835.77

 

7917.16

 

9497.31

 

525-090

 

22.77

 

31.00

 

2.44

 

2.44

 

8.23

 

525_FW3

 

4843.01

 

7911.59

 

9506.25

 

525-101

 

64.40

 

71.60

 

4.37

 

4.37

 

7.20

 

650_UM2E

 

4668.30

 

7875.04

 

9449.09

 

525-101

 

86.91

 

111.00

 

6.53

 

6.53

 

24.08

 

650_UM1

 

4672.44

 

7852.55

 

9428.22

 

525-102

 

58.50

 

63.40

 

36.48

 

30.50

 

4.90

 

650_UM2E

 

4667.96

 

7875.39

 

9459.85

 

525-102

 

87.00

 

97.00

 

6.72

 

6.72

 

10.00

 

650_UM1

 

4671.73

 

7850.46

 

9441.72

 

525-103

 

0.00

 

20.30

 

0.14

 

0.14

 

20.30

 

525_FW2B

 

4830.02

 

7945.35

 

9506.60

 

525-104

 

0.00

 

18.60

 

1.75

 

1.75

 

18.60

 

525_FW2B

 

4840.00

 

7946.90

 

9506.60

 

525-105

 

24.00

 

30.00

 

9.83

 

9.83

 

6.00

 

525_FW2C

 

4850.00

 

7929.10

 

9506.60

 

525-105

 

1.00

 

18.50

 

1.96

 

1.96

 

17.50

 

525_FW2B

 

4850.00

 

7946.35

 

9506.60

 

525-106

 

0.00

 

6.51

 

0.56

 

0.56

 

6.51

 

525_FW2B

 

4865.20

 

7945.55

 

9506.60

 

525-106

 

17.20

 

28.01

 

1.42

 

1.42

 

10.81

 

525_FW2C

 

4865.20

 

7926.19

 

9506.60

 

525-107

 

19.90

 

27.00

 

0.26

 

0.26

 

7.10

 

525_FW2B

 

4834.99

 

7942.05

 

9507.70

 

525-108

 

6.00

 

9.00

 

0.96

 

0.96

 

3.00

 

525_FW2C

 

4845.40

 

7925.25

 

9510.27

 

525-108

 

16.30

 

26.96

 

2.04

 

2.04

 

10.66

 

525_FW2B

 

4845.40

 

7938.53

 

9515.10

 

525-109

 

0.00

 

11.00

 

3.38

 

3.38

 

11.00

 

525_FW2C

 

4858.62

 

7924.57

 

9509.58

 

525-109

 

15.53

 

27.00

 

2.39

 

2.39

 

11.47

 

525_FW2B

 

4858.10

 

7939.37

 

9514.97

 

525-110

 

0.00

 

10.50

 

0.82

 

0.82

 

10.50

 

525_FW2C

 

4871.20

 

7928.85

 

9503.60

 

525-111

 

2.52

 

13.39

 

1.64

 

1.64

 

10.87

 

525_FW2C

 

4871.20

 

7928.08

 

9506.32

 

525-112

 

3.40

 

16.26

 

0.89

 

0.89

 

12.86

 

525_FW2C

 

4875.81

 

7929.28

 

9503.60

 

525-113

 

2.83

 

15.46

 

0.51

 

0.51

 

12.63

 

525_FW2C

 

4875.23

 

7928.19

 

9506.73

 

540-003

 

61.00

 

66.59

 

3.11

 

3.11

 

5.59

 

525_MZ1A

 

4581.08

 

7941.67

 

9473.23

 

540-011

 

0.00

 

2.60

 

2.79

 

2.79

 

2.60

 

525_MZ1A

 

4577.84

 

7936.91

 

9479.45

 

540-012

 

0.13

 

2.82

 

0.16

 

0.16

 

2.69

 

525_MZ1A

 

4577.80

 

7937.21

 

9478.78

 

540-013

 

0.90

 

3.27

 

2.72

 

2.72

 

2.37

 

525_MZ1A

 

4577.71

 

7937.87

 

9478.00

 

540-014

 

1.28

 

4.13

 

3.53

 

3.53

 

2.84

 

525_MZ1A

 

4577.64

 

7938.39

 

9476.90

 

540-015

 

2.00

 

7.35

 

4.88

 

4.88

 

5.35

 

525_MZ1A

 

4577.44

 

7939.81

 

9474.86

 

565-001

 

26.71

 

30.87

 

6.62

 

6.62

 

4.16

 

650_UM2

 

4757.37

 

7909.14

 

9452.00

 

585-001

 

0.00

 

3.44

 

5.48

 

5.48

 

3.44

 

650_UM2

 

4738.39

 

7912.98

 

9435.50

 

585-002

 

0.00

 

4.45

 

6.05

 

6.05

 

4.45

 

650_UM2

 

4748.26

 

7915.91

 

9435.50

 

585-003

 

0.00

 

6.94

 

1.00

 

1.00

 

6.94

 

650_UM2

 

4758.19

 

7918.04

 

9435.50

 

585-004

 

0.00

 

2.10

 

4.50

 

4.50

 

2.10

 

650_UM2C

 

4766.74

 

7923.29

 

9435.50

 

585-005

 

2.46

 

6.14

 

3.38

 

3.38

 

3.68

 

650_UM2B

 

4763.03

 

7933.04

 

9435.50

 

585-006

 

7.40

 

9.70

 

5.89

 

5.89

 

2.30

 

650_UM2B

 

4752.08

 

7934.03

 

9435.50

 

585-006

 

0.00

 

2.86

 

0.40

 

0.40

 

2.86

 

650_UM2C

 

4754.51

 

7927.34

 

9435.50

 

585-007

 

0.00

 

5.44

 

3.99

 

3.99

 

5.44

 

650_UM2

 

4744.47

 

7925.36

 

9435.50

 

585-008

 

0.00

 

3.09

 

0.34

 

0.34

 

3.09

 

650_UM2

 

4735.37

 

7920.95

 

9435.50

 

585-015

 

2.00

 

5.29

 

4.67

 

4.67

 

3.29

 

650_UM2B

 

4763.36

 

7932.22

 

9436.75

 

585-016

 

0.00

 

2.55

 

2.20

 

2.20

 

2.55

 

650_UM2C

 

4754.59

 

7927.13

 

9435.94

 

585-017

 

17.75

 

21.40

 

8.24

 

8.24

 

3.65

 

650_UM2B

 

4739.11

 

7940.08

 

9442.19

 

585-017

 

0.00

 

6.10

 

2.90

 

2.90

 

6.10

 

650_UM2

 

4744.42

 

7925.49

 

9436.54

 

585-020

 

0.00

 

5.00

 

4.00

 

4.00

 

5.00

 

650_UM2

 

4748.30

 

7915.79

 

9436.36

 

 

Appendix 5-11



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

585-021

 

0.00

 

7.39

 

0.04

 

0.04

 

7.39

 

650_UM2

 

4758.19

 

7918.04

 

9436.76

 

585-022

 

0.00

 

2.67

 

0.00

 

0.00

 

2.67

 

650_UM2C

 

4766.83

 

7923.52

 

9435.96

 

630-001

 

2.00

 

23.55

 

2.03

 

2.03

 

21.54

 

650_UM2

 

4702.71

 

7921.97

 

9397.62

 

630-002

 

36.42

 

44.97

 

0.00

 

0.00

 

8.55

 

650_UM2B

 

4696.30

 

7950.12

 

9401.22

 

630-002

 

2.91

 

22.80

 

2.16

 

2.16

 

19.89

 

650_UM2

 

4702.32

 

7924.04

 

9393.54

 

630-003

 

36.76

 

43.04

 

2.94

 

2.94

 

6.27

 

650_UM2B

 

4691.16

 

7947.28

 

9404.95

 

630-003

 

3.70

 

24.80

 

4.82

 

4.82

 

21.10

 

650_UM2

 

4698.90

 

7924.79

 

9395.34

 

630-004

 

66.00

 

77.80

 

5.17

 

5.17

 

11.80

 

650_UM2D

 

4715.56

 

7966.33

 

9435.70

 

630-004

 

42.54

 

56.60

 

1.66

 

1.66

 

14.06

 

650_UM2B

 

4712.67

 

7949.34

 

9421.51

 

630-004

 

2.45

 

21.92

 

0.41

 

0.41

 

19.46

 

650_UM2

 

4705.86

 

7921.35

 

9397.71

 

630-005

 

35.54

 

49.00

 

1.62

 

1.62

 

13.46

 

650_UM2B

 

4715.52

 

7950.55

 

9403.11

 

630-005

 

2.89

 

19.39

 

0.08

 

0.08

 

16.50

 

650_UM2

 

4706.34

 

7922.42

 

9393.45

 

630-005

 

61.41

 

80.69

 

0.16

 

0.16

 

19.28

 

650_UM2D

 

4723.66

 

7976.64

 

9412.08

 

630-006

 

34.95

 

45.10

 

1.61

 

1.61

 

10.15

 

650_UM2B

 

4713.69

 

7950.88

 

9390.36

 

630-006

 

4.42

 

17.05

 

0.35

 

0.35

 

12.63

 

650_UM2

 

4706.38

 

7922.55

 

9390.02

 

630-006

 

64.09

 

78.58

 

2.45

 

2.45

 

14.49

 

650_UM2D

 

4720.38

 

7981.47

 

9390.90

 

630-007

 

38.68

 

46.93

 

1.00

 

1.00

 

8.25

 

650_UM2B

 

4717.61

 

7945.35

 

9413.06

 

630-007

 

67.20

 

82.50

 

0.20

 

0.20

 

15.30

 

650_UM2D

 

4729.05

 

7969.51

 

9430.71

 

630-007

 

2.35

 

18.61

 

1.34

 

1.34

 

16.26

 

650_UM2

 

4706.62

 

7920.34

 

9395.79

 

630-008

 

70.34

 

75.86

 

0.00

 

0.00

 

5.52

 

650_UM2D

 

4742.31

 

7972.99

 

9401.02

 

630-008

 

39.69

 

49.74

 

0.11

 

0.11

 

10.05

 

650_UM2B

 

4728.02

 

7948.87

 

9396.68

 

630-008

 

3.30

 

15.50

 

2.14

 

2.14

 

12.20

 

650_UM2

 

4708.32

 

7920.07

 

9391.33

 

630-009

 

72.49

 

77.45

 

0.01

 

0.01

 

4.95

 

650_UM2D

 

4741.38

 

7976.79

 

9391.32

 

630-009

 

4.04

 

15.80

 

4.12

 

4.12

 

11.76

 

650_UM2

 

4708.46

 

7920.71

 

9390.09

 

630-009

 

37.39

 

50.58

 

3.23

 

3.23

 

13.19

 

650_UM2B

 

4726.02

 

7949.90

 

9390.71

 

630-010

 

40.46

 

54.90

 

0.82

 

0.82

 

14.44

 

650_UM2B

 

4728.03

 

7950.54

 

9376.06

 

630-010

 

9.00

 

27.20

 

3.99

 

3.99

 

18.20

 

650_UM2

 

4712.63

 

7926.82

 

9384.71

 

630-011

 

125.70

 

136.20

 

15.27

 

15.27

 

10.50

 

UM5A

 

4599.65

 

7905.75

 

9263.27

 

630-011

 

21.49

 

32.41

 

2.15

 

2.15

 

10.92

 

UM4

 

4616.37

 

7934.83

 

9361.71

 

630-011

 

85.50

 

97.10

 

6.00

 

6.00

 

11.60

 

650_UM1

 

4606.07

 

7916.91

 

9300.77

 

630-011

 

84.00

 

97.09

 

5.44

 

5.44

 

13.09

 

UM1B

 

4606.19

 

7917.12

 

9301.48

 

630-019

 

142.80

 

145.20

 

0.80

 

0.80

 

2.40

 

UM5A

 

4566.38

 

7900.44

 

9260.57

 

630-019

 

40.50

 

44.00

 

1.71

 

1.71

 

3.50

 

UM3

 

4604.51

 

7929.97

 

9350.16

 

630-019

 

26.33

 

35.89

 

0.04

 

0.04

 

9.56

 

UM4

 

4608.63

 

7933.25

 

9359.98

 

630-019

 

117.40

 

129.00

 

9.65

 

9.65

 

11.60

 

UM5B

 

4574.09

 

7906.59

 

9278.88

 

630-019

 

152.00

 

175.50

 

4.26

 

4.26

 

23.50

 

UM5

 

4559.06

 

7894.59

 

9243.18

 

650-001

 

153.90

 

157.37

 

2.21

 

2.21

 

3.47

 

650_UM2A

 

4682.04

 

7930.49

 

9368.85

 

650-001

 

172.29

 

182.70

 

1.62

 

1.62

 

10.40

 

650_UM2B

 

4685.57

 

7952.05

 

9368.67

 

650-001

 

109.74

 

126.72

 

2.50

 

2.50

 

16.98

 

650_UM1

 

4676.08

 

7893.58

 

9368.71

 

650-002

 

171.25

 

174.74

 

1.94

 

1.94

 

3.49

 

650_UM2B

 

4679.74

 

7946.01

 

9392.80

 

650-002

 

141.65

 

159.09

 

3.02

 

3.02

 

17.44

 

650_UM2

 

4677.16

 

7923.75

 

9389.66

 

650-002

 

94.61

 

121.20

 

9.84

 

9.84

 

26.59

 

650_UM1

 

4672.86

 

7882.01

 

9383.36

 

650-003

 

92.40

 

105.00

 

18.94

 

15.96

 

12.60

 

650_UM1

 

4671.51

 

7868.43

 

9398.99

 

650-003

 

134.11

 

155.24

 

4.61

 

4.61

 

21.12

 

650_UM2

 

4673.51

 

7911.91

 

9413.76

 

650-004

 

154.86

 

161.19

 

0.00

 

0.00

 

6.33

 

650_UM2

 

4697.90

 

7931.25

 

9371.87

 

650-004

 

174.90

 

186.50

 

5.41

 

5.41

 

11.60

 

650_UM2B

 

4702.94

 

7953.35

 

9372.29

 

650-004

 

105.00

 

134.80

 

8.65

 

8.32

 

29.80

 

650_UM1

 

4690.25

 

7893.92

 

9370.77

 

650-005

 

198.32

 

205.09

 

0.00

 

0.00

 

6.78

 

650_UM2D

 

4710.64

 

7970.53

 

9397.35

 

650-005

 

150.41

 

162.23

 

0.01

 

0.01

 

11.82

 

650_UM2

 

4699.41

 

7926.96

 

9391.42

 

650-005

 

176.67

 

188.60

 

2.24

 

2.24

 

11.93

 

650_UM2B

 

4706.09

 

7952.17

 

9394.90

 

650-005

 

106.03

 

124.90

 

9.30

 

9.30

 

18.87

 

650_UM1

 

4689.90

 

7887.66

 

9385.55

 

650-006

 

85.00

 

104.00

 

7.04

 

7.04

 

19.00

 

650_UM2

 

4697.41

 

7919.03

 

9408.23

 

650-006

 

44.90

 

72.13

 

9.28

 

9.28

 

27.22

 

650_UM1

 

4700.28

 

7886.58

 

9392.94

 

650-007

 

142.60

 

154.35

 

1.84

 

1.84

 

11.75

 

650_UM2

 

4708.65

 

7914.47

 

9402.10

 

650-007

 

177.80

 

189.84

 

1.37

 

1.37

 

12.03

 

650_UM2B

 

4719.52

 

7947.10

 

9410.25

 

650-007

 

206.95

 

219.43

 

0.00

 

0.00

 

12.48

 

650_UM2D

 

4729.35

 

7973.92

 

9417.03

 

650-007

 

107.50

 

130.87

 

13.39

 

7.74

 

23.37

 

650_UM1

 

4699.78

 

7887.35

 

9395.48

 

650-008

 

90.82

 

101.20

 

1.13

 

1.13

 

10.39

 

650_UM2

 

4698.24

 

7926.89

 

9390.41

 

650-008

 

43.30

 

69.00

 

6.94

 

6.94

 

25.70

 

650_UM1

 

4699.17

 

7888.17

 

9380.96

 

650-009A

 

178.30

 

182.22

 

0.89

 

0.89

 

3.92

 

650_UM2B

 

4650.29

 

7950.93

 

9400.99

 

650-009A

 

96.00

 

108.00

 

7.04

 

7.04

 

12.00

 

650_UM1

 

4656.90

 

7874.21

 

9387.12

 

650-010

 

178.85

 

183.23

 

0.00

 

0.00

 

4.38

 

650_UM2B

 

4652.39

 

7955.27

 

9369.12

 

650-010

 

133.90

 

143.40

 

4.31

 

4.31

 

9.50

 

UM4

 

4652.95

 

7912.90

 

9368.74

 

650-010

 

102.40

 

113.06

 

2.43

 

2.43

 

10.66

 

650_UM1

 

4654.80

 

7882.10

 

9368.27

 

650-011a

 

116.74

 

128.52

 

1.09

 

1.09

 

11.78

 

UM1B

 

4652.95

 

7896.45

 

9354.26

 

650-011a

 

115.50

 

128.63

 

1.23

 

1.23

 

13.13

 

650_UM1

 

4652.99

 

7895.89

 

9354.32

 

 

Appendix 5-12



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-012

 

193.50

 

197.30

 

0.87

 

0.87

 

3.80

 

650_UM2B

 

4684.11

 

7967.09

 

9328.67

 

650-012

 

176.00

 

179.80

 

4.69

 

4.69

 

3.80

 

650_UM2A

 

4682.13

 

7950.05

 

9332.09

 

650-012

 

191.72

 

196.10

 

0.05

 

0.05

 

4.38

 

UM2B

 

4683.95

 

7965.64

 

9328.96

 

650-012

 

178.88

 

185.41

 

0.58

 

0.58

 

6.53

 

UM2A

 

4682.61

 

7954.18

 

9331.27

 

650-012

 

137.26

 

153.22

 

6.54

 

6.54

 

15.96

 

650_UM1

 

4678.69

 

7918.21

 

9338.46

 

650-012

 

229.21

 

245.47

 

0.00

 

0.00

 

16.26

 

UM2B

 

4689.34

 

8007.83

 

9320.23

 

650-012

 

134.00

 

155.07

 

4.96

 

4.96

 

21.06

 

UM1B

 

4678.63

 

7917.52

 

9338.60

 

650-015

 

85.63

 

101.03

 

1.31

 

1.31

 

15.40

 

650_UM2

 

4679.21

 

7917.06

 

9401.61

 

650-015

 

50.00

 

69.40

 

6.25

 

6.25

 

19.41

 

650_UM1

 

4688.04

 

7887.00

 

9389.43

 

650-016

 

105.78

 

110.75

 

0.01

 

0.01

 

4.97

 

650_UM2

 

4728.17

 

7916.59

 

9433.43

 

650-016

 

48.40

 

84.37

 

5.34

 

5.34

 

35.97

 

650_UM1

 

4718.35

 

7884.86

 

9408.13

 

650-017

 

93.77

 

102.12

 

0.00

 

0.00

 

8.35

 

650_UM2

 

4722.52

 

7922.43

 

9406.16

 

650-017

 

47.50

 

74.79

 

3.26

 

3.26

 

27.29

 

650_UM1

 

4715.25

 

7889.25

 

9392.05

 

650-018

 

94.00

 

101.00

 

4.68

 

4.68

 

7.00

 

650_UM2

 

4725.97

 

7927.09

 

9387.55

 

650-018

 

54.99

 

79.25

 

0.34

 

0.34

 

24.25

 

650_UM1

 

4719.93

 

7897.99

 

9381.47

 

650-019a

 

116.10

 

120.00

 

8.84

 

8.84

 

3.90

 

650_UM2B

 

4716.23

 

7951.38

 

9369.53

 

650-019a

 

96.00

 

104.00

 

12.75

 

12.75

 

8.00

 

650_UM2

 

4714.81

 

7933.39

 

9369.20

 

650-019a

 

54.01

 

79.10

 

5.38

 

5.38

 

25.09

 

650_UM1

 

4713.18

 

7900.05

 

9368.65

 

650-020

 

82.97

 

102.50

 

4.56

 

4.56

 

19.53

 

650_UM2

 

4703.23

 

7918.66

 

9405.56

 

650-020

 

43.00

 

70.00

 

4.26

 

4.26

 

27.00

 

650_UM1

 

4704.71

 

7885.48

 

9391.06

 

650-021a

 

89.97

 

93.00

 

1.01

 

1.01

 

3.03

 

650_UM1A

 

4641.00

 

7861.74

 

9373.10

 

650-021a

 

102.00

 

111.00

 

11.93

 

11.93

 

9.00

 

650_UM1

 

4637.02

 

7876.15

 

9374.42

 

650-022

 

115.37

 

116.98

 

0.00

 

0.00

 

1.60

 

650_UM2B

 

4703.76

 

7947.25

 

9392.95

 

650-022

 

85.92

 

101.20

 

4.07

 

4.07

 

15.28

 

650_UM2

 

4703.85

 

7925.17

 

9388.06

 

650-022

 

44.50

 

74.01

 

1.33

 

1.33

 

29.51

 

650_UM1

 

4705.55

 

7891.73

 

9380.68

 

650-023

 

90.03

 

100.18

 

0.06

 

0.06

 

10.15

 

650_UM2

 

4704.66

 

7928.91

 

9369.83

 

650-023

 

110.40

 

125.13

 

3.74

 

3.74

 

14.73

 

650_UM2B

 

4704.50

 

7951.55

 

9370.61

 

650-023

 

51.62

 

77.90

 

3.09

 

3.09

 

26.29

 

650_UM1

 

4702.71

 

7898.65

 

9368.91

 

650-024

 

121.00

 

124.00

 

11.93

 

11.93

 

3.00

 

650_UM2

 

4632.12

 

7888.51

 

9392.66

 

650-024

 

102.00

 

105.00

 

1.31

 

1.31

 

3.00

 

650_UM1

 

4637.67

 

7870.90

 

9388.15

 

650-025a

 

93.20

 

95.55

 

4.55

 

4.55

 

2.35

 

650_UM1A

 

4638.53

 

7864.25

 

9361.89

 

650-025a

 

105.35

 

117.35

 

3.75

 

3.75

 

12.00

 

650_UM1

 

4633.10

 

7880.33

 

9361.50

 

650-025a

 

93.20

 

117.13

 

2.37

 

2.37

 

23.93

 

UM1B

 

4635.07

 

7874.47

 

9361.63

 

650-025a

 

157.07

 

201.59

 

1.89

 

1.89

 

44.52

 

UM4

 

4609.69

 

7944.11

 

9360.58

 

650-026a

 

96.21

 

104.49

 

18.35

 

15.30

 

8.28

 

650_UM1A

 

4633.30

 

7868.29

 

9360.95

 

650-026a

 

108.50

 

120.76

 

4.02

 

4.02

 

12.26

 

650_UM1

 

4627.35

 

7881.13

 

9359.17

 

650-026a

 

95.22

 

121.20

 

9.17

 

8.20

 

25.98

 

UM1B

 

4629.95

 

7875.33

 

9359.98

 

650-027b

 

97.00

 

100.05

 

1.65

 

1.65

 

3.05

 

650_UM1A

 

4627.75

 

7864.17

 

9366.93

 

650-027b

 

95.68

 

100.33

 

1.44

 

1.44

 

4.65

 

UM1B

 

4627.94

 

7863.68

 

9366.92

 

650-027b

 

106.00

 

118.66

 

5.96

 

5.96

 

12.65

 

650_UM1

 

4623.05

 

7877.14

 

9367.19

 

650-028

 

99.86

 

102.10

 

8.88

 

8.88

 

2.24

 

650_UM1A

 

4627.76

 

7866.70

 

9359.57

 

650-028

 

107.00

 

123.19

 

4.08

 

4.08

 

16.19

 

650_UM1

 

4622.17

 

7879.65

 

9359.15

 

650-028

 

98.61

 

122.94

 

3.56

 

3.56

 

24.33

 

UM1B

 

4623.79

 

7875.65

 

9359.27

 

650-029

 

178.70

 

188.50

 

7.78

 

7.78

 

9.80

 

UM3

 

4594.22

 

7939.08

 

9332.90

 

650-029

 

116.00

 

127.20

 

3.48

 

3.48

 

11.20

 

UM1B

 

4617.79

 

7882.56

 

9342.56

 

650-029

 

116.01

 

128.38

 

3.15

 

3.15

 

12.38

 

650_UM1

 

4617.57

 

7883.10

 

9342.47

 

650-031

 

99.00

 

102.73

 

14.76

 

14.76

 

3.73

 

650_UM1A

 

4629.81

 

7867.59

 

9360.57

 

650-031

 

107.44

 

121.00

 

3.68

 

3.68

 

13.56

 

650_UM1

 

4624.98

 

7880.03

 

9360.14

 

650-031

 

177.56

 

195.94

 

0.25

 

0.25

 

18.38

 

UM4

 

4596.15

 

7946.53

 

9358.27

 

650-031

 

97.00

 

121.17

 

4.97

 

4.97

 

24.17

 

UM1B

 

4626.84

 

7875.25

 

9360.30

 

650-032

 

119.87

 

131.50

 

1.50

 

1.50

 

11.63

 

650_UM2B

 

4706.24

 

7952.03

 

9409.56

 

650-032

 

83.19

 

106.24

 

0.17

 

0.17

 

23.05

 

650_UM2

 

4704.74

 

7922.69

 

9399.76

 

650-032

 

44.00

 

73.00

 

6.12

 

6.12

 

29.00

 

650_UM1

 

4703.00

 

7888.52

 

9387.87

 

650-033

 

101.00

 

104.33

 

4.70

 

4.70

 

3.33

 

650_UM2

 

4694.41

 

7935.93

 

9370.60

 

650-033

 

111.51

 

126.02

 

4.37

 

4.37

 

14.51

 

650_UM2B

 

4693.03

 

7951.96

 

9371.30

 

650-033

 

49.39

 

78.17

 

3.78

 

3.78

 

28.79

 

650_UM1

 

4696.71

 

7897.15

 

9369.15

 

650-034

 

102.00

 

110.45

 

6.73

 

6.73

 

8.45

 

650_UM2

 

4726.68

 

7918.82

 

9428.23

 

650-034

 

54.50

 

80.27

 

2.92

 

2.92

 

25.77

 

650_UM1

 

4719.57

 

7887.49

 

9406.41

 

650-035

 

109.30

 

111.80

 

1.35

 

1.35

 

2.50

 

650_UM2

 

4739.12

 

7931.03

 

9408.28

 

650-035

 

59.74

 

84.70

 

2.26

 

2.26

 

24.96

 

650_UM1

 

4727.51

 

7897.33

 

9394.52

 

650-036

 

65.20

 

97.59

 

3.92

 

3.92

 

32.39

 

650_UM1

 

4734.11

 

7908.52

 

9383.07

 

650-038

 

109.39

 

117.00

 

1.77

 

1.77

 

7.60

 

650_UM2

 

4746.34

 

7923.51

 

9423.56

 

650-038

 

69.30

 

82.90

 

4.76

 

4.76

 

13.60

 

650_UM1

 

4732.98

 

7894.24

 

9405.47

 

650-042

 

107.51

 

119.98

 

7.88

 

7.88

 

12.47

 

650_UM2

 

4741.14

 

7915.79

 

9437.92

 

650-042

 

69.66

 

83.89

 

0.00

 

0.00

 

14.22

 

650_UM1

 

4729.33

 

7889.17

 

9415.26

 

650-043

 

50.18

 

81.99

 

12.74

 

12.19

 

31.81

 

650_UM1

 

4705.95

 

7881.63

 

9413.55

 

 

Appendix 5-13



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-044

 

92.00

 

99.50

 

3.86

 

3.86

 

7.50

 

650_UM2

 

4697.70

 

7905.41

 

9431.05

 

650-044

 

49.50

 

74.00

 

12.01

 

12.01

 

24.50

 

650_UM1

 

4700.26

 

7879.90

 

9408.72

 

650-045

 

50.00

 

66.00

 

38.14

 

26.49

 

16.00

 

650_UM1

 

4691.69

 

7879.09

 

9401.73

 

650-045

 

83.00

 

109.00

 

1.27

 

1.27

 

26.00

 

650_UM2

 

4681.68

 

7908.23

 

9423.97

 

650-046

 

90.37

 

94.99

 

2.68

 

2.68

 

4.63

 

650_UM2E

 

4698.51

 

7887.55

 

9443.13

 

650-046

 

57.00

 

75.00

 

6.70

 

6.70

 

18.00

 

650_UM1

 

4700.81

 

7871.99

 

9421.58

 

650-047

 

61.90

 

85.88

 

3.25

 

3.25

 

23.98

 

650_UM1

 

4711.26

 

7877.22

 

9427.28

 

650-048

 

61.70

 

75.41

 

2.09

 

2.09

 

13.71

 

650_UM1

 

4706.34

 

7872.98

 

9424.16

 

650-049

 

118.00

 

122.92

 

7.38

 

7.38

 

4.91

 

650_UM2B

 

4697.16

 

7953.09

 

9352.54

 

650-049

 

115.20

 

124.38

 

6.63

 

6.63

 

9.18

 

UM2B

 

4697.18

 

7952.42

 

9352.62

 

650-049

 

95.38

 

110.70

 

2.35

 

2.35

 

15.32

 

650_UM2A

 

4697.60

 

7935.80

 

9354.64

 

650-049

 

95.26

 

111.44

 

2.32

 

2.32

 

16.18

 

UM2A

 

4697.59

 

7936.11

 

9354.60

 

650-049

 

57.85

 

81.09

 

0.91

 

0.91

 

23.25

 

650_UM1

 

4698.46

 

7902.48

 

9358.64

 

650-049

 

55.30

 

80.51

 

0.84

 

0.84

 

25.22

 

UM1B

 

4698.50

 

7900.93

 

9358.83

 

650-051

 

49.90

 

69.01

 

10.09

 

10.09

 

19.11

 

650_UM1

 

4686.21

 

7883.81

 

9394.69

 

650-051

 

86.74

 

107.15

 

1.85

 

1.85

 

20.40

 

650_UM2

 

4689.65

 

7917.48

 

9410.80

 

650-054

 

0.00

 

1.04

 

0.63

 

0.63

 

1.04

 

650_UM1

 

4727.48

 

7911.86

 

9368.13

 

650-055

 

119.30

 

123.95

 

2.16

 

2.16

 

4.65

 

650_UM2B

 

4680.75

 

7945.95

 

9406.98

 

650-055

 

83.28

 

99.80

 

5.22

 

5.22

 

16.51

 

650_UM2

 

4680.75

 

7917.43

 

9397.42

 

650-055

 

48.77

 

68.90

 

3.63

 

3.63

 

20.13

 

650_UM1

 

4680.75

 

7886.37

 

9387.17

 

650-055A

 

0.00

 

1.31

 

2.55

 

2.55

 

1.31

 

650_UM1

 

4727.63

 

7912.03

 

9368.17

 

650-056A

 

50.60

 

69.10

 

3.47

 

3.47

 

18.50

 

650_UM1

 

4680.69

 

7888.51

 

9383.20

 

650-057

 

0.00

 

1.51

 

0.00

 

0.00

 

1.51

 

650_UM1

 

4724.13

 

7916.72

 

9370.20

 

650-057

 

30.50

 

38.12

 

5.22

 

5.22

 

7.62

 

650_UM2B

 

4727.76

 

7948.89

 

9378.70

 

650-057

 

59.20

 

75.40

 

2.52

 

2.52

 

16.20

 

650_UM2D

 

4728.64

 

7980.81

 

9386.97

 

650-058

 

0.00

 

1.88

 

0.09

 

0.09

 

1.88

 

650_UM1

 

4725.16

 

7916.89

 

9369.74

 

650-058

 

50.00

 

53.16

 

0.89

 

0.89

 

3.16

 

650_UM2B

 

4734.04

 

7964.75

 

9355.78

 

650-059

 

50.14

 

53.00

 

1.08

 

1.08

 

2.85

 

650_UM2B

 

4750.11

 

7953.57

 

9395.70

 

650-059

 

0.00

 

3.79

 

2.77

 

2.77

 

3.79

 

650_UM1

 

4726.82

 

7917.43

 

9370.95

 

650-060

 

0.00

 

5.70

 

3.38

 

3.38

 

5.70

 

650_UM1

 

4728.30

 

7918.23

 

9368.80

 

650-061

 

41.30

 

48.20

 

4.22

 

4.22

 

6.90

 

650_UM2D

 

4712.50

 

7972.05

 

9385.31

 

650-061

 

0.00

 

10.00

 

1.73

 

1.73

 

10.00

 

650_UM2

 

4712.50

 

7934.70

 

9371.71

 

650-061

 

17.90

 

28.00

 

4.65

 

4.65

 

10.10

 

650_UM2B

 

4712.50

 

7951.57

 

9377.85

 

650-062

 

17.10

 

19.60

 

4.46

 

4.46

 

2.50

 

UM1B

 

4711.11

 

7910.85

 

9355.28

 

650-062

 

17.10

 

20.60

 

3.63

 

3.63

 

3.50

 

650_UM1

 

4711.07

 

7910.49

 

9354.94

 

650-064

 

67.00

 

69.15

 

17.00

 

17.00

 

2.15

 

UM1B

 

4603.79

 

7896.23

 

9327.03

 

650-064

 

67.00

 

69.15

 

16.99

 

16.99

 

2.15

 

650_UM1

 

4603.79

 

7896.23

 

9327.03

 

650-064

 

78.70

 

81.70

 

2.31

 

2.31

 

3.00

 

UM5B

 

4602.88

 

7886.74

 

9319.54

 

650-064

 

90.30

 

98.20

 

9.18

 

9.18

 

7.90

 

UM5A

 

4601.83

 

7875.69

 

9310.92

 

650-064

 

8.04

 

22.55

 

0.41

 

0.41

 

14.51

 

UM4

 

4609.88

 

7936.92

 

9360.05

 

650-065

 

77.00

 

79.50

 

4.10

 

4.10

 

2.50

 

650_UM1

 

4610.15

 

7933.09

 

9293.13

 

650-065

 

77.00

 

79.50

 

4.10

 

4.10

 

2.50

 

UM1B

 

4610.15

 

7933.09

 

9293.13

 

650-065

 

48.00

 

51.00

 

2.59

 

2.59

 

3.00

 

UM3

 

4610.77

 

7939.47

 

9321.15

 

650-065

 

127.43

 

131.50

 

22.30

 

22.30

 

4.07

 

UM5C

 

4609.00

 

7920.74

 

9243.44

 

650-065

 

7.58

 

18.08

 

2.60

 

2.60

 

10.50

 

UM4

 

4611.96

 

7946.21

 

9357.17

 

650-065

 

108.21

 

121.15

 

0.56

 

0.56

 

12.94

 

UM5A

 

4609.33

 

7924.34

 

9257.78

 

650-066

 

62.50

 

64.50

 

4.37

 

4.37

 

2.00

 

UM1B

 

4614.20

 

7901.23

 

9327.33

 

650-066

 

63.00

 

70.00

 

1.40

 

1.40

 

7.00

 

650_UM1

 

4614.30

 

7899.00

 

9325.32

 

650-066

 

97.50

 

105.00

 

26.04

 

19.18

 

7.50

 

UM5A

 

4615.44

 

7873.21

 

9302.06

 

650-066

 

8.24

 

22.17

 

1.14

 

1.14

 

13.93

 

UM4

 

4612.78

 

7937.12

 

9359.60

 

650-067

 

115.60

 

119.00

 

3.31

 

3.31

 

3.40

 

UM5C

 

4614.33

 

7885.05

 

9271.12

 

650-067

 

62.00

 

65.50

 

0.76

 

0.76

 

3.50

 

650_UM1

 

4613.58

 

7914.40

 

9315.89

 

650-067

 

101.00

 

107.80

 

2.68

 

2.68

 

6.80

 

UM5A

 

4614.14

 

7892.16

 

9281.88

 

650-067

 

62.57

 

70.66

 

0.09

 

0.09

 

8.09

 

UM1B

 

4613.61

 

7912.84

 

9313.49

 

650-067

 

7.46

 

19.50

 

2.68

 

2.68

 

12.04

 

UM4

 

4612.64

 

7941.48

 

9358.24

 

650-068

 

80.90

 

83.19

 

0.00

 

0.00

 

2.29

 

UM1B

 

4614.03

 

7933.42

 

9289.16

 

650-068

 

79.50

 

81.92

 

0.03

 

0.03

 

2.42

 

650_UM1

 

4614.00

 

7933.67

 

9290.47

 

650-068

 

48.04

 

51.01

 

0.68

 

0.68

 

2.98

 

UM3

 

4613.27

 

7939.60

 

9321.07

 

650-068

 

120.70

 

130.88

 

6.29

 

6.29

 

10.18

 

UM5C

 

4615.50

 

7924.62

 

9246.33

 

650-068

 

7.66

 

18.00

 

1.56

 

1.56

 

10.34

 

UM4

 

4612.56

 

7946.18

 

9357.16

 

650-068

 

105.00

 

116.50

 

11.53

 

9.98

 

11.50

 

UM5A

 

4614.85

 

7927.74

 

9261.03

 

650-069

 

84.30

 

87.50

 

6.02

 

6.02

 

3.20

 

FW1

 

4630.65

 

7880.60

 

9320.49

 

650-069

 

59.40

 

65.50

 

1.74

 

1.74

 

6.10

 

650_UM1

 

4626.83

 

7899.31

 

9334.06

 

650-069

 

59.40

 

65.50

 

1.74

 

1.74

 

6.10

 

UM1B

 

4626.83

 

7899.31

 

9334.06

 

650-069

 

8.11

 

21.00

 

1.36

 

1.36

 

12.89

 

UM4

 

4615.16

 

7936.78

 

9361.45

 

650-070

 

7.90

 

18.23

 

5.07

 

5.07

 

10.33

 

UM4

 

4614.30

 

7940.91

 

9359.25

 

 

Appendix 5-14



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-070

 

57.71

 

69.27

 

4.69

 

4.69

 

11.56

 

650_UM1

 

4623.24

 

7911.30

 

9319.44

 

650-070

 

57.70

 

71.10

 

4.53

 

4.53

 

13.40

 

UM1B

 

4623.42

 

7910.77

 

9318.72

 

650-071

 

0.00

 

2.28

 

0.00

 

0.00

 

2.28

 

650_UM1

 

4687.50

 

7905.69

 

9371.07

 

650-071

 

31.00

 

53.01

 

2.36

 

2.36

 

22.01

 

650_UM2

 

4687.86

 

7919.59

 

9409.50

 

650-072

 

21.83

 

24.81

 

0.94

 

0.94

 

2.98

 

650_UM2

 

4687.50

 

7926.75

 

9379.15

 

650-072

 

0.00

 

3.13

 

0.01

 

0.01

 

3.13

 

650_UM1

 

4687.50

 

7906.74

 

9370.61

 

650-072

 

42.03

 

47.18

 

0.00

 

0.00

 

5.14

 

650_UM2B

 

4687.50

 

7946.29

 

9387.60

 

650-073

 

55.20

 

59.34

 

5.79

 

5.79

 

4.14

 

650_UM1

 

4637.50

 

7886.42

 

9346.71

 

650-073

 

14.00

 

19.97

 

14.01

 

14.01

 

5.97

 

UM4

 

4637.50

 

7923.22

 

9363.09

 

650-073

 

55.20

 

61.30

 

3.93

 

3.93

 

6.10

 

UM1B

 

4637.50

 

7885.53

 

9346.31

 

650-074

 

51.70

 

53.90

 

2.21

 

2.21

 

2.20

 

650_UM1

 

4638.57

 

7898.03

 

9336.55

 

650-074

 

52.50

 

57.27

 

1.01

 

1.01

 

4.77

 

UM1B

 

4638.41

 

7896.44

 

9335.22

 

650-074

 

11.97

 

17.80

 

20.20

 

20.20

 

5.83

 

UM4

 

4637.85

 

7927.22

 

9360.59

 

650-074

 

67.30

 

73.81

 

0.00

 

0.00

 

6.51

 

FW1

 

4636.93

 

7884.52

 

9325.18

 

650-075

 

59.10

 

61.20

 

4.45

 

4.45

 

2.10

 

UM1B

 

4639.61

 

7908.91

 

9317.86

 

650-075

 

62.01

 

64.55

 

0.21

 

0.21

 

2.54

 

650_UM1

 

4639.89

 

7907.38

 

9315.14

 

650-075

 

11.85

 

16.14

 

2.60

 

2.60

 

4.29

 

UM4

 

4637.45

 

7931.75

 

9357.88

 

650-076C

 

146.49

 

152.59

 

1.36

 

1.36

 

6.10

 

650_UM2B

 

4717.91

 

7977.78

 

9334.22

 

650-076C

 

142.56

 

150.20

 

0.49

 

0.49

 

7.63

 

UM2B

 

4716.77

 

7974.92

 

9334.95

 

650-076C

 

105.60

 

117.07

 

0.09

 

0.09

 

11.47

 

650_UM2A

 

4704.17

 

7943.26

 

9343.13

 

650-076C

 

50.00

 

90.70

 

4.93

 

4.93

 

40.69

 

650_UM1

 

4689.45

 

7906.27

 

9352.87

 

650-076C

 

50.01

 

93.89

 

4.67

 

4.67

 

43.89

 

UM1B

 

4690.02

 

7907.71

 

9352.48

 

650-077

 

84.09

 

103.16

 

2.46

 

2.46

 

19.06

 

650_UM2

 

4684.86

 

7916.41

 

9409.56

 

650-077

 

48.92

 

68.10

 

6.41

 

6.41

 

19.18

 

650_UM1

 

4690.46

 

7885.27

 

9394.34

 

650-078

 

114.94

 

119.11

 

4.71

 

4.71

 

4.17

 

650_UM2B

 

4677.32

 

7945.61

 

9392.22

 

650-078

 

86.50

 

95.00

 

4.34

 

4.34

 

8.50

 

650_UM2

 

4682.37

 

7920.41

 

9386.79

 

650-078

 

46.00

 

71.00

 

12.50

 

12.27

 

25.00

 

650_UM1

 

4688.51

 

7889.45

 

9380.18

 

650-079

 

119.10

 

123.40

 

17.27

 

17.27

 

4.30

 

UM2B

 

4698.07

 

7953.21

 

9348.22

 

650-079

 

119.06

 

123.40

 

17.12

 

17.12

 

4.34

 

650_UM2B

 

4698.07

 

7953.19

 

9348.22

 

650-079

 

97.03

 

112.67

 

3.48

 

3.48

 

15.63

 

UM2A

 

4698.22

 

7937.00

 

9350.70

 

650-079

 

94.85

 

111.74

 

3.80

 

3.80

 

16.89

 

650_UM2A

 

4698.23

 

7935.46

 

9350.94

 

650-079

 

61.37

 

81.70

 

7.51

 

7.51

 

20.33

 

650_UM1

 

4698.72

 

7904.08

 

9355.83

 

650-079

 

58.00

 

81.70

 

6.79

 

6.79

 

23.70

 

UM1B

 

4698.76

 

7902.42

 

9356.08

 

650-080

 

56.57

 

58.74

 

9.59

 

9.59

 

2.17

 

650_UM2

 

4630.11

 

7894.79

 

9384.22

 

650-081

 

53.38

 

56.49

 

0.00

 

0.00

 

3.10

 

650_UM2

 

4627.67

 

7888.92

 

9395.39

 

650-083

 

87.90

 

96.20

 

3.34

 

3.34

 

8.30

 

650_UM2

 

4709.35

 

7910.00

 

9420.53

 

650-083

 

45.80

 

76.89

 

2.59

 

2.59

 

31.09

 

650_UM1

 

4708.27

 

7884.63

 

9403.28

 

650-084

 

120.50

 

124.50

 

0.78

 

0.78

 

4.00

 

650_UM2B

 

4711.88

 

7956.75

 

9356.89

 

650-084

 

120.50

 

124.50

 

0.78

 

0.78

 

4.00

 

UM2B

 

4711.88

 

7956.75

 

9356.89

 

650-084

 

63.38

 

78.50

 

4.29

 

4.29

 

15.12

 

650_UM1

 

4709.88

 

7905.48

 

9362.01

 

650-084

 

62.49

 

78.50

 

4.10

 

4.10

 

16.01

 

UM1B

 

4709.87

 

7905.04

 

9362.06

 

650-084

 

90.49

 

111.09

 

0.62

 

0.62

 

20.60

 

UM2A

 

4710.97

 

7935.16

 

9359.05

 

650-085

 

153.00

 

161.09

 

3.21

 

3.21

 

8.10

 

650_UM2D

 

4731.82

 

7965.61

 

9452.94

 

650-085

 

94.39

 

106.83

 

2.20

 

2.20

 

12.44

 

650_UM2

 

4722.50

 

7918.59

 

9423.17

 

650-085

 

45.90

 

73.00

 

4.43

 

4.43

 

27.10

 

650_UM1

 

4715.51

 

7884.41

 

9401.32

 

650-086

 

118.61

 

124.58

 

0.00

 

0.00

 

5.98

 

650_UM2B

 

4731.77

 

7952.91

 

9385.89

 

650-086

 

146.00

 

152.00

 

1.96

 

1.96

 

6.00

 

650_UM2D

 

4737.10

 

7979.50

 

9389.84

 

650-086

 

95.30

 

101.50

 

2.45

 

2.45

 

6.20

 

650_UM2

 

4726.91

 

7930.48

 

9382.53

 

650-086

 

57.01

 

78.96

 

2.62

 

2.62

 

21.95

 

650_UM1

 

4720.41

 

7901.10

 

9378.10

 

650-087

 

123.00

 

127.70

 

13.18

 

13.18

 

4.70

 

650_UM2B

 

4720.08

 

7959.24

 

9356.49

 

650-087

 

123.00

 

127.70

 

13.18

 

13.18

 

4.70

 

UM2B

 

4720.08

 

7959.24

 

9356.49

 

650-087

 

68.40

 

78.81

 

5.58

 

5.58

 

10.41

 

650_UM1

 

4713.91

 

7908.04

 

9360.82

 

650-087

 

67.30

 

78.32

 

5.51

 

5.51

 

11.02

 

UM1B

 

4713.81

 

7907.26

 

9360.89

 

650-087

 

90.80

 

111.80

 

1.13

 

1.13

 

21.00

 

UM2A

 

4717.16

 

7935.45

 

9358.45

 

650-088

 

24.00

 

26.10

 

3.97

 

3.97

 

2.10

 

650_UM1A

 

4634.58

 

7859.89

 

9377.72

 

650-088

 

62.56

 

65.16

 

0.81

 

0.81

 

2.59

 

650_UM2

 

4637.80

 

7897.50

 

9386.74

 

650-088

 

37.00

 

44.00

 

2.78

 

2.78

 

7.00

 

650_UM1

 

4635.86

 

7874.87

 

9381.28

 

650-089

 

30.20

 

42.80

 

4.55

 

4.55

 

12.60

 

650_UM1

 

4665.08

 

7871.45

 

9393.96

 

650-089

 

66.20

 

94.94

 

3.22

 

3.22

 

28.74

 

650_UM2

 

4666.26

 

7903.46

 

9424.23

 

650-090

 

120.90

 

124.90

 

6.42

 

6.42

 

4.00

 

650_UM2A

 

4667.77

 

7958.38

 

9320.48

 

650-090

 

175.30

 

179.60

 

6.54

 

6.54

 

4.30

 

UM2B

 

4669.26

 

8008.58

 

9299.16

 

650-090

 

175.75

 

180.46

 

5.58

 

5.58

 

4.71

 

650_UM2B

 

4669.28

 

8009.18

 

9298.91

 

650-090

 

120.23

 

126.63

 

4.02

 

4.02

 

6.40

 

UM2A

 

4667.78

 

7958.87

 

9320.27

 

650-090

 

63.20

 

85.40

 

4.94

 

4.94

 

22.20

 

UM1B

 

4666.44

 

7913.67

 

9339.47

 

650-090

 

63.20

 

92.51

 

3.76

 

3.76

 

29.31

 

650_UM1

 

4666.54

 

7916.94

 

9338.08

 

650-091

 

140.50

 

146.20

 

3.01

 

3.01

 

5.70

 

650_UM2D

 

4739.67

 

7965.88

 

9417.56

 

 

Appendix 5-15



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-091

 

116.90

 

123.80

 

4.17

 

4.17

 

6.90

 

650_UM2B

 

4734.41

 

7944.84

 

9409.88

 

650-091

 

93.90

 

104.20

 

4.40

 

4.40

 

10.30

 

650_UM2

 

4729.56

 

7925.35

 

9402.80

 

650-091

 

51.70

 

83.60

 

5.64

 

5.64

 

31.90

 

650_UM1

 

4722.28

 

7896.66

 

9392.33

 

650-092

 

137.00

 

144.00

 

1.83

 

1.83

 

7.00

 

650_UM2B

 

4735.27

 

7971.91

 

9349.78

 

650-093

 

31.94

 

44.87

 

6.66

 

6.66

 

12.93

 

650_UM1

 

4668.18

 

7871.71

 

9392.91

 

650-093

 

70.56

 

96.30

 

3.53

 

3.53

 

25.74

 

650_UM2

 

4670.49

 

7906.07

 

9421.92

 

650-094

 

31.50

 

47.50

 

18.48

 

10.43

 

16.00

 

650_UM1

 

4667.72

 

7876.95

 

9387.50

 

650-094

 

75.30

 

92.50

 

6.74

 

6.74

 

17.20

 

650_UM2

 

4670.06

 

7915.46

 

9409.46

 

650-095

 

86.53

 

93.78

 

4.22

 

4.22

 

7.25

 

UM2A

 

4670.59

 

7931.46

 

9351.96

 

650-095

 

109.08

 

118.50

 

3.73

 

3.73

 

9.42

 

650_UM2B

 

4671.97

 

7954.67

 

9347.75

 

650-095

 

83.90

 

94.21

 

6.08

 

6.08

 

10.30

 

650_UM2A

 

4670.53

 

7930.38

 

9352.15

 

650-095

 

47.60

 

60.60

 

0.69

 

0.69

 

13.00

 

650_UM1

 

4668.49

 

7896.03

 

9358.30

 

650-095

 

48.53

 

62.23

 

0.13

 

0.13

 

13.70

 

UM1B

 

4668.56

 

7897.29

 

9358.08

 

650-095

 

111.60

 

125.80

 

3.27

 

3.27

 

14.20

 

UM2B

 

4672.26

 

7959.49

 

9346.87

 

650-096

 

105.55

 

108.88

 

7.03

 

7.03

 

3.33

 

650_UM2B

 

4680.77

 

7946.33

 

9391.69

 

650-096

 

76.00

 

90.21

 

6.96

 

6.96

 

14.21

 

650_UM2

 

4677.24

 

7923.10

 

9386.29

 

650-096

 

32.70

 

55.00

 

18.84

 

17.96

 

22.30

 

650_UM1

 

4672.04

 

7885.19

 

9377.52

 

650-097

 

74.00

 

93.06

 

2.03

 

2.03

 

19.06

 

650_UM2

 

4680.04

 

7916.15

 

9405.32

 

650-097

 

32.50

 

57.00

 

11.49

 

11.49

 

24.51

 

650_UM1

 

4673.24

 

7882.16

 

9387.93

 

650-098

 

31.40

 

46.86

 

5.79

 

5.79

 

15.46

 

650_UM1

 

4670.16

 

7873.28

 

9391.99

 

650-098

 

73.20

 

99.29

 

2.69

 

2.69

 

26.08

 

650_UM2

 

4676.22

 

7909.86

 

9421.04

 

650-099A

 

145.04

 

147.80

 

0.01

 

0.01

 

2.76

 

650_UM2B

 

4739.34

 

7975.10

 

9345.92

 

650-100A

 

33.00

 

43.70

 

13.59

 

13.59

 

10.70

 

650_UM1

 

4658.20

 

7871.87

 

9392.80

 

650-100A

 

63.03

 

85.94

 

1.98

 

1.98

 

22.92

 

650_UM2

 

4654.34

 

7900.28

 

9414.78

 

650-101

 

33.00

 

44.60

 

16.23

 

13.79

 

11.60

 

650_UM1

 

4657.19

 

7879.10

 

9379.58

 

650-102

 

88.36

 

92.45

 

4.94

 

4.94

 

4.09

 

650_UM2A

 

4657.44

 

7931.20

 

9353.95

 

650-102

 

123.99

 

128.50

 

4.57

 

4.57

 

4.50

 

650_UM2B

 

4656.99

 

7966.59

 

9348.35

 

650-102

 

47.50

 

59.20

 

4.16

 

4.16

 

11.70

 

UM1B

 

4658.46

 

7894.66

 

9359.97

 

650-102

 

39.40

 

59.20

 

2.57

 

2.57

 

19.80

 

650_UM1

 

4658.70

 

7890.68

 

9360.65

 

650-102

 

97.68

 

120.05

 

0.28

 

0.28

 

22.37

 

UM4

 

4657.20

 

7949.42

 

9351.03

 

650-104

 

76.13

 

77.33

 

3.06

 

3.06

 

1.20

 

650_UM1

 

4733.41

 

7906.63

 

9377.29

 

650-105

 

129.52

 

132.18

 

0.12

 

0.12

 

2.66

 

650_UM2B

 

4751.82

 

7955.40

 

9394.07

 

650-105

 

62.75

 

95.90

 

2.54

 

2.54

 

33.15

 

650_UM1

 

4734.17

 

7907.87

 

9384.92

 

650-106

 

146.39

 

148.35

 

2.26

 

2.26

 

1.96

 

650_UM2D

 

4755.92

 

7965.78

 

9416.25

 

650-106

 

120.30

 

123.00

 

3.31

 

3.31

 

2.70

 

650_UM2B

 

4747.39

 

7942.84

 

9408.34

 

650-106

 

61.01

 

64.30

 

2.92

 

2.92

 

3.29

 

650_UM1

 

4727.77

 

7890.41

 

9389.73

 

650-106

 

65.00

 

88.50

 

13.86

 

13.86

 

23.50

 

650_UM1

 

4732.38

 

7902.96

 

9394.19

 

650-109

 

141.37

 

142.90

 

1.20

 

1.20

 

1.53

 

650_UM2B

 

4763.52

 

7962.07

 

9396.34

 

650-109

 

86.21

 

95.85

 

1.62

 

1.62

 

9.64

 

650_UM1

 

4742.73

 

7916.20

 

9387.64

 

650-110

 

121.90

 

125.80

 

4.83

 

4.83

 

3.90

 

650_UM2C

 

4763.83

 

7938.03

 

9407.85

 

650-111

 

29.80

 

40.00

 

8.09

 

8.09

 

10.20

 

650_UM1

 

4649.94

 

7870.95

 

9393.75

 

650-111

 

55.40

 

81.10

 

2.40

 

2.40

 

25.70

 

650_UM2

 

4651.76

 

7894.56

 

9417.24

 

650-112

 

29.10

 

38.30

 

12.47

 

12.47

 

9.20

 

650_UM1

 

4649.54

 

7874.84

 

9387.09

 

650-112

 

59.32

 

70.43

 

0.10

 

0.10

 

11.11

 

650_UM2

 

4651.73

 

7900.92

 

9404.02

 

650-113

 

110.50

 

113.10

 

11.60

 

11.60

 

2.60

 

650_UM2B

 

4654.08

 

7953.07

 

9402.13

 

650-113

 

28.00

 

35.41

 

2.53

 

2.53

 

7.40

 

650_UM1

 

4649.39

 

7876.68

 

9378.57

 

650-114

 

37.90

 

57.00

 

5.09

 

5.09

 

19.10

 

UM1B

 

4648.50

 

7892.33

 

9356.62

 

650-114

 

31.70

 

57.00

 

4.41

 

4.41

 

25.30

 

650_UM1

 

4648.50

 

7889.34

 

9357.42

 

650-115

 

32.04

 

38.50

 

3.98

 

3.98

 

6.46

 

650_UM1

 

4643.78

 

7870.61

 

9394.18

 

650-115

 

55.30

 

62.70

 

1.58

 

1.58

 

7.40

 

650_UM2

 

4640.81

 

7886.99

 

9411.09

 

650-116

 

50.70

 

53.30

 

14.66

 

14.66

 

2.60

 

650_UM2

 

4641.36

 

7889.08

 

9397.86

 

650-116

 

29.90

 

35.40

 

3.22

 

3.22

 

5.50

 

650_UM1

 

4643.99

 

7873.23

 

9387.09

 

650-117

 

69.40

 

70.40

 

0.99

 

0.99

 

1.00

 

650_UM1

 

4734.46

 

7891.51

 

9399.65

 

650-117

 

122.30

 

124.70

 

2.88

 

2.88

 

2.40

 

650_UM2C

 

4757.71

 

7933.87

 

9422.82

 

650-117

 

129.60

 

134.40

 

2.35

 

2.35

 

4.80

 

650_UM2B

 

4761.76

 

7940.39

 

9426.43

 

650-117

 

70.40

 

82.30

 

6.47

 

6.47

 

11.90

 

650_UM1

 

4737.26

 

7896.59

 

9402.47

 

650-118

 

53.27

 

56.00

 

3.69

 

3.69

 

2.73

 

650_UM2

 

4637.83

 

7896.72

 

9387.59

 

650-118

 

28.90

 

33.54

 

2.03

 

2.03

 

4.64

 

650_UM1

 

4642.40

 

7875.20

 

9379.58

 

650-119

 

127.96

 

131.34

 

0.00

 

0.00

 

3.38

 

650_UM2B

 

4744.69

 

7937.07

 

9439.51

 

650-119

 

157.01

 

160.88

 

2.26

 

2.26

 

3.88

 

650_UM2D

 

4753.09

 

7960.16

 

9455.47

 

650-119

 

104.30

 

119.10

 

1.90

 

1.90

 

14.80

 

650_UM2

 

4739.54

 

7922.93

 

9429.74

 

650-119

 

65.66

 

82.10

 

1.39

 

1.39

 

16.44

 

650_UM1

 

4728.69

 

7893.12

 

9409.14

 

650-120

 

56.20

 

84.80

 

2.64

 

2.64

 

28.60

 

650_UM1

 

4718.56

 

7886.94

 

9414.95

 

650-121

 

37.20

 

47.64

 

4.22

 

4.22

 

10.44

 

650_UM1

 

4644.91

 

7863.38

 

9407.65

 

650-122

 

94.91

 

98.34

 

3.87

 

3.87

 

3.42

 

650_UM2

 

4707.50

 

7907.82

 

9432.09

 

650-122

 

47.20

 

81.80

 

1.20

 

1.20

 

34.60

 

650_UM1

 

4707.50

 

7883.58

 

9411.02

 

 

Appendix 5-16



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-123

 

112.90

 

119.20

 

12.92

 

12.92

 

6.30

 

UM1B

 

4648.50

 

7944.92

 

9307.40

 

650-123

 

112.90

 

119.20

 

12.91

 

12.91

 

6.30

 

650_UM1

 

4648.50

 

7944.92

 

9307.40

 

650-123

 

60.57

 

68.80

 

1.13

 

1.13

 

8.23

 

650_UM1

 

4648.50

 

7901.35

 

9334.62

 

650-123

 

160.40

 

172.80

 

1.80

 

1.80

 

12.40

 

UM1B

 

4648.50

 

7987.78

 

9280.62

 

650-123

 

160.40

 

188.70

 

3.09

 

3.09

 

28.30

 

650_UM1

 

4648 50

 

7994.53

 

9276.40

 

650-124

 

87.00

 

99.16

 

1.51

 

1.51

 

12.16

 

650_UM2

 

4700.00

 

7910.67

 

9420.75

 

650-124

 

47.00

 

78.50

 

2.86

 

2.86

 

31.50

 

650_UM1

 

4700.00

 

7885.52

 

9403.79

 

650-125

 

86.01

 

99.35

 

2.07

 

2.07

 

13.35

 

650_UM2

 

4695.12

 

7902.60

 

9430.27

 

650-125

 

48.94

 

71.40

 

38.65

 

16.99

 

22.46

 

650_UM1

 

4696.72

 

7878.31

 

9408.71

 

650-126

 

126.90

 

130.30

 

3.22

 

3.22

 

3.40

 

650_UM2A

 

4691.28

 

7955.97

 

9330.59

 

650-126

 

137.00

 

140.40

 

9.42

 

9.42

 

3.40

 

650_UM2B

 

4690.89

 

7965.71

 

9327.94

 

650-126

 

137.01

 

142.02

 

6.39

 

6.39

 

5.01

 

UM2B

 

4690.87

 

7966.49

 

9327.73

 

650-126

 

123.33

 

129.41

 

1.69

 

1.69

 

6.08

 

UM2A

 

4691.38

 

7953.83

 

9331.18

 

650-126

 

171.81

 

191.66

 

5.07

 

5.07

 

19.85

 

650_UM2B

 

4690.43

 

8007.47

 

9317.61

 

650-126

 

171.80

 

191.69

 

5.08

 

5.08

 

19.89

 

UM2B

 

4690.43

 

8007.48

 

9317.60

 

650-126

 

83.99

 

104.80

 

5.81

 

5.81

 

20.81

 

650_UM1

 

4693.38

 

7923.11

 

9339.85

 

650-126

 

83.20

 

104.80

 

5.69

 

5.69

 

21.60

 

UM1B

 

4693.40

 

7922.73

 

9339.96

 

650-127

 

170.31

 

183.61

 

4.32

 

4.32

 

13.29

 

UM2A

 

4664.70

 

8001.55

 

9285.42

 

650-127

 

170.30

 

183.80

 

4.36

 

4.36

 

13.50

 

650_UM2A

 

4664.70

 

8001.63

 

9285.38

 

650-127

 

86.40

 

137.20

 

13.55

 

12.40

 

50.80

 

UM1B

 

4664.70

 

7944.01

 

9316.01

 

650-127

 

82.36

 

137.20

 

12.59

 

11.53

 

54.84

 

650_UM1

 

4664.70

 

7942.23

 

9316.96

 

650-129

 

158.40

 

162.60

 

1.40

 

1.40

 

4.20

 

650_UM2B

 

4708.34

 

7990.64

 

9316.36

 

650-129

 

126.00

 

130.79

 

0.90

 

0.90

 

4.79

 

650_UM2A

 

4700.36

 

7961.39

 

9326.92

 

650-129

 

56.36

 

61.50

 

0.02

 

0.02

 

5.14

 

UM1B

 

4681.43

 

7898.52

 

9349.56

 

650-129

 

162.75

 

168.08

 

0.11

 

0.11

 

5.34

 

650_UM2B

 

4709.52

 

7995.12

 

9314.74

 

650-129

 

158.40

 

167.57

 

0.71

 

0.71

 

9.18

 

UM2B

 

4708.94

 

7992.90

 

9315.54

 

650-129

 

68.82

 

96.81

 

4.03

 

4.03

 

28.00

 

650_UM1

 

4688.21

 

7920.08

 

9341.83

 

650-129

 

63.01

 

97.09

 

3.34

 

3.34

 

34.08

 

UM1B

 

4687.44

 

7917.57

 

9342.73

 

650-130

 

0.00

 

1.91

 

0.02

 

0.02

 

1.91

 

650_UM1

 

4687.50

 

7906.15

 

9370.98

 

650-131

 

0.00

 

2.22

 

0.00

 

0.00

 

2.22

 

650_UM1

 

4687.50

 

7906.52

 

9370.82

 

650-131

 

45.40

 

49.30

 

5.26

 

5.26

 

3.90

 

650_UM2B

 

4687.50

 

7944.85

 

9396.68

 

650-131

 

22.09

 

28.17

 

0.18

 

0.18

 

6.08

 

650_UM2

 

4687.50

 

7926.44

 

9384.25

 

650-132

 

0.00

 

7.68

 

3.93

 

3.93

 

7.68

 

650_UM1

 

4688.16

 

7909.31

 

9370.13

 

650-132

 

27.25

 

35.80

 

12.70

 

12.70

 

8.55

 

650_UM2

 

4692.97

 

7936.04

 

9375.49

 

650-132

 

37.76

 

59.31

 

1.70

 

1.70

 

21.56

 

650_UM2B

 

4695.98

 

7952.43

 

9378.89

 

650-133

 

31.30

 

35.40

 

14.57

 

14.57

 

4.10

 

650_UM2A

 

4693.45

 

7937.22

 

9360.64

 

650-133

 

47.70

 

53.28

 

1.05

 

1.05

 

5.58

 

650_UM2B

 

4696.58

 

7953.44

 

9356.08

 

650-133

 

45.15

 

53.20

 

0.73

 

0.73

 

8.05

 

UM2B

 

4696.34

 

7952.20

 

9356.43

 

650-133

 

0.00

 

8.50

 

25.90

 

21.54

 

8.50

 

650_UM1

 

4688.22

 

7909.64

 

9368.30

 

650-133

 

26.10

 

36.89

 

5.79

 

5.79

 

10.79

 

UM2A

 

4693.11

 

7935.47

 

9361.14

 

650-134

 

41.99

 

56.69

 

1.70

 

1.70

 

14.69

 

650_UM2B

 

4700.37

 

7952.45

 

9405.06

 

650-134

 

4.00

 

20.30

 

2.93

 

2.93

 

16.30

 

650_UM2

 

4700.04

 

7926.79

 

9378.16

 

650-135

 

4.40

 

15.60

 

2.90

 

2.90

 

11.20

 

650_UM2

 

4700.32

 

7927.92

 

9372.10

 

650-135

 

27.80

 

49.00

 

0.80

 

0.80

 

21.20

 

650_UM2B

 

4701.12

 

7955.40

 

9379.20

 

650-136

 

32.08

 

40.40

 

1.46

 

1.46

 

8.32

 

UM2B

 

4700.87

 

7952.03

 

9356.21

 

650-136

 

32.03

 

40.40

 

1.45

 

1.45

 

8.37

 

650_UM2B

 

4700.87

 

7952.01

 

9356.22

 

650-136

 

5.70

 

14.90

 

8.56

 

8.56

 

9.20

 

650_UM2A

 

4700.07

 

7927.95

 

9365.81

 

650-136

 

5.10

 

21.74

 

4.75

 

4.75

 

16.64

 

UM2A

 

4700.13

 

7930.86

 

9364.70

 

650-137

 

0.00

 

3.30

 

7.18

 

7.18

 

3.30

 

650_UM1

 

4716.66

 

7913.58

 

9370.65

 

650-137

 

20.00

 

23.81

 

2.23

 

2.23

 

3.81

 

650_UM2

 

4717.41

 

7926.83

 

9385.95

 

650-137

 

45.37

 

59.33

 

0.72

 

0.72

 

13.96

 

650_UM2B

 

4718.69

 

7946.65

 

9409.02

 

650-137

 

73.54

 

90.00

 

3.65

 

3.65

 

16.46

 

650_UM2D

 

4720.07

 

7965.68

 

9431.42

 

650-138

 

0.00

 

1.93

 

0.00

 

0.00

 

1.93

 

650_UM1

 

4716.65

 

7913.42

 

9369.67

 

650-138

 

18.65

 

24.79

 

0.46

 

0.46

 

6.14

 

650_UM2

 

4718.28

 

7933.17

 

9375.84

 

650-138

 

33.00

 

44.98

 

0.94

 

0.94

 

11.97

 

650_UM2B

 

4719.93

 

7949.52

 

9381.14

 

650-138

 

67.70

 

81.00

 

1.10

 

1.10

 

13.30

 

650_UM2D

 

4723.19

 

7983.00

 

9392.04

 

650-139

 

22.60

 

25.77

 

0.90

 

0.90

 

3.17

 

650_UM2

 

4681.97

 

7920.46

 

9377.69

 

650-139

 

48.81

 

54.28

 

0.00

 

0.00

 

5.46

 

650_UM2B

 

4678.99

 

7945.97

 

9387.11

 

650-139

 

0.00

 

6.80

 

2.69

 

2.69

 

6.80

 

650_UM1

 

4684.31

 

7901.07

 

9370.56

 

650-140

 

11.63

 

12.65

 

1.61

 

1.61

 

1.02

 

UM1B

 

4683.07

 

7909.65

 

9366.85

 

650-140

 

37.90

 

41.00

 

4.60

 

4.60

 

3.10

 

650_UM2A

 

4679.57

 

7936.07

 

9360.87

 

650-140

 

0.00

 

15.00

 

3.09

 

3.09

 

15.00

 

650_UM1

 

4683.69

 

7905.16

 

9367.83

 

650-140

 

46.70

 

62.10

 

7.80

 

7.80

 

15.40

 

650_UM2B

 

4677.75

 

7950.51

 

9357.47

 

650-140

 

46.72

 

68.00

 

5.93

 

5.93

 

21.28

 

UM2B

 

4677.40

 

7953.37

 

9356.79

 

650-141

 

62.64

 

64.44

 

3.45

 

3.45

 

1.81

 

650_UM2B

 

4650.48

 

7948.63

 

9386.53

 

650-141

 

0.00

 

6.54

 

4.21

 

4.21

 

6.54

 

650_UM1

 

4682.94

 

7900.51

 

9370.29

 

 

Appendix 5-17



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-142

 

0.00

 

10.43

 

1.92

 

1.92

 

10.43

 

650_UM1

 

4681.85

 

7902.13

 

9368.30

 

650-142

 

40.67

 

80.00

 

1.78

 

1.78

 

39.33

 

UM4

 

4651.76

 

7946.73

 

9356.34

 

650-146

 

84.00

 

96.54

 

0.97

 

0.97

 

12.54

 

650_UM2

 

4684.55

 

7900.72

 

9438.95

 

650-146

 

33.30

 

50.00

 

20.66

 

20.21

 

16.70

 

650_UM1

 

4673.86

 

7871.36

 

9401.71

 

650-147

 

79.80

 

85.20

 

2.78

 

2.78

 

5.40

 

650_UM2E

 

4680.01

 

7886.02

 

9440.40

 

650-147

 

33.35

 

56.70

 

4.62

 

4.62

 

23.35

 

650_UM1

 

4672.79

 

7867.69

 

9408.52

 

650-148

 

46.00

 

61.00

 

11.74

 

11.74

 

15.00

 

650_UM1

 

4665.04

 

7858.44

 

9422.05

 

650-149

 

33.00

 

44.30

 

14.46

 

14.46

 

11.30

 

650_UM1

 

4659.11

 

7868.16

 

9401.18

 

650-150

 

40.99

 

50.20

 

10.05

 

10.05

 

9.20

 

650_UM1

 

4659.82

 

7863.82

 

9411.69

 

650-151

 

86.37

 

90.32

 

0.54

 

0.54

 

3.95

 

650_UM2E

 

4698.12

 

7888.15

 

9440.83

 

650-151

 

37.90

 

61.20

 

4.63

 

4.63

 

23.30

 

650_UM1

 

4684.32

 

7869.44

 

9409.78

 

650-152

 

47.40

 

60.70

 

3.65

 

3.65

 

13.30

 

650_UM1

 

4650.41

 

7862.51

 

9421.78

 

650-154

 

51.63

 

54.00

 

6.52

 

6.52

 

2.38

 

UM1B

 

4645.94

 

7888.43

 

9356.16

 

650-154

 

45.50

 

54.00

 

4.17

 

4.17

 

8.50

 

650_UM1

 

4645.45

 

7891.34

 

9357.00

 

650-154

 

14.50

 

25.50

 

6.58

 

6.58

 

11.00

 

UM4

 

4640.73

 

7919.64

 

9364.86

 

650-155

 

13.03

 

21.00

 

4.55

 

4.55

 

7.97

 

UM4

 

4639.61

 

7924.43

 

9360.99

 

650-155

 

46.19

 

55.00

 

1.24

 

1.24

 

8.81

 

650_UM1

 

4644.30

 

7896.32

 

9343.24

 

650-156

 

44.72

 

53.50

 

6.52

 

6.52

 

8.78

 

UM1B

 

4648.82

 

7894.11

 

9352.88

 

650-156

 

14.88

 

25.20

 

12.10

 

12.10

 

10.32

 

UM4

 

4641.67

 

7920.38

 

9363.04

 

650-156

 

42.87

 

53.50

 

5.41

 

5.41

 

10.63

 

650_UM1

 

4648.57

 

7894.94

 

9353.21

 

650-162

 

53.30

 

59.70

 

9.44

 

9.44

 

6.40

 

650_UM1

 

4622.93

 

7908.76

 

9325.60

 

650-162

 

95.67

 

102.11

 

0.00

 

0.00

 

6.44

 

UM5A

 

4620.61

 

7882.90

 

9292.09

 

650-162

 

0.00

 

8.90

 

14.87

 

14.87

 

8.90

 

UM4

 

4625.00

 

7940.76

 

9366.57

 

650-162

 

54.00

 

64.32

 

4.17

 

4.17

 

10.31

 

UM1B

 

4622.78

 

7907.13

 

9323.50

 

650-163

 

69.80

 

77.15

 

5.99

 

5.99

 

7.35

 

650_UM1

 

4613.42

 

7879.03

 

9345.82

 

650-163

 

66.53

 

77.40

 

4.14

 

4.14

 

10.87

 

UM1B

 

4613.40

 

7880.45

 

9346.33

 

650-163

 

17.10

 

31.86

 

0.90

 

0.90

 

14.75

 

UM4

 

4612.87

 

7925.29

 

9361.95

 

650-164

 

69.71

 

76.91

 

0.00

 

0.00

 

7.20

 

650_UM1

 

4612.02

 

7880.07

 

9343.44

 

650-164

 

66.98

 

75.54

 

0.00

 

0.00

 

8.56

 

UM1B

 

4612.02

 

7881.98

 

9344.19

 

650-164

 

16.19

 

32.20

 

1.33

 

1.33

 

16.01

 

UM4

 

4612.22

 

7925.80

 

9361.36

 

650-165

 

97.33

 

100.27

 

0.00

 

0.00

 

2.94

 

UM5A

 

4611.16

 

7868.58

 

9311.83

 

650-165

 

63.32

 

66.40

 

2.58

 

2.58

 

3.08

 

UM1B

 

4612.15

 

7895.80

 

9332.06

 

650-165

 

64.70

 

71.70

 

3.61

 

3.61

 

7.00

 

650_UM1

 

4612.10

 

7893.11

 

9330.08

 

650-165

 

10.16

 

25.36

 

0.53

 

0.53

 

15.21

 

UM4

 

4612.47

 

7933.83

 

9359.85

 

650-166

 

113.39

 

115.53

 

0.00

 

0.00

 

2.14

 

UM5C

 

4605.06

 

7875.82

 

9281.93

 

650-166

 

64.70

 

70.50

 

9.42

 

9.42

 

5.80

 

650_UM1

 

4609.67

 

7905.17

 

9318.16

 

650-166

 

98.90

 

107.22

 

0.64

 

0.64

 

8.32

 

UM5A

 

4606.30

 

7882.90

 

9290.78

 

650-166

 

58.25

 

68.44

 

3.71

 

3.71

 

10.19

 

UM1B

 

4609.99

 

7907.87

 

9321.43

 

650-166

 

7.98

 

21.00

 

3.06

 

3.06

 

13.02

 

UM4

 

4612.59

 

7939.01

 

9358.97

 

650-167

 

74.10

 

76.10

 

3.09

 

3.09

 

2.00

 

650_UM1

 

4600.44

 

7883.28

 

9343.16

 

650-167

 

86.10

 

90.10

 

2.82

 

2.82

 

4.00

 

UM5B

 

4600.39

 

7871.21

 

9338.33

 

650-168

 

73.70

 

75.70

 

9.85

 

9.85

 

2.00

 

650_UM1

 

4599.31

 

7902.20

 

9315.62

 

650-168

 

73.70

 

75.70

 

9.85

 

9.85

 

2.00

 

UM1B

 

4599.31

 

7902.20

 

9315.62

 

650-168

 

86.37

 

90.22

 

1.03

 

1.03

 

3.85

 

UM5B

 

4598.71

 

7892.92

 

9305.70

 

650-168

 

29.88

 

34.10

 

2.08

 

2.08

 

4.22

 

UM3

 

4599.76

 

7931.52

 

9346.66

 

650-168

 

6.18

 

20.53

 

0.17

 

0.17

 

14.35

 

UM4

 

4599.85

 

7944.29

 

9360.24

 

650-169

 

75.30

 

82.30

 

16.65

 

16.65

 

7.00

 

FW1

 

4619.78

 

7890.07

 

9312.57

 

650-169

 

95.07

 

102.79

 

0.00

 

0.00

 

7.72

 

UM5A

 

4618.13

 

7876.55

 

9297.76

 

650-169

 

53.79

 

62.04

 

0.34

 

0.34

 

8.25

 

UM1B

 

4621.77

 

7904.12

 

9327.89

 

650-169

 

0.00

 

10.10

 

3.28

 

3.28

 

10.10

 

UM4

 

4624.95

 

7940.15

 

9366.41

 

650-169

 

53.92

 

67.80

 

3.10

 

3.10

 

13.88

 

650_UM1

 

4621.48

 

7902.14

 

9325.73

 

650-170

 

76.50

 

78.80

 

3.90

 

3.90

 

2.30

 

650_UM1

 

4624.04

 

7919.10

 

9296.37

 

650-170

 

76.50

 

78.80

 

3.90

 

3.90

 

2.30

 

UM1B

 

4624.04

 

7919.10

 

9296.37

 

650-170

 

33.20

 

35.50

 

3.47

 

3.47

 

2.30

 

UM3

 

4624.70

 

7933.21

 

9337.30

 

650-170

 

99.40

 

107.00

 

1.94

 

1.94

 

7.60

 

UM5A

 

4623.60

 

7910.61

 

9272.27

 

650-170

 

0.00

 

7.90

 

12.40

 

12.40

 

7.90

 

UM4

 

4624.99

 

7942.49

 

9366.24

 

650-170

 

114.00

 

122.40

 

10.89

 

10.89

 

8.40

 

UM5C

 

4623.23

 

7905.61

 

9258.13

 

650-171

 

60.00

 

62.30

 

3.71

 

3.71

 

2.30

 

650_UM1

 

4643.16

 

7900.35

 

9322.72

 

650-171

 

60.00

 

62.30

 

3.71

 

3.71

 

2.30

 

UM1B

 

4643.16

 

7900.35

 

9322.72

 

650-171

 

12.00

 

17.10

 

12.85

 

12.85

 

5.10

 

UM4

 

4638.86

 

7929.61

 

9358.72

 

650-171

 

66.00

 

72.79

 

2.48

 

2.48

 

6.79

 

FW1

 

4643.79

 

7895.18

 

9316.32

 

650-172

 

0.00

 

3.01

 

4.06

 

4.06

 

3.01

 

650_UM2B

 

4674.99

 

7939.70

 

9367.25

 

650-172

 

19.00

 

24.99

 

4.86

 

4.86

 

5.99

 

650_UM2A

 

4674.34

 

7922.23

 

9356.56

 

650-172

 

36.80

 

45.41

 

7.97

 

7.97

 

8.61

 

650_UM1

 

4674.03

 

7906.03

 

9346.44

 

650-172

 

35.45

 

45.33

 

7.24

 

7.24

 

9.88

 

UM1B

 

4674.04

 

7906.63

 

9346.82

 

650-173

 

18.00

 

21.05

 

4.19

 

4.19

 

3.05

 

650_UM2A

 

4675.13

 

7928.57

 

9352.95

 

 

Appendix 5-18



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-173

 

0.00

 

3.37

 

1.66

 

1.66

 

3.37

 

650_UM2B

 

4675.00

 

7939.92

 

9366.71

 

650-173

 

15.91

 

21.85

 

2.63

 

2.63

 

5.94

 

UM2A

 

4675.13

 

7928.98

 

9353.44

 

650-173

 

34.56

 

44.90

 

5.28

 

5.28

 

10.34

 

UM1B

 

4675.19

 

7015.71

 

9337.36

 

650-173

 

34.45

 

44.90

 

5.23

 

5.23

 

10.45

 

650_UM1

 

4675.19

 

7915.75

 

9337.40

 

650-175

 

0.00

 

2.64

 

4.15

 

4.15

 

2.64

 

650_UM2B

 

4674.61

 

7939.91

 

9367.38

 

650-175

 

37.00

 

47.16

 

4.23

 

4.23

 

10.16

 

UMlB

 

4662.90

 

7906.59

 

9347.04

 

650-175

 

37.00

 

50.20

 

3.40

 

3.40

 

13.20

 

650_UM1

 

4662.45

 

7905.36

 

9346.27

 

650-176

 

18.00

 

21.04

 

0.15

 

0.15

 

3.04

 

UM2A

 

4670.28

 

7929.09

 

9353.27

 

650-176

 

0.00

 

3.20

 

2.91

 

2.91

 

3.20

 

650_UM2B

 

4674.63

 

7940.00

 

9366.81

 

650-176

 

18.13

 

21.88

 

0.13

 

0.13

 

3.75

 

650_UM2A

 

4670.17

 

7928.80

 

9352.90

 

650-176

 

36.08

 

44.62

 

0.43

 

0.43

 

8.54

 

UM1B

 

4665.21

 

7916.46

 

9337.50

 

650-176

 

34.68

 

45.60

 

0.66

 

0.66

 

10.92

 

650_UM1

 

4665.26

 

7916.59

 

9337.66

 

650-177

 

0.00

 

4.02

 

2.14

 

2.14

 

4.02

 

650_UM2B

 

4674.72

 

7940.23

 

9366.16

 

650-177

 

17.73

 

22.17

 

2.55

 

2.55

 

4.44

 

650_UM2A

 

4672.36

 

7933.36

 

9349.76

 

650-177

 

17.27

 

24.26

 

1.79

 

1.79

 

6.99

 

UM2A

 

4672.26

 

7933.05

 

9349.01

 

650-177

 

38.13

 

46.91

 

30.89

 

30.89

 

8.78

 

UM1B

 

4669.65

 

7924.52

 

9329.17

 

650-177

 

36.70

 

49.50

 

26.54

 

26.54

 

12.80

 

650_UM1

 

4669.58

 

7924.30

 

9328.64

 

650-178

 

0.00

 

2.21

 

2.00

 

2.00

 

2.21

 

650_UM2B

 

4675.35

 

7940.07

 

9367.53

 

650-178

 

11.47

 

15.09

 

0.00

 

0.00

 

3.62

 

650_UM2A

 

4678.71

 

7929.69

 

9362.13

 

650-178

 

31.12

 

43.47

 

2.85

 

2.85

 

12.35

 

UM1B

 

4684.51

 

7909.20

 

9351.03

 

650-178

 

27.37

 

41.50

 

2.32

 

2.32

 

14.14

 

650_UM1

 

4683.86

 

7911.65

 

9352.37

 

650-179

 

11.46

 

13.62

 

0.00

 

0.00

 

2.17

 

650_UM2A

 

4678.02

 

7932.31

 

9359.48

 

650-179

 

0.00

 

2.69

 

2.34

 

2.34

 

2.69

 

650_UM2B

 

4675.35

 

7940.08

 

9367.08

 

650-179

 

13.87

 

17.74

 

0.00

 

0.00

 

3.87

 

UM2A

 

4678.77

 

7930.03

 

9357.26

 

650-179

 

34.79

 

42.90

 

6.88

 

6.88

 

8.10

 

650_UM1

 

4684.00

 

7913.90

 

9341.67

 

650-179

 

30.88

 

41.31

 

2.93

 

2.93

 

10.43

 

UM1B

 

4683.38

 

7915.83

 

9343.52

 

650-180

 

0.00

 

3.88

 

0.01

 

0.01

 

3.88

 

650_UM2B

 

4675.30

 

7940.24

 

9366.24

 

650-180

 

14.23

 

19.13

 

4.91

 

4.91

 

4.90

 

650_UM2A

 

4677.62

 

7934.75

 

9352.76

 

650-180

 

15.17

 

21.34

 

4.07

 

4.07

 

6.17

 

UM2A

 

4677.87

 

7934.16

 

9351.32

 

650-180

 

161.55

 

168.60

 

9.71

 

9.71

 

7.05

 

D1B

 

4700.91

 

7877.07

 

9218.04

 

650-180

 

143.05

 

151.90

 

5.97

 

5.97

 

8.85

 

D1A

 

4697.94

 

7883.97

 

9233.96

 

650-180

 

33.91

 

45.01

 

15.83

 

15.83

 

11.10

 

UM1B

 

4681.10

 

7926.06

 

9331.99

 

650-180

 

35.70

 

50.69

 

13.10

 

13.10

 

14.99

 

650_UM1

 

4681.66

 

7924.62

 

9328.60

 

650-181

 

0.00

 

1.92

 

0.07

 

0.07

 

1.92

 

650_UM2B

 

4675.58

 

7940.31

 

9367.67

 

650-181

 

8.55

 

12.02

 

0.18

 

0.18

 

3.47

 

650_UM2A

 

4681.24

 

7933.63

 

9364.46

 

650-181

 

37.07

 

47.10

 

0.56

 

0.56

 

10.03

 

650_UM1

 

4699.68

 

7910.24

 

9353.36

 

650-181

 

36.63

 

48.18

 

0.95

 

0.95

 

11.55

 

UM1B

 

4699.86

 

7910.00

 

9353.24

 

650-182

 

9.02

 

10.98

 

0.01

 

0.01

 

1.96

 

650_UM2A

 

4680.04

 

7934.91

 

9361.88

 

650-182

 

0.00

 

2.27

 

3.51

 

3.51

 

2.27

 

650_UM2B

 

4675.58

 

7940.31

 

9367.31

 

650-182

 

12.84

 

15.65

 

0.00

 

0.00

 

2.81

 

UM2A

 

4682.15

 

7932.34

 

9359.25

 

650-182

 

29.09

 

44.27

 

2.43

 

2.43

 

15.18

 

UM1B

 

4693.33

 

7918.86

 

9345.22

 

650-182

 

19.20

 

43.23

 

3.32

 

3.32

 

24.03

 

650_UM1

 

4690.61

 

7922.12

 

9348.65

 

650-183

 

0.00

 

3.08

 

0.01

 

0.01

 

3.08

 

650_UM2B

 

4675.55

 

7940.34

 

9366.73

 

650-183

 

10.34

 

13.52

 

0.01

 

0.01

 

3.18

 

650_UM2A

 

4679.30

 

7935.87

 

9358.12

 

650-183

 

13.37

 

17.90

 

0.01

 

0.01

 

4.53

 

UM2A

 

4680.63

 

7934.27

 

9355.06

 

650-183

 

143.45

 

148.45

 

2.91

 

2.91

 

5.00

 

D1A

 

4724.22

 

7876.50

 

9246.71

 

650-183

 

28.97

 

43.85

 

3.85

 

3.85

 

14.88

 

650_UM1

 

4688.07

 

7925.34

 

9337.84

 

650-183

 

24.81

 

43.15

 

4.47

 

4.47

 

18.34

 

UM1B

 

4687.21

 

7926.39

 

9339.86

 

650-184

 

166.75

 

168.42

 

1.61

 

1.61

 

1.67

 

D1A

 

4715.81

 

7899.71

 

9210.86

 

650-184

 

16.30

 

19.95

 

2.03

 

2.03

 

3.65

 

650_UM2A

 

4678.68

 

7936.89

 

9350.74

 

650-184

 

0.00

 

4.57

 

0.70

 

0.70

 

4.57

 

650_UM2B

 

4675.43

 

7940.49

 

9365.82

 

650-184

 

15.80

 

22.09

 

1.18

 

1.18

 

6.29

 

UM2A

 

4678.86

 

7936.70

 

9349.96

 

650-184

 

42.86

 

49.95

 

2.59

 

2.59

 

7.09

 

650_UM1

 

4685.18

 

7930.15

 

9324.06

 

650-184

 

37.33

 

46.13

 

0.36

 

0.36

 

8.80

 

UM1B

 

4684.08

 

7931.27

 

9328.46

 

650-185

 

19.09

 

23.08

 

7.85

 

7.85

 

3.99

 

650_UM2A

 

4674.91

 

7936.42

 

9347.42

 

650-185

 

144.40

 

149.25

 

8.35

 

8.35

 

4.85

 

D1A

 

4674.39

 

7909.09

 

9224.70

 

650-185

 

121.55

 

126.55

 

14.78

 

14.78

 

5.00

 

D1D

 

4674.82

 

7914.01

 

9246.93

 

650-185

 

0.00

 

5.10

 

0.31

 

0.31

 

5.10

 

650_UM2B

 

4675.00

 

7940.39

 

9365.52

 

650-185

 

43.05

 

50.95

 

1.78

 

1.78

 

7.90

 

650_UM1

 

4674.94

 

7930.82

 

9322.12

 

650-185

 

18.89

 

27.18

 

3.97

 

3.97

 

8.29

 

UM2A

 

4674.91

 

7936.00

 

9345.52

 

650-185

 

199.53

 

211.21

 

9.88

 

9.88

 

11.69

 

D1

 

4673.15

 

7896.04

 

9167.64

 

650-185

 

40.36

 

54.84

 

1.23

 

1.23

 

14.48

 

UM1B

 

4674.94

 

7930.69

 

9321.53

 

650-186

 

20.00

 

23.79

 

10.46

 

10.46

 

3.79

 

650_UM2A

 

4674.92

 

7938.00

 

9346.31

 

650-186

 

184.65

 

189.65

 

9.54

 

9.54

 

5.00

 

D1B

 

4679.16

 

7912.98

 

9183.06

 

650-186

 

0.00

 

5.88

 

0.20

 

0.20

 

5.88

 

650_UM2B

 

4675.00

 

7940.59

 

9365.09

 

650-186

 

20.34

 

29.02

 

4.87

 

4.87

 

8.67

 

UM2A

 

4674.91

 

7937.61

 

9343.55

 

 

Appendix 5-19



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

650-186

 

124.10

 

132.95

 

4.29

 

4.29

 

8.85

 

D1D

 

4676.47

 

7922.01

 

9240.91

 

650-186

 

42.70

 

51.65

 

2.06

 

2.06

 

8.96

 

650_UM1

 

4674.94

 

7934.35

 

9321.30

 

650-186

 

41.48

 

58.75

 

1.29

 

1.29

 

17.27

 

UM1B

 

4674.94

 

7933.91

 

9318.39

 

650-187

 

0.00

 

4.73

 

2.04

 

2.04

 

4.73

 

650_UM2B

 

4674.77

 

7940.39

 

9365.73

 

650-187

 

18.87

 

24.24

 

4.31

 

4.31

 

5.37

 

650_UM2A

 

4672.74

 

7935.62

 

9347.25

 

650-187

 

18.62

 

26.27

 

5.13

 

5.13

 

7.65

 

UM2A

 

4672.64

 

7935.41

 

9346.40

 

650-187

 

39.30

 

48.45

 

7.32

 

7.32

 

9.15

 

650_UM1

 

4670.16

 

7930.16

 

9325.76

 

650-187

 

39.95

 

53.10

 

5.03

 

5.03

 

13.15

 

UM1B

 

4669.85

 

7929.51

 

9323.21

 

650-192

 

18.49

 

22.34

 

4.27

 

4.27

 

3.85

 

650_UM2A

 

4676.09

 

7937.26

 

9347.97

 

650-192

 

0.00

 

5.17

 

0.50

 

0.50

 

5.17

 

650_UM2B

 

4675.18

 

7940.50

 

9365.47

 

650-192

 

205.00

 

213.00

 

0.82

 

0.82

 

8.00

 

D1

 

4689.16

 

7900.20

 

9163.54

 

650-192

 

18.42

 

26.50

 

3.20

 

3.20

 

8.08

 

UM2A

 

4676.18

 

7936.89

 

9345.95

 

650-192

 

43.69

 

52.00

 

1.09

 

1.09

 

8.31

 

650_UM1

 

4677.75

 

7932.23

 

9321.05

 

650-192

 

182.00

 

191.00

 

6.59

 

6.59

 

9.00

 

D1B

 

4687.60

 

7905.07

 

9185.45

 

650-192

 

39.86

 

53.28

 

0.74

 

0.74

 

13.42

 

UM1B

 

4677.66

 

7932.47

 

9322.30

 

650-194

 

51.23

 

55.56

 

0.03

 

0.03

 

4.32

 

UM1B

 

4640.65

 

7888.69

 

9344.01

 

650-194

 

9.99

 

18.81

 

3.59

 

3.59

 

8.82

 

UM4

 

4642.90

 

7923.48

 

9361.46

 

650-194

 

42.00

 

52.41

 

1.16

 

1.16

 

10.41

 

650_UM1

 

4641.01

 

7894.21

 

9346.78

 

650-195

 

49.69

 

53.71

 

4.14

 

4.14

 

4.02

 

UM1B

 

4641.07

 

7894.47

 

9337.73

 

650-195

 

64.69

 

68.94

 

0.00

 

0.00

 

4.25

 

FW1

 

4640.15

 

7882.18

 

9328.99

 

650-195

 

46.60

 

53.50

 

2.70

 

2.70

 

6.90

 

650_UM1

 

4641.17

 

7895.81

 

9338.69

 

650-195

 

9.32

 

16.61

 

3.57

 

3.57

 

7.29

 

UM4

 

4643.13

 

7925.82

 

9360.39

 

670-001

 

114.34

 

142.91

 

5.36

 

5.36

 

28.58

 

UM1B

 

4686.63

 

7917.54

 

9340.27

 

670-001

 

103.86

 

139.13

 

5.04

 

5.04

 

35.27

 

650_UM1

 

4679.55

 

7918.32

 

9340.62

 

670-002

 

105.65

 

121.50

 

2.86

 

2.86

 

15.86

 

UM1B

 

4670.29

 

7910.75

 

9339.64

 

670-002

 

100.56

 

120.20

 

8.40

 

2.76

 

19.64

 

650_UM1

 

4667.16

 

7911.30

 

9339.84

 

670-003

 

92.10

 

104.07

 

7.17

 

7.17

 

11.97

 

650_UM1

 

4652.32

 

7902.65

 

9340.10

 

670-004

 

89.09

 

96.48

 

0.43

 

0.43

 

7.39

 

650_UM1

 

4644.77

 

7897.24

 

9342.26

 

670-005

 

71.97

 

84.81

 

1.53

 

1.53

 

12.84

 

650_UM1

 

4623.82

 

7888.44

 

9343.17

 

670-005

 

70.89

 

88.92

 

1.34

 

1.34

 

18.03

 

UM1B

 

4625.03

 

7887.53

 

9343.11

 

670-006

 

58.72

 

61.19

 

0.01

 

0.01

 

2.47

 

UM1B

 

4604.42

 

7899.37

 

9324.37

 

670-006

 

58.53

 

62.34

 

0.01

 

0.01

 

3.81

 

650_UM1

 

4604.76

 

7899.07

 

9324.20

 

670-006

 

80.65

 

85.87

 

0.15

 

0.15

 

5.22

 

FW1

 

4620.56

 

7884.70

 

9316.17

 

670-007

 

68.78

 

71.82

 

0.24

 

0.24

 

3.04

 

650_UM1

 

4619.28

 

7907.10

 

9319.16

 

670-007

 

88.84

 

96.52

 

0.80

 

0.80

 

7.68

 

FW1

 

4638.37

 

7899.10

 

9310.65

 

670-007

 

56.60

 

75.85

 

0.31

 

0.31

 

19.24

 

UM1B

 

4615.80

 

7908.56

 

9320.69

 

670-008

 

95.00

 

99.35

 

0.14

 

0.14

 

4.35

 

FW1

 

4642.91

 

7900.34

 

9309.38

 

670-008

 

69.22

 

79.26

 

0.11

 

0.11

 

10.04

 

650_UM1

 

4624.63

 

7910.95

 

9318.03

 

670-008

 

64.32

 

81.68

 

0.17

 

0.17

 

17.35

 

UM1B

 

4623.59

 

7911.42

 

9318.49

 

670-009

 

71.93

 

74.93

 

0.02

 

0.02

 

2.99

 

UM1B

 

4625.64

 

7917.03

 

9318.43

 

670-009

 

88.40

 

93.57

 

0.03

 

0.03

 

5.18

 

UM1B

 

4641.43

 

7912.90

 

9311.96

 

80-006b

 

107.60

 

110.80

 

0.95

 

0.95

 

3.20

 

525_V3

 

4948.00

 

7857.43

 

9854.46

 

90-002

 

66.60

 

69.75

 

3.35

 

3.35

 

3.15

 

525_V3

 

4963.10

 

7851.03

 

9871.68

 

90-006

 

65.15

 

68.05

 

1.26

 

1.26

 

2.90

 

525_V3A

 

4997.71

 

7836.32

 

9894.71

 

90-007

 

66.20

 

69.00

 

1.35

 

1.35

 

2.80

 

525_V3A

 

4995.89

 

7840.12

 

9888.08

 

HG02-07

 

160.40

 

162.17

 

19.74

 

19.74

 

1.77

 

525_V1

 

4971.26

 

7896.44

 

9864.15

 

HG02-07

 

275.40

 

278.05

 

3.78

 

3.78

 

2.65

 

525_FW1

 

4970.14

 

7832.25

 

9768.21

 

HG02-07

 

200.11

 

207.05

 

2.31

 

2.31

 

6.94

 

525_V3

 

4970.85

 

7873.17

 

9828.84

 

HG02-09

 

334.53

 

336.25

 

2.64

 

2.64

 

1.72

 

525_FW2

 

4962.24

 

7852.45

 

9729.61

 

HG02-10

 

377.10

 

378.61

 

6.97

 

6.97

 

1.51

 

525_FW2

 

4976.20

 

7870.53

 

9700.35

 

HG02-10

 

323.40

 

325.62

 

78.79

 

19.69

 

2.22

 

525_V3

 

4974.71

 

7904.01

 

9741.86

 

HG02-10

 

359.64

 

363.43

 

2.02

 

2.02

 

3.79

 

525_FW1

 

4975.66

 

7880.79

 

9713.04

 

HG02-11

 

163.20

 

169.56

 

2.92

 

2.92

 

6.36

 

525_V3A

 

5012.44

 

7847.18

 

9879.06

 

HG02-12

 

220.25

 

227.86

 

11.66

 

8.26

 

7.61

 

525_V3A

 

5018.47

 

7863.11

 

9820.33

 

HG02-14

 

269.34

 

279.00

 

2.35

 

2.35

 

9.66

 

525_MZ1A

 

4813.11

 

7857.40

 

9782.70

 

HG02-15

 

284.41

 

291.29

 

0.61

 

0.61

 

6.88

 

525_MZ1A

 

4816.20

 

7864.03

 

9761.06

 

HG02-16

 

269.02

 

273.07

 

0.02

 

0.02

 

4.05

 

525_FW1

 

5004.73

 

7812.01

 

9800.52

 

HG02-16

 

205.28

 

214.00

 

1.74

 

1.74

 

8.72

 

525_V3A

 

5009.90

 

7854.11

 

9844.93

 

HG02-17

 

190.00

 

192.80

 

2.14

 

2.14

 

2.80

 

525_V1

 

5016.49

 

7902.59

 

9849.46

 

HG02-17

 

276.70

 

279.92

 

2.63

 

2.63

 

3.22

 

525_FW1A

 

5013.58

 

7847.09

 

9782.64

 

HG02-17

 

199.98

 

206.12

 

0.03

 

0.03

 

6.14

 

525_V2

 

5016.10

 

7895.22

 

9840.43

 

HG02-17

 

246.42

 

254.00

 

2.86

 

2.86

 

7.58

 

525_V3A

 

5014.52

 

7865.12

 

9804.17

 

HG02-18

 

402.25

 

405.05

 

3.03

 

3.03

 

2.80

 

525_FW2

 

4962.09

 

7885.66

 

9677.40

 

HG02-18

 

355.32

 

359.38

 

4.89

 

4.89

 

4.06

 

525_V3

 

4963.66

 

7914.25

 

9713.78

 

HG02-18

 

323.19

 

329.57

 

2.81

 

2.81

 

6.38

 

525_V2

 

4964.88

 

7933.21

 

9738.24

 

HG84-01

 

306.87

 

309.55

 

5.32

 

5.32

 

2.68

 

525_MZ1A

 

4724.78

 

7892.97

 

9694.21

 

 

Appendix 5-20



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

HG84-01

 

368.41

 

372.92

 

4.53

 

4.53

 

4.51

 

525_MZ2

 

4736.06

 

7880.07

 

9634.21

 

HG84-02A

 

381.45

 

383.87

 

4.14

 

4.14

 

2.41

 

525_MZ2

 

4747.86

 

7895.27

 

9624.11

 

HG87-03

 

278.08

 

282.44

 

0.34

 

0.34

 

4.36

 

525_MZ1A

 

4844.79

 

7855.29

 

9781.00

 

HG87-04

 

298.00

 

304.22

 

1.49

 

1.49

 

6.23

 

525_MZ1A

 

4837.04

 

7852.59

 

9787.74

 

HG88-11

 

212.59

 

214.66

 

3.60

 

3.60

 

2.07

 

525_V3

 

4955.11

 

7875.18

 

9829.68

 

HG88-12

 

221.33

 

225.00

 

1.47

 

1.47

 

3.67

 

525_V3B

 

5052.44

 

7860.65

 

9826.12

 

HG88-14

 

188.10

 

193.00

 

9.85

 

9.85

 

4.90

 

525_V3B

 

5037.23

 

7827.40

 

9849.39

 

HG88-24

 

395.00

 

398.00

 

4.50

 

4.50

 

3.00

 

525_V2

 

4980.69

 

7960.17

 

9712.25

 

HG88-24

 

429.90

 

433.32

 

3.32

 

3.32

 

3.42

 

525_V3

 

4985.19

 

7934.64

 

9688.58

 

HG96-03

 

297.58

 

301.97

 

0.14

 

0.14

 

4.39

 

525_MZ1B

 

4835.78

 

7840.90

 

9747.23

 

HG96-03

 

265.50

 

271.95

 

2.61

 

2.61

 

6.45

 

525_MZ1A

 

4832.05

 

7859.10

 

9772.08

 

HG96-04

 

283.44

 

298.77

 

1.54

 

1.54

 

15.34

 

525_MZ1A

 

4842.87

 

7862.07

 

9746.97

 

HG96-09

 

382.50

 

384.50

 

22.90

 

20.69

 

2.00

 

525_V3

 

4897.03

 

7938.02

 

9665.50

 

HG96-09

 

369.50

 

372.00

 

9.07

 

9.07

 

2.50

 

525_V2

 

4896.33

 

7944.55

 

9676.43

 

HG96-09

 

446.00

 

454.50

 

4.13

 

4.13

 

8.50

 

525_FW2A

 

4902.30

 

7902.64

 

9609.21

 

HG96-10

 

412.00

 

414.00

 

3.18

 

3.18

 

2.00

 

525_V2

 

4898.35

 

7976.46

 

9640.30

 

HG96-10

 

430.80

 

435.00

 

2.11

 

2.11

 

4.20

 

525_V3

 

4899.97

 

7965.61

 

9623.70

 

HG96-10

 

495.00

 

511.00

 

5.18

 

5.18

 

16.00

 

525_FW2A

 

4906.67

 

7926.64

 

9565.83

 

HG97-01

 

194.00

 

196.77

 

6.73

 

6.73

 

2.77

 

525_V1

 

5002.95

 

7910.10

 

9842.40

 

HG97-01

 

265.76

 

268.89

 

1.30

 

1.30

 

3.13

 

525_V3A

 

4994.97

 

7868.97

 

9783.93

 

HG97-01

 

309.64

 

313.00

 

2.19

 

2.19

 

3.36

 

525_FW2

 

4989.25

 

7843.78

 

9748.32

 

HG97-01

 

233.87

 

238.62

 

0.67

 

0.67

 

4.75

 

525_V3

 

4998.78

 

7886.82

 

9809.09

 

HG97-01

 

293.20

 

301.10

 

1.91

 

1.91

 

7.90

 

525_FW1

 

4991.12

 

7851.87

 

9759.80

 

HG97-01

 

211.93

 

220.86

 

3.55

 

3.55

 

8.92

 

525_V2

 

5000.95

 

7898.17

 

9825.23

 

HG97-02

 

274.87

 

278.80

 

0.03

 

0.03

 

3.93

 

525_V3

 

4993.87

 

7891.59

 

9777.43

 

HG97-02

 

242.00

 

247.44

 

1.53

 

1.53

 

5.44

 

525_V2

 

4994.80

 

7911.14

 

9802.88

 

HG97-02

 

315.00

 

322.92

 

2.65

 

2.65

 

7.92

 

525_FW1

 

4994.32

 

7865.75

 

9744.18

 

HG97-04

 

302.44

 

309.72

 

0.43

 

0.43

 

7.28

 

525_V3

 

5002.30

 

7909.72

 

9749.15

 

HG97-04

 

341.55

 

352.10

 

1.26

 

1.26

 

10.55

 

525_FW1

 

5004.04

 

7884.83

 

9716.95

 

HG97-07

 

372.40

 

379.56

 

28.76

 

6.77

 

7.16

 

525_V3A

 

4933.83

 

7919.92

 

9692.93

 

HG97-07

 

340.48

 

351.96

 

5.70

 

5.70

 

11.48

 

525_V2

 

4934.78

 

7937.55

 

9716.88

 

HG97-08

 

227.57

 

228.14

 

0.02

 

0.02

 

0.56

 

525_V3B

 

5084.23

 

7846.29

 

9832.39

 

HG97-12

 

348.77

 

353.90

 

3.99

 

3.99

 

5.13

 

525_V3A

 

4942.54

 

7898.73

 

9712.37

 

HG97-12

 

314.86

 

321.09

 

3.69

 

3.69

 

6.23

 

525_V2

 

4941.32

 

7918.06

 

9739.53

 

HG97-17

 

131.35

 

133.39

 

0.34

 

0.34

 

2.04

 

525_V3A

 

4994.76

 

7833.82

 

9896.69

 

HG97-18

 

179.83

 

184.30

 

1.93

 

1.93

 

4.47

 

525_V3

 

4992.79

 

7866.17

 

9854.03

 

HG97-18

 

266.00

 

272.72

 

5.43

 

5.43

 

6.72

 

525_FW1

 

4988.54

 

7812.85

 

9785.06

 

HG97-19

 

356.40

 

359.00

 

1.45

 

1.45

 

2.60

 

525_V3

 

5005.14

 

7934.19

 

9708.60

 

HG97-24

 

323.36

 

328.00

 

1.44

 

1.44

 

4.64

 

525_V2

 

4894.01

 

7923.92

 

9707.71

 

HG97-27

 

428.55

 

430.17

 

1.93

 

1.93

 

1.63

 

525_MZ2

 

4709.39

 

7879.57

 

9627.16

 

HG97-30

 

467.00

 

469.05

 

3.41

 

3.41

 

2.05

 

525_MZ2

 

4698.20

 

7913.36

 

9597.20

 

HG97-30

 

610.82

 

622.35

 

1.97

 

1.97

 

11.53

 

650_UM1

 

4700.23

 

7837.58

 

9469.46

 

HG97-32

 

584.46

 

587.00

 

4.22

 

4.22

 

2.54

 

525_FW2C

 

4866.07

 

7936.85

 

9499.11

 

HG97-32

 

476.27

 

480.85

 

8.14

 

8.14

 

4.58

 

525_V3

 

4872.84

 

7991.62

 

9590.98

 

HG97-32

 

507.16

 

511.76

 

3.00

 

3.00

 

4.60

 

525_V3B

 

4870.73

 

7975.85

 

9564.49

 

HG97-32

 

548.68

 

559.21

 

7.19

 

7.19

 

10.53

 

525_FW2A

 

4868.15

 

7953.08

 

9526.36

 

HG97-32

 

563.61

 

575.62

 

0.13

 

0.13

 

12.01

 

525_FW2B

 

4867.17

 

7945.07

 

9512.92

 

HG97-35

 

578.13

 

591.84

 

3.27

 

3.27

 

13.71

 

525_FW3

 

4813.39

 

7940.01

 

9482.70

 

HG97-35B

 

573.00

 

584.00

 

2.93

 

2.93

 

11.00

 

525_FW3

 

4821.07

 

7918.78

 

9502.33

 

HG97-41

 

646.82

 

680.73

 

1.71

 

1.71

 

33.91

 

650_UM1

 

4715.05

 

7882.82

 

9420.96

 

HG97-45

 

724.28

 

733.10

 

1.43

 

1.43

 

8.82

 

650_UM2

 

4712.36

 

7934.22

 

9364.76

 

HG97-45

 

657.45

 

667.65

 

1.49

 

1.49

 

10.20

 

650_UM2D

 

4709.71

 

7967.16

 

9422.04

 

HG97-45

 

725.96

 

740.78

 

0.81

 

0.81

 

14.82

 

UM2A

 

4712.61

 

7931.90

 

9360.70

 

HG97-45

 

684.00

 

704.60

 

0.56

 

0.56

 

20.60

 

650_UM2B

 

4710.72

 

7951.32

 

9394.54

 

HG97-50

 

765.74

 

768.18

 

8.80

 

8.80

 

2.44

 

UM2B

 

4709.75

 

7998.10

 

9311.65

 

HG97-50

 

765.74

 

768.18

 

8.80

 

8.80

 

2.44

 

650_UM2B

 

4709.75

 

7998.10

 

9311.65

 

HG97-56

 

887.10

 

890.50

 

6.64

 

6.64

 

3.40

 

D1A

 

4659.70

 

7930.37

 

9218.84

 

HG97-56

 

870.88

 

874.60

 

8.71

 

8.71

 

3.72

 

D1D

 

4657.95

 

7938.61

 

9232.52

 

HG97-56

 

798.75

 

804.60

 

5.15

 

5.15

 

5.85

 

650_UM1

 

4650.17

 

7975.21

 

9292.93

 

HG97-56

 

798.75

 

805.26

 

4.85

 

4.85

 

6.51

 

UM1B

 

4650.20

 

7975.04

 

9292.65

 

HG97-56

 

948.00

 

959.06

 

6.32

 

6.32

 

11.06

 

D1

 

4666.93

 

7896.83

 

9163.96

 

HG97-56B

 

763.05

 

767.06

 

0.08

 

0.08

 

4.01

 

650_UM2B

 

4650.72

 

7971.73

 

9339.10

 

HG97-56B

 

794.94

 

802.36

 

2.42

 

2.42

 

7.42

 

650_UM1

 

4653.92

 

7951.12

 

9312.77

 

HG97-56B

 

790.90

 

808.97

 

1.84

 

1.84

 

18.07

 

UM1B

 

4654.04

 

7950.33

 

9311.77

 

HG97-57

 

855.95

 

858.31

 

13.37

 

13.37

 

2.36

 

650_UM1

 

4654.22

 

8002.79

 

9257.20

 

HG97-57

 

855.95

 

858.31

 

13.37

 

13.37

 

2.36

 

UM1B

 

4654.22

 

8002.79

 

9257.20

 

 

Appendix 5-21



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

HG97-57

 

822.74

 

825.78

 

0.91

 

0.91

 

3.04

 

650_UM2B

 

4650.77

 

8020.49

 

9284.69

 

HG97-57

 

925.17

 

929.00

 

3.49

 

3.49

 

3.83

 

D1A

 

4661.89

 

7964.95

 

9198.87

 

HG98-07

 

141.32

 

144.90

 

1.23

 

1.23

 

3.58

 

525_V3A

 

4995.69

 

7846.18

 

9881.46

 

HG98-12

 

164.50

 

167.34

 

1.59

 

1.59

 

2.84

 

525_V3

 

4965.54

 

7845.69

 

9879.04

 

HG98-15

 

153.50

 

161.00

 

2.62

 

2.62

 

7.50

 

525_V3B

 

5044.96

 

7817.86

 

9866.08

 

TG03-01

 

492.00

 

493.75

 

2.53

 

2.53

 

1.75

 

525_V3B

 

4848.05

 

7979.55

 

9557.67

 

TG03-01

 

582.62

 

585.50

 

2.47

 

2.47

 

2.88

 

525_FW3

 

4836.76

 

7939.94

 

9476.36

 

TG03-01

 

541.05

 

563.62

 

4.50

 

4.50

 

22.57

 

525_FW2B

 

4840.82

 

7953.93

 

9504.54

 

TG03-02

 

464.85

 

467.00

 

11.90

 

11.90

 

2.15

 

525_FW2A

 

4928.70

 

7892.98

 

9612.82

 

TG03-02

 

365.25

 

369.75

 

8.64

 

8.64

 

4.50

 

525_V2

 

4926.98

 

7950.19

 

9692.86

 

TG03-03

 

665.44

 

678.94

 

0.47

 

0.47

 

13.50

 

650_UM2

 

4724.62

 

7921.32

 

9419.10

 

TG03-03

 

692.30

 

719.70

 

8.37

 

8.37

 

27.40

 

650_UM1

 

4726.58

 

7903.90

 

9390.19

 

TG03-03a

 

663.10

 

677.72

 

0.00

 

0.00

 

14.62

 

650_UM2

 

4725.26

 

7921.48

 

9421.15

 

TG03-03a

 

692.68

 

720.19

 

0.00

 

0.00

 

27.50

 

650_UM1

 

4728.39

 

7902.20

 

9390.88

 

TG03-04

 

417.03

 

418.71

 

0.04

 

0.04

 

1.69

 

525_MZ2

 

4707.42

 

7911.09

 

9597.54

 

TG03-04

 

566.27

 

586.15

 

62.83

 

9.06

 

19.88

 

650_UM1

 

4716.35

 

7858.44

 

9448.50

 

TG03-04A

 

420.29

 

421.45

 

229.11

 

68.87

 

1.16

 

525_MZ2

 

4715.92

 

7915.75

 

9593.22

 

TG03-04B

 

420.29

 

421.57

 

237.77

 

19.60

 

1.27

 

525_MZ2

 

4716.14

 

7915.82

 

9593.15

 

TG03-04B

 

577.00

 

582.34

 

1.36

 

1.36

 

5.34

 

650_UM1

 

4733.32

 

7864.38

 

9444.04

 

TG03-15

 

132.50

 

136.50

 

1.80

 

1.80

 

4.00

 

525_V3A

 

5013.18

 

7833.69

 

9892.92

 

TG03-35

 

744.00

 

756.50

 

6.56

 

6.56

 

12.50

 

650_UM1

 

4673.06

 

7897.65

 

9360.73

 

TG03-35

 

700.62

 

713.15

 

1.99

 

1.99

 

12.53

 

650_UM2

 

4671.59

 

7921.27

 

9397.07

 

TG03-35

 

744.00

 

757.00

 

6.40

 

6.40

 

13.00

 

UM1B

 

4673.07

 

7897.51

 

9360.52

 

TG03-35A

 

735.50

 

755.25

 

8.09

 

8.09

 

19.75

 

650_UM1

 

4665.14

 

7881.25

 

9377.85

 

TG03-35A

 

685.54

 

708.33

 

7.49

 

7.49

 

22.79

 

650_UM2

 

4666.34

 

7911.27

 

9415.81

 

TG03-35B

 

732.00

 

744.00

 

16.34

 

16.34

 

12.00

 

650_UM1

 

4656.80

 

7868.52

 

9398.59

 

TG03-35B

 

683.19

 

711.12

 

6.56

 

6.56

 

27.93

 

650_UM2

 

4660.68

 

7897.61

 

9427.00

 

TG03-37

 

440.00

 

442.00

 

1.16

 

1.16

 

2.00

 

525_V3

 

4880.83

 

7981.22

 

9611.99

 

TG03-37

 

465.00

 

470.50

 

2.15

 

2.15

 

5.50

 

525_V3A

 

4881.34

 

7968.42

 

9588.51

 

TG03-37

 

543.70

 

550.50

 

2.22

 

2.22

 

6.80

 

525_FW2B

 

4883.93

 

7928.87

 

9519.78

 

TG03-37

 

521.50

 

530.48

 

11.95

 

11.95

 

8.98

 

525_FW2A

 

4883.00

 

7939.62

 

9537.92

 

TG03-39

 

426.80

 

428.50

 

3.76

 

3.76

 

1.70

 

525_V3

 

4887.02

 

7959.20

 

9638.53

 

TG03-39

 

457.10

 

460.50

 

3.79

 

3.79

 

3.40

 

525_V3A

 

4888.00

 

7942.15

 

9612.48

 

TG03-39

 

521.00

 

528.79

 

3.37

 

3.37

 

7.79

 

525_FW2B

 

4891.54

 

7905.47

 

9557.62

 

TG03-39

 

496.68

 

510.12

 

2.33

 

2.33

 

13.44

 

525_FW2A

 

4890.38

 

7917.53

 

9575.37

 

TG03-40A

 

612.30

 

618.80

 

2.96

 

2.96

 

6.50

 

525_FW3

 

4825.71

 

7971.45

 

9466.81

 

TG03-41

 

524.50

 

538.50

 

6.08

 

6.08

 

14.00

 

525_FW2A

 

4923.27

 

7933.72

 

9564.69

 

TG03-42

 

456.90

 

458.75

 

4.13

 

4.13

 

1.85

 

525_V2

 

4904.48

 

7986.61

 

9617.00

 

TG03-42

 

488.00

 

491.00

 

9.93

 

9.93

 

3.00

 

525_V3A

 

4905.26

 

7969.26

 

9590.52

 

TG03-42

 

536.85

 

546.82

 

1.72

 

1.72

 

9.97

 

525_FW2A

 

4906.20

 

7939.69

 

9547.36

 

TG03-43

 

611.35

 

614.40

 

9.63

 

9.63

 

3.05

 

525_FW4

 

4772.68

 

7894.03

 

9488.32

 

TG03-43B

 

614.70

 

622.50

 

3.44

 

3.44

 

7.80

 

525_FW4

 

4774.69

 

7915.04

 

9468.84

 

TG03-46

 

472.90

 

473.90

 

5.01

 

5.01

 

1.00

 

525_V3B

 

4847.51

 

7930.80

 

9594.18

 

TG03-46

 

524.00

 

527.00

 

3.23

 

3.23

 

3.00

 

525_FW2B

 

4846.03

 

7904.32

 

9549.34

 

TG04-50

 

689.40

 

692.35

 

6.59

 

6.59

 

2.95

 

650_UM2E

 

4670.87

 

7880.09

 

9441.52

 

TG04-50

 

709.60

 

728.60

 

17.28

 

15.54

 

19.00

 

650_UM1

 

4671.03

 

7862.45

 

9419.48

 

TG04-50EXT

 

689.40

 

692.35

 

0.00

 

0.00

 

2.95

 

650_UM2E

 

4670.87

 

7880.09

 

9441.52

 

TG04-50EXT

 

709.60

 

728.60

 

0.00

 

0.00

 

19.00

 

650_UM1

 

4671.03

 

7862.45

 

9419.48

 

TG04-53B

 

652.20

 

655.75

 

0.01

 

0.01

 

3.55

 

650_UM2B

 

4766.25

 

7935.29

 

9433.74

 

TG04-53B

 

661.00

 

667.80

 

1.33

 

1.33

 

6.80

 

650_UM2C

 

4767.91

 

7930.05

 

9424.88

 

TG04-53B EXT

 

652.20

 

655.75

 

0.00

 

0.00

 

3.55

 

650_UM2B

 

4766.25

 

7935.29

 

9433.74

 

TG04-53B EXT

 

661.00

 

667.80

 

0.00

 

0.00

 

6.80

 

650_UM2C

 

4767.91

 

7930.05

 

9424.88

 

TG04-55

 

823.45

 

824.90

 

3.26

 

3.26

 

1.45

 

FW3

 

4599.25

 

7989.98

 

9270.55

 

TG04-55

 

891.99

 

894.64

 

9.37

 

9.37

 

2.65

 

UM5C

 

4602.82

 

7955.74

 

9210.58

 

TG04-55

 

846.50

 

849.60

 

8.65

 

8.65

 

3.10

 

FW2

 

4600.41

 

7978.21

 

9249.80

 

TG04-55

 

866.20

 

881.10

 

1.60

 

1.60

 

14.90

 

UM5A

 

4601.75

 

7965.52

 

9227.61

 

TG04-55B

 

911.50

 

925.85

 

4.37

 

4.37

 

14.35

 

UM5

 

4593.44

 

7907.12

 

9210.43

 

TG04-55C

 

854.00

 

855.50

 

5.55

 

5.55

 

1.50

 

FW2

 

4606.91

 

7996.04

 

9233.69

 

TG04-55C

 

893.36

 

895.69

 

0.03

 

0.03

 

2.32

 

UM5C

 

4608.86

 

7977.76

 

9198.41

 

TG04-55C

 

831.00

 

833.50

 

5.80

 

5.80

 

2.50

 

FW3

 

4605.51

 

8006.32

 

9253.64

 

TG04-55C

 

864.75

 

867.40

 

3.23

 

3.23

 

2.65

 

FW1

 

4607.47

 

7990.85

 

9223.63

 

TG04-55C

 

875.69

 

888.08

 

4.53

 

4.53

 

12.39

 

UM5A

 

4608.23

 

7983.59

 

9209.61

 

TG04-55D

 

874.70

 

876.20

 

3.17

 

3.17

 

1.50

 

FW1

 

4608.96

 

8012.79

 

9204.16

 

TG04-55D

 

905.00

 

907.00

 

4.02

 

4.02

 

2.00

 

UM5C

 

4611.31

 

8001.12

 

9176.02

 

TG04-55D

 

894.50

 

897.00

 

5.08

 

5.08

 

2.50

 

UM5A

 

4610.58

 

8005.07

 

9185.45

 

TG04-55D

 

854.70

 

858.20

 

4.36

 

4.36

 

3.50

 

FW2

 

4607.43

 

8019.93

 

9221.69

 

 

Appendix 5-22



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TG04-57

 

794.70

 

795.87

 

5.91

 

5.91

 

1.17

 

UM3

 

4593.61

 

7942.50

 

9315.68

 

TG04-57

 

876.00

 

877.50

 

4.82

 

4.82

 

1.50

 

UM5C

 

4599.39

 

7899.78

 

9246.57

 

TG04-57

 

852.95

 

864.23

 

2.73

 

2.73

 

11.28

 

UM5A

 

4598.07

 

7909.30

 

9261.97

 

TG04-57

 

754.95

 

766.85

 

8.71

 

8.71

 

11.90

 

UM4

 

4592.08

 

7960.61

 

9344.87

 

TG04-57A

 

818.25

 

819.75

 

2.26

 

2.26

 

1.50

 

UM1B

 

4600.61

 

7911.15

 

9307.74

 

TG04-57A

 

818.75

 

820.25

 

2.06

 

2.06

 

1.50

 

650_UM1

 

4600.64

 

7910.87

 

9307.33

 

TG04-57A

 

866.00

 

868.15

 

2.44

 

2.44

 

2.15

 

UM5C

 

4603.48

 

7883.80

 

9268.32

 

TG04-57A

 

839.50

 

841.85

 

3.92

 

3.92

 

2.35

 

UM5B

 

4601.90

 

7898.82

 

9289.97

 

TG04-57A

 

775.00

 

778.00

 

5.65

 

5.65

 

3.00

 

UM3

 

4597.98

 

7935.32

 

9342.61

 

TG04-57A

 

852.00

 

859.70

 

4.25

 

4.25

 

7.70

 

UM5A

 

4602.81

 

7890.18

 

9277.52

 

TG04-57A

 

748.62

 

764.50

 

1.18

 

1.18

 

15.89

 

UM4

 

4596.66

 

7946.60

 

9359.00

 

TG04-57B

 

810.22

 

811.88

 

0.00

 

0.00

 

1.66

 

UM1B

 

4590.63

 

7895.28

 

9328.58

 

TG04-57B

 

823.80

 

826.62

 

6.96

 

6.96

 

2.82

 

UM5B

 

4591.06

 

7886.38

 

9317.58

 

TG04-57B

 

839.65

 

844.00

 

6.55

 

6.55

 

4.35

 

UM5A

 

4591.57

 

7875.90

 

9304.70

 

TG04-58A

 

777.00

 

778.50

 

2.34

 

2.34

 

1.50

 

UM5B

 

4594.99

 

7875.02

 

9330.50

 

TG04-58A

 

784.50

 

793.00

 

4.13

 

4.13

 

8.50

 

UM5A

 

4594.76

 

7869.60

 

9320.93

 

TG04-63

 

1037.40

 

1039.85

 

6.24

 

6.24

 

2.45

 

D1C

 

4497.48

 

7914.93

 

9118.89

 

TG04-63

 

1013.75

 

1017.25

 

9.77

 

9.77

 

3.50

 

D1A

 

4496.39

 

7929.37

 

9136.91

 

TG04-63

 

1004.90

 

1009.25

 

5.29

 

5.29

 

4.35

 

D1

 

4495.97

 

7934.60

 

9143.51

 

TG04-63

 

1022.25

 

1026.75

 

10.47

 

10.47

 

4.50

 

D1B

 

4496.82

 

7923.77

 

9129.88

 

TG04-63

 

952.50

 

968.74

 

5.90

 

5.90

 

16.24

 

UM5

 

4493.42

 

7963.14

 

9180.07

 

TG04-63B

 

1048.20

 

1049.60

 

9.34

 

9.34

 

1.40

 

D1C

 

4488.14

 

7940.08

 

9089.96

 

TG04-63B

 

1024.60

 

1026.10

 

12.14

 

12.14

 

1.50

 

D1A

 

4487.71

 

7953.07

 

9109.59

 

TG04-63B

 

1040.90

 

1042.60

 

6.17

 

6.17

 

1.70

 

D1B

 

4488.02

 

7944.03

 

9095.92

 

TG04-63B

 

937.50

 

939.75

 

3.79

 

3.79

 

2.25

 

FW1A

 

4485.94

 

8000.22

 

9182.36

 

TG04-63B

 

967.65

 

972.00

 

3.27

 

3.27

 

4.35

 

UM5

 

4486.57

 

7983.38

 

9156.10

 

TG04-63B

 

1006.30

 

1014.95

 

4.08

 

4.08

 

8.65

 

D1

 

4487.42

 

7961.17

 

9121.89

 

TG04-63C

 

1032.30

 

1033.64

 

2.58

 

2.58

 

1.35

 

D1A

 

4490.72

 

7981.93

 

9085.23

 

TG04-63C

 

977.90

 

979.40

 

5.10

 

5.10

 

1.50

 

UM5

 

4489.42

 

8006.94

 

9133.43

 

TG04-63C

 

1111.10

 

1113.10

 

3.32

 

3.32

 

2.00

 

D3

 

4491.71

 

7944.55

 

9015.49

 

TG04-63C

 

954.50

 

957.00

 

3.42

 

3.42

 

2.50

 

FW1A

 

4488.51

 

8017.44

 

9153.76

 

TG04-63C

 

1016.70

 

1025.00

 

2.41

 

2.41

 

8.30

 

D1

 

4490.55

 

7987.57

 

9095.96

 

TG05-64

 

1197.50

 

1199.25

 

4.82

 

4.82

 

1.75

 

D3

 

4507.38

 

7967.50

 

8978.66

 

TG05-64

 

1119.72

 

1122.08

 

0.89

 

0.89

 

2.36

 

D1

 

4499.87

 

8015.89

 

9038.67

 

TG05-64

 

1143.50

 

1149.25

 

5.62

 

5.62

 

5.75

 

D1B

 

4502.33

 

8000.31

 

9018.68

 

TG05-64

 

1128.85

 

1134.98

 

4.34

 

4.34

 

6.13

 

D1A

 

4500.93

 

8009.20

 

9029.99

 

TG05-64B

 

1132.00

 

1133.50

 

8.46

 

8.46

 

1.50

 

D1

 

4509.64

 

8043.77

 

9008.61

 

TG05-64B

 

1142.48

 

1151.49

 

25.05

 

11.37

 

9.01

 

D1A

 

4511.58

 

8036.03

 

8996.83

 

TG05-64C

 

1187.90

 

1189.40

 

7.34

 

7.34

 

1.50

 

D1C

 

4500.71

 

8036.26

 

8947.98

 

TG05-64C

 

1136.61

 

1138.41

 

0.01

 

0.01

 

1.80

 

D1

 

4496.77

 

8062.94

 

8991.43

 

TG05-64C

 

1149.20

 

1154.75

 

3.95

 

3.95

 

5.55

 

D1A

 

4497.89

 

8055.44

 

8979.12

 

TG05-64C

 

1158.95

 

1169.75

 

6.20

 

6.20

 

10.80

 

D1B

 

4498.84

 

8049.00

 

8968.59

 

TG05-64G

 

1189.00

 

1190.65

 

2.05

 

2.05

 

1.65

 

D3

 

4452.02

 

7951.17

 

8999.22

 

TG05-64G

 

1170.90

 

1173.50

 

4.63

 

4.63

 

2.60

 

D2

 

4451.66

 

7963.01

 

9012.27

 

TG05-64G

 

1129.00

 

1134.95

 

4.82

 

4.82

 

5.95

 

D1B

 

4451.14

 

7989.76

 

9042.30

 

TG05-64J

 

1195.80

 

1206.15

 

1.02

 

1.02

 

10.35

 

D3

 

4468.81

 

7972.90

 

8969.60

 

TG05-64K

 

1146.01

 

1150.15

 

0.00

 

0.00

 

4.13

 

D1B

 

4457.31

 

8023.27

 

8999.71

 

TG05-64K

 

1221.00

 

1226.50

 

9.74

 

9.74

 

5.50

 

D3

 

4458.91

 

7979.68

 

8937.87

 

TG05-64K

 

1176.00

 

1182.55

 

2.77

 

2.77

 

6.55

 

D2A

 

4458.01

 

8005.39

 

8974.15

 

TG05-65A

 

1320.26

 

1329.05

 

4.42

 

4.42

 

8.79

 

D3

 

4339.14

 

8044.30

 

8816.11

 

TG05-65A

 

1284.85

 

1294.90

 

1.24

 

1.24

 

10.05

 

D2

 

4337.11

 

8064.04

 

8844.67

 

TG05-65B

 

1296.50

 

1298.50

 

2.64

 

2.64

 

2.00

 

D3

 

4342.55

 

8011.28

 

8869.00

 

TG05-65B

 

1265.20

 

1267.70

 

11.20

 

11.20

 

2.50

 

D2

 

4340.69

 

8031.11

 

8892.82

 

TG05-72

 

860.32

 

862.10

 

0.00

 

0.00

 

1.78

 

D1

 

4658.59

 

7895.83

 

9158.10

 

TG05-72

 

688.10

 

698.05

 

3.38

 

3.38

 

9.94

 

FW1

 

4641.68

 

7884.73

 

9325.00

 

TG05-72

 

650.85

 

671.89

 

6.19

 

6.19

 

21.05

 

650_UM1

 

4638.99

 

7882.38

 

9356.51

 

TG05-72

 

650.74

 

671.90

 

6.16

 

6.16

 

21.16

 

UM1B

 

4638.98

 

7882.38

 

9356.55

 

TG05-72A

 

845.00

 

854.30

 

4.81

 

4.81

 

9.30

 

D1

 

4692.39

 

7888.59

 

9173.41

 

TG05-72A

 

626.78

 

656.50

 

5.81

 

4.46

 

29.72

 

650_UM1

 

4652.28

 

7878.22

 

9377.22

 

TG05-74A

 

1062.55

 

1063.35

 

9.51

 

9.51

 

0.80

 

D1D

 

4572.44

 

8055.37

 

9046.31

 

TG05-74B

 

1119.15

 

1120.00

 

2.26

 

2.26

 

0.85

 

D4

 

4565.46

 

7985.32

 

9025.23

 

TG05-74B

 

1064.70

 

1075.90

 

3.77

 

3.77

 

11.20

 

D1D

 

4565.44

 

8018.56

 

9061.59

 

TG05-74C

 

1137.50

 

1139.45

 

7.86

 

7.86

 

1.95

 

D1C

 

4548.44

 

7942.16

 

9035.97

 

TG05-74C

 

1016.00

 

1024.25

 

3.47

 

3.47

 

8.25

 

UM5

 

4555.06

 

8029.44

 

9115.60

 

TG05-74C

 

1049.15

 

1073.50

 

10.61

 

10.61

 

24.35

 

D1D

 

4552.93

 

7999.49

 

9087.39

 

TG05-74E

 

1125.20

 

1126.20

 

6.36

 

6.36

 

1.00

 

D4

 

4570.11

 

7999.99

 

9007.68

 

 

Appendix 5-23



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TG05-74E

 

1065.50

 

1073.20

 

2.92

 

2.92

 

7.70

 

D1D

 

4564.71

 

8032.88

 

9053.11

 

TG05-74F

 

1119.80

 

1122.40

 

3.66

 

3.66

 

2.60

 

D4

 

4553.25

 

7987.40

 

9021.14

 

TG05-74F

 

1067.05

 

1077.15

 

6.21

 

6.21

 

10.10

 

D1D

 

4551.12

 

8016.34

 

9060.63

 

TG05-75A

 

1285.20

 

1292.20

 

5.87

 

5.87

 

7.00

 

D2A

 

4431.96

 

8079.19

 

8895.89

 

TG05-75A

 

1307.10

 

1321.45

 

3.65

 

3.65

 

14.35

 

D2

 

4433.40

 

8061.84

 

8877.16

 

TG05-75B

 

1291.10

 

1292.60

 

4.16

 

4.16

 

1.50

 

D2A

 

4425.02

 

8052.68

 

8915.35

 

TG05-75B

 

1299.10

 

1304.10

 

5.14

 

5.14

 

5.00

 

D2

 

4425.24

 

8045.57

 

8908.69

 

TG05-75C

 

1251.50

 

1254.30

 

3.35

 

3.35

 

2.80

 

D1B

 

4439.76

 

8066.28

 

8957.73

 

TG05-75C

 

1304.30

 

1309.96

 

33.95

 

14.22

 

5.66

 

D2

 

4442.93

 

8024.38

 

8923.46

 

TG05-75C

 

1285.00

 

1293.80

 

14.00

 

10.08

 

8.80

 

D2A

 

4441.90

 

8038.14

 

8934.59

 

TG05-77B

 

1075.00

 

1076.10

 

6.48

 

6.48

 

1.10

 

D1C

 

4575.22

 

7940.49

 

9031.60

 

TG05-77B

 

1058.90

 

1060.40

 

32.41

 

32.41

 

1.50

 

D4

 

4573.73

 

7948.75

 

9045.10

 

TG05-77C

 

898.10

 

899.80

 

19.10

 

19.10

 

1.70

 

FW1

 

4540.78

 

8013.95

 

9192.87

 

TG05-77C

 

964.40

 

966.50

 

7.20

 

7.20

 

2.10

 

UM5

 

4532.37

 

7978.46

 

9137.28

 

TG05-77D

 

950.30

 

962.60

 

4.07

 

4.07

 

12.30

 

UM5

 

4565.95

 

7977.95

 

9147.19

 

TG05-77E

 

893.20

 

894.75

 

7.03

 

7.03

 

1.55

 

FW1

 

4540.04

 

7982.12

 

9217.15

 

TG05-77E

 

996.70

 

998.30

 

4.62

 

4.62

 

1.60

 

D1B

 

4531.17

 

7918.06

 

9136.31

 

TG05-77E

 

953.60

 

955.35

 

20.72

 

20.72

 

1.75

 

UM5

 

4535.20

 

7944.66

 

9169.89

 

TG05-77E

 

983.40

 

988.90

 

4.85

 

4.85

 

5.50

 

D1

 

4532.27

 

7925.08

 

9145.17

 

TG05-77F

 

979.25

 

985.20

 

3.76

 

3.76

 

5.95

 

D1

 

4579.38

 

7902.29

 

9167.95

 

TG05-88

 

905.80

 

908.25

 

8.87

 

8.87

 

2.45

 

UM5A

 

4578.29

 

7915.68

 

9243.83

 

TG05-88

 

892.90

 

896.49

 

2.55

 

2.55

 

3.59

 

UM5B

 

4577.33

 

7923.02

 

9253.68

 

TG05-88

 

857.55

 

863.75

 

8.03

 

8.03

 

6.20

 

FW1

 

4574.57

 

7943.43

 

9280.80

 

TG05-88

 

929.50

 

940.20

 

6.21

 

6.21

 

10.70

 

UM5

 

4580.45

 

7899.00

 

9221.66

 

TG05-88A

 

864.70

 

866.10

 

5.83

 

5.83

 

1.40

 

FW1

 

4557.05

 

7942.89

 

9275.07

 

TG05-88A

 

907.35

 

909.40

 

1.68

 

1.68

 

2.05

 

UM5A

 

4556.70

 

7917.86

 

9240.15

 

TG05-88A

 

967.15

 

974.20

 

19.31

 

19.31

 

7.05

 

D1

 

4555.36

 

7882.02

 

9189.23

 

TG05-88A

 

911.90

 

937.31

 

5.53

 

5.53

 

25.41

 

UM5

 

4556.68

 

7908.49

 

9226.89

 

TG05-88B

 

890.75

 

893.00

 

8.18

 

8.18

 

2.25

 

UM5B

 

4551.15

 

7900.17

 

9274.40

 

TG06-104

 

836.79

 

837.62

 

0.00

 

0.00

 

0.83

 

UM5

 

4574.37

 

7916.04

 

9202.73

 

TG06-104

 

872.00

 

874.00

 

71.85

 

35.12

 

2.00

 

D1

 

4582.02

 

7906.18

 

9169.19

 

TG06-104

 

757.40

 

759.56

 

10.48

 

10.48

 

2.16

 

FW1

 

4557.35

 

7937.37

 

9276.58

 

TG06-104A

 

758.80

 

760.50

 

3.22

 

3.22

 

1.70

 

UM5B

 

4569.40

 

7899.53

 

9289.36

 

TG06-104A

 

776.60

 

779.10

 

2.42

 

2.42

 

2.50

 

UM5A

 

4573.56

 

7892.45

 

9273.13

 

TG06-104A

 

786.85

 

801.09

 

5.94

 

5.94

 

14.24

 

UM5

 

4577.19

 

7886.13

 

9258.75

 

TG06-112

 

754.00

 

756.59

 

1.75

 

1.75

 

2.60

 

UM5B

 

4578.89

 

7884.97

 

9301.06

 

TG06-112

 

778.00

 

780.75

 

2.89

 

2.89

 

2.75

 

UM5

 

4584.53

 

7875.59

 

9279.62

 

TG06-113

 

958.80

 

964.40

 

3.88

 

3.88

 

5.60

 

D1

 

4465.61

 

7954.71

 

9128.50

 

TG06-115

 

309.80

 

317.80

 

1.55

 

1.55

 

8.00

 

525_FW1

 

5002.53

 

7817.26

 

9789.14

 

TG06-115

 

489.00

 

497.70

 

4.01

 

4.01

 

8.70

 

525_V3

 

5022.45

 

7947.95

 

9667.86

 

TG06-115

 

347.80

 

357.90

 

0.40

 

0.40

 

10.10

 

525_FW1

 

5005.27

 

7845.16

 

9761.96

 

TG06-58b

 

589.80

 

597.50

 

4.82

 

4.82

 

7.70

 

525_MZ1A

 

4610.43

 

7914.64

 

9523.93

 

TG06-75d

 

1290.00

 

1292.60

 

5.88

 

5.88

 

2.60

 

D2A

 

4429.23

 

8027.98

 

8942.12

 

TG06-75d

 

1328.20

 

1331.20

 

5.73

 

5.73

 

3.00

 

D3

 

4429.40

 

7998.02

 

8918.09

 

TG06-75d

 

1296.90

 

1301.10

 

18.31

 

18.31

 

4.20

 

D2

 

4429.27

 

8021.97

 

8937.30

 

TG06-75d

 

1255.40

 

1260.20

 

4.77

 

4.77

 

4.80

 

D1B

 

4428.93

 

8054.06

 

8963.13

 

TG06-75e

 

1372.85

 

1376.30

 

0.74

 

0.74

 

3.45

 

D3

 

4369.45

 

8078.83

 

8792.10

 

TG06-75e

 

1346.60

 

1353.80

 

8.12

 

8.12

 

7.20

 

D2

 

4370.65

 

8093.46

 

8811.56

 

TG06-75f

 

1326.45

 

1333.90

 

15.54

 

15.54

 

7.45

 

D2

 

4390.50

 

8077.26

 

8848.11

 

TG06-75f

 

1368.80

 

1376.50

 

1.25

 

1.25

 

7.70

 

D3

 

4390.82

 

8048.12

 

8817.21

 

TG06-75g

 

1322.10

 

1325.20

 

0.62

 

0.62

 

3.10

 

D2

 

4389.42

 

8047.40

 

8882.46

 

TG06-75g

 

1344.40

 

1355.00

 

2.38

 

2.38

 

10.60

 

D3

 

4389.43

 

8028.13

 

8864.94

 

TG06-75h

 

1310.30

 

1317.60

 

0.97

 

0.97

 

7.30

 

D2

 

4382.88

 

8033.98

 

8910.24

 

TG06-75h

 

1339.80

 

1351.20

 

4.84

 

4.84

 

11.40

 

D3

 

4380.73

 

8008.65

 

8891.56

 

TG06-75j

 

1347.20

 

1351.40

 

1.67

 

1.67

 

4.20

 

D3

 

4389.01

 

7982.63

 

8922.31

 

TG06-75j

 

1305.10

 

1309.60

 

1.42

 

1.42

 

4.50

 

D2

 

4391.25

 

8020.13

 

8940.97

 

TG06-75k

 

1365.59

 

1367.70

 

2.25

 

2.25

 

2.10

 

D2

 

4382.48

 

8101.84

 

8786.84

 

TG06-75k

 

1379.00

 

1383.00

 

65.65

 

46.69

 

4.00

 

D3

 

4382.02

 

8093.37

 

8775.25

 

TG06-75k

 

1292.50

 

1298.29

 

7.63

 

7.63

 

5.80

 

FW1

 

4384.28

 

8143.23

 

8844.79

 

TG06-75m

 

1386.25

 

1387.50

 

4.73

 

4.73

 

1.25

 

D2

 

4353.61

 

8108.17

 

8761.64

 

TG06-75m

 

1394.60

 

1396.20

 

2.29

 

2.29

 

1.60

 

D3

 

4352.92

 

8103.24

 

8754.71

 

TG06-75m

 

1333.40

 

1349.50

 

1.59

 

1.59

 

16.10

 

D1

 

4357.18

 

8134.23

 

8798.67

 

TG06-75N

 

1382.20

 

1383.70

 

1.86

 

1.86

 

1.50

 

D3

 

4348.56

 

8071.90

 

8792.22

 

TG06-75N

 

1368.00

 

1376.90

 

2.05

 

2.05

 

8.90

 

D2

 

4349.48

 

8079.19

 

8799.72

 

TG06-95

 

645.10

 

649.00

 

2.55

 

2.55

 

3.90

 

650_UM1

 

4740.26

 

7839.38

 

9482.15

 

TG06-95A

 

503.00

 

505.10

 

6.63

 

6.63

 

2.10

 

525_MZ2

 

4745.85

 

7902.94

 

9614.54

 

 

Appendix 5-24



 

Timmins Deposit Resource Solid Intersections

 

 

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

 

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

HOLE-ID

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

Zone

 

(m)

 

(m)

 

(m)

 

TG06-96

 

1458.60

 

1460.60

 

1.21

 

1.21

 

2.00

 

D1

 

4332.65

 

8202.36

 

8710.75

 

TG06-96A

 

1466.30

 

1468.30

 

3.34

 

3.34

 

2.00

 

D2

 

4367.05

 

8152.01

 

8739.09

 

TG06-96C

 

1501.40

 

1503.00

 

4.57

 

4.57

 

1.60

 

D3

 

4337.20

 

8120.18

 

8729.09

 

TG06-96C

 

1472.50

 

1481.00

 

12.13

 

12.13

 

8.50

 

D2

 

4343.37

 

8141.55

 

8741.44

 

TG06-96C

 

1445.00

 

1458.51

 

4.74

 

4.74

 

13.51

 

D1

 

4349.12

 

8162.28

 

8754.15

 

TG06-96D

 

1506.93

 

1508.70

 

2.42

 

2.42

 

1.78

 

D3

 

4335.41

 

8099.09

 

8750.05

 

TG06-96D

 

1488.10

 

1490.30

 

7.06

 

7.06

 

2.20

 

D2

 

4339.22

 

8115.65

 

8757.63

 

TG06-96D

 

1413.90

 

1416.95

 

7.64

 

7.64

 

3.05

 

FW1

 

4354.09

 

8180.98

 

8788.51

 

TG06 96D

 

1436.75

 

1466.40

 

2.77

 

2.77

 

29.65

 

D1

 

4346.88

 

8149.06

 

8773.15

 

TG08-178B

 

1404.50

 

1407.50

 

2.01

 

2.01

 

3.00

 

D1

 

4325.97

 

8229.97

 

8712.06

 

TG08-178C

 

1444.98

 

1447.31

 

0.29

 

0.29

 

2.33

 

D2

 

4281.14

 

8189.10

 

8686.27

 

TG08-178E

 

1441.50

 

1445.00

 

3.32

 

3.32

 

3.50

 

D2

 

4302.07

 

8171.94

 

8702.84

 

TG97-50a

 

760.90

 

763.75

 

15.82

 

15.82

 

2.85

 

650_UM2B

 

4719.50

 

7983.12

 

9325.40

 

TG97-50a

 

760.40

 

764.18

 

12.55

 

12.55

 

3.78

 

UM2B

 

4719.50

 

7983.14

 

9325.43

 

TG97-50a

 

743.40

 

747.40

 

6.13

 

6.13

 

4.00

 

UM4

 

4718.49

 

7991.81

 

9339.89

 

TG97-50b

 

756.25

 

758.53

 

0.20

 

0.20

 

2.28

 

650_UM2B

 

4711.93

 

7972.71

 

9337.71

 

TG97-50b

 

756.36

 

759.93

 

0.11

 

0.11

 

3.56

 

UM2B

 

4711.92

 

7972.26

 

9337.11

 

TG97-50b

 

746.30

 

751.60

 

7.41

 

7.41

 

5.30

 

UM4

 

4712.09

 

7977.76

 

9344.47

 

TG97-50b

 

891.85

 

903.47

 

15.25

 

9.14

 

11.62

 

D1A

 

4708.39

 

7888.81

 

9225.35

 

 

Appendix 5-25



 

APPENDIX 6

 

TIMMINS WEST MINE QA/QC GRAPHS OF STANDARDS, BLANKS

 

Appendix 6-1



 

THUNDER CREEK GRAPHS:

 

 

 

Appendix 6-2



 

 

 

Appendix 6-3



 

 

 

Appendix 6-4



 

 

 

 

Appendix 6-5



 

 

 

Appendix 6-6



 

 

 

Appendix 6-7



 

 

 

Appendix 6-8



 

 

Appendix 6-9



 

 

Appendix 6-10



 

 

Appendix 6-11



 

 

 

Appendix 6-12



 

 

 

Appendix 6-13



 

 

 

 

Appendix 6-14



 

 

 

Appendix 6-15



 

 

Appendix 6-16



 

 

 

Appendix 6-17



 

 

 

 

Appendix 6-18



 

 

 

Appendix 6-19



 

 

 

Appendix 6-20



 

 

 

Appendix 6-21



 

 

 

Appendix 6-22



 

APPENDIX 7

 

RESOURCE MODELING AND ESTIMATION OF THE THUNDER CREEK GOLD DEPOSIT
M. DAGBERT (2011)
SGS CANADA INC. GEOSTAT

 

Appendix 7-1



 

GRAPHIC

 

 

RESOURCE MODELING AND ESTIMATION

OF THE THUNDER CREEK GOLD DEPOSIT

 

 

 

Respectfully submitted to Lakeshore Gold Corp.

 

by SGS Canada Inc. - Geostat

 

December 14, 2011

 

 

 

Geostat

SGS Canada Inc.

10 boul. de la Seigneurie Est, Suite 203, Blainville, Québec Canada

t (450) 433 1050  f (450) 433 1048  www.geostat.com  www.met.sgs.com

 

 

 

Member of SGS Group (SGS SA)

 

Appendix 7-2



 

Foreword

 

This report describes the work completed in the fall of 2011 at SGS Canada Inc. — Geostat (thereafter SGS) to assist Lakeshore Gold Corp. (thereafter LSG) in their modeling and estimation of the resources of their Thunder Creek gold deposit (thereafter TC) from latest drill hole information available in the early fall of 2011. This report is not an NI43-101 Technical Report but it can be used to support the results in the NI43-101 Technical Report authored by LSG on the TC resources to be produced in December 2011.  This work is covered by a proposal from SGS to LSG dated July 22, 2011 and accepted by LSG on September 09, 2011.

 

Appendix 7-3



 

Summary, conclusions and recommendations

 

1-             The main purpose of this work was to support resource estimates of the Thunder Creek deposit derived by LSG’s geologists from DH information available at the end of October 2011 by a comparison model using the same DH information and mineralized zones limits but a different block grade interpolation from samples within those limits. The LSG’s model uses a standard inverse squared distance method to interpolate the grade of 2m cube blocks from all 1m composites within zones. Our model first delineates blocks with a very low grade by interpolating an indicator at the 0.5 g/t cut-off. We then interpolate the blocks above that cut-off from just composites above the cut-off. Both interpolations (indicator + grade above 0.5 g/t) are done by ordinary kriging with appropriate variogram models.

 

2-             In most zones, the average grade above a 1.5 g/t Au cut-off of our comparison model is more than the average grade above the same cut-off of the LSG’s model (9.2% for all zones) and the gold metal above the same cut-off is less (6.2% for all zones). In other words, the estimated resources above 1.5 g/t from the comparison model correspond to the estimated resources from the standard ID2 model but at a higher cut-off (with slightly less metal, less than 5%).As expected, differences between models are more important in small zones with a small number of composites e.g. zone 332 with only 32 1m composites. Resources in those zones have generally been classified in the inferred category. Results from the alternative resource model support estimated resources derived from the standard ID2 model.

 

3-             The Thunder Creek resources are currently confined to an inclined prism strongly dipping to the NW between elevations 9000 and 9950 (topo elevation is around Z=10000). Up to 11 mineralized zones or domains have been interpreted by LSG’s geologists. Those zones are generally elongated along the N40 with the same strong dip of 60o to N310 for all of them. Some statistics of assay intervals above various cut-offs inside and outside the interpreted mineralized zones indicate that there is a potential to refine existing zone limits or define additional mineralized zones in sectors where assay intervals with significant grade are not too much scattered.

 

4-             We suggest a capping of 75m.g/tAu applied to the length*grade product of original assay intervals. It caps 24 intervals (0.35% of total) and generates a gold loss of 13.0% (length weighted average capped grade is down to 4.13g/t from 4.75 g/t uncapped). This capping has a similar effect as the one generally used by LSG i.e. a 95 g/t Au high cut which caps 28 intervals with a gold loss of 13.3%.

 

5-             As a general rule, LSG’s classification of block material of any given zone into indicated and inferred corresponds to the density DH intercepts with the zone in the various sectors of the zone. In particular, it is clear that all the material in the RZ2A and RZ3A deserves to be in the indicated category while all the material in the RZ3A1, RZ3A2, PZ1C and PZ3 can only be qualified as inferred at this stage.

 

Appendix 7-4



 

6-             Despite the high variability of gold grades from Thunder Creek samples, the QAQC data available tend to indicate that the quality of the sample grade values used in the resource estimation is satisfactory. Although we have significant differences between mean results and target values for some standards as well as a rather high proportion of results beyond the quoted gates of standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps reasonably low (0.8%) at the main ALS lab. Lab and coarse duplicates show expected sample errors i.e. about 10% relative difference for pulp duplicates and 40% relative difference for coarse duplicates. Reproduction of original values at the Accurassay lab is more problematic and since the blanks and check data performance of this lab is not as good as the others, we would recommend discontinuing the use of their services. Check (pulp) samples at Accurassay and SGS do not show any statistically significant bias.

 

Appendix 7-5



 

Table of Contents

 

Foreword

3

 

 

Summary, conclusions and recommendations

4

 

 

Table of Contents

6

 

 

List of tables

7

 

 

List of Figures

8

 

 

1-

Drill hole data

9

 

 

 

2-

Mineralized domains

10

 

 

 

3-

Assay intervals in mineralized intercepts and capping

13

 

 

 

4-

Compositing and variography

17

 

 

 

5-

Block grade interpolation with indicators

22

 

 

 

6-

Mineral inventory at various cut-offs from the alternative model

24

 

 

 

7-

Resource classification

25

 

 

 

8-

Statistical analysis of QAQC assay data

29

 

 

 

8-1 Standards

29

8-2 Blanks

30

8-3 Duplicates

31

8-4 Check assays

33

8-5 Conclusions

33

 

Appendix 7-6



 

List of tables

 

Table 1 Statistics of sample data inside and outside mineralized zones

10

Table 2 Highest grade intervals in the mineralized intercepts

14

Table 3 Capping statistics in the different zones

15

Table 4 Statistics of the capped grade of 1m composites in the mineralized zones

17

Table 5 Mineral inventory from supplied LSG model and alternative SGS model

24

Table 6 Statistics of results for standard pulps

30

 

Appendix 7-7



 

List of Figures

 

Figure 1 Drill holes and mineralized domains

11

Figure 2 Level maps with outline of interpreted mineralized zones

12

Figure 3 Histogram and cumulative frequency plot of GTs of all mineralized intervals

16

Figure 4 Histograms of 1m composite capped grades in PZ and RZ zones

18

Figure 5 Variograms of low cut-off (0.5 g/t) indicators in PZ and RZ zones

20

Figure 6 Variograms of mineralized grade (above 0.5 g/t) in PZ and RZ zones

21

Figure 7 N40 long section with resource classification of each zone (1 of 2)

26

Figure 8 N40 long section with resource classification of each zone (2 of 2)

27

Figure 9 Correlation plots of lab and coarse duplicates

32

Figure 10 Correlation plots of check and original assays

34

 

Appendix 7-8



 

1-             Drill hole data

 

The last version of the drill hole database for Thunder Creek was received from LSG on Nov. 10, 2011. It has collar coordinates, orientation at collar, depth, deviation data, assay and litho intervals data for 502 drill holes.

 

Up to 151 of those holes are from surface (including wedges) with numbers from:  TC03-01 to TC11-115 (in TCxx-yyy, xx is the year, yyy a sequential number and z a letter from A to K for wedges). Those holes are dipping to the SE on sections along N130 spaced by about 50m.

 

The balance of 351 holes are drilled from underground with numbers from TC200-001 to TC730-052 (in TCxxx-yyy, xxx is the level depth in meters i.e. 200, 260, 280, 300,320, 330, 350 then 650, 680, 710 and 730) and TCGRT-001 to TCGRT-005. Those holes are arranged in 3D fan pattern from a level at around Z=9700 (TC200 to TC330 series) and from a level at around Z=9300 (TC650 to 730 series).

 

Collar coordinates range from 2045x,5891y,9283z to 4967x,7997y,10048z i.e. about 3x2.0x0.8km extension. A majority of the drill holes dip from 45o to 60o to the N130 to N180. Drill hole length varies from 7 to 1582m. Total meterage is 160,688m including the depth of wedges. Holes are surveyed in azimuth and dip generally at depth of 10m and then at depth intervals of 20-30m.

 

We have 65,723 valid assay intervals along those holes. Assay length varies from a mere 0.1m to 9.8m (after excluding a 98.1m interval in hole TC260-015 from 261.9 to 360m with grade of 0.007g/t and with very low grades for the few intervals of 3m and more) for a total meterage of 54,214m (average of 0.83m/interval). A majority of intervals (42%) are 1m long with significant groups of 0.5m intervals (19%) and 1.5m intervals (4%). Gold assay values are mostly FA with AA finish for low grades or FA with gravimetry finish or PM (metallic screen?) for high grades. Final values range from 0 to 1600g/t (a 0.8m interval in TC730-009) with an uncapped weighted average of 0.62 g/t.

 

Appendix 7-9



 

2-             Mineralized domains

 

As illustrated on Figure 1, the Thunder Creek resources are currently confined to an inclined prism strongly dipping to the NW between elevations 9000 and 9950 (topo elevation is around Z=10000). Up to 11 mineralized zones or domains have been interpreted by LSG’s geologists. As illustrated by the level maps of Figure 2, those zones are generally elongated along the N40 with the same strong dip of 60o to N310 for all of them.

 

Some statistics of assay intervals above various cut-offs inside and outside the interpreted mineralized zones (Table 1) indicate that there is a potential to refine the limits of existing zones or to define additional mineralized zones in sectors where assay intervals with significant grade are not too much scattered.

 

Table 1 Statistics of sample data inside and outside mineralized zones

 

Cut-off

 

All

 

Inside Zones

 

Outside Zones

 

g/tAu

 

m

 

m

 

%

 

m

 

%

 

0

 

54,414

 

5,250

 

9.6

%

49,164

 

90.4

%

1

 

4,023

 

2,494

 

62.0

%

1,529

 

38.0

%

2

 

2,551

 

1,826

 

71.6

%

725

 

28.4

%

3

 

1,913

 

1,451

 

75.9

%

462

 

24.1

%

5

 

1,307

 

1,053

 

80.6

%

254

 

19.4

%

10

 

622

 

522

 

84.0

%

100

 

16.0

%

 

Appendix 7-10



 

Figure 1 Drill holes and mineralized domains

 

 

Appendix 7-11



 

Figure 2 Level maps with outline of interpreted mineralized zones

 

 

Appendix 7-12



 

3-             Assay intervals in mineralized intercepts and capping

 

We have up to 6839 assay intervals in the 336 mineral intercepts of domains with holes. Their length ranges from 0.2m to 1.6m with an average of 0.77m. Like before, 1m is the most current length (47%) followed by 0.5m (24%). Gold grade of those assay intervals range from 0.002 to 1600g/t with a (weighted and uncapped) average of 4.75g/t

 

As shown on Table 2, intervals with the highest gold grade (above 80g/t) have a quite variable length (from 0.3m to 1m). Given that those outliers tend to be isolated with much lower grades on both sides, it makes more sense to cap according to gold content, hence the GT product of grade by length, rather than gold grade alone. In other words a 200 g/t over 0.5m is the same as a 100g/t over 1m when it comes to capping given that both yield the same 100g/t when composited over 1m.

 

The histogram of GTs of mineralized intervals with a logarithmic scale (which excludes zero grade intervals) is on top of next Figure 3. We clearly see a lognormal shape but still with a some very low values (less than 0.05m.g/t). On the high side, there is a clear tail of very high data above say 80 m.g/t.

 

The high end of the cumulative frequency plot with a log scale (bottom of Figure 3) shows several kicks upward corresponding to natural gaps in the distribution of GT products. We would tend to go with the middle one i.e. 75mg/t which corresponds to a gap between 72.9 and 80.4m.g/t. It caps 24 intervals (0.35% of total)  and  generates a gold loss of 13.0% (length weighted average capped grade is down to 4.13g/t from 4.75 g/t uncapped). This capping has a similar effect as the one generally used by LSG i.e. a 95 g/t Au high cut which caps 28 intervals with a gold loss of 13.3%. . Actually, the range of potential gold loss from capping is rather limited: from 15.6% with the low cap of 55m.g/t to 10.5% with the high cap of 110m.g/t.

 

Most of the capped intervals are in the large PZ1B zone with 43% of all mineralized intervals. In that zone, the capping limit could be raised to 90m.g/t i.e. right at the start of a long gap between 88.5m.g/t to 138.5 m.g/t with only two values at 99.5 m.g/t and 110.5 m.g/t. With that limit, 13 intervals are capped with a gold loss of 21% in the zone. In the PZ1A zone with 26% of intervals, the overall limit of 75 m.g/t can be kept with no interval capped in that zone. The next zone with the highest number of intervals is RZ3A with 16% of them. In that zone, the maximum of 89.6 m.g/t is an outlier (next value is 43.7m.g/t) hence the limit is lowered to 45 m.g/t with only one interval capped and a gold loss of 1.5%. The other 8 zones just capture 16% of the intervals. Proposed cap limits vary from 20 to 55 m.g/t (Table 3) and they generally correspond to obvious outliers with large gaps between them and the next highest value (e.g. zone PZ1C with a maximum at 362.5 m.g/t and next value at 51 m.g/t — cap limit would be at 55 m.g1t). Like zone PZ1A, zones RZ5 and RZ3A1 do not show outlier interval data which need to be capped. With this alternative zone capping scheme, 22 intervals are capped with an overall gold loss of 13.3% i.e. not far from overall capping of 75 m.g/t (24 interval capped with gold loss of 13.0%) or overall capping of 95 g/t (28 intervals capped with gold loss of 13.3%). All those capping schemes are almost equivalent in terms of bearing on estimated resources.

 

Appendix 7-13



 

Table 2 Highest grade intervals in the mineralized intercepts

 

Hole name

 

Zone

 

Length

 

From

 

To

 

g/tAu

 

TC730-003

 

110

 

1

 

19.9

 

20.9

 

80.7

 

TC08-54D

 

110

 

0.3

 

645.6

 

645.9

 

82.5

 

TC11-113A

 

110

 

0.6

 

935.7

 

936.3

 

84.4

 

TC09-68A

 

110

 

0.5

 

916.1

 

916.6

 

86.2

 

TC730-010

 

110

 

1

 

25.7

 

26.7

 

86.2

 

TC330-039

 

103

 

1

 

143.3

 

144.3

 

87.2

 

TC09-69G

 

110

 

0.4

 

798

 

798.4

 

87.3

 

TC730-003

 

110

 

1

 

10.9

 

11.9

 

88.5

 

TC08-54

 

110

 

0.5

 

668.9

 

669.4

 

88.8

 

TC320-050

 

102

 

0.5

 

85.9

 

86.4

 

91.1

 

TC09-68B

 

110

 

0.5

 

893.4

 

893.9

 

97.4

 

TC11-112

 

110

 

0.3

 

734.7

 

735

 

101.5

 

TC650-001

 

110

 

0.5

 

387.6

 

388.1

 

104

 

TC280-048

 

102

 

1

 

144.8

 

145.8

 

107

 

TC280-109

 

103

 

0.6

 

25.3

 

25.9

 

109.1

 

TC730-003

 

110

 

1

 

17.9

 

18.9

 

110.5

 

TC330-025

 

103

 

0.8

 

89.5

 

90.3

 

112

 

TC09-68B

 

110

 

0.6

 

899

 

899.6

 

121.5

 

TC11-113A

 

110

 

0.5

 

936.3

 

936.8

 

128

 

TC710-006

 

110

 

1

 

216

 

217

 

138.5

 

TC09-69G

 

110

 

0.5

 

797.5

 

798

 

140.5

 

TC11-112

 

110

 

0.5

 

723.4

 

723.9

 

141.5

 

TC730-011

 

110

 

1

 

45

 

46

 

142

 

TC09-68B

 

110

 

0.6

 

917.9

 

918.5

 

143

 

TC09-68B

 

110

 

0.6

 

921.5

 

922.1

 

145

 

TC730-012

 

110

 

1

 

23

 

24

 

145

 

TC09-80

 

503

 

0.45

 

1026.75

 

1027.2

 

147.5

 

TC09-80C

 

110

 

0.4

 

902.9

 

903.3

 

156

 

TC730-018

 

110

 

1

 

35.45

 

36.45

 

161

 

TC650-001

 

110

 

1

 

398.5

 

399.5

 

179.5

 

TC730-023

 

110

 

1

 

23

 

24

 

193.5

 

TC09-69B

 

110

 

0.45

 

798

 

798.45

 

221

 

TC280-034

 

102

 

0.5

 

132.2

 

132.7

 

273

 

TC09-68B

 

110

 

0.5

 

898.5

 

899

 

281

 

TC730-003

 

110

 

1

 

18.9

 

19.9

 

399

 

TC730-013

 

110

 

1

 

93

 

94

 

547

 

TC09-68B

 

110

 

0.5

 

931.5

 

932

 

725

 

TC730-009

 

110

 

0.8

 

24.9

 

25.7

 

1600

 

 

Appendix 7-14



 

Table 3 Capping statistics in the different zones

 

Zone

 

Nzone

 

Int.

 

Aver.
Length (m)

 

Aver.
g/tAu

 

Aver.
m.g/tAu

 

Cap
m.g/tAu

 

Nb.
capped

 

Aver
g/tAuc

 

%Au loss

 

All together

 

6839

 

0.77

 

4.75

 

3.65

 

75

 

24

 

4.13

 

13.0

%

RZ2

 

102

 

67

 

0.83

 

4.62

 

3.85

 

20

 

2

 

3.75

 

18.9

%

RZ3

 

103

 

268

 

0.77

 

4.12

 

3.18

 

50

 

1

 

3.94

 

4.4

%

RZ5

 

105

 

102

 

0.85

 

3.38

 

2.89

 

25

 

0

 

3.38

 

0.0

%

PZ1A

 

111

 

1763

 

0.68

 

5.27

 

3.6

 

75

 

0

 

5.27

 

0.0

%

PZ1B

 

112

 

2913

 

0.82

 

5.13

 

4.19

 

90

 

13

 

4.03

 

21.2

%

PZ1C

 

113

 

361

 

0.64

 

4.13

 

2.64

 

55

 

1

 

2.8

 

30.1

%

PZ3

 

503

 

58

 

0.67

 

4.33

 

2.92

 

20

 

1

 

3.14

 

27.4

%

RZ2A

 

321

 

133

 

0.81

 

5.44

 

4.4

 

30

 

2

 

3.34

 

38.5

%

RZ3A

 

330

 

1101

 

0.8

 

3.47

 

2.77

 

45

 

1

 

3.42

 

1.5

%

RZ3A1

 

331

 

36

 

0.87

 

3.02

 

2.64

 

30

 

0

 

3.02

 

0.0

%

RZ3A2

 

332

 

37

 

0.84

 

4.82

 

4.07

 

20

 

1

 

4.35

 

9.8

%

All by zone

 

6839

 

0.77

 

4.75

 

3.651

 

20-90

 

22

 

4.11

 

13.3

%

 

Appendix 7-15



 

Figure 3 Histogram and cumulative frequency plot of GTs of all mineralized intervals

 

 

Appendix 7-16



 

4-             Compositing and Variography

 

Given the variability of the length of original drill hole assay intervals, they need to be composited before being in block grade interpolation. The selected composite size is 1m which corresponds to the most frequent size of original assay intervals and is in accordance with the selected block size (2m cubes) of the resource model.

 

We have used the composite file produced by LSG (TRCreek_Nov09_11.csv). That file has coordinates, zone id and gold values of up to 5158 1m composites (with a documented length of at least 0.5m). Gold values include uncapped grade, grade with the 95 g/tAu capping and grade with the 75 m.g/t capping. Given that the last two are almost equivalent (see previous section), the rest of the work is conducted on composite grades with the 95 g/t cap on original assay interval data. We checked that those composite data are in accordance with original assay data and mineralized zone intercept limits in drill holes.

 

Statistics of composite (capped) grades are in Table 4. Composites can be regrouped into PZ zones at the bottom and RZ at the top. Histograms (with a log scale for grade) of composite grades in the two sets are on Figure 4. In both cases, we see a somewhat bimodal distribution with a lognormal like histogram for values above about 0.10-0.15 g/t plus a significant background of very low values, mostly 0.01 g/t Au. Those background values are still present despite repeated efforts by LSG geologists to interpret mineralized zone limits that exclude them. The bimodality of composite grade distributions in mineralized zones generates a high variability with coefficients of variation (standard deviation divided by mean) around 200% and means generally more than three times medians.

 

Table 4 Statistics of the capped grade of 1m composites in the mineralized zones

 

 

 

 

 

#

 

MinAu

 

MedAu

 

MaxAu

 

Mean Au

 

%CVAu

 

Zone

 

Nzone

 

composites

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

%

 

RZ2

 

102

 

51

 

0.01

 

1.62

 

45.7

 

5.15

 

177

 

RZ2A

 

321

 

103

 

0

 

1.18

 

95.0

 

4.53

 

265

 

RZ3

 

103

 

204

 

0

 

1.31

 

82.8

 

4.17

 

208

 

RZ3A

 

330

 

840

 

0

 

1.01

 

57.1

 

3.61

 

175

 

RZ3A1

 

331

 

29

 

0

 

0.91

 

29.5

 

3.32

 

177

 

RZ3A2

 

332

 

32

 

0.01

 

1.69

 

34.6

 

5.11

 

160

 

RZ5

 

105

 

87

 

0

 

0.75

 

23.8

 

3.41

 

160

 

All RZ

 

 

 

1346

 

0

 

1.15

 

95.0

 

3.84

 

192

 

PZ1A

 

111

 

1183

 

0

 

2.34

 

88.5

 

5.33

 

153

 

PZ1B

 

112

 

2362

 

0

 

1.11

 

95.0

 

3.96

 

240

 

PZ1C

 

113

 

230

 

0

 

0.85

 

51.0

 

2.83

 

216

 

PZ3

 

503

 

37

 

0.09

 

1.44

 

64.4

 

4.73

 

233

 

All PZ

 

 

 

3812

 

0

 

1.31

 

95.0

 

4.32

 

207

 

All

 

 

 

5158

 

0

 

1.27

 

95.0

 

4.17

 

204

 

 

Appendix 7-17



 

Figure 4 Histograms of 1m composite capped grades in PZ and RZ zones

 

 

Appendix 7-18



 

Because of the bimodality of composite grade distribution, the spatial analysis of composite grades is conducted in two steps : first, we look at the continuity of the very low grade through a low cut-off indicator  and then we look at the grade continuity above that indicator cut-off. The selected cut-off for this indicator is 0.5 g/t with respectively 28% and 36% of composites above that limit in the PZ and RZ zones.

 

Variograms (actually 1-correlograms) are computed along all directions at the same time (average variogram with a lag of 1m) as well as along the principal directions of the mineralized zones themselves i.e. a dip of 60o to N310, an horizontal strike of N40 as well as the horizontal N130 across dip and strike, all with a lag of 5m.

 

Variograms are computed with capped composite grades in RZ and PZ zones separately. In most zones, there are not enough composites to derive meaningful variograms from just composites in the zone. Exceptions could be PZ1B with 2362 composites, PZ1A with 1183 composites and RZ3A with 840 composites. The PZ variograms are somewhat of an average of PZ1A and PZ1B variograms while the RZ variograms mostly reflect RZ3A variograms. In any case, variograms are computed after excluding any pair with composites in two different zones.

 

The indicator variograms in PZ (top of Figure 5) are those showing the best continuity with a relative nugget effect of 30% and a maximum range of 30m along dip, 20m along strike and 10m across dip and strike. Continuity of the low grade indicator in RZ zones (bottom of Figure 5) is not as good although the relative nugget effect is the same 30% but the range does not exceed 15m along dip and strike and 5m across dip and strike.

 

Ranges of the variograms of mineralized grade (above the 0.5g/t cut-off) are fairly short. In the PZ zones (top of Figure 6), they do not exceed 5m along dip and 3m along strike and across dip and strike. In the RZ zones (bottom of Figure 6), variograms are more erratic but we can guess maximum ranges of 10m along dip, 5m along strike and 3m across dip and strike. In both cases, relative nugget effect keeps equal to 30%.

 

Appendix 7-19



 

Figure 5 Variograms of low cut-off (0.5 g/t) indicators in PZ and RZ zones

 

 

Appendix 7-20



 

 

Figure 6 Variograms of mineralized grade (above 0.5 g/t) in PZ and RZ zones

 

 

Appendix 7-21



 

 

5-             Block grade interpolation with indicators

 

Although we do not see some natural cut-off or gap in the grade distribution of composites in the interpreted mineralized zones, it is clear that within the current limits of those zones, we have some high grade shoots in a background of weakly mineralized material. Block grade interpolation methods which use all available composites around a block i.e. from both high grade shoots and very low grade background is likely to over-dilute the grade of blocks in those high grade shoots.

 

In an attempt to separate blocks and composites in the two different types of mineralization, we can introduce a new variable called indicator which is defined at a cut-off which should correspond to the limit grade between the two types. As a first guess, we have selected 0.5 g/t Au for this limit. Any composite with a grade less than 0.5 g/t has an indicator value of 0 (i.e. 0% above 0.5g/t) and any composite with a grade equal to or more than 0.5 g/t has an indicator of 1 (i.e. 100% above or equal to 0.5 g/t). The indicator can be interpolated in blocks in the same way as grade. The interpolated block value, always between 0 and 1, can be interpreted as the estimated proportion of material (in the form of 1m DH intervals) inside the block above the indicator cut-off of 0.5g/t.  The next step is then to interpolate the grade of that fraction just using composites with a grade above 0.5 g/t around the block while, if needed, the grade of the block fraction below 0.5 g/t is interpolated from just composites with a grade below 0.5g/t around the block. Resources above an economic cut-off (above the indicator cut-off) just consider the block fraction above 0.5 g/t with its interpolated grade.

 

In order to avoid the use of fractional blocks, we can set a limit to the interpolated indicator in blocks such that if it is above, the full block is considered to be made of material above 0.5g/t with the interpolated grade for that material and if it is below, the block is all less than 0.5g/t. This limit is not necessarily 0.5 or 50%. It has to be selected in such a way that the overall proportion of full blocks above

 

Appendix 7-22



 

0.5g/t is equal to the average interpolated indicator in block which is close to the proportion of composites above 0.5g/t in the domain.

 

We have applied this approach to the 1m composites and 2m cube blocks in the 11 interpreted mineralized zones. In each zone, we first interpolate the indicator in the blocks of the zone by ordinary kriging based on the variogram models presented in the previous section. That interpolation is done in up to 4 successive runs with a relaxation of search conditions from one run to the next until all blocks are interpolated. In the PZ zones, the first run uses a 30x20x10m ellipsoid tilted by 60o to the N310 and asks for a minimum of 7 composites in a minimum of 3 holes (maximum of 3 composites in the same hole). Maximum number of composites kept is 20 (there is no risk of over-dilution at this stage). Next run uses a 60x40x20m ellipsoid of similar orientation with the same minimum conditions while the maximum number of composites kept is raised to 25. Third run uses a 120x80x40m ellipsoid with the same orientation and minimum conditions. Maximum number of composites is raised to 35. If needed, a fourth and last run uses the same 120x80x40m ellipsoid but a default minimum of 1 composite in that ellipsoid. In the RZ zones, the min./max. numbers of composites in each run are the same but the starting ellipsoid is 35x35x12m with the 35m long radius along dip and strike.

 

The next step is to determine the cut-off on interpolated indicator such that if it is above, then we can assume that the entire block is above 0.5g/t. For example, in zone PZ1A (or 111), from the kriged indicator in each of the 133,933 2x2x2m blocks with a portion in the PZ1A zone and the size of that portion (in the block file supplied by LSG), we estimate that the total volume with material above 0.5g/t is 688,210m3 and we have about the same volume (688,048m3) in the 101,669 blocks with a kriged indicator above or equal to 0.6565. The “mineralized fraction” of the PZ1A zone would then be restricted to those 101,669 blocks.

 

We then krige the average grade of the blocks above 0.5g/t retained in each zone using the composites above that grade and the variograms of grade above 0.5g/t presented in the previous section. Again that interpolation is done in successive runs with a relaxation of search conditions from one run to the next until all retained blocks are interpolated. In the PZ zones, the first run uses a 30x15x15m ellipsoid tilted by 60o to the N310 and asks for a minimum of 5 composites in a minimum of 3 holes (maximum of 2 composites in the same hole). Maximum number of composites kept is 10. Next run uses a 60x30x30m ellipsoid of similar orientation with the same min./max. number of composites. Third run uses a 120x60x60m ellipsoid with the same orientation and min./max. number of composites. If needed, a fourth run uses a the same 120x60x60m ellipsoid but a default minimum of 1 composite in that ellipsoid. In the RZ zones, the min./max. number of composites in each run are the same but the starting ellipsoid is 30x15x10m with the 35m long radius along dip and the 15m intermediate radius along strike.

 

Appendix 7-23



 

6-             Mineral inventory at various cut-offs from the alternative model

 

Next Table 5 compares the mineral inventory in blocks above 1.5 g/t derived from our alternative model and the block model supplied by LSG with block grades derived by ID2 interpolation from all composites in the same zone. We understand that LSG has used composites with grade capped with the 75 m.g/t limit while our alternative model uses composites capped with the 95 g/t limit but we have seen in the first section of this report that the two capping schemes are almost equivalent.

 

Table 5 Mineral inventory from supplied LSG model and alternative SGS model

 

 

 

 

 

Cut-off

 

Density (1)

 

LSG

 

LSG

 

LSG

 

SGS

 

SGS

 

SGS

 

Zone

 

Zone

 

g/tAu

 

t/m3

 

Tonnage

 

g/tAu

 

OzAu

 

Tonnage

 

g/tAu

 

OzAu

 

102

 

RZ2

 

1.5

 

2.92

 

75,157

 

7.44

 

17,969

 

60,806

 

7.30

 

14,279

 

103

 

RZ3

 

1.5

 

2.92

 

208,182

 

5.36

 

35,909

 

166,218

 

4.76

 

25,459

 

105

 

RZ5

 

1.5

 

2.92

 

110,912

 

4.94

 

17,631

 

74,125

 

5.19

 

12,372

 

111

 

PZ1A

 

1.5

 

2.92

 

2,390,461

 

6.51

 

500,292

 

2,003,245

 

7.53

 

485,043

 

112

 

PZ1B

 

1.5

 

2.65

 

1,756,156

 

5.15

 

290,810

 

1,578,754

 

5.44

 

275,944

 

113

 

PZ1C

 

1.5

 

2.65

 

633,746

 

4.69

 

95,494

 

523,501

 

4.86

 

81,811

 

503

 

PZ3

 

1.5

 

2.65

 

123,593

 

3.46

 

13,757

 

101,671

 

3.43

 

11,220

 

321

 

RZ2A

 

1.5

 

2.92

 

45,914

 

4.96

 

7,317

 

41,467

 

4.87

 

6,498

 

330

 

RZ3A

 

1.5

 

2.92

 

146,219

 

5.22

 

24,557

 

134,054

 

5.74

 

24,759

 

331

 

RZ3A1

 

1.5

 

2.92

 

24,130

 

5.44

 

4,222

 

20,845

 

5.41

 

3,623

 

332

 

RZ3A2

 

1.5

 

2.92

 

57,607

 

5.18

 

9,602

 

43,025

 

10.04

 

13,891

 

All

 

 

 

1.5

 

2.65-2.92

 

5,572,077

 

5.68

 

1,017,560

 

4,747,711

 

6.26

 

954,899

 

 


(1) From LSG — not checked by SGS

 

In most zones, the average grade above cut-off of the alternative model is more than the average grade above the same cut-off of the supplied model (9.2% for all zones) and the gold metal above cut-off is less (6.2% for all zones). In other words, the estimated resources above 1.5 g/t from the alternative model correspond to the estimated resources from the standard ID2 model but at a higher cut-off (with slightly less metal, less than 5%).

 

As expected, differences between models are more important in small zones with a small number of composites e.g. zone 332 with only 32 1m composites. Resources in those zones have generally been classified in the inferred category.

 

Results from the alternative resource model support estimated resources derived from the standard ID2 model.

 

Appendix 7-24



 

7-             Resource classification

 

LSG ‘s classification of 2x2x2m resource blocks is illustrated on long vertical sections of each mineralized zone along the N40 strike on Figures 7 and 8. On the same sections, we have plotted the center point of DH intercepts with the zone. As a general rule, LSG’s classification into indicated (red) and inferred (blue) corresponds to the density of those intercepts in the various sectors of the zone. In particular, it is clear that all the material in the RZ2A and RZ3A deserves to be in the indicated category while all the material in the RZ3A1, RZ3A2, PZ1C and PZ3 can only be qualified as inferred at this stage.

 

Appendix 7-25



 

Figure 7 N40 long section with resource classification of each zone (1 of 2)

 

Appendix 7-26



 

 

Appendix 7-27



 

 

Appendix 7-28



 

8-             Statistical analysis of QAQC assay data

 

What follows is a statistical analysis of QAQC data for gold assays in Thunder Creek drill holes. Those data are in file Master_List_QAQC_Thunder_Creek_43-101.xls made available to us on Nov. 21, 2011.

 

8-1 Standards

 

From February 2009 to October 2011, up to 2900 standard pulps have been submitted to assay labs. Most of them (2628 or 91%) went to the ALS Canada Ltd. lab with the balance split between the Accurassay Laboratories lab (168), Cattarello Assayers Inc. lab (61)and  the Bell Creek lab (42). Given the small number of results from labs other than ALS, the statistical analysis of the lab performance for standards is done with all data available and it mostly reflects the performance of the ALS lab.

 

Summary statistics of standard results are on Table 6. Up to 24 standards have been used by LSG in the last 3 years. Most commonly used standards are O-15Pb with a low target value of 1.06 g/t, O-60b with a medium target value of 2.57 g/t and O-61d with a high target value of 4.76 g/t. In addition to the target value, standard deviation (StDev) and corresponding “gates” of target +/- 3 standard deviations (Min and Max), the table lists :

 

+ the number of results for the standard (Nb)

+ the mean result (Average)

+ the % relative difference between the mean result and the target (%Diff.)

+ a flag to indicate if the difference between the mean result and the target  is significant at the 95% confidence level given the quoted standard deviation and the number of results (Sig. = 1 if significant). The difference is significant if its absolute value exceeds 2*StDev/Nb 0.5

+ the percentage of results below and above the target (PBelow and PAbove)

+ the percentage of results outside the Min/Max “gates” of Target+/- 3*StDev.

 

Relative differences between mean result and target range from -8.5% to 4.0%. As expected, highest relative differences occur with standards with a low number of results. Relative differences for the three most used standards quoted above are of the order of 1% or less. Nevertheless, with the quoted standard deviations of standards, most of differences (15 out of 24) are found to be significant at the 95% confidence level. As usual with standards, the quoted standard deviations are likely to be undervalued since derived from results in ideal conditions (round robin involving several labs). There is no specific trend for the sign of difference i.e. we have negative and positive differences for low grade and high grade standards. All together, average (weighted by number of results) difference is almost null (average result of 2.371 g/t vs. average target of  2.368 g/t Au) hence there is no sign of an overall bias in the results for standards.

 

Despite the above, there is some tendency to have more results above target value (average 59%) than below (average 41%). Also  linked to the likely undervaluation of standard deviations, the average proportion of results beyond the three standard deviations gates is rather high (7.5% versus a “normal” score of only 1%).

 

Appendix 7-29



 

Table 6 Statistics of results for standard pulps

 

 

 

Target

 

StdDev

 

Min

 

Max

 

 

 

Average

 

%Diff.

 

 

 

PBelow

 

PAbove

 

POutside

 

Standard

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

Nb

 

g/tAu

 

%

 

Sig.

 

%

 

%

 

%

 

O-4Pb

 

0.049

 

0.002

 

0.042

 

0.056

 

29

 

0.049

 

-0.7

%

0

 

43.1

%

56.9

%

13.8

%

O-52Pb

 

0.307

 

0.017

 

0.255

 

0.359

 

63

 

0.319

 

4.0

%

1

 

15.9

%

84.1

%

0.0

%

O-65a

 

0.52

 

0.017

 

0.469

 

0.571

 

20

 

0.476

 

-8.5

%

1

 

35.0

%

65.0

%

10.0

%

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

65

 

0.632

 

1.5

%

1

 

27.7

%

72.3

%

0.0

%

O-50Pb

 

0.841

 

0.032

 

0.746

 

0.936

 

102

 

0.859

 

2.1

%

1

 

28.9

%

71.1

%

2.9

%

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

176

 

0.872

 

-1.5

%

1

 

56.5

%

43.5

%

8.0

%

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

154

 

0.986

 

-3.3

%

1

 

66.6

%

33.4

%

13.6

%

O-15Pa

 

1.02

 

0.027

 

0.94

 

1.1

 

111

 

1.017

 

-0.3

%

0

 

76.1

%

23.9

%

5.4

%

O-15Pb

 

1.06

 

0.030

 

0.97

 

1.14

 

571

 

1.057

 

-0.3

%

1

 

45.5

%

54.5

%

10.0

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

45

 

1.225

 

-0.9

%

0

 

51.1

%

48.9

%

4.4

%

O-6Pc

 

1.52

 

0.067

 

1.32

 

1.72

 

290

 

1.545

 

1.7

%

1

 

21.6

%

78.4

%

1.7

%

O-67a

 

2.238

 

0.096

 

1.95

 

2.526

 

18

 

2.209

 

-1.3

%

0

 

52.8

%

47.2

%

0.0

%

O-60b

 

2.57

 

0.107

 

2.25

 

2.89

 

362

 

2.562

 

-0.3

%

0

 

40.2

%

59.8

%

3.3

%

O-7Pb

 

2.77

 

0.053

 

2.61

 

2.93

 

49

 

2.761

 

-0.3

%

0

 

42.9

%

57.1

%

8.2

%

O-54Pa

 

2.9

 

0.110

 

2.57

 

3.23

 

62

 

2.903

 

0.1

%

0

 

41.1

%

58.9

%

3.2

%

O-17c

 

3.04

 

0.083

 

2.79

 

3.29

 

74

 

3.095

 

1.8

%

1

 

23.6

%

76.4

%

13.5

%

O-18c

 

3.52

 

0.107

 

3.2

 

3.84

 

6

 

3.507

 

-0.4

%

0

 

33.3

%

66.7

%

0.0

%

O-18Pb

 

3.63

 

0.070

 

3.42

 

3.84

 

44

 

3.603

 

-0.7

%

1

 

61.4

%

38.6

%

9.1

%

O-68a

 

3.89

 

0.147

 

3.45

 

4.33

 

36

 

3.762

 

-3.3

%

1

 

61.1

%

38.9

%

8.3

%

O-61d

 

4.76

 

0.143

 

4.33

 

5.19

 

476

 

4.814

 

1.1

%

1

 

29.3

%

70.7

%

10.7

%

O-10c

 

6.66

 

0.183

 

6.11

 

7.08

 

20

 

6.521

 

-2.1

%

1

 

65.0

%

35.0

%

5.0

%

O-10Pb

 

7.15

 

0.193

 

6.57

 

7.73

 

97

 

7.237

 

1.2

%

1

 

32.5

%

67.5

%

10.3

%

O-62c

 

8.79

 

0.213

 

8.15

 

9.42

 

28

 

8.164

 

-7.1

%

1

 

50.0

%

50.0

%

17.9

%

O-62d

 

10.5

 

0.330

 

9.51

 

11.49

 

1

 

10.400

 

-1.0

%

0

 

100.0

%

0.0

%

0.0

%

All

 

2.368

 

 

 

 

 

 

 

2899

 

2.371

 

0.0

%

 

 

40.6

%

59.4

%

7.5

%

 

8-2 Blanks

 

From September 2004 to October 2011, up to 3677 blanks have been submitted to assay labs. Like for standards, most of them (3369 or 92%) went to the ALS Canada Ltd. lab with the balance split between the Accurassay Laboratories lab (199), Cattarello Assayers Inc. lab (65)and  the Bell Creek lab (44). Given the small number of results from labs other than ALS, the statistical analysis of the lab performance for standards is done with all data available and it mostly reflects the performance of the ALS lab.

 

The only statistics which can be derived from results for blanks is the proportion of them above a given threshold. Traditionally, this threshold is five times the detection limit which in the case of Thunder Creek looks like 0.0025 g/tAu hence a threshold of 0.0125 g/tAu. This in fact pretty low and we generally prefer to use a “practical” threshold of 0.1 g/t Au.

 

For the ALS lab, we have 329 results (9.8%) above 0.0125 g/t Au and 28 results (0.8%) above 0.1 g/t (up to 2.58 g/t Au). Most of the failures in that last batch are documented with contamination from extremely high assays before blank being the most common explanation.

 

For the Accurassay results, we have 27 results (14%) above 0.0125 g/t Au and 7 results (3.5%) above 0.1 g/t (up to 2.37 g/t Au).For the Bell Creek results, we have 19 results (43%) above 0.0125 g/t Au and none above 0.1 g/t (maximum is 0.057g/t Au). For the Cattarello results, we have 8 results (12%) above

 

Appendix 7-30



 

0.0125 g/t Au and 2 results (3%) above 0.1 g/t (maximum is 0.199g/t Au). The performance of those labs is clearly worse than that of ALS.

 

8-3 Duplicates

 

Lab duplicates are assays from another split of the same pulp selected at random from the lab for its own quality control purposes. Up to 3780 lab duplicates from January 2008 to October 2011 and with an original and a duplicate grade can be identified in the supplied database. Like usual, the majority (3352 or 89%) are from ALS with the balance from Accurassay (301), Cattarello (61) and Bell Creek (66).

 

The statistic of  interest with duplicates at the same lab is either the correlation coefficient of originals and duplicates (preferably with a log scale) or the average relative difference of originals and duplicates above a given threshold (very low grades tend to generate high relative differences with an undue influence on the average relative difference). In this case we use a threshold of 0.5g/tAu.

 

Like with blanks, the best performance is observed with duplicates from ALS with an average relative difference of 12.5% and a correlation coefficient of 0.997 as well as duplicates from Bell Creek with an average relative difference of 11.8% and a correlation coefficient of 0.998. Next comes Cattarello with an average relative difference of 22.7% and a correlation coefficient of 0.986. Accurassay has the worst performance with an average relative difference of 59.4% and a correlation coefficient of 0.749. The correlation plot at the top of Figure 9 shows that most of the outlier pairs are Accurassay duplicates (blue dots). An updated file of lab duplicates from the Accurassay lab gives much better results with an average relative difference  of 8.6% and a log-log correlation coefficient of 0.94 (301 pairs). Apparently, in the original QAQC file, some missing duplicated data have been unduly replaced by the detection limit of 0.0025 g/t.

 

Coarse duplicates are normally assays from a new pulp made out of the crushed and ground (but not pulverized) reject of the original sample. Up to 1721 coarse duplicates from May 2010 to October 2011 and with an original and a duplicate grade can be identified in the supplied database. Like usual, the majority (1479 or 86%) are from ALS with the balance from Accurassay (165), Cattarello (58) and Bell Creek (19).

 

As expected, we see more differences between duplicated and original values with the coarse duplicates. For ALS, the average relative difference is 43.0% with a correlation coefficient of 0.951. For Bell Creek, average relative difference is a similar 37.4% with a correlation coefficient of 0.985. For Catarello, average relative difference is a similar 41.4% with a correlation coefficient of 0.954. For Accurassay, the performance of coarse duplicates is not as good with an average relative difference is 50.6% and a correlation coefficient of 0.904.

 

The scatter plot at the bottom of Figure 9 illustrates the lower reproduction of original values in the coarse duplicates.

 

Appendix 7-31



 

Figure 9 Correlation plots of lab and coarse duplicates

 

 

Appendix 7-32



 

8-4 Check assays

 

From data supplied, check assays look like samples from rejects of pulp originally assayed by ALS which have been sent to a different lab for a check assay. In the case of Thunder Creek the two check labs are Accurassay and SGS Canada Inc.

 

We can identify 758 complete check assay samples at Accurassay from July to September 2011. Original (ALS) values range from 0.0025 to 112.0 g/t with an average of 1.30 g/t while check (Accurassay) values range from 0.0025 to 91.33 g/t with a mean of 1.04 g/t. A T-test of paired data run on log grade (to respect some normality of parent population) shows that the differences of means is not significant at the 95% confidence level (T= -1.18 with a limit at -1.96 — the correlation coefficient of log data is 0.93). A sign test confirms the absence of a significant bias between the two sets (we have 53.2% of pairs with original value more than duplicate value with a 95% confidence limit at 53.6%).

 

We also have 1117 complete check assay samples at SGS in February 2010, January-February 2011 and September 2011. Original (ALS) values range from 0.0025 to 97.4 g/t with an average of 1.36 g/t while check (SGS) values range from 0.0025 to 60.9 g/t with a mean of 1.32 g/t. The T-test of paired data run on log grade shows that the differences of means is not significant at the 95% confidence level (T= -0.58 with a limit at -1.96 — the correlation coefficient of log data is 0.97). In this case however, the sign test would show original data significantly higher than check data (we have 53.4% of pairs with original value more than duplicate value with a 95% confidence limit at 53.0%). However, the sign test is known to be rather severe when the number of pairs is quite high.

 

Correlation plots of check and original values in the two sets are on Figure 10.

 

8-5 Conclusions

 

Despite the high variability of gold grades from Thunder Creek samples, the QAQC data available tend to indicate that the quality of the sample grade values used in the resource estimation is satisfactory. Although we have significant differences between mean results and target values for some standards as well as a rather high proportion of results beyond the quoted gates of standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps reasonably low (0.8%) at the main ALS lab. Lab and coarse duplicates show expected sample errors i.e. about 10% relative difference for pulp duplicates and 40% relative difference for coarse duplicates.

 

Appendix 7-33



 

Figure 10 Correlation plots of check and original assays

 

 

Appendix 7-34



 

APPENDIX 8

 

RESOURCE MODELING AND ESTIMATION OF THE TIMMINS GOLD DEPOSIT
M. DAGBERT (2012)
SGS CANADA INC. GEOSTAT

 

Appendix 8-1



 

GRAPHIC

 

 

RESOURCE MODELING AND ESTIMATION

OF THE TIMMINS WEST GOLD DEPOSIT

BELOW LEVEL 650

 

 

Respectfully submitted to Lakeshore Gold Corp.

by SGS Canada Inc. - Geostat

March 23,2012

 

 

 

Geostat

SGS Canada Inc.

10 boul. de la Seigneurie Est, Suite 203, Blainville, Québec Canada

t (450) 433 1050  f (450) 433 1048  www.geostat.com www.met.sgs.com

 

 

 

Member of SGS Group (SGS SA)

 

Appendix 8-2



 

Foreword

 

This report describes the work completed in the fall of 2011 and winter 2011-2012 at SGS Canada Inc. — Geostat (thereafter SGS) to assist Lakeshore Gold Corp. (thereafter LSG) in their modeling and estimation of the resources below level 650 of their Timmins West gold deposit (thereafter TW) that they currently mine to the west of Timmins, Ontario, from latest drill hole information available in the fall of 2011. This report is not an NI43-101 Technical Report but it can be used to support the results in the NI43-101 Technical Report authored by LSG on the TW resources to be produced in March 2012.  This work is covered by a proposal from SGS to LSG dated July 22, 2011 and accepted by LSG on September 09, 2011.

 

Appendix 8-3



 

Summary, conclusions and recommendations

 

7-             SGS has reviewed two successive resource models by LSG for the Timmins West gold deposit below level 650. In a first prototype model of September 2011, SGS had interpreted fairly large mineralized zones with a high proportion of zero or low grade assay intervals in the zones. In order to avoid an over-dilution of estimated resources within those zones, SGS had suggested the same approach which had been tested in the early models for the near-by Thunder Creek deposit i.e. the interpolation by kriging of a low cut-off indicator (0.5 g/t) followed by the interpolation (also by kriging) of the gold grade of the block fraction with material above the low cut-off. Results obtained with this approach were found to be similar to the preferred interpolation method of LSG i.e. a direct interpolation of block grade by inverse distance to the cube (ISD3) with the same objective of reducing the over-dilution of block grade from the large number of low grade samples within the large zones.

 

8-             The second (and final) model of February 2012 by LSG has also been reviewed by SGS. Following some recommendations after the review of the prototype model, it uses much tighter mineralized zone limits with a significant reduction of the proportion of zero or very low grade samples within those limits. With that reduction of internal waste, the double interpolation approach suggested by SGS (low cut-off indicator + grade above low cut-off) becomes less appropriate and the ISD3 approach of LSG is adequate with results similar to those from the prototype model.

 

9-             In both models, blocks are 2m cubes and their grade is interpolated from capped assay intervals in the same mineralized composited over 1m. Given the reduced size of the final mineralized limits, this block and composite sizes are adequate.

 

10-      After reviewing the raw assay data within mineralized zones for the prototype resource model, SGS recommended a capping of 70m.g/t on the grade x length product of assay intervals. That limit corresponds to a natural gap of those products in the high end of their distribution. The implication of sample size (length) in the grade capping is justified by the tendency to have very high grade data in fairly short intervals. That capping is preferred to the straight 95 g/t grade limit of LSG although the overall result, a gold metal loss of 5%, is about the same. That limit of 70 m.g/t on the grade x length products continues to apply to the updated assay data of the final model.

 

11-      The resource categorization of the final model by LSG has been checked on the E-W long section with projected hole intercepts in a given mineralized zone and the projected limit between indicated and inferred blocks in the same zone. The indicated blocks generally correspond to the part of the projected zone with intercepts on a grid of 30m spacing or less which is considered as reasonable.

 

Appendix 8-4



 

12-      Samples from 2009-2011 holes at Timmins West have been processed and assayed at four different labs, mostly ALS and Bell Creek with the balance at Accurassay and Cattarello. The quality performance of labs is derived from results for “external” reference material i.e. material supplied by LSG to the labs. For standards, the performance of the four labs is acceptable although some improvement could be achieved in the reduction of odd returns for the standards in the four labs. For blanks and despite the very high grade returned for a blank, the best performance is with ALS followed by Bell Creek+Cattarello and finally Accurassay. For coarse duplicates, ALS, Bell Creek and Cattarello have a similar performance (average relative difference around 30%) but Accurassay is not as good (average relative difference of more than 40%). Check (pulp) samples at Accurassay and originally assayed at ALS show slightly higher returns. However, Accurassay has somewhat discredited itself as a reference lab for ALS by failing to adequately report low and medium grade.

 

Appendix 8-5



 

Table of Contents

 

Foreword

 

3

 

 

 

Summary, conclusions and recommendations

 

4

 

 

 

Table of Contents

 

6

 

 

 

List of tables

 

7

 

 

 

List of Figures

 

8

 

 

1-

September 2011 prototype model

9

 

 

 

1-1

Drill hole data

9

1-2

Mineralized zones

9

1-3

Composites

12

1-4

Current resource block model

14

1-5

Assay intervals in mineralized intercepts and capping

16

1-6

Resource block modeling of mineralized zones

20

1-7

Checking mineralized zone limits with polygons of influence on long sections

27

 

 

2-

February 2012 final model

29

 

 

 

2-1

Drill hole data

29

2-2

Mineralized zones

29

2-3

Assay intervals in mineralized intercepts and capping

32

2-4

Composites

34

2-5

Resource block model

34

2-6

Resource classification

34

 

 

3-

Statistical analysis of QAQC assay data for Timmins West

38

 

 

 

3-1

Standards

38

3-2

Blanks

43

3-3

Coarse Duplicates

43

3-4

Check assays

44

 

Appendix 8-6



 

List of tables

 

Table 1 Statistics of gold values of 1m composites in mineralized zones (as received)

13

Table 2 Statistics of mineralized intercept length and thickness

13

Table 3 Statistics of block data in the current resource block model (below level 650)

14

Table 4 Assay intervals within mineralized intercepts with highest gold values

17

Table 5 Intercepts with composites but with no solid hence blocks around

32

Table 6 Statistics of composite and estimated block grades in the various zones of Timmins West

36

Table 7 Statistics of results for standard pulps with LSG samples to Accurassay (2009-2011)

39

Table 8 Statistics of results for standard pulps with LSG samples to ALS Canada (2009-2011)

40

Table 9 Statistics of results for standard pulps with LSG samples to Bell Creek (2009-2011)

41

Table 10 Statistics of results for standard pulps with LSG samples to Cattarello (2009-2011)

42

Table 11 Statistics of results for standard pulps with ALS check samples at Accurassay

45

 

Appendix 8-7



 

List of Figures

 

Figure 1 Views of DHs and interpreted mineralized zones below level 650

10

Figure 2 N-S sections through mineralized zones below level 650

11

Figure 3 N-S sections and benches through current resource block model

15

Figure 4 Histogram and cumulative frequency plot of GTs of all mineralized intervals

18

Figure 5 Cumulative frequency plots of GTs of intervals in UM and D zones

19

Figure 6 Zone D1 — EW long section — Block extent + 1m composites

22

Figure 7 Histogram and indicator (0.5g/t cut-off) variograms of 1m composites in D1

23

Figure 8 Grade correlograms of 1m composites above 0.5g/t in D1

24

Figure 9 Blocks above 0.5g/t with interpolated grade in top part of D1

24

Figure 10 Long section of D1 zone with “indicated” polygons around intercepts

25

Figure 11 Long section of D1 zone with “measured” polygons around intercepts

26

Figure 12 Long section of D1 zone with an alternative zone outside limits around polygons

28

Figure 13 Views of DHs and interpreted mineralized zones below level 650

30

Figure 14 N-S sections through mineralized zones below level 650

31

Figure 15 Histogram and cumulative frequency plot of GTs of all mineralized intervals

33

Figure 16 Plan views of classified blocks and composites in zones D2A and D2

37

Figure 17 Correlation plot of coarse duplicates

44

Figure 18 Correlation plot of check samples

45

Figure 19 Correlation plot of lab duplicates

47

 

Appendix 8-8



 

1-             September 2011 prototype model

 

1-1                              Drill hole data

 

A first version of the drill hole database for Timmins West mine was received on Aug. 31, 2011. It has collar coordinates, orientation at collar, depth, deviation data, assay and litho intervals data for up to 1330 drill holes with various names: 20-001 to 650-173, HG84-01 to HG02-22, RC08-15 to 44, SH-001 to SH260-001 and TG97-50a to TG09-181. We understand that the two main groups of holes are (1) the xxx-yyy series of UG holes with xxx (from 80 to 650) referring to a level depth in meters (2) the TGxx-yyy series of surface holes where xx (from 97 to 09) refers to the year when the hole was drilled.

 

Collar coordinates range from 3832x, 7319y, and 9365z to 7820x, 9695y, and 10026z i.e. about 4x2.5x0.8km extension. A majority of the 468 surface drill holes dip from 45° to 78° to the south (from N175 to N202). Drill hole length varies from 1.8m (short RC or SH holes) to 2114m (wedge TG08-178F). Total meterage is 335,095m (average 252m).

 

We have 103,387 assay intervals along those holes. Assay length varies from a mere 0.01m to 7.8m  with two very long intervals of low values : 21m with Au=0 in TG08-158 and 73m with Au=0.123 g/t in 525-035. A majority of intervals (32%) are 1m long with significant groups of 0.5m intervals (17%) and 1.5m intervals (13%). Gold assay values are mostly FA with AA finish for low grades or FA with gravimetry finish or PM (metallic screen?) for high grades. Final values range from 0 (which includes 363 intervals coded as NULL) to 1340g/t (a 0.85m interval in TG03-04) with an uncapped weighted average of 0.74 g/t.

 

1-2                              Mineralized zones

 

Up to 16 different mineralized zones have been interpreted in the bottom part (below level 650) of the Timmins West mine. In addition to a small FW zone, we have 8 UM zones at the top (1B, 1C, 1D +3-6+3A) and 7 D zones at the bottom (D1-4+1A, 1B, 1C). Those zones are generally dipping from 30° to 60° to N. They look like en-echelon structures within a pipe-like trend plunging steeply to the WNW (Figure 1). They extend from 4225E to 4730E. Their outline has been interpreted on N-S sections at 12.5m intervals (down to 6.25m intervals in a few places). They have been made available to us in DXF format.

 

Appendix 8-9



 

 

Figure 11 Views of DHs and interpreted mineralized zones below level 650

 

Appendix 8-10



 

 

Figure 12 N-S sections through mineralized zones below level 650

 

Appendix 8-11



 

1-3                              Composites

 

A file of 1m drill hole composites within the above mineralized zones has been received from LSG on Sep. 28, 2011. That file has the hole name, from-to depth limits + corresponding length, coordinates, domain number and gold grades of 7,679 composites, reduced to 7,534 after eliminating the 145 composites (all with a zero grade) in holes 630-012,013 and 018 with no collar, deviation and assay data in the DH database received.

 

Like with Thunder Creek composites, we noticed that some very short composites at the end of mineralized intercepts have been kept in the composite file. We generally recommend not using composites with a documented length less than half the nominal composite length in the block grade interpolation, in this case 186 composites with a length less than 0.5m.

 

Two grades are given in the composite table: the uncapped grade and the grade after capping original assay interval data to 95 g/t. Statistics of composite data in the 16 mineralized zones are in Table 1. We observe a large number of zero composite grade values but we are not sure that they are real zero grades i.e. they could correspond to portion of drill holes with no assay data or assay data pending. Overall average grade of composites in mineralized zones is 2.9 g/t reduced to 2.7 g/t aver capping grade of original assay intervals to 95g/t, i.e. a 5.2% gold metal loss. The large number of composites in zone UM1D (6014), almost 40% of total, is quite noticeable.

 

Composite data can be used to derive mineralized intercept data i.e. the from-to depth limits and corresponding length of individual intercepts of holes with interpreted mineralized zones. Statistics of those intercept lengths are on Table 2. As a general rule, any given hole intersects a given zone only once (the only exception is with 3 holes intersecting the UM1C zone twice). Average intercept length is 19.4m with variations from a mere 0.8m up to 124.6m. The corresponding true thickness assuming a dip of 48o to N355 for zones everywhere varies from 0.1 to 59.6m and averages 9.9m. Average N-S horizontal thickness (if intercepts are projected on an E-W long section) is 21.5m.

 

We can calculate the average grade of each intercept from the supplied DH assay table and from-to depth limits of intercepts. Rather surprisingly, on average, only 84.5% of intercept length is documented with assay interval data. This proportion can be as low as 66.5% in zone D1A or 70.8% in zone UM1C. In those zones, intercept limits (hence interpreted zone outlines) might have to be reviewed to reduce the amount of non documented mineralized material. The significant non-documented mineralized material likely corresponds to the high proportion of zero grade 1m composites in some zones.  If gaps of assay data within intercepts are assumed to be zero grade, average uncapped intercept grade is 2.72 g/t instead of 3.41 g/t if those gaps are assumed to be of unknown grade.

 

Appendix 8-12



 

 

 

 

 

 

 

Min.Au

 

Max.Au

 

MaxAu95

 

MeanAu

 

MeanAu95

 

Zone

 

Zone

 

#composites

 

g/t

 

g/t

 

g/t

 

g/t

 

g/t

 

FW

 

401

 

6

 

0.02

 

6.8

 

6.8

 

3.62

 

3.62

 

UM3

 

603

 

70

 

0.00

 

18.5

 

18.5

 

2.35

 

2.35

 

UM4

 

604

 

327

 

0.00

 

102.3

 

95.0

 

3.01

 

2.99

 

UM5

 

605

 

754

 

0.00

 

84.6

 

64.9

 

2.95

 

2.91

 

UM6

 

606

 

154

 

0.00

 

21.5

 

21.5

 

1.92

 

1.92

 

UM3A

 

613

 

5

 

0.44

 

5.2

 

5.2

 

2.90

 

2.90

 

D1

 

801

 

792

 

0.00

 

221.6

 

58.3

 

2.66

 

2.42

 

D2

 

802

 

226

 

0.00

 

181.7

 

76.1

 

3.98

 

3.26

 

D3

 

803

 

239

 

0.00

 

154.9

 

95.0

 

2.81

 

2.27

 

D4

 

804

 

48

 

0.00

 

74.9

 

74.9

 

4.48

 

4.48

 

D1A

 

811

 

73

 

0.00

 

141.3

 

53.2

 

4.36

 

3.08

 

D1B

 

812

 

3

 

6.11

 

14.9

 

14.9

 

9.55

 

9.55

 

D1C

 

813

 

8

 

0.07

 

6.2

 

6.2

 

2.40

 

2.40

 

UM1B

 

6012

 

939

 

0.00

 

87.5

 

44.3

 

2.27

 

2.15

 

UM1C

 

6013

 

974

 

0.00

 

124.5

 

63.6

 

2.52

 

2.46

 

UM1D

 

6014

 

2916

 

0.00

 

214.4

 

95.0

 

3.10

 

2.99

 

All

 

 

 

7534

 

0.00

 

221.6

 

95.0

 

2.87

 

2.72

 

 

Table 7 Statistics of gold values of 1m composites in mineralized zones (as received)

 

 

 

 

 

 

 

 

 

Length(m)

 

TThck(m)

 

NSThck(m)

 

Zone

 

Zone

 

#inter.

 

#holes

 

Min.

 

Max.

 

Aver.

 

Aver.Au

 

%Assayed

 

Aver.

 

Aver.

 

FW

 

401

 

2

 

2

 

2.5

 

2.7

 

2.6

 

2.6

 

100.0

%

2.4

 

3.3

 

UM3

 

603

 

10

 

10

 

3.2

 

14.8

 

6.4

 

5.6

 

87.2

%

4.5

 

7.1

 

UM4

 

604

 

23

 

23

 

4.9

 

54.6

 

13.7

 

10.4

 

75.9

%

7.8

 

16.0

 

UM5

 

605

 

36

 

36

 

1.4

 

56.5

 

20.4

 

19.6

 

96.0

%

17.8

 

25.5

 

UM6

 

606

 

20

 

20

 

2.1

 

17.1

 

7.1

 

5.9

 

82.5

%

6.0

 

9.0

 

UM3A

 

613

 

2

 

2

 

1.5

 

2.7

 

2.7

 

2.1

 

76.7

%

1.9

 

2.6

 

D1

 

801

 

44

 

44

 

4.1

 

54

 

17.5

 

15.5

 

88.5

%

14.3

 

22.3

 

D2

 

802

 

19

 

19

 

2.1

 

36.8

 

11.3

 

11.3

 

100.4

%

8.5

 

15.2

 

D3

 

803

 

23

 

23

 

1.7

 

23.6

 

9.9

 

9.9

 

100.0

%

7.3

 

13.0

 

D4

 

804

 

7

 

7

 

1.6

 

12.7

 

6.4

 

6.4

 

100.3

%

5.3

 

8.5

 

D1A

 

811

 

11

 

11

 

2.5

 

15.5

 

6.3

 

4.2

 

66.5

%

5.2

 

8.2

 

D1B

 

812

 

1

 

1

 

3.7

 

3.7

 

3.7

 

3.7

 

100.5

%

3.3

 

4.8

 

D1C

 

813

 

1

 

1

 

6.4

 

6.4

 

6.4

 

6.4

 

100.0

%

5.6

 

8.3

 

UM1B

 

6012

 

47

 

47

 

2

 

124.6

 

19.5

 

17.4

 

89.2

%

9.3

 

19.3

 

UM1C

 

6013

 

40

 

37

 

6.4

 

93.8

 

23.8

 

16.8

 

70.8

%

6.3

 

20.1

 

UM1D

 

6014

 

92

 

92

 

0.8

 

61.7

 

31.2

 

25.6

 

82.0

%

10.7

 

33.9

 

All

 

 

 

378

 

 

 

0.8

 

124.6

 

19.4

 

16.4

 

84.5

%

9.9

 

21.5

 

 

Table 8 Statistics of mineralized intercept length and thickness

 

Length = along hole, LengthAu (AverAu) =  length with assay data, %Assayed = ratio of LenghtAu to Length. TThck = true thickness (assuming a 48o dip to N355 for all zones), NSThck = NS horizontal thickness (assuming a 48o dip to N355 for all zones)

 

Appendix 8-13



 

1-4                         Current resource block model

 

LSG current resource block model for the bottom part (below level 650) of the Timmins West mine is made of 505,759 blocks 2x2x2m within limits of the 16 interpreted mineralized zones. For each block, we have an estimate of the uncapped gold grade as well as a gold grade derived from composites capped to 95 g/t.

 

A category flag (from 1 to 3) indicate the interpolation run number when the block has been processed with the following details:

Run 1 : 15x15x8m ellipsoid dipping 48o to N355 — Minimum of 3 composites — Maximum of 6 composites overall and 2 composites by hole

Run 2 : 35x35x18m ellipsoid dipping 48o to N355 — Minimum of 3 composites — Maximum of 6 composites overall and 2 composites by hole.

Run 3 : 100x100x50m ellipsoid dipping 48o to N355 — Minimum of 2 composites — Maximum of 6 composites overall and 2 composites by hole.

 

Interpolation is by inverse distance to the cube. Block statistics are on Table 3.Only 4 zones (UM5, D1, D2 and D3) capture 78% of the total mineralized volume. Mineralized volumes of zones UM1B, 1C and 1D with a large number of composites look rather limited (at least below the 650 level). A few N-S cross-sections and levels through this model illustrates the geometrical pattern of high grade shoots (say above 5 g/t) from that model i.e. narrow planar structures dipping about 45o to the North i.e. the dip and strike of search ellipsoids. A different and sub-vertical pattern can be observed in the top zones UM1C and UM1D around elevation Z=9300 with no explanation to it.

 

 

 

 

 

 

 

Min.

 

Max.Au

 

MaxAu95

 

MeanAu

 

MeanAu95

 

Zone

 

Zone

 

#blocks

 

g/t

 

g/t

 

g/t

 

g/t

 

g/t

 

FW

 

401

 

952

 

0.24

 

6.7

 

6.7

 

3.27

 

3.27

 

UM3

 

603

 

4,685

 

0.00

 

13.8

 

13.8

 

2.4

 

2.4

 

UM4

 

604

 

5,746

 

0.00

 

59.2

 

55.5

 

3.47

 

3.44

 

UM5

 

605

 

93,555

 

0.00

 

78.6

 

60.7

 

2.7

 

2.67

 

UM6

 

606

 

18,630

 

0.00

 

19.3

 

19.3

 

2.16

 

2.16

 

UM3A

 

613

 

1,001

 

1.08

 

4.6

 

4.6

 

3.01

 

3.01

 

D1

 

801

 

181,019

 

0.00

 

139.3

 

36.4

 

2.4

 

2.29

 

D2

 

802

 

57,393

 

0.00

 

105.3

 

44.2

 

3.14

 

2.77

 

D3

 

803

 

65,084

 

0.01

 

124.0

 

60.5

 

2.82

 

2.41

 

D4

 

804

 

9,699

 

0.03

 

60.5

 

60.5

 

4.91

 

4.91

 

D1A

 

811

 

15,939

 

0.00

 

54.7

 

20.6

 

3.93

 

3.37

 

D1B

 

812

 

2,400

 

5.57

 

13.8

 

13.8

 

7.96

 

7.96

 

D1C

 

813

 

1,417

 

0.07

 

5.9

 

5.9

 

1.93

 

1.93

 

UM1B

 

6012

 

17,426

 

0.00

 

53.6

 

33.3

 

1.67

 

1.62

 

UM1C

 

6013

 

20,728

 

0.00

 

69.4

 

41.4

 

2.52

 

2.46

 

UM1D

 

6014

 

10,085

 

0.00

 

52.5

 

47.1

 

3.21

 

3.18

 

All

 

 

 

505,759

 

0.00

 

139.3

 

60.7

 

2.72

 

2.55

 

 

Table 9 Statistics of block data in the current resource block model (below level 650)

 

Appendix 8-14



 

 

Figure 13 N-S sections and benches through current resource block model

 

Appendix 8-15



 

1-5                              Assay intervals in mineralized intercepts and capping

 

We have 8816 assay intervals within the from-to depth limits of the 378 mineralized intercepts in drill holes. Gold values of those assay intervals range from 0 to 505 g/t with a length-weighted average of 3.36 g/t. Obviously, we have some very high gold values which need be capped before being composited and used in block grade interpolation.

 

Table 4 lists the assay intervals with the highest gold values (above the current cap of 95 g/tAu). The length of those intervals is quite variable (from 0.4 to 1.4m) and given that those outliers tend to be isolated with much lower grades on both sides, it makes more sense to cap according to gold content, hence the GT product of grade by length, rather than gold grade alone. In other words a 200 g/t over 0.5m is the same as a 100g/t over 1m when it comes to capping given that both yield the same 100g/t when composited over 1m.

 

The top of Figure 4 shows the histogram (with a log scale hence excluding zero grade intervals) of those GT products for all assay intervals in the mineralized zones. The significant proportion of very low grade intervals is quite noticeable which again raises the need to review interpreted mineralized zone outlines in order to exclude more of this low grade material from them.

 

The bottom of Figure 4 shows the high end of the cumulative frequency plot of the same GT products, still with a log scale. This is the tool of choice to detect natural gaps which show up as upward kicks of the experimental curve. Such a kick is quite noticeable around 70m.g/t (70 g/t over 1m or 140 g/t over 0.5m).

 

A similar type of analysis could be conducted on just intervals in any of the 16 mineralized zones. On Figure 5, mineralized intervals have been regrouped into the upper UM zones (6549 intervals) and lower D zones (2267 intervals). In both cases, the 70m.g/t value corresponds to a kick of the experimental cumulative frequency curve. In the D zone, there is another noticeable kick around 30m.g/t.

 

An overall capping of 70m.g/t touches 20 intervals with a length weighted average grade of capped data of 3.19 g/t i.e. 5% less than the uncapped average of 3.36 g/t. It is in fact fairly similar to the current capping of 95 g/t on grade alone that touches 25 samples with a loss of 5.3% of the gold metal. It is less severe in UM zones (14 intervals and 3.2% gold loss) than in D zones (6 intervals and 12.3% gold loss).

 

A more conservative capping of 30 m.g/t would touch 102 intervals overall with a 13.3% gold loss (85 intervals and 11.2% gold loss in UM zones;17 intervals with 22.1% gold loss in D zones).

 

For sake of conservatism, a trade-off capping of 50 m.g/t could be used, although it does not correspond to any natural gap in the distribution of GT products. Overall, it caps 38 intervals with a gold loss of 7.5% (i.e. only 2.5% more than the 70m.g/t “logical” choice).

 

Appendix 8-16



 

Hole

 

Zone

 

From

 

To

 

Length (m)

 

G/tAu

 

GT ((m.g/tAu)

 

TG06-75f

 

802

 

1331.3

 

1331.8

 

0.5

 

97.2

 

48.6

 

650-101

 

6014

 

36

 

37

 

1

 

98.2

 

98.2

 

650-156

 

604

 

23

 

23.5

 

0.5

 

102.27

 

51.1

 

650-106

 

6014

 

75

 

75.5

 

0.5

 

103.5

 

51.8

 

TG06-75k

 

803

 

1382.6

 

1383

 

0.4

 

104.5

 

41.8

 

650-133

 

6014

 

6.5

 

7.5

 

1

 

107

 

107.0

 

650-021a

 

6012

 

103

 

103.5

 

0.5

 

109

 

54.5

 

650-004

 

6014

 

109.8

 

110.5

 

0.7

 

114

 

79.8

 

650-079

 

6014

 

81.2

 

81.7

 

0.5

 

119.5

 

59.8

 

TG05-74C

 

801

 

1071.2

 

1071.65

 

0.45

 

121.5

 

54.7

 

650-097

 

6014

 

49

 

49.5

 

0.5

 

128

 

64.0

 

650-066

 

605

 

100.8

 

101.7

 

0.9

 

135

 

121.5

 

650-094

 

6014

 

35.5

 

36.9

 

1.4

 

142

 

198.8

 

TG06-104

 

801

 

872

 

873

 

1

 

143.5

 

143.5

 

TG06-75k

 

803

 

1382.15

 

1382.6

 

0.45

 

143.5

 

64.6

 

650-096

 

6014

 

38.6

 

39.1

 

0.5

 

155

 

77.5

 

650-026a

 

6012

 

100.7

 

101.2

 

0.5

 

190.5

 

95.3

 

650-127

 

6013

 

100.5

 

101.1

 

0.6

 

196.5

 

117.9

 

TG05-72A

 

6012

 

634.95

 

635.5

 

0.55

 

200

 

110.0

 

TG05-75C

 

802

 

1287

 

1287.5

 

0.5

 

209

 

104.5

 

TG05-75C

 

802

 

1307

 

1307.8

 

0.8

 

227

 

181.6

 

TG97-50b

 

811

 

892.3

 

892.8

 

0.5

 

282

 

141.0

 

TG06-75k

 

803

 

1381.7

 

1382.15

 

0.45

 

324

 

145.8

 

TG05-64B

 

801

 

1151

 

1151.6

 

0.6

 

369

 

221.4

 

650-007

 

6014

 

109.9

 

110.3

 

0.4

 

505

 

202.0

 

 

Table 10 Assay intervals within mineralized intercepts with highest gold values

 

Appendix 8-17



 

 

Figure 14 Histogram and cumulative frequency plot of GTs of all mineralized intervals

 

Appendix 8-18



 

 

 

Figure 15 Cumulative frequency plots of GTs of intervals in UM and D zones

 

Appendix 8-19



 

1-6                              Resource block modeling of mineralized zones

 

Once mineralized zones are defined as solids with corresponding DH intercepts and capped assay intervals within intercepts, resources of each zone can be derived through a block model with small blocks on a regular grid filling the solid and with a gold grade interpolated from composited assay intervals within mineralized intercepts. This is in fact what is being done in the current LSG resource model (section 4 above) with 2m cubic blocks and 1m composites.

 

However, because of the large proportion of low grade samples left in mineralized solids, LSG is using a fairly restrictive interpolation method (ID3 with limited number of composites) to reduce the block grade over-dilution and this method leads to somewhat artificial patterns for high grade shoots within mineralized solids. If solids cannot be further edited to limit the amount of low grade material within them, an alternative block grade interpolation method involving more composites around each block but at the same time limiting the over-dilution is based on indicators. This method has already been tested at the nearby Thunder Creek deposit. We now show its application to the resource estimation of one of the 16 mineralized zones of Timmins West below level 650, namely the D1 (or 801) zone.

 

Back to the supplied solid of that zone, we can find 157,464 blocks 2x2x2m with a center within the solid (Figure 6). This is significantly less than the 181,019 blocks in the LSG block model (Table 3) but the difference can be explained by the fact that LSG is using partial blocks whereas we just consider full blocks (given the small size of blocks and the uncertainty on limits of mineralized zones, we think that full blocks are good enough). Hence in our model, the tonnage of mineralized material in zone D1 is 3.53Mt assuming a fixed density of 2.8 /t/m3.

 

Within the 44 mineralized intercepts of drill holes with the interpreted limits of zone D1, we can find 774 1m composites of at least 0.5m with a diluted (if gaps) and capped (using the 50m.g/t limit) gold grades from 0 to 57.97 g/t and averaging 2.43g/t (not far from the statistics of LSG capped composites in Table 1). Those 774 composites are also shown on the long section of Figure 6.

 

The histogram of composite data (top of Figure 7) illustrates the large proportion of low grade composites within the interpreted limits of the D1 zone (40% are less than 0.05g/t and 56% less than 0.5g/t). In order to separate that portion from the ultimate resource blocks, we define an indicator at 0.5g/t (although 0.05g/t looks like a more natural limit from the histogram of Figure 7 — 0.5g/t was the cut-off used at Thunder Creek). Like usual, composites above 0.5g/t have an indicator value of 1 and those below 0.5g/t have an indicator value of 0. Indicator variograms (bottom of Figure 7) show a relative nugget of about 30%, a long range of about 45m along average dip and strike and a short range of about 15m across dip+strike.

 

The indicator is kriged in the 157,464 blocks of D1. First run (84,369 blocks) uses a 45x45x15m ellipsoid dipping 48o to the N355 and asks for a minimum of 7 composites in a minimum of 3 holes while the maximum number of composites is set to 30. Second run (remaining 73,095 blocks) uses a 90x90x30m ellipsoid of similar orientation and asks for a minimum of 4 composites in a minimum of 2 holes with the same maximum of 30 composites. Average kriged indicator is 0.422 (which means that 42.2% of the D1 tonnage is above 0.5g/t) i.e. 0.422*157,464 = 66,450 blocks. Those mineralized blocks are those with a kriged indicator above 0.462.

 

The grade of the mineralized blocks is interpolated from the grade of the 340 composites above 0.5g/t. Correlograms of those composite grades are on Figure 8. They show the same anisotropy and ranges as

 

Appendix 8-20



 

the indicator but the relative nugget effect increases to 60%. Grade kriging with those correlograms is also done in two runs with the same search as for the indicator for the first run (25,100 blocks) and a 150x150x50m ellipsoid for the second run (remaining 41,341 blocks). Kriged grade of the 66,461 mineralized blocks ranges from 0.86 to 21.47 g/t with a mean of 4.82 g/t (Figure 9).

 

Like with any block model, estimated resources can be given at any cut-off by just applying that cut-off to the block kriged grade. Lowest cut-off is 0.5 g/t with total resources of 1.49Mt @4.82g/t i.e. 230koz (assuming a fixed density of 2.8t/m3). At a 2.0g/t cut-off, total resources are 1.29Mt @5.30g/t i.e.219koz.

 

Given that most of the identified mineralized zones of Timmins West below level 650 are planar structures fully intersected by drill holes, the most logical way of classifying their resources should be based on the density of intercepts or the average spacing between intercepts.

 

A standard way to look at intercepts is on long sections with a projection of the mid-point of supposedly complete intercepts as well as the interpreted solid itself (Figure 10). Assuming that indicated resources need a 30m grid of intercepts, then portions of the zone recognized by such a grid of intercepts would be defined by joint polygons (or circles) of influence with a radius of 30x0.707 = 22m around intercepts. Hence a tentative indicated resource limit is drawn around those joint polygons (in blue on Figure 10).

 

Similarly, if we assume that a 15m grid of intercepts is sufficient to delineate measured resources, then a tentative limit for those measured resources can be drawn around joint polygons with a radius of 11m (in green on Figure 11). By simply cookie-cutting the mineralized resource blocks with those E-W vertical outlines, we get resource estimates at any cut-off in the different categories. Hence, at the 2g/tAu cut-off, we have: (1) 97kt measured @ 6.73 g/t (21koz) (2) 879kt indicated @ 5.40 g/t (153koz) (3) 312kt inferred @4.57 g/t (46koz).

 

Appendix 8-21



 

 

Figure 16 Zone D1 — EW long section — Block extent + 1m composites

 

Appendix 8-22



 

 

Figure 17 Histogram and indicator (0.5g/t cut-off) variograms of 1m composites in D1

 

Appendix 8-23



 

 

Figure 18 Grade correlograms of 1m composites above 0.5g/t in D1

 

 

Figure 19 Blocks above 0.5g/t with interpolated grade in top part of D1

 

Appendix 8-24



 

 

Figure 20 Long section of D1 zone with “indicated” polygons around intercepts

 

Appendix 8-25



 

 

Figure 21  Long section of D1 zone with “measured” polygons around intercepts

 

Appendix 8-26



 

1-7                              Checking mineralized zone limits with polygons of influence on long sections

 

Besides helping delineate resources in various categories, polygons of influence around mineralized intercepts on long section can also help delineating the extents of mineralized zone themselves i.e. of the solid interpreted for each zone. The idea is to also project on the long section dummy intercepts of low thickness and zero grade in surrounding holes not intersecting the zone but defined at the location where those holes should have intersected the zone. The limit of the mineralized zone on the long section should go halfway between those dummy intercepts outside the zone and the last mineralized intercepts inside the zone.

 

Figure 12 illustrates that exercise in the case of the D1 zone. Polygons of influence with a 30m maximum radius are drawn around the 44 mineralized intercepts (in red) as well as 15 dummy intercepts around (in black). The current limits of the solid describing the zone are in red. All the mineralized intercepts are within that limit. An alternative limit for the zone is drawn (in blue) following the contact between polygons around mineralized intercepts and polygons around dummy intercepts. In a few places, that alternative limit is more conservative than the limit around the projected solid. Obviously, it is difficult to take into account a projected limit on the long section when delineating the sectional ring of the mineralized solid. However, the alternative limit could be use to further cookie-cut the blocks of the resource model in the same way that it is done with measured and indicated resource limits drawn on the long section.

 

Appendix 8-27



 

 

Figure 22 Long section of D1 zone with an alternative zone outside limits around polygons

 

Appendix 8-28



 

2-             February 2012 final model

 

2-1 Drill hole data

 

A new version of the drill hole database for Timmins West mine was received on Feb. 3, 2012. It has collar coordinates, orientation at collar, depth, deviation data, assay and litho intervals data for up to 1427 drill holes. We had missing surveys at collar for hole 80-034 (we guessed an azimuth of 20 and a dip of +10) and hole TG06-96F (we guessed an azimuth of 250.1 and a dip of -77.17 like for the other wedges of TG06-96).

 

Most of the 103 new holes are from the xxx-yyy series of UG holes with xxx (from 80 to 730) referring to a level depth in meters (99 holes totalling 15509m) and the balance in 4 deep surface holes (M-10-04 to M-10-05B) totalling 8898m? (actually those new deep holes are not involved in the deep Timmins West resources).

 

We have 112,249 assay intervals along those holes i.e. 8862 more than before. After correcting a negative length in 540-011 with from=7.5 and to =0 replaced by to=8.5, assay length varies from a mere 0.01m to 10.05m  plus, like before, two very long intervals of low values : 21m with Au=0 in TG08-158 and 73m with Au=0.123 g/t in 525-035. Like before, a majority of intervals (35%) are 1m long with significant groups of 0.5m intervals (16%) and 1.5m intervals (12%). Gold assay values are mostly FA with AA finish for low grades or FA with gravimetry finish or PM (metallic screen?) for high grades. Final values range from 0 (which includes 95 intervals coded as NULL) to 1340g/t (a 0.85m interval in TG03-04) with an uncapped weighted average of 0.74 g/t.

 

2-2 Mineralized zones

 

We now have 22 different mineralized zones which have been interpreted in the bottom part (below level 650) of the Timmins West mine. This is 6 more than before mostly as a result of splitting relatively thick but low grade zones like D1 into several thin but higher grade zones (D1A+B+C+D). As a result the total mineralized volume is less than half what it was before. We still have up to 9 UM zones at the top (1B, 2A+B, 3, 4,5+A+B+C) and up to 9 D zones at the bottom (D1+A+B+C+D,2+A,3,4) as well as 4 FW zones in between (FW1+A,2,3).

 

Those zones are generally dipping from 30o to 60o to N. They look like en-echelon structures within a pipe-like trend plunging steeply to the WNW (Figure 13). They extend from 4260E to 4760E and from Z=9367 (bottom of openings on level 650) down. Their outline has been interpreted on N-S sections at 12.5m intervals (down to 6.25m intervals in a few places). They have been made available to us in DXF format.

 

On a few sections, we noticed mineralized intercepts in holes but with no solid around (Table 5). Later on those intercepts generate 1m composites but with no blocks around to estimate. It looks like a deliberate choice in small zones FW1A, FW3 and D4 but more like some kind of accidental omission in zones D1C and UM4. In that last case, the two intercepts with no modelled mineralization around are rather thick and good grade.

 

Appendix 8-29



 

 

Figure 23 Views of DHs and interpreted mineralized zones below level 650

 

Appendix 8-30



 

 

Figure 24 N-S sections through mineralized zones below level 650

 

Appendix 8-31



 

Hole

 

Section

 

From

 

To

 

Length (m)

 

g/tAu

 

Zone

 

Zone

TG04-63C

 

4489E

 

954.5

 

957

 

2.5

 

3.42

 

FW1A

 

411

TG04-63B

 

4485E

 

937.5

 

939.75

 

2.25

 

3.79

 

FW1A

 

411

TG05-64C

 

4500E

 

1187.9

 

1189.4

 

1.5

 

7.35

 

D1C

 

813

TG05-74F

 

4553E

 

1119.80

 

1122.4

 

2.6

 

3.66

 

D4

 

804

TG05-74B

 

4565E

 

1119.15

 

1120

 

0.85

 

2.28

 

D4

 

804

TG05-74E

 

4571E

 

1125.2

 

1126.2

 

1

 

6.36

 

D4

 

804

TG05-77B

 

4573E

 

1058.9

 

1060.4

 

1.5

 

32.41

 

D4

 

804

TG04-55

 

4599E

 

823.45

 

824.9

 

1.45

 

3.26

 

FW3

 

403

TG04-55C

 

4605E

 

831

 

833.5

 

2.5

 

5.80

 

FW3

 

403

TG97-50b

 

4713E

 

746.3

 

751.6

 

5.3

 

7.41

 

UM4

 

604

TG97-50a

 

4719E

 

743.4

 

747.4

 

4

 

6.13

 

UM4

 

604

 

Table 11 Intercepts with composites but with no solid hence blocks around

 

2-3 Assay intervals in mineralized intercepts and capping

 

We have 3996 assay intervals within the from-to depth limits of the 354 mineralized intercepts in drill holes i.e. less than half the number of assay intervals that we had before. Gold values of those assay intervals range from 0 to 369 g/t with a length-weighted average of 5.02 g/t vs. 3.36 g/t before.

 

Like before, the capping of high gold assay values is performed on the GT product of length by grade to account for the variety of interval length of high grade samples (from 0.4 to 1.5m).  The top of Figure 15 shows the histogram (with a log scale hence excluding zero grade intervals) of those GT products for all assay intervals in the mineralized zones. There is still a noticeable group of very low grade intervals (around 0.01 g/t) within the more restrictive mineralized intercepts but it is much less significant than before.

 

The bottom of Figure 15 shows the high end of the cumulative frequency plot of the same GT products, still with a log scale. It continues to show a kick upward, hence a natural gap in the high end of the GT products distribution, at about 70 m.g/t which is our proposed capping limit (70 g/t over 1m or 140 g/t over 0.5m). That capping touches 11 intervals with a length weighted average grade of capped data of 4.78 g/t i.e. 4.7% less than the uncapped average of 5.02 g/t and very similar to the gold loss that we had before.

 

Appendix 8-32



 

 

Figure 25 Histogram and cumulative frequency plot of GTs of all mineralized intervals

 

Appendix 8-33



 

2-4 Composites

 

Like before, block grade interpolation in the various mineralized zones is done from the capped assay intervals in the same zone composited over 1m intervals to account for the variable length of those original assay intervals. Up to 2902 composites with a documented length of at least 0.5m can be produced with a capped grade from 0 to 70 g/t and averaging 4.60 g/t. We checked that we would produce exactly the same composites with the same grades within the 354 mineralized intercepts of interpreted zones with holes.

 

2-5 Resource block model

 

LSG new resource block model for the bottom part (below level 650) of the Timmins West mine is made of 248,526 (more than twice that number before) full or partial blocks 2x2x2m within limits of the 22 interpreted mineralized zones.

 

The interpolation of block grades from the grade of 1m composites in the same zone around the block is done by inverse distance to the cube in up to 5 runs with the following search conditions:

Run 1 : 15x15x8m ellipsoid dipping from 30o to 60o  to N355 — Minimum of 3 composites — Maximum of 10 composites overall and 2 composites by hole — 16% of blocks are interpolated in this run.

Run 2 : 30x30x15m ellipsoid dipping 30o to 60o  to N355 — Minimum of 3 composites — Maximum of 10 composites overall and 2 composites by hole — 33% of blocks are interpolated in this run.

Run 3 : 60x60x30m ellipsoid dipping 30o to 60o  to N355 — Minimum of 3 composites — Maximum of 10 composites overall and 2 composites by hole — 48% of blocks are interpolated in this run.

Run 4 : 60x60x30m ellipsoid dipping 30o to 60o  to N355 — Minimum of 2 composites — Maximum of 10 composites overall and 2 composites by hole — 3% of blocks are interpolated in this run.

Run 5 : 120x120x60m ellipsoid dipping 30o to 60o  to N355 — Minimum of 2 composites — Maximum of 10 composites overall and 2 composites by hole — less than 1% of blocks are interpolated in this run.

The dip to north angle of the search ellipsoid is 30o in zone UM4, 40o in D1D and FW2, 60o in UM3 and D3 and 48o in all the other zones. Those search conditions look reasonable.

 

Mean block grade estimates are compared to mean composite grades in the same zone on Table 6. It should be noted that no block modelling has been done in three small zones with less than 8 composites (FW3, FW1A and D4). If composites were distributed on a regular grid within the zone, the two means (estimated block grade and composite grade) should be close. This is indeed the case for a majority of zones (i.e. FW2, UM3, UM2B, D1, D2, D3, D1C, UM1B, UM5B and UM5C). The few cases where the mean block grade estimate is clearly above the mean composite grade (FW1, UM4, UM5, UM2A and D1D) are somewhat balanced by the few cases where the mean block grade is clearly below the mean composite grade (D1A, D1B, D2A and UM5A).

The large difference between overall mean composite capped grade of 4.60 g/t and mean block grade estimate of 5.52 g/t is easily explained by the very different spatial density of composites in zones i.e. we have up to 972 composites averaging a relatively low 4.47 g/t in zone UM1B with a total volume of just about 102,000m3 but just 65 composites averaging a relatively high 6.39 g/t in zone D1B with about the same volume (90,000m3).

 

2-6 Resource classification

 

Material in each of the estimated 248,526 blocks has been classified as either indicated or inferred. The last column of Table 6 indicates the volumetric proportion of indicated material in each of the 22 zones. It

 

Appendix 8-34



 

varies from 0% (zones FW2, D1B, D1C) to 100% (zones UM3, UM4, UM2A, UM2B, D2A, UM1B and UM5B) with an average of 57%.

 

It can be verified that 90% of the blocks interpolated in the first run and close to 70% of the blocks interpolated in the second run are classified as indicated while more than 60% of the blocks interpolated in the third run are in the inferred category.

 

The proportion of indicated material in each zone is compared to an indicator of sample data density in Table 6. This indicator (column Dinfl in Table 6) is derived as the squared root of the ratio of mineralized volume in the zone to number of composites available in the same zone. The ratio is the average volume of influence of a composite and, since composites are 1m long, its squared root is the length of the side of the polygon of influence of a composite assuming that this polygon of influence is a square. For example, in zone FW1, the mineralized volume of 37,887m3 is documented by 82 composites hence a 37887/82 = 462m i.e. a 21.5x21.5x1m prism of influence. If composite were from holes on a perfectly regular grid, this calculated length would be the spacing between holes. It varies from 10m (zones UM2A, UM4 and UM1B with a large number of composites for a relatively small mineralized volume) to 42m (zones D2A and D3 with few composites to document a relatively large mineralized volume) with an average of 22m.  There is generally a good agreement between Dinfl and the proportion of indicated material in the same zone i.e. zones UM3, UM4, UM2A, UM2B, UM1B and UM5B with 100% indicated material are all with a Dinfl less than 20m (from 9.9m to 18.2m). The exception is zone D2A which is also all classified as indicated but with a large Dinfl of 42m. Figure 16 shows an alternative classification of blocks in that zone with indicated restricted to the central area with composites and inferred on the sides, somewhat similar to the classification of blocks in zone D2 (also shown).

 

Appendix 8-35



 

Zone

 

Zone

 

#comp.

 

MeanAu
(g/t)

 

MeanAuC
(g/t)

 

#blocks

 

Volume
(m3)

 

Density

 

Tonnage
(t)

 

MeanAu
(g/t)

 

MeanAuC
(g/t)

 

OzAuC
(oz)

 

Dinfl.
(m)

 

Ind.
%

 

FW1

 

401

 

82

 

4.97

 

4.97

 

8788

 

37,887

 

2.81

 

106,462

 

7.43

 

7.43

 

25,434

 

21.5

 

32.7

 

FW2

 

402

 

9

 

5.72

 

5.72

 

2071

 

8,796

 

2.81

 

24,716

 

5.66

 

5.66

 

4,498

 

31.3

 

0

 

FW3

 

403

 

4

 

5.34

 

5.34

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0.0

 

 

 

FW1A

 

411

 

5

 

3.46

 

3.46

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0.0

 

 

 

UM3

 

603

 

30

 

4.40

 

4.40

 

1805

 

7,646

 

2.92

 

22,328

 

4.61

 

4.61

 

3,310

 

16.0

 

100

 

UM4

 

604

 

443

 

3.41

 

3.41

 

6906

 

44,018

 

2.92

 

128,531

 

4.80

 

4.80

 

19,838

 

10.0

 

100

 

UM5

 

605

 

138

 

5.20

 

5.20

 

22413

 

133,820

 

2.92

 

390,754

 

6.10

 

6.10

 

76,643

 

31.1

 

40.2

 

UM2A

 

621

 

229

 

2.70

 

2.70

 

4319

 

22,349

 

2.81

 

62,800

 

3.41

 

3.41

 

6,886

 

9.9

 

100

 

UM2B

 

622

 

149

 

4.23

 

4.23

 

7252

 

38,896

 

2.81

 

109,297

 

4.48

 

4.48

 

15,744

 

16.2

 

100

 

D1

 

801

 

161

 

5.40

 

4.95

 

37550

 

228,103

 

2.92

 

666,062

 

5.59

 

4.72

 

101,087

 

37.6

 

41.2

 

D2

 

802

 

105

 

7.16

 

6.04

 

33058

 

173,872

 

2.92

 

507,705

 

6.70

 

6.13

 

100,072

 

40.7

 

58.6

 

D3

 

803

 

85

 

6.27

 

4.68

 

29282

 

148,943

 

2.92

 

434,914

 

6.19

 

4.64

 

64,887

 

41.9

 

49.6

 

D4

 

804

 

7

 

14.77

 

14.77

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0.0

 

 

 

D1A

 

811

 

68

 

9.76

 

6.82

 

12795

 

66,093

 

2.92

 

192,992

 

8.59

 

6.31

 

39,157

 

31.2

 

44.2

 

D1B

 

812

 

65

 

6.39

 

6.39

 

17589

 

89,555

 

2.92

 

261,500

 

5.23

 

5.23

 

43,976

 

37.1

 

0

 

D1C

 

813

 

8

 

7.69

 

7.69

 

3645

 

13,361

 

2.92

 

39,015

 

7.91

 

7.91

 

9,923

 

40.9

 

0

 

D1D

 

814

 

72

 

7.36

 

7.36

 

12861

 

79,416

 

2.92

 

231,896

 

8.19

 

8.19

 

61,068

 

33.2

 

86.3

 

D2A

 

821

 

28

 

7.70

 

6.34

 

9351

 

50,069

 

2.92

 

146,200

 

6.61

 

5.95

 

27,971

 

42.3

 

100

 

UM1B

 

6012

 

972

 

4.58

 

4.47

 

17333

 

102,114

 

2.92

 

298,173

 

4.78

 

4.68

 

44,870

 

10.2

 

100

 

UM5A

 

6051

 

163

 

5.40

 

4.98

 

12204

 

69,194

 

2.92

 

202,045

 

4.43

 

4.23

 

27,481

 

20.6

 

60.8

 

UM5B

 

6052

 

41

 

5.16

 

5.16

 

3224

 

13,633

 

2.92

 

39,808

 

5.16

 

5.16

 

6,605

 

18.2

 

100

 

UM5C

 

6053

 

38

 

7.67

 

7.67

 

6080

 

28,622

 

2.92

 

83,576

 

7.79

 

7.79

 

20,934

 

27.4

 

65.9

 

All

 

 

 

2902

 

4.85

 

4.60

 

248,526

 

1,356,387

 

2.91

 

3,948,774

 

6.06

 

5.52

 

700,384

 

21.6

 

57

 

 

Table 12 Statistics of composite and estimated block grades in the various zones of Timmins West (below level 650)

 

Appendix 8-36



 

 

Figure 26 Plan views of classified blocks and composites in zones D2A and D2

 

Appendix 8-37



 

3-             Statistical analysis of QAQC assay data for Timmins West

 

What follows is a statistical analysis of QAQC data for gold assays in Timmins West drill holes by LSG in 2009-2011. Those data are in file Master_List_QAQC_43-101_Timmins_West.xlsx, made available to us on March 08, 2012.

 

3-1      Standards

 

From April 2009 (hole TG-08-175) to late January 2012 (hole 480-018), up to 2022 standard pulps have been submitted (and results have been returned) to four laboratories i.e.: 197 at Accurassay Laboratories, 987 at ALS Canada Ltd., 689 at Bell Creek lab (in house) and 149 at Cattarello Assayers Inc. Summary statistics of standard results are on Tables 7 to 10. Up to 26 standards have been used by LSG. In addition to the target value, standard deviation (StDev) and corresponding “gates” of target +/- 3 standard deviations (Min and Max), the table lists :

 

+ the number of results for the standard (Nb)

+ the mean result (Average)

+ the % relative difference between the mean result and the target (%Diff.)

+ a flag to indicate if the difference between the mean result and the target  is significant at the 95% confidence level given the quoted standard deviation and the number of results (Sig. = 1 if significant). The difference is significant if its absolute value exceeds 2*StDev/Nb 0.5

+ the percentage of results below and above the target (PBelow and PAbove)

+ the percentage of results outside the Min/Max “gates” of Target+/- 3*StDev.

 

It should be noted that :

+reported standard deviations and gates for some of the standards have been standardized to reflect a standard deviation to target ratio of about 2-4% and gates equal to the target plus or minus 3 standard deviations

+ some odd results are not reported and used in the statistical compilation. By odd results, we mean a result which is an order of magnitude different from the target value. For example, Accurassay returned twice a 0.0025 g/t for the O-65a standard with a target value of 0.52 g/t. Those odd results likely originate from transcription errors (or the lab wrongly guessing the value of the standard). We have 3 of those odd results for Accurassay returns, 16 for ALS returns, 8 for Bell Creek and 2 for Cattarello  i.e. about the same proportion for all the labs (between 1.2 % and 1.6%)

 

In all three cases, there is no specific trend for the sign of difference between average result and target value i.e. we have negative and positive differences for low grade and high grade standards.

 

In terms of accuracy, ALS looks the best with an overall average relative difference between target and return of -0.3% and about the same 50-50% proportion of returns below and above target (52% and 48%). Both Accurassay and Cattarello are on the low side (resp. -1.4% and -2.5% overall average relative differences and both with 56% of returns below target) while Bell Creek is on the high side (+1.4% overall average relative difference and only 35% of returns below target).

 

In terms of precision, Bell Creek , Cattarello and ALS have a similar performance (percentage of return beyond gate limits from 5% to 7%) while Accurassay is not as good (percentage of 14%).

All together, the performance of the four labs is acceptable although some improvement could be achieved in the reduction of odd returns for the standards. Also the tendency of Bell Creek lab to have returns 1% above target on average would have to be monitored and corrected.

 

Appendix 8-38



 

Standard

 

Target
g/tAu

 

StdDev
g/tAu

 

Min
g/tAu

 

Max
g/tAu

 

Nb

 

Average
g/tAu

 

%Diff.
%

 

Sig.

 

PBelow
%

 

PAbove
%

 

POutside
%

 

O-10c

 

6.660

 

0.183

 

6.110

 

7.080

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-10Pb

 

7.150

 

0.193

 

6.570

 

7.730

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

36

 

0.990

 

-2.8

%

1

 

86.1

%

13.9

%

5.6

%

O-15Pa

 

1.020

 

0.027

 

0.940

 

1.100

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

1

 

1.176

 

10.9

%

1

 

0.0

%

100.0

%

100.0

%

O-17c

 

3.04

 

0.083

 

2.790

 

3.290

 

71

 

3.007

 

-1.1

%

1

 

56.3

%

43.7

%

18.3

%

O-18c

 

3.52

 

0.107

 

3.200

 

3.840

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-18Pb

 

3.630

 

0.070

 

3.420

 

3.840

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-19a

 

5.490

 

0.100

 

5.190

 

5.790

 

1

 

5.621

 

2.4

%

0

 

0.0

%

100.0

%

0.0

%

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-4Pb

 

0.049

 

0.002

 

0.042

 

0.056

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-50Pb

 

0.841

 

0.032

 

0.746

 

0.936

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-52Pb

 

0.307

 

0.017

 

0.255

 

0.359

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-54Pa

 

2.900

 

0.110

 

2.570

 

3.230

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-60b

 

2.570

 

0.107

 

2.250

 

2.890

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-60P

 

2.610

 

0.070

 

2.400

 

2.800

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

9

 

5.195

 

9.1

%

1

 

22.2

%

77.8

%

44.4

%

O-62c

 

8.790

 

0.213

 

8.150

 

9.420

 

15

 

8.274

 

-5.9

%

1

 

76.7

%

23.3

%

46.7

%

O-62d

 

10.500

 

0.330

 

9.510

 

11.490

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-62Pb

 

11.330

 

0.353

 

10.270

 

12.390

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-65a

 

0.520

 

0.017

 

0.469

 

0.571

 

61

 

0.513

 

-1.4

%

1

 

41.0

%

59.0

%

1.6

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-67a

 

2.238

 

0.096

 

1.950

 

2.526

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-6Pc

 

1.520

 

0.067

 

1.320

 

1.720

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-7Pb

 

2.770

 

0.053

 

2.610

 

2.930

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

All

 

2.399

 

 

 

 

 

 

 

194

 

2.361

 

-1.3

%

 

 

56.4

%

43.6

%

14.4

%

 

Table 13 Statistics of results for standard pulps with LSG samples to Accurassay (2009-2011)

 

Appendix 8-39



 

Standard

 

Target
g/tAu

 

StdDev
g/tAu

 

Min
g/tAu

 

Max
g/tAu

 

Nb

 

Average
g/tAu

 

%Diff.
%

 

Sig.

 

PBelow
%

 

PAbove
%

 

POutside
%

 

O-10c

 

6.660

 

0.183

 

6.110

 

7.080

 

1

 

6.370

 

-4.4

%

0

 

100.0

%

0.0

%

0.0

%

O-10Pb

 

7.150

 

0.193

 

6.570

 

7.730

 

118

 

7.164

 

0.2

%

0

 

43.6

%

56.4

%

10.2

%

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-15Pa

 

1.020

 

0.027

 

0.940

 

1.100

 

123

 

1.000

 

-1.9

%

1

 

70.7

%

29.3

%

6.5

%

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

132

 

1.067

 

0.6

%

1

 

45.8

%

54.2

%

12.1

%

O-17c

 

3.04

 

0.083

 

2.790

 

3.290

 

4

 

3.095

 

1.8

%

0

 

50.0

%

50.0

%

25.0

%

O-18c

 

3.52

 

0.107

 

3.200

 

3.840

 

4

 

3.728

 

5.9

%

1

 

0.0

%

100.0

%

0.0

%

O-18Pb

 

3.630

 

0.070

 

3.420

 

3.840

 

75

 

3.555

 

-2.1

%

1

 

64.7

%

35.3

%

10.7

%

O-19a

 

5.490

 

0.100

 

5.190

 

5.790

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

10

 

0.837

 

-5.5

%

1

 

100.0

%

0.0

%

10.0

%

O-4Pb

 

0.049

 

0.002

 

0.042

 

0.056

 

12

 

0.049

 

-1.0

%

0

 

58.3

%

41.7

%

0.0

%

O-50Pb

 

0.841

 

0.032

 

0.746

 

0.936

 

40

 

0.841

 

0.0

%

0

 

47.5

%

52.5

%

5.0

%

O-52Pb

 

0.307

 

0.017

 

0.255

 

0.359

 

9

 

0.316

 

3.0

%

0

 

0.0

%

100.0

%

0.0

%

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

2

 

0.618

 

-0.9

%

0

 

50.0

%

50.0

%

0.0

%

O-54Pa

 

2.900

 

0.110

 

2.570

 

3.230

 

2

 

2.885

 

-0.5

%

0

 

50.0

%

50.0

%

0.0

%

O-60b

 

2.570

 

0.107

 

2.250

 

2.890

 

138

 

2.564

 

-0.2

%

0

 

54.7

%

45.3

%

2.9

%

O-60P

 

2.610

 

0.070

 

2.400

 

2.800

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

152

 

4.807

 

1.0

%

1

 

38.2

%

61.8

%

10.5

%

O-62c

 

8.790

 

0.213

 

8.150

 

9.420

 

3

 

8.940

 

1.7

%

0

 

33.3

%

66.7

%

0.0

%

O-62d

 

10.500

 

0.330

 

9.510

 

11.490

 

19

 

10.478

 

-0.2

%

0

 

47.4

%

52.6

%

5.3

%

O-62Pb

 

11.330

 

0.353

 

10.270

 

12.390

 

2

 

10.725

 

-5.3

%

1

 

100.0

%

0.0

%

0.0

%

O-65a

 

0.520

 

0.017

 

0.469

 

0.571

 

9

 

0.487

 

-6.3

%

1

 

55.6

%

44.4

%

11.1

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

3

 

1.202

 

-2.9

%

0

 

66.7

%

33.3

%

0.0

%

O-67a

 

2.238

 

0.096

 

1.950

 

2.526

 

2

 

2.215

 

-1.0

%

0

 

50.0

%

50.0

%

0.0

%

O-6Pc

 

1.520

 

0.067

 

1.320

 

1.720

 

102

 

1.510

 

-0.7

%

0

 

52.9

%

47.1

%

1.0

%

O-7Pb

 

2.770

 

0.053

 

2.610

 

2.930

 

9

 

2.756

 

-0.5

%

0

 

66.7

%

33.3

%

11.1

%

All

 

3.076

 

 

 

 

 

 

 

971

 

3.074

 

-0.3

%

 

 

51.7

%

48.3

%

7.4

%

 

Table 14 Statistics of results for standard pulps with LSG samples to ALS Canada (2009-2011)

 

Appendix 8-40



 

Standard

 

Target
g/tAu

 

StdDev
g/tAu

 

Min
g/tAu

 

Max
g/tAu

 

Nb

 

Average
g/tAu

 

%Diff.
%

 

Sig.

 

PBelow
%

 

PAbove
%

 

POutside
%

 

O-10c

 

6.660

 

0.183

 

6.110

 

7.080

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-10Pb

 

7.150

 

0.193

 

6.570

 

7.730

 

54

 

7.435

 

4.0

%

1

 

9.3

%

90.7

%

3.7

%

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

14

 

1.038

 

1.9

%

1

 

64.3

%

35.7

%

7.1

%

O-15Pa

 

1.020

 

0.027

 

0.940

 

1.100

 

10

 

1.053

 

3.2

%

1

 

20.0

%

80.0

%

0.0

%

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

124

 

1.057

 

-0.3

%

0

 

46.8

%

53.2

%

12.1

%

O-17c

 

3.04

 

0.083

 

2.790

 

3.290

 

35

 

3.150

 

3.6

%

1

 

12.9

%

87.1

%

8.6

%

O-18c

 

3.52

 

0.107

 

3.200

 

3.840

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-18Pb

 

3.630

 

0.070

 

3.420

 

3.840

 

31

 

3.720

 

2.5

%

1

 

16.1

%

83.9

%

9.7

%

O-19a

 

5.490

 

0.100

 

5.190

 

5.790

 

1

 

5.590

 

1.8

%

0

 

0.0

%

100.0

%

0.0

%

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-4Pb

 

0.049

 

0.002

 

0.042

 

0.056

 

5

 

0.067

 

37.6

%

1

 

0.0

%

100.0

%

60.0

%

O-50Pb

 

0.841

 

0.032

 

0.746

 

0.936

 

7

 

0.869

 

3.3

%

1

 

14.3

%

85.7

%

0.0

%

O-52Pb

 

0.307

 

0.017

 

0.255

 

0.359

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-54Pa

 

2.900

 

0.110

 

2.570

 

3.230

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-60b

 

2.570

 

0.107

 

2.250

 

2.890

 

116

 

2.654

 

3.3

%

1

 

26.7

%

73.3

%

0.0

%

O-60P

 

2.610

 

0.070

 

2.400

 

2.800

 

1

 

2.630

 

0.8

%

0

 

0.0

%

100.0

%

0.0

%

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

153

 

4.784

 

0.5

%

1

 

19.6

%

80.4

%

3.3

%

O-62c

 

8.790

 

0.213

 

8.150

 

9.420

 

18

 

8.617

 

-2.0

%

1

 

66.7

%

33.3

%

16.7

%

O-62d

 

10.500

 

0.330

 

9.510

 

11.490

 

3

 

11.022

 

5.0

%

1

 

0.0

%

100.0

%

0.0

%

O-62Pb

 

11.330

 

0.353

 

10.270

 

12.390

 

15

 

10.909

 

-3.7

%

1

 

100.0

%

0.0

%

6.7

%

O-65a

 

0.520

 

0.017

 

0.469

 

0.571

 

71

 

0.509

 

-2.2

%

1

 

85.2

%

14.8

%

1.4

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-67a

 

2.238

 

0.096

 

1.950

 

2.526

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-6Pc

 

1.520

 

0.067

 

1.320

 

1.720

 

23

 

1.559

 

2.6

%

1

 

17.4

%

82.6

%

0.0

%

O-7Pb

 

2.770

 

0.053

 

2.610

 

2.930

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

All

 

3.279

 

 

 

 

 

 

 

681

 

3.321

 

1.4

%

 

 

34.8

%

65.2

%

5.4

%

 

Table 15 Statistics of results for standard pulps with LSG samples to Bell Creek (2009-2011)

 

Appendix 8-41



 

Standard

 

Target
g/tAu

 

StdDev
g/tAu

 

Min
g/tAu

 

Max
g/tAu

 

Nb

 

Average
g/tAu

 

%Diff.
%

 

Sig.

 

PBelow
%

 

PAbove
%

 

POutside
%

 

O-10c

 

6.660

 

0.183

 

6.110

 

7.080

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-10Pb

 

7.150

 

0.193

 

6.570

 

7.730

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

5

 

1.007

 

-1.2

%

0

 

40.0

%

60.0

%

20.0

%

O-15Pa

 

1.020

 

0.027

 

0.940

 

1.100

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

23

 

1.010

 

-4.7

%

1

 

82.6

%

17.4

%

17.4

%

O-17c

 

3.04

 

0.083

 

2.790

 

3.290

 

34

 

3.065

 

0.8

%

0

 

50.0

%

50.0

%

0.0

%

O-18c

 

3.52

 

0.107

 

3.200

 

3.840

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-18Pb

 

3.630

 

0.070

 

3.420

 

3.840

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-19a

 

5.490

 

0.100

 

5.190

 

5.790

 

2

 

5.491

 

0.0

%

0

 

50.0

%

50.0

%

0.0

%

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-4Pb

 

0.049

 

0.002

 

0.042

 

0.056

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-50Pb

 

0.841

 

0.032

 

0.746

 

0.936

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-52Pb

 

0.307

 

0.017

 

0.255

 

0.359

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-54Pa

 

2.900

 

0.110

 

2.570

 

3.230

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-60b

 

2.570

 

0.107

 

2.250

 

2.890

 

14

 

2.338

 

-9.0

%

1

 

92.9

%

7.1

%

0.0

%

O-60P

 

2.610

 

0.070

 

2.400

 

2.800

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

27

 

4.639

 

-2.5

%

1

 

40.7

%

59.3

%

7.4

%

O-62c

 

8.790

 

0.213

 

8.150

 

9.420

 

15

 

8.792

 

0.0

%

0

 

46.7

%

53.3

%

6.7

%

O-62d

 

10.500

 

0.330

 

9.510

 

11.490

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-62Pb

 

11.330

 

0.353

 

10.270

 

12.390

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-65a

 

0.520

 

0.017

 

0.469

 

0.571

 

27

 

0.504

 

-3.0

%

1

 

44.4

%

55.6

%

7.4

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-67a

 

2.238

 

0.096

 

1.950

 

2.526

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-6Pc

 

1.520

 

0.067

 

1.320

 

1.720

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

O-7Pb

 

2.770

 

0.053

 

2.610

 

2.930

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

All

 

3.090

 

 

 

 

 

 

 

147

 

3.040

 

-2.5

%

 

 

55.8

%

44.2

%

6.8

%

 

Table 16 Statistics of results for standard pulps with LSG samples to Cattarello (2009-2011)

 

Appendix 8-42



 

3-2      Blanks

 

In the same period, up to 2077 blanks have been submitted to the same four labs i.e.: 218 at Accurassay, 990 at ALS, 718 at Bell Creek and 151 at Cattarello. The only statistics which can be derived from results for blanks is the proportion of them above a given threshold. Traditionally, this threshold is five times the detection limit which in the case of Timmins West looks like 0.0025 g/tAu hence a threshold of 0.0125 g/tAu. This in fact pretty low and we generally prefer to use a “practical” threshold of 0.1 g/t Au.

 

For Accurassay, we have 28.0% of blank returns above 0.0125 g/t and 4.1% above 0.1 g/t up to 0.92 g/t.

For ALS, we have 16.9% of blank returns above 0.0125 g/t and 1.0% above 0.1 g/t up to an impressive 22.9 g/t.

For Bell Creek, we have 40.7% of blank returns above 0.0125 g/t and 1.5% above 0.1 g/t up to 2.97 g/t.

For Cattarello, we have 31.8% of blank returns above 0.0125 g/t and 2.0% above 0.1 g/t up to 0.86 g/t..

 

Like with standards and despite the very high grade returned for a blank, the best performance is with ALS followed by Bell Creek+Cattarello and finally Accurassay. Based on our experience, we find the performance of ALS, Bell Creek and Cattarello acceptable.

 

3-3      Coarse Duplicates

 

Coarse duplicates are normally assays from a new pulp made out of the crushed and ground (but not pulverized) reject of the original sample. Up to 1213 coarse duplicates from April 2009 to January 2012 have been assayed at the same 4 labs as standards and blanks, with an original and a duplicate grade : 204 at Accurassay, 413 at ALS, 487 at Bell Creek and 109 at Cattarello. The statistic of  interest with duplicates at the same lab is either the correlation coefficient of originals and duplicates (preferably with a log scale) or the average relative difference of originals and duplicates above a given threshold (very low grades tend to generate high relative differences with an undue influence on the average relative difference). In this case we use a threshold of 0.5g/tAu.

 

For Accurassay, we have a correlation of R=0.91 and an average relative difference of 44.8%.

For ALS, we have a correlation of R=0.97 and an average relative difference of 32.8%.

For Bell Creek, we have a correlation of R=0.95 and an average relative difference of 24.0%.

For Cattarello, we have a correlation of R=0.97 and an average relative difference of 23.6%.

 

Here again, ALS, Bell Creek and Cattarello have a similar performance but Accurassay is not as good.

 

The correlation plot of duplicated and original grades for coarse duplicates in the four labs is on Figure 17. Although most pairs follow the first diagonal, we can notice outlier pairs (= large difference of original and duplicated grade) in all the labs which explain the magnitude of average relative differences but they are not surprising for coarse duplicates in gold mineralization.

 

Appendix 8-43



 

 

Figure 27 Correlation plot of coarse duplicates

 

3-4      Check assays

 

From data supplied, check assays look like samples from rejects of pulp originally assayed by ALS which have been sent to the Accurassay lab for a check assay. The original ALS samples were processed during the year 2010 while check data are dated in July 2011.

 

We can identify 676 complete check assay samples at Accurassay. Original (ALS) values range from 0.0025 to 142.0 g/t with an average of 2.05 g/t while check (Accurassay) values range from 0.0025 to 154.38 g/t with a mean of 2.02 g/t. Despite the similarity of means, a T-test of paired data run on log grade (to respect some normality of parent population) shows that the differences of log means i.e. -1.20 (originals) and -1.04 (checks) is significant at the 95% confidence level (T= -9.16 with a limit at -1.96 — the correlation coefficient of log data is 0.93). However a sign test shows the absence of a significant bias between the two sets (we have 47.5% of pairs above 0.5 g/t with original value more than duplicate value with a 95% confidence lower limit at 42.9%). Several pairs with a high difference between original and duplicated values are noticeable: 0.0025 g/t (original) and 71.40 g/t (check) but also 82.1 g/t (original) and 1.02 g/t (check).

 

Correlation plots of check and original values in the two sets are on Figure 18.

 

Appendix 8-44



 

Up to 36 blanks and 35 standard pulps were sent to Accurassay with the 676 ALS pulps to check. Results for blanks are perfect with no return above 0.0125 g/t. Results from standards (Table 11) are not that good with Accurassay clearly overstating low and medium grade standards by 2 to 10%.

 

In other words, Accurassay has somewhat discredited itself as a reference lab for ALS by failing to adequately report low and medium grade standards. Moreover, if anything, ALS data of the check samples are lower than Accurassay check results for the same samples, which is fine.

 

Standard

 

Target
g/tAu

 

StdDev
g/tAu

 

Min
g/tAu

 

Max
g/tAu

 

Nb

 

Average
g/tAu

 

%Diff.
%

 

Sig.

 

PBelow
%

 

PAbove
%

 

POutside
%

 

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

1

 

1.109

 

8.8

%

1

 

0.0

%

100.0

%

100.0

%

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

15

 

1.135

 

7.1

%

1

 

0.0

%

100.0

%

46.7

%

O-17c

 

3.04

 

0.083

 

2.790

 

3.290

 

4

 

3.366

 

10.7

%

1

 

0.0

%

100.0

%

75.0

%

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

7

 

4.868

 

2.3

%

1

 

14.3

%

85.7

%

42.9

%

O-62c

 

8.790

 

0.213

 

8.150

 

9.420

 

8

 

8.733

 

-0.6

%

0

 

50.0

%

50.0

%

0.0

%

All

 

3.792

 

 

 

 

 

 

 

35

 

3.873

 

4.8

%

 

 

14.3

%

85.7

%

40.0

%

 

Table 17 Statistics of results for standard pulps with ALS check samples at Accurassay

 

 

Figure 28  Correlation plot of check samples

 

Appendix 8-45



 

3-5      Lab standards, blanks and duplicates

 

Internal QAQC data in the form of duplicates, blanks and standards are available.

 

ALS used the CDN-CGS-19 standard with target grade of 0.74 g/t and gates from 0.67 to 0.81 g/t (according to CDN Resource Laboratories Ltd. brochure on the internet). We have 316 returns for that standard from October 2009 to March 2010 (no standards results for ALS afterward). They range from 0.663 to 0.859 g/t with a mean of 0.747 g/t a mere 1% average difference from target. 56% of returns are above target while 44% are below. 5.4% of returns are beyond the gates. Those results are more than adequate.

 

Cattarello has used 4 standards for which they give the gates: C-88 with 0.193-0.213 g/t gates (hence a 0.203g/t target), G-83 with 0.975-1.023 gates (hence a 0.999g/t target), H-82 with 1.150-1.406 g/t gates (hence a 1.278g/t target) and K-2 with 3.301-3.649 g/t gates (hence a 3.475g/t target). The relative magnitude of the range between gates is quite variable and thus questionable: 5% for G-83, 10% for C-88 and K-2 and 20% for H-82. Here again, returns from Cattarello standards are almost perfect, with only one value (1.98 g/t for C-88) out of range. Average relative differences range from -1.5% (K-2) to -0.3% (C-88 without the above outlier), +0.2% (H-82) and +0.4% (G-83) and there is only one return (out of 289 for the 4 standards) beyond the gates. This performance with “internal” standards can be compared to that of the same lab with “external” standards (Table 4).

 

We also have the returns of ALS internal blanks, up to 6415 of them but for a variety of elements. 2297 of those returns deal with gold. Almost all returns are less than the usual low threshold of 0.0125 g/t with only one return (0.12 g/t) above the practical threshold of 0.1 g/t. Again this almost perfect performance with “internal” blanks can be compared with that of “external” blanks (section 1-2).

 

We have internal (pulp) duplicates from Accurassay, ALS and Bell Creek labs. The 469 duplicates at Accurassay are again almost perfect with an average relative difference for returns above 0.5 g/t of only 8.4% (corresponding to a high correlation coefficient of 0.97), no significant difference between average log original and log duplicated data (T=1.4) and an acceptable proportion of points above and below the diagonal (44%-56%). A similar performance is observed with the 998 lab duplicates dealing with gold at ALS: average relative difference for returns above 0.5 g/t is only 10.0% (correlation coefficient is 0.987) and the difference of log means is not significant (T=0.50). In this case however, the proportion of duplicates above originals (54.9%) is significantly different from the expected 50% (limit proportion is 53.0%).  For Bell Creek, with 1320 lab duplicates, the average relative difference is a mere 5.9% (correlation coefficient is 0.996), difference of log means is not significant (T=0.75)and proportions of points above and below the first diagonal are very close to the 50% target (49%-51%). The closeness of duplicates to originals in the three labs is illustrated on Figure 3. This plot can be compared to that of check assay on Figure 19. Check samples are equivalent to lab duplicates in the sense that both are pulp duplicates. However the scatter of check samples is more important than that of lab duplicates.

 

Appendix 8-46



 

 

Figure 29 Correlation plot of lab duplicates

 

3-6      Conclusions

 

Samples from 2009-2011 holes at Timmins West have been processed and assayed at four different labs, mostly ALS and Bell Creek with the balance at Accurassay and Cattarello.

 

Lab QAQC results in the form of standards (ALS+Cattarello), blanks (ALS) and (pulp) duplicates (Accurassay, ALS and Bell Creek) are almost perfect with standards within gates, virtually no result above 0.1 g/t for thousands of blanks and average relative grade difference of duplicated and original values of only 10% or less.

 

The real quality performance of labs is derived from results for “external” reference material i.e. material supplied by LSG to the labs. For standards, the performance of the four labs is acceptable although some improvement could be achieved in the reduction of odd returns for the standards in the four labs. Also the tendency of Bell Creek lab to have returns 1% above target on average would have to be monitored and corrected. For blanks and despite the very high grade returned for a blank, the best performance is with ALS followed by Bell Creek+Cattarello and finally Accurassay. Based on our experience, we find the performance of ALS, Bell Creek and Cattarello acceptable. For coarse duplicates, ALS, Bell Creek and Cattarello have a similar performance (average relative difference around 30%) but Accurassay is not as good (average relative difference of more than 40%). Check (pulp) samples at Accurassay and originally assayed at ALS show slightly higher returns. However, Accurassay has somewhat discredited itself as a reference lab for ALS by failing to adequately report low and medium grade

 

Appendix 8-47



 

APPENDIX 9

 

UNDERGROUND PHOTOS OF TIMMINS WEST MINE MINERALIZATION AT THUNDER CREEK AND TIMMINS DEPOSITS

 

Appendix 9-1



 

The following photos and commentary have been provided courtesy of Mr. David Rhys from a PowerPoint presentation titled “Lake Shore Gold Thunder Creek Zones: Mineralization, Setting and Style in the Rusk and Porphyry Zones” (Rhys, 2011). The various styles of mineralization are represented in this suite of underground pictures from Rusk and Porphyry styles of the Thunder Creek deposit (Plates 1-6) and the Vein and Ultramafic hosted extensional vein arrays of the Timmins deposit (Plates 7-11).

 

Plate 1:

 

 

Plate 2:

 

 

Appendix 9-2



 

Plate 3:

 

 

Plate 4:

 

 

Appendix 9-3



 

Plate 5:

 

 

Plate 6:

 

 

 

Appendix 9-4



 

Plate 7:

 

Plate 8:

 

 

Appendix 9-5



 

Plate 9:

 

Plate 10:

 

Appendix 9-6



 

Plate 11:                (photos are courtesy of Mr. David Rhys, August 2011)

 

Appendix 9-7



 

APPENDIX 10

 

GEOTECHNICAL DATA

 

Appendix 10-1



 

Thunder Creek UCS Data

 

Testing Completed 2010 by Queen’s University, as summarized in Memo titled “Re: Core Strength Testing” dated March 18, 2010.

 

Sample, Hole (depth)

 

Type

 

Density
(g/cm
3)

 

Sigma
1
(MPa)

 

Sigma
3
(MPa)

 

Young’s
Modulus
E (GPa)

 

Poisson’s
ratio
(m)

 

UCS
(MPa)

 

Foliation
(pf or f)

 

Tensile
Strength
(range)
(MPa)

 

E088528, TC09-73E (1104-1104.15)

 

 

 

 

 

248.7

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

365.9

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI &

 

2.60

 

465.5

 

15

 

35.637

 

 

 

 

 

 

 

 

BRA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.8

 

 

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9.1-17.3)

 

E088529, TC09-80 (961-961.15)

 

UCS

 

2.58

 

 

 

15.006

 

0.15

 

28.4

 

pf

 

 

E088530, TC09-80 (1113.8-1114)

 

 

 

 

 

144.0

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

217.1

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI

 

2.57

 

303.2

 

15

 

34.806

 

 

 

 

 

 

E088534, TC09-69D (876.5-876.65)

 

UCS

 

2.63

 

 

 

51.901

 

 

210.0

 

 

 

 

 

E088537, TC09-79a (968-968.15)

 

 

 

 

 

212.8

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

291.1

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI

 

2.57

 

349.3

 

15

 

35.823

 

 

 

 

 

 

E088535, TC09-79a (932.2-932.4)

 

 

 

 

 

88.9

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI

 

2.95

 

 

15

 

26.816

 

 

 

pf

 

 

E088539, TC09-81 (372-372.2)

 

UCS

 

2.85

 

 

 

58.447

 

0.10

 

187.8

 

 

 

 

E088540, TC09-81 (381-381.15)

 

 

 

 

 

102.3

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126.4

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI

 

2.87

 

152.1

 

15

 

31.486

 

 

 

pf

 

 

E088542, TC09-69F (860.05-860.2)

 

BRA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

13.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10.2-17.0)

 

 

 

BRA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E088533, TC09-69d (865.5-865.65)

 

Z

 

 

 

 

 

 

 

 

12.4
(10.1-19.3)

 

E088541, TC09-79B (921-921.2)

 

 

 

 

 

131.9

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI

 

2.93

 

 

15

 

30.466

 

 

 

pf

 

 

E088531, TC09-69d (852.85-853)

 

UCS

 

2.92

 

 

 

37.087

 

0.11

 

116.0

 

 

 

 

E088532, TC09-69d (858.5-858.65)

 

 

 

 

 

199.7

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

249.9

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TRI

 

2.90

 

275.9

 

15

 

40.136

 

 

 

 

 

 

E088536, TC09-79a (955.5-955.65)

 

UCS

 

2.91

 

 

 

55.732

 

0.11

 

114.1

 

 

 

 

E088538, TC09-81 (365.15-365.3)

 

BRA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

13.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.3-19.1)

 

 


(f) — indicates failure along pre-existing foliation surfaces

(pf) — indicates failure partially along pre-existing foliation surfaces

 

Testing Completed 2011 by Queen’s University, as summarized in Memo titled “Re: Core Strength Testing” dated March 11, 2011:

 

Appendix 10-2



 

Sample and Type

 

Density
(g/cm
3)

 

Young’s
Modulus
E (GPa)

 

Poisson’s
ratio
(µ)

 

UCS
(MPa)

 

Foliation
(pf or f)

 

I155484 (Unaltered Pyroxenite)

 

3.27

 

37.574

 

0.12

 

166.3

 

 

 

I155485 (Unaltered Pyroxenite)

 

3.35

 

55.762

 

0.12

 

265.6

 

 

 

I155496 (Unaltered Pyroxenite)

 

3.43

 

36.831

 

0.21

 

93.2

 

f

 

I155497 (Unaltered Pyroxenite)

 

3.41

 

58.344

 

0.11

 

253.9

 

 

 

I155498 (Unaltered Pyroxenite)

 

3.33

 

25.829

 

0.10

 

116.9

 

pf

 

I155486 Rusk

 

2.69

 

34.862

 

0.12

 

141.9

 

 

 

I155487 Rusk

 

broken

 

 

 

 

 

 

 

 

 

I155493 Rusk

 

3.02

 

40.803

 

0.15

 

252.9

 

 

 

I155495 Rusk

 

3.06

 

33.688

 

0.12

 

140.9

 

 

 

I155494 Rusk

 

2.94

 

38.277

 

0.13

 

171.7

 

 

 

I155488 Porphyry

 

2.62

 

19.427

 

0.09

 

83.9

 

 

 

I155489 Porphyry

 

2.63

 

20.576

 

0.10

 

85.6

 

 

 

I155490 Porphyry

 

2.63

 

34.772

 

0.11

 

122.2

 

 

 

I155491 Porphyry

 

2.62

 

41.185

 

0.16

 

158.7

 

 

 

I1554923.27 Porphyry

 

2.60

 

36.083

 

0.13

 

294.6f

 

 

 

 


(f) — indicates failure along pre-existing foliation surfaces

(pf)indicates failure partially along pre-existing foliation surfaces

 

Appendix 10-3



 

Summary of Timmins Mine Rock Strength Data

 

Testing Completed 2009 by Queen’s University, as summarized in Memo titled “Re: Core Strength Testing” dated November 20, 2009:

 

Sample (depth)

 

Type

 

Density
(g/cm
3)

 

Sigma
1
(Mpa)

 

Sigma
3
(MPa)

 

Young’s
Mod.
E (GPa)

 

Poisson’s
ratio (µ)

 

UCS
(MPa)

 

Foliation
pf or f

 

Tensile
Strength
(MPa)

 

MVFH665515 650023(139.0-139.2)

 

UCS

 

2.83

 

 

 

 

 

14.086

 

0.20

 

69.0

 

 

 

 

 

MVFH665516 650023(224.4-224.6)

 

UCS

 

2.82

 

 

 

 

 

37.559

 

0.19

 

103.1

 

 

 

 

 

MVFH665532 650026a(135.0-135.20)

 

UCS

 

2.88

 

 

 

 

 

40.386

 

0.18

 

112.7

 

 

 

 

 

MVFH665513 140020(24.65-24.95)

 

UCS

 

2.78

 

 

 

 

 

19.994

 

 

61.8

 

pf

 

 

 

MVFH665502 650026(13.35-13.64)

 

UCS

 

2.86

 

 

 

 

 

20.695

 

0.13

 

91.4

 

pf

 

 

 

MVFH665501 650011a(294.0-294.25)

 

UCS

 

2.92

 

 

 

 

 

40.310

 

0.14

 

116.3

 

 

 

 

 

MVFH665513 140020(24.65-24.95)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10.5-12.9)

 

MVFH665502 650026(13.35-13.64)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(13.2-19.0)

 

MVFH665501 650011a(294.0-294.25)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.5-18.0)

 

MVFH665515 650023(139.0-139.2)

 

TRI

 

2.84

 

172.6

 

5

 

23.104

 

 

 

 

 

 

 

 

 

 

 

 

188.4

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

MVFH665515 650023(224.4-224.6)

 

TRI

 

2.82

 

108.6

 

5

 

24.043

 

 

 

 

 

 

 

 

 

 

 

 

160.7

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

190.7

 

15

 

 

 

 

 

 

 

 

 

 

 

MVFH665532 650026a(135.0-135.20)

 

TRI

 

2.80

 

207.8

 

5

 

28.806

 

 

 

 

 

 

 

 

 

 

 

 

226.8

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

252.9

 

15

 

 

 

 

 

 

 

 

 

 

 

MVFH665513 140020(24.65-24.95)

 

TRI

 

2.77

 

125.1

 

5

 

26.831

 

 

 

 

 

 

 

 

 

 

 

 

149.0

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

MVFH665502 650026(13.35-13.64)

 

TRI

 

2.96

 

223.5

 

5

 

30.657

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

MVFH66501 650-011a(294.0-294.2)

 

TRI

 

2.95

 

114.1

 

5

 

30.129

 

 

 

 

 

 

 

 

 

 

 

 

155.0

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

170.7

 

15

 

 

 

 

 

 

 

 

 

 

 

Meta Sed H665504 120-044a(29.10-29.40)

 

UCS

 

2.79

 

 

 

 

 

27.384

 

0.24

 

49.2

 

 

 

 

 

Meta Sed H665517 120-007(3.90-4010

 

UCS

 

2.76

 

 

 

 

 

8.977

 

 

25.5

 

 

 

 

 

Meta Sed H665503 120015b(8.77-9.00)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.7-15.2)

 

Meta Sed H665505 120004a(84.2-84.4)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.6-15.7)

 

Meta Sed H665504 120004a(29.10-29.40)

 

TRI

 

2.78

 

59.0

 

5

 

20.007

 

 

 

pf

 

 

 

 

 

 

 

 

128.4

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

158.7

 

15

 

 

 

 

 

 

 

 

 

 

 

Meta Sed H665517 120007(3.90-4.10)

 

TRI

 

2.74

 

145.9

 

5

 

27.301

 

 

 

 

 

 

 

 

 

 

 

 

191.8

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

215.2

 

15

 

 

 

 

 

 

 

 

 

 

 

QTVH665514 140020(54.20-54.40)

 

UCS

 

2.78

 

 

 

 

 

47.722

 

0.15

 

161.6

 

 

 

 

 

QTVH665511 650027b(108.87-109.03)

 

UCS

 

2.80

 

 

 

 

 

35.467

 

0.34

 

88.6

 

 

 

 

 

QTVH665533 120003(16.35-16.53

 

UCS

 

2.60

 

 

 

 

 

32.232

 

0.20

 

59.5

 

 

 

 

 

QTVH665511 650027b(108.87-109.03)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.2-30.9)

 

QTVH665514 140020(54.20-54.46)

 

TRI

 

2.73

 

347.8

 

5

 

37.996

 

 

 

 

 

 

 

 

 

 

 

 

381.0

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

436.7

 

15

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 10-4



 

Sample (depth)

 

Type

 

Density

 

Sigma
1
(MPa)

 

Sigma
3
(MPa)

 

Young’s
Mod. E
(GPa)

 

Poisson’s
ratio (m)

 

UCS
Sc
(MPa)

 

Foliation
pf or f

 

Tensile
Strength
(MPa)

 

QTVH665520 650018(52.65-52.85)

 

TRI

 

2.65

 

326.8

 

5

 

41.122

 

 

 

 

 

 

 

 

 

 

 

 

425.4

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

479.5

 

15

 

 

 

 

 

 

 

 

 

 

 

QTVH665508 90034a(19.0-19.16)

 

TRI

 

2.73

 

234.2

 

5

 

41.304

 

 

 

 

 

 

 

 

 

 

 

 

338.5

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

364.7

 

15

 

 

 

 

 

 

 

 

 

 

 

PYXT/ALTD PYXT H665521 650018(64.85-65.05)

 

UCS

 

3.00

 

 

 

 

 

19.928

 

0.15

 

57.4

 

 

 

 

 

PYXT/ALTD PYXT H665512 650027b(124.70-124.93)

 

UCS

 

2.93

 

 

 

 

 

35.924

 

0.12

 

95.1

 

 

 

 

 

PYXT/ALTD PYXT H665522 650018(77.7-77.95)

 

UCS

 

3.04

 

 

 

 

 

30.126

 

0.13

 

93.1

 

 

 

 

 

PYXT/ALTD PYXT H665512 650027b(124.70-124.93)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8.7-12.4)

 

PYXT/ALTD PYXT H665509 650010(124.68-124.80)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.2-15.9)

 

PYXT/ALTD PYXT H665521 650018(64.85-65.05)

 

TRI

 

3.03

 

116.4

 

5

 

25.828

 

 

 

 

 

 

 

 

 

 

 

 

146.2

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

PYXT/ALTD PYXT H665512 650027b(124.70-124.93)

 

TRI

 

2.92

 

173.0

 

5

 

32.296

 

 

 

 

 

 

 

 

 

 

 

 

220.1

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

253.4

 

15

 

 

 

 

 

 

 

 

 

 

 

PYXT/ALTD PYXT H665522 650018(77.7-77.95)

 

TRI

 

2.99

 

166.7

 

5

 

25.911

 

 

 

 

 

 

 

 

 

 

 

 

204.8

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

228.8

 

15

 

 

 

 

 

 

 

 

 

 

 

UMFH665519 650018(36.0-36.2)

 

UCS

 

Broken

 

 

 

 

 

Broken

 

Broken

 

 

 

 

 

 

 

UMFH665523 650008(23.8-24.0)

 

UCS

 

2.79

 

 

 

 

 

10.741

 

0.17

 

23.4

 

pf

 

 

 

UMFH665519 650018(25.2-25.4)

 

UCS

 

2.84

 

 

 

 

 

6.349

 

0.13

 

13.4

 

pf

 

 

 

UMFH665519 650018(36.0-36.2)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.6-3.5)

 

UMFH665530 650026a(87.10-87.26)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.8-3.7)

 

UMFH665523 650008(23.8-24.0)

 

TRI

 

2.81

 

62.8

 

5

 

13.944

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

UMFH665519 650018(25.2-25.4)

 

TRI

 

2.85

 

40.4

 

5

 

15.453

 

 

 

pf

 

 

 

 

 

 

 

 

61.1

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77.6

 

15

 

 

 

 

 

 

 

 

 

 

 

UMFH665530 650026a(87.10-87.26)

 

TRI

 

2.85

 

65.1

 

5

 

11.956

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79.3

 

15

 

 

 

 

 

 

 

 

 

 

 

UMZH665531 650026a(117.70-117.90)

 

UCS

 

2.89

 

 

 

 

 

22.257

 

0.10

 

74.9

 

 

 

 

 

UMZH665527 650009(107.50-107.65)

 

UCS

 

2.88

 

 

 

 

 

43.431

 

0.11

 

152.9

 

 

 

 

 

UMZH665525 650008(60.00-60.17)

 

UCS

 

2.96

 

 

 

 

 

40.281

 

0.10

 

107.5

 

 

 

 

 

UMZH665528 650009(113.88-114.00)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10.2-17.3)

 

 

Appendix 10-5



 

Sample (depth)

 

Type

 

Density

 

Sigma
1
(MPa)

 

Sigma
3
(MPa)

 

Young’s
Mod. E
(GPa)

 

Poisson’s
ratio (m)

 

UCS
Sc
(MPa)

 

Foliation
pf or f

 

Tensile
Strength
(MPa)

 

UMZH665527 650009(107.50-107.65)

 

TENS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(13.7-20.0)

 

UMZH665531 650026a(117.70-117.90)

 

TRI

 

2.91

 

194.7

 

5

 

33.346

 

 

 

 

 

 

 

 

 

 

 

 

230.4

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

254.5

 

15

 

 

 

 

 

 

 

 

 

 

 

UMZH665524 650008(51.0-51.27)

 

TRI

 

2.89

 

315.6

 

5

 

41.395

 

 

 

 

 

 

 

 

 

 

 

 

376.7

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

438.3

 

15

 

 

 

 

 

 

 

 

 

 

 

UMZH665525 650008(60.00-60.17)

 

TRI

 

2.99

 

295.2

 

5

 

34.575

 

 

 

 

 

 

 

 

 

 

 

 

343.3

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

387.9

 

15

 

 

 

 

 

 

 

 

 

 

 

 


(f) — indicates failure along pre-existing foliation surfaces

(pf) — indicates failure partially along pre-existing foliation surfaces

 

Appendix 10-6



 

APPENDIX 11

 

DRAWINGS

 

Appendix 11-1












 











 



























 



 



 



 



 





 



 



 



 



 



 



 



 



 



 



 



 



 



 







































 

APPENDIX 12

 

SCHEDULES

 

Appendix 12-1



 

Appendix 12-2



 

 

Appendix 12-3



 

Appendix 12-4



 

 

Appendix 12-5



 

 

Appendix 12-6



 

Appendix 12-7



 

Appendix 12-8



 

Appendix 12-9



 

Appendix 12-10



 

Appendix 12-11



 

Appendix 12-12



 

Appendix 12-13



 

APPENDIX 13

 

LEVEL EVALUATIONS

 

Appendix 13-1



Appendix 13-2



Appendix 13-3



Appendix 13-4



Appendix 13-5



Appendix 13-6



Appendix 13-7



Appendix 13-8



Appendix 13-9



Appendix 13-10



Appendix 13-11



Appendix 13-12



Appendix 13-13



Appendix 13-14



Appendix 13-15



Appendix 13-16



Appendix 13-17



Appendix 13-18



Appendix 13-19



Appendix 13-20



Appendix 13-21



 

Appendix 13-22



 

Appendix 13-23



 

Appendix 13-24



 

Appendix 13-25



 

Appendix 13-26



 

Appendix 13-27



 

Appendix 13-28



 

Appendix 13-29



 

Appendix 13-30



 

Appendix 13-31



 

Appendix 13-32



 

Appendix 13-33



 

Appendix 13-34